Recursive Schemes, Krivine Machines, and Monadic Logic

Igor Walukiewicz
Bordeaux University

Joint work with Sylvain Salvati
PCF (Programming Computable Functions)

\[
\text{search} \equiv \lambda p : \text{nat} \rightarrow \text{bool}.
\]

\[
\text{letrec } f(x : \text{nat}) : \text{nat} = \text{if } (p x) \text{ then } x \text{ else } f(x + 1) \text{ in } f0
\]

- Proposed by Scott (1969)
- Mitchell "Foundations for Programming Languages" (1996):

 Designed to be easily analyzed, rather than practical language for writing programs. However with some syntactic sugar it is possible to write many functional programs in a comfortable style.

- PCF has been in the center of interest of semantics
 "sequentially computable functional", parallel OR, full abstraction.
Finitary PCF: base types are finite.

$$\text{search} \equiv \lambda p : "\text{nat}" \to \text{bool}.$$

$$\text{letrec } f(x : "\text{nat}") : "\text{nat}" = \text{if } (px) \text{ then } x \text{ else } f(x + 1) \text{ in } f0$$

- [Statman’04]: $\beta\delta$-equality on terms is undecidable.
- [Loader’96]: There is no recursive fully-abstract model

Finitary PCF $\equiv \lambda Y$-calculus
simply-typed λ calculus with fixpoint operators.
\[
\text{map}(f, l) \equiv \begin{cases}
\text{nil} & \text{if } l = \text{nil} \\
\text{cons}(f(\text{head}(l)), \text{map}(f, \text{tail}(l))) & \text{else}
\end{cases}
\]

\[
\text{map}(f, (a, b, c)) = (f(a), f(b), f(c))
\]
\[\text{map}(f, l) \equiv \begin{cases} \text{nil} & \text{if } l = \text{nil} \\ \text{cons}(f(\text{head}(l)), \text{map}(f, \text{tail}(l))) & \text{else} \end{cases} \]
Such trees are interesting because

- They reflect a part of the semantics of a program.
- They have decidable MSOL theory.
- Interesting properties can be expressed in MSOL:
 - All elements in the result are in the range of f
Resource usage for functional programs

[Kobayashi’09]

let rec g x = if b then close(x)
 else read(x); g(x) in
let r = open_in "foo" in