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Abstract. We propose a notion of distributed games as a framework to
formalize and solve distributed synthesis problems. In general the prob-
lem of solving distributed games is undecidable. We give two theorems
allowing to simplify, and possibly to solve, some distributed games. We
show how several approaches to distributed synthesis found in the liter-
ature can be formalized and solved in the proposed setting.

1 Introduction

Consider a system consisting of a process, an environment and possible ways
of interaction between them. The synthesis problem is stated as follows: given a
specification S, find a finite state program P for the process such that the overall
behaviour of the system satisfies S, no matter how the environment behaves.

In a distributed system, in general, one can have multiple processes. The
system specifies possible interactions between the processes and the environment
and also the interactions among the processes themselves. The synthesis problem
here is to find a program for each of the processes such that the overall behaviour
of the system satisfies a given specification. We call this distributed synthesis
problem (DSP).

In this paper we study DSP in a setting where there is a fixed set of processes
with no interaction among themselves; they interact only with the environment.
Thus, any communication among processes in the system must be channeled
through the environment. This is the typical scenario, for example, in any com-
munication network where processes are peer protocols and the environment is
the stack of lower layers (including the communication medium) below them.
Typical metaphors of communication and synchronization like channels, ren-
dezvous, handshakes can be easily presented in our model.

Earlier approaches. The distributed synthesis problem has been considered by
Pnueli and Rosner in the setting of an architecture with fixed channels of com-
munication among processes [29]. They have shown that distributed synthesis is
undecidable for most classes of architectures. They have obtained decidability
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for a special class of hierarchical architectures called pipelines. It must be noted
that the basic undecidability and lower bounds (in case of decidability) follow
from much earlier results on the multi-player games of Peterson and Reif [27].
After the work of Pnueli and Rosner, the decidability results have been extended
to branching time specifications over two-way pipelines and one-way rings [13].
These are essentially the only architectures for which the problem is decidable.
Madhusudan and Thiagarajan [17] considered local specifications, i.e., a conjunc-
tion of specifications for each of the processes. For such specifications the class of
decidable architectures is slightly larger and includes doubly-flanked pipelines.

The other approach to distributed synthesis, initiated roughly at the same
time as the work of Pnueli and Rosner, comes from control theory of discrete
event systems [30, 15, 32]. The system is given as a plant (deterministic transi-
tion system) and the distributed synthesis problem is to synthesize a number
of controllers, each being able to observe and control only a specific subset of
actions of the plant. While the original problem refers only to safety properties,
an extension to the µ-calculus specifications has also been considered [4]. Except
for some special cases, the problem turns out to be undecidable ([4, 34]). It is one
of the important goals of the area of decentralized control synthesis to identify
conditions on a plant and a specification such that DSP is decidable.

A different approach was suggested in [18]. The authors consider a setting
were processes communicate via handshaking, i.e., common actions. This setting
can easily encode undecidable architectures from Pnueli and Rosner setting so
the synthesis problem, even for local specifications, is undecidable. To get decid-
ability results the authors propose to restrict the class of allowed controllers.

Our approach. Game theory provides an approach to solving the (centralized)
synthesis problem. An interaction of a process with its environment can be
viewed as a game between two players [1, 28, 33]. Then the synthesis problem
reduces to finding a finite-state winning strategy for the process. The winning
strategy can then be implemented as the required program. This approach does
not extend to DSP because there we have more than two parties.

In this paper, we suggest an approach to DSP by directly encoding the prob-
lem game-theoretically. We extend the notion of games to n players playing a
game against a single hostile environment. We call this model distributed games.
In this model, there are no explicit means of interaction among processes. Any
such interaction must take place through the environment. Moreover, each player
has only a local view of the global state of the system. Hence, a local strategy for
a player is a function of its local history (of player’s own states and the partial
view of the environment’s states). A distributed strategy is a collection of local
strategies; one for each of the players. The environment in distributed games,
on the other hand, has access to the global history. Any play in a distributed
game consists of alternating sequence of moves of (some of) the players and of
the environment.

Distributed synthesis in this model amounts to finding a distributed winning
strategy. This means finding a collection of local strategies that can win against
the global environment. A side effect of the requirement that the players need



to win together is that they need to implicitly communicate when they make
their moves. The card game of bridge is a good example of the kind of implicit
communication we have in mind. When n = 1, distributed games reduce to the
usual two-party games.

The main technical contribution of the paper are two theorems allowing sim-
plification of distributed games. In general it is not decidable to check whether
there is a distributed winning strategy in a finite distributed game. The simpli-
fication theorems allow to reduce the number of players and to reduce nondeter-
minism in the game. In some cases, by repetitive application of these theorems
we can simplify the game to one with only one player against the environment
(where the existence of a winning strategy is decidable). The other possibility
is that after simplification we get a game where environment has no choice of
moves. We show that in this case the existence of a distributed strategy is also
decidable. This technique is enough to solve all decidable cases of distributed
control problems mentioned above.

Related works. Readers may find the model of distributed games very close to
the models of distributed systems in [25, 11]. The closeness is not accidental: the
model was partly motivated by these and the later works of Halpern et al. [12,
10] which explore the issue of knowledge in distributed systems.

Distributed multi-player games have been studied extensively in classical
game theory, both in the settings of cooperation and non-cooperation among
the players [23, 21]. There have been attempts to model and logically reason
about cooperation as in [24, 26]. Distributed games can be seen as a special
type of concurrent processes – the models of Alternating Temporal Logic – with
incomplete information [2], and the distributed systems model of Bradfield [7]
(which generalizes ATL and integrates incomplete information). We consider
our proposal as being something between these models and concrete synthesis
problems, like the one for pipeline architectures. Our model is less general but
this permits us to obtain stronger results that allow to solve concrete synthesis
problems.

Amroszkiewicz and Penczek [3] study a class of games, also called distributed
games, but the framework, questions and approaches are closer to classical game
theory and different from ours.

Organization of the paper We start with a definition of games and distributed
games. We give some simple properties of our model. In Sections 4 and 5 we
formulate the two main theorems allowing to simplify distributed games. In
Section 6 we show how to use these theorems to solve the synthesis problem
for pipelines. In the full version of the paper [20], we consider other distributed
synthesis problems and provide all the proofs.

2 Games

A game G is a tuple 〈P, E, T ⊆ V ×V,Acc ⊆ V ω〉 where 〈P, E, T 〉 is a graph with
the vertices V = P ∪ E and Acc ⊆ V ω is a set defining the winning condition.



We say that a vertex x′ is a successor of a vertex x if T (x, x′) holds. We call P

the set of player vertices and E the set of environment vertices.
A play between player and environment from some vertex v ∈ V proceeds as

follows: if v ∈ P then player makes a choice of a successor, otherwise environment
chooses a successor; from this successor the same rule applies and the play goes
on forever unless one of the parties cannot make a move. If a player cannot make
a move he loses; similarly for the environment. The result of an infinite play is
an infinite path v0v1v2 . . . This path is winning for player if the sequence belongs
to Acc. Otherwise environment is the winner.

A strategy σ for player is a function assigning to every sequence of vertices v

ending in a vertex v from P a vertex σ(v) which is a successor of v. The strategy
is memoryless iff σ(v) = σ(w) whenever v and w end in the same vertex.

A play respecting σ is a sequence v0v1 . . . such that vi+1 = σ(vi) for all i

with vi ∈ P . The strategy σ is winning from a vertex v iff all the plays starting
in v and respecting σ are winning. A vertex is winning if there exists a strategy
winning from it. The strategies for the environment are defined similarly.

In this paper all acceptance conditions Acc ⊆ V ω will be regular: that is,
there will be a colouring λ : V → Colours of the set of vertices with a finite
set of colours and a regular language L ⊆ Coloursω that define the accepting
sequences by: Acc = {v0v1 . . . ∈ V ω : λ(v0)λ(v1) . . . ∈ L}

An important type of regular winning condition is a parity condition. It is a
condition determined by a function Ω : V → {0, . . . , d} in the following way:

Acc = {v0v1 . . . ∈ V ω : lim inf
i→∞

Ω(vi) is even}

Hence, in this case, the colours are natural numbers and we require that the
smallest among those appearing infinitely often is even. The main results about
games that we need are summarized in the following theorem

Theorem 1 ([19, 9, 22]). Every game with regular winning conditions is de-
termined, i.e., every vertex is winning for the player or for the environment.
In a parity game a player has a memoryless winning strategy from each of his
winning vertices. It is decidable to check if a given vertex of a finite game with
a regular winning condition is winning for the player.

3 Distributed Games

A local game is any game G = 〈P, E, T 〉 as above but without a winning condition
and with the restriction that it is bipartite, i.e., a successor of a player move is
always an environment move and vice versa.

Let Gi = 〈Pi, Ei, Ti〉, for i = 1, . . . , n, be local games. A distributed game
constructed from G1, . . . , Gn is G = 〈P, E, T, Acc ⊆ (E ∪ P )ω〉 where:

1. E = E1 × · · · ×En.
2. P = (P1 ∪ E1)× . . . (Pn ∪ En) \E.

3. From a player’s position, we have (x1, . . . , xn) → (x′1, . . . , x
′

n) ∈ T if and
only if xi → x′i ∈ Ti for all xi ∈ Pi and xi = x′i for all xi ∈ Ei.



4. From environment’s position, if we have (x1, . . . , xn) → (x′1, . . . , x
′

n) ∈ T

then for every xi, either xi = x′i or x′i ∈ Pi and moreover (x1, . . . , xn) 6=
(x′1, . . . , x

′

n)
5. Acc is any winning condition.

Observe that a distributed game is a bipartite game. Notice that there is an
asymmetry in the definition of environment’s and player’s moves. In a move from
player’s to environment’s position, all components which are players’ positions
must change, and the change respects transitions in local games. In the move
from environment’s to player’s position, all components are environment’s posi-
tions but only some of them need to change; moreover these changes need not
to respect local transitions. Hence, while global moves of the player are a kind
of free product of moves in local games, it is not the case for the environment.
The moves from environment positions are the only part of a distributed game
that is not determined by the choice of components, i.e., of local games. This
freedom makes it possible to encode different communication patterns and other
phenomena.

We interpret a distributed game as a game of n players against environment.
This intuition will become clear when we will define the notions of views and
local strategies.

For an n-tuple η and i = 1, . . . , n, let η[i] denote the i-th component of η.
Similarly, for a sequence v = η1η2 . . . of n-tuples, let v[i] = η1[i]η2[i] . . . denote
the projection of the sequence on the i-th component.

From the definition of the moves it is easy to observe that given a play v in
a distributed game G, the projection of v to the positions of the i-local game,
v[i], is of the form e+

0 p0e
+

1 p1 . . . Note that the player’s positions do not repeat
since as soon as the local game moves to a player position, it reacts immediately
with an environment position.

Definition 1. Consider a play v and let e+

0 p0e
+

1 p1 . . . be the projection of v on
i-th component. The view of process i of v is view i(v) = e0p0e1p1 . . .

Definition 2. An i-local strategy is a strategy in the game Gi. A distributed
(player) strategy σ is a tuple of local strategies 〈σ1, . . . , σn〉.

A distributed strategy σ defines a strategy in G by σ(v · (x1, . . . , xn)) =
(e1, . . . , en) where ei = xi if xi ∈ Ei and ei = σi(view i(v · xi)) otherwise. We
call σ the global strategy associated with the given distributed player strategy.

Remark 1. It is important to note that thanks to the definition of distributed
game any tuple of local strategies indeed defines a (global) strategy, i.e., it always
suggests a valid move.

Examples and easy observations. Consider the two local games G1 and G2, pre-
sented in Figure 1 where players’ positions are marked by squares and environ-
ment’s positions by circles. Observe that in the second game the moves of the
player are more restricted than in the first game.
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Fig. 2. Global games

Consider a (part of) distributed game built from G1 and G2 presented on the
left part of Figure 2. Observe that in this game environment has less possibilities
than it would have in the free product of G1 and G2. For example, from the
position e′1 in G1 environment can move to p′1, similarly from e′2 in G2 it can
move to p′2; but there is no move from (e′1, e

′

2) to (p′1, p
′

2) in the distributed game.
Suppose that the winning condition in this game is to avoid environment’s

positions where the components have different polarities, i.e., vertices (e1, e
′

2)
and (e′1, e2). It is clear that there is a global winning strategy in this game.
In position (p1, p2) players should go to (e1, e2) and in position (p1, p

′

2) they
should go to (e′1, e

′

2). We claim that there is no distributed strategy. Suppose
conversely that we have a distributed strategy 〈σ1, σ2〉 which is winning from
the vertex (e1, e2). If environment moves to the position (p1, p

′

2) then player 1
should respond with e′1. Hence σ1(e1p1) = e′1. But now, if environment moves
to (p1, p2) then the view of player 1 of the play is the same, so he moves also to
σ1(e1p1) = e′1, which is a losing move.

As another example consider the game on the right of Figure 2. This is almost
the same game as before but for some more suppressed moves of the environment.
Once again there is a global winning strategy in this game. But this time there
is also a distributed strategy. Define σ1(vp1) to be e′1 if the number of p1 in v

is even and to be e1 otherwise. Let σ2(vp2) = e2 and σ2(vp′2) = e′2. It is easy to
verify that 〈σ1, σ2〉 is a distributed strategy winning from (e1, e2). Observe that
strategy σ1 is not memoryless. It is easy to check that there is no distributed
strategy which is a memoryless strategy for player 1.

The following fact summarizes the observations we have made above.

Proposition 1. There exist distributed games with a global winning strategy for
the players but no distributed winning strategy. There exist distributed games with
a memoryless global strategy but where all distributed strategies require memory.



It is not difficult to show that it is not decidable to check if there is a dis-
tributed winning strategy in a given distributed game. The argument follows the
same lines as, for example, in [29, 16, 14, 4].

Proposition 2. The following problem is undecidable: Given a finite distributed
game check if there is a distributed winning strategy from a given position.

Recall that by Theorem 1 it is decidable if there is a global winning strategy
in a finite game. There are two cases when existence of a global winning strategy
guarantees existence of a distributed winning strategy. The first is when we just
have one player. The second is when a game is environment deterministic, i.e., if
each environment position has exactly one successor (like in the second example
above).

Proposition 3. If there is a global winning strategy in an environment deter-
ministic game then there is a distributed winning strategy from a given position.

4 Division Operation

Let us assume that we have a distributed game G = 〈P, E, T, Acc〉 with n + 1
players constructed from local games Gi = 〈Pi, Ei, Ti〉. We would like to con-
struct an equivalent game with n players. This will be possible if some of the
players can deduce the global state of the game.

Definition 3. A game G is i-deterministic if for every environment position
η of G and every (η, π1), (η, π2) ∈ Te, if π1 6= π2 then π1[i], π2[i] ∈ Pi and
π1[i] 6= π2[i].

Intuitively, the definition implies that player i can deduce the global position of
the game from its local view.

We use two functions for rearranging tuples: flat((x0, xn), x1, . . . , xn−1) =
(x0, x1, x2, . . . , xn) and flat−1(x0, x1, x2, . . . , xn) = ((x0, xn), x1, . . . , xn−1). We
extend these functions point-wise to sequences.

Division operation For the game G, we define divide(G) = 〈P̃ , Ẽ, T̃ , Ãcc〉. It

consists of the local games G̃i = 〈P̃i, Ẽi, T̃i〉 (i = 0, . . . , n− 1) where:

– P̃i = Pi, Ẽi = Ei and T̃i = Ti for i = 1, . . . , n− 1;
– Ẽ0 = E0 ×En and P̃0 = (P0 ∪E0)× (Pn ∪ En) \ Ẽ0;
– In T̃0 we have transitions from (p0, en), (e0, pn), (p0, pn) to (e0, en) provided

(p0, e0) ∈ T0 and (pn, en) ∈ Tn.

The global moves from the environment positions in divide(G) and the ac-
ceptance condition are defined by:

– η → π ∈ T̃ if flat(η) → flat(π) ∈ T ,

– Ãcc = {v : flat(v) ∈ Acc}.

Theorem 2. Let G be a 0-deterministic and n-deterministic distributed game
of n+1 players. For every position η of G, there is a distributed winning strategy
from η iff there is one from flat−1(η) in G̃.



5 Gluing Operation

Let us assume that we have a game G = 〈P, E, T, Acc〉 constructed from n + 1
local games G0, . . . , Gn. We are going to define an operation glue which is like
determinizing the behaviour of the environment for one of the players. This is
sometimes a necessary step before being able to apply the division operation. As

e0, e1
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0, p1 p′′

0 , p1

e0, e1

{p′

0, p
′′

0}, p1

Fig. 3. Gluing operation

an example suppose that in a distributed game we have the moves from (e0, e1)
as on the left side of Figure 3. There are two transitions with the same player 1
positions, so the game is not 1-deterministic and we cannot apply the division
operation. Gluing together the possibilities for player 0 (as depicted on the right)
we make this part of the game deterministic for both players.

For gluing operation to work, the game should satisfy certain conditions.
There are in fact two sets of conditions describing different reasons for the op-
eration to work. The first is when, the player being glued has almost complete
information about the whole game. In the second, he almost does not influence
the behaviour of other components.

Definition 4. A game G is I-gluable if it satisfies the following conditions.

1. G is 0-deterministic;

2. G has no 0-delays: if (e0, e1, . . . , en) → (x0, x1, . . . , xn) then x0 ∈ P0;

3. The winning condition Acc is a parity condition on player 0: there is a map
Ω : (P0 ∪ E0) → N such that v ∈ Acc iff lim inf i→∞Ω(view 0(v)) is even.

Definition 5. A game G is II-gluable if it satisfies the following conditions:

1. The moves of other players are not influenced by player 0 moves, i.e., if
(e0, e1, . . . , en) → (x0, x1, . . . , xn) then for every other environment position
e′0 we have (e′0, e1, . . . , en) → (x′0, x1, . . . , xn) for some x′0.

2. The moves of player 0 are almost context independent: there is an equivalence
relation ∼⊆ (E0×P0)

2 s.t. if (e0, e1, . . . , en) → (p0, x1, . . . , xn) then for every
(e′0, p

′

0): (e′0, e1, . . . , en) → (p′0, x1, . . . , xn) iff (e′0, p
′

0) ∼ (e0, p0).

3. G has no 0-delays.

4. The winning condition is a conjunction of the winning condition for players
1 to n and the condition for player 0. Additionally, the condition for player
0 is the parity condition.



Glue operation We define the game G̃ = glue(G) of n + 1 players as follows
(to make the notation lighter we will use abbreviated notation for tuples, for
example we will write (e0, e) instead of (e0, e1, . . . , en)):

– P̃i = Pi, Ẽi = Ei and T̃i = Ti for all i = 1, . . . , n;
– P̃0 = P(E0 × P0) and Ẽ0 = P(P0 ×E0);
– p̃ →0 ẽ if for every (e, p) ∈ p̃ there is (p, e′) ∈ ẽ ∩ T0;

– (ẽ0, e) → (x̃0, x) ∈ T̃ for x̃0 6= ∅, where x̃0 = {(e0, x0) : ∃(p′, e0) ∈
ẽ0. (e0, e) → (x0, x)}.

– Ãcc will be defined shortly.

Consider u = u1, . . . u2k ∈ (Ẽ0 · P̃0)
+. It is a sequence of sets of pairs of

nodes of the game G0. A thread in u is any sequence e1p1 · · · ekpk ∈ (E0P0)
+

such that (pi−1, ei) ∈ u2i−1 and (ei, pi) ∈ u2i for all i = 1, . . . , k. Similarly we
define threads for infinite sequences. Let threads(u) be the set of threads in u.
We put:

u ∈ Ãcc iff every v ∈ threads(view 0(u)) satisfies the parity condition Ω

and u satisfies the conditions for players 1, . . . , n

Observe that if a game is I-gluable then the winning condition is only on 0-th
player and the second clause in the definition of Ãcc is automatically true.

Theorem 3. Let G be a I-gluable or II-gluable game. There is a distributed
winning strategy from a position η in G iff there is a distributed winning strategy
from the position η̃ in glue(G).

The proof of this theorem is relatively long and it is not presented here.
While in principle it uses similar methods as in determinization of automata on
infinite words, some arguments need to be refined [20].

6 Synthesis for Pipeline Architecture

A pipeline is a sequence of processes communicating by unidirectional channels:

C1 Cn−2 Cn−1 Cn

A0 An−2 An−1 An

We assume that the alphabets A0, . . . , An are disjoint. The execution follows
in rounds. Within a round, processes get inputs and produce outputs in a step-
wise fashion. At the beginning of a round, process Cn gets input an ∈ An from
the environment and gives an output an−1 ∈ An−1. In the next step, this output
is given as input to process Cn−1 and so on. When C1 has given an output, the
round finishes and another round starts.



A local controller for the i-th component is a function fi : (Ai)
∗ → Ai−1. A

sequence a0b0a1b1 · · · ∈ (Ai ·Ai−1)
ω respects fi if fi(a0a1 . . . aj) = bj for all j.

A pipeline controller P is a tuple of local controllers 〈f1, . . . , fn〉, one for
each component. An execution of the pipeline is a string in (AnAn−1 · · ·A0)

ω.
An execution v respects P if v|(Ai ∪ Ai−1) respects fi, for all i = 1, . . . , n.

Let Σ =
⋃

i=0...,n Ai. A controller P defines a set of Σ-labeled paths L(P )
which is the set of all the executions respecting P .

The pipeline synthesis problem is: given a pipeline over alphabets A0, . . . , An

and a deterministic parity word automatonA over the alphabet Σ =
⋃

i=0...,n Ai,
find a pipeline controller P = 〈f1, . . . , fn〉 such that L(P ) ⊆ L(A).

We would like to remark that in the proof presented here there is no difficulty
to consider branching specifications, i.e., tree automata [13]. We restrict to word
automata because we have no space to give the definition of automata on trees
with nodes of varying degrees.

Encoding into a game A pipeline synthesis problem is coded as a distributed game
G = 〈P, E, T, Acc〉 constructed from local games G0, . . . , Gn, with G0 taking the
role of the automaton A = 〈Q, Σ, q0, δ : Q × Σ → Q, Ω : Q → N〉 and Gi the
role of the i-th component Ci. The game G0 is: (1) P0 = Q × Σn+1; E0 = Q;
(2)(q, w) → q′ ∈ T0 if q′ = δ(q, w); and q → (q, w) ∈ T0 for all w ∈ Σn+1.

For each component i = 1, . . . , n we have the game Gi which is defined by:
Pi = Ai; Ei = (Ai → Ai−1); and there is a complete set of transitions between
Pi and Ei.

From an environment position (q, f1, . . . , fn), for a letter an ∈ An we have a
move to ((q, w(an)), a1, . . . , an) where w(an) = anan−1 . . . a0 is a word such that
ai−1 = fi(ai).

The winning condition Acc is the set of sequences such that the projection
on the states in the first component satisfies the the parity condition of the
automaton A. Here we need to assume some special form of A. This is because
we “jump” over the states by using δ(q, w) for w a word of n+1 letters. We need
to be sure that while doing this we do not jump over states of small priority.
As the length of w is fixed we can easily guarantee this. The initial position is
η0 = (q0, a1, . . . , an) for some arbitrarily chosen letters a1, . . . , an.

Lemma 1. There is a distributed winning strategy in G from η0 iff the pipeline
synthesis problem has a solution. A distributed winning strategy gives a controller
for the pipeline.

Decidability We will abstract some properties of a pipeline game and show that
for any game with these properties it is decidable to establish if there exists a
distributed winning strategy.

Definition 6. A game G is i-sequential if for all environment positions η1 and
η2: if η1 → π1, η2 → π2, η1[1, i] = η2[1, i] and π1[1, i − 1] 6= π2[1, i − 1] then
π1[i] 6= π2[i] and π1[i], π2[i] ∈ Pi. Here we use η[1, i−1] to denote the subsequence
of the sequence η consisting of elements on positions from 1 to i − 1; note that
tuple η has also 0 position.



Definition 7. We call a game 〈0, n〉-proper if it satisfies the following:

P1 G is 0-deterministic, has no 0-delays, and its winning condition is a parity
condition on player 0;

P2 G is n-deterministic;
P3 G is i-sequential for all i ∈ {1, . . . , n}.

A game is 〈0, n〉-almost proper if it is proper except that it may not satisfy
P2. Observe that the condition P3 does not imply P2, as sequentiality does not
say anything about player 0.

The following results are direct consequences of the definitions.

Lemma 2. The following are true about (almost) proper games:

– The pipeline game G is 〈0, n〉-proper.
– A 〈0, n〉-proper game G is dividable and divide(G) is a 〈0, n − 1〉-almost

proper game.
– A 〈0, n〉-almost proper game G is I-gluable and glue(G) is a 〈0, n〉-proper

game.

Corollary 1. Existence of a distributed strategy in a 〈0, n〉-proper game is de-
cidable. The synthesis problem for pipelines is decidable.

Even though our definition of pipeline architecture is slightly different from
those in Pnueli and Rosner [29] or Kupferman and Vardi [13], one can see that
they can be captured by our definition. One can also see that two-way pipelines
and one-way rings of [13] give rise to 〈0, n〉-proper games. Hence, we get decid-
ability results for all these classes of architectures at one go. The translation of
two way rings does not give 〈0, n〉-proper games. Indeed the synthesis problem
for this architecture is undecidable.

7 Conclusions

We have introduced a notion of distributed games as a framework for solving
distributed synthesis problems (DSP). We have tried to make the model as
specific as possible but still capable to easily encode the particular instances
of DSP found in the literature. This deliberate restriction of the model is the
main difference between our approach and the general models proposed in the
literature [23, 2, 7].

Having decided on a model we have looked for a set of tools that can be
applied to different instances of DSP. We have given two theorems allowing to
simplify distributed games. We have shown that they can be used to solve the
pipeline synthesis problem. In the full version of the paper [20] we consider three
more problems: local specifications and double-flanked pipelines [17, 16], synthe-
sis for communicating state machines of Madhusudan and Thiagarajan [18], and
decentralized control synthesis of Rudie and Wonham [32]. We give these exam-
ples in order to show that the framework of distributed games is rich enough



to model different synthesis problems proposed in the literature. This way we
also show that the two simplification theorems we propose are powerful enough
to solve known decidable cases of the distributed synthesis problem. The ad-
vantage of our approach is that we separate the proofs into two steps: coding
an instance in question as a distributed game model and use of simplification
theorems. While both steps are not completely straightforward, they neverthe-
less allow some modularization of the proof and reuse of the general results on
distributed games.

We hope that distributed games will be useful in exploring the borderline
between decidability and undecidability of DSP. For example, the only archi-
tectures for which the DSP problem with local specifications is decidable are
doubly flanked pipelines. The undecidability arguments for other architectures
use quite unnatural specifications that require a process to guess what will be
its next input. We hope to find interesting classes of pairs (architecture, specifi-
cation) for which the DSP problem is decidable. We want to do this by encoding
the problem into games and looking at the structure of resulting games. In a
similar way we want to find decidable instances of DSP in the discrete control
synthesis framework.

Acknowledgments: The authors are very grateful to Julien Bernet and David
Janin for numerous discussions and valuable contributions.
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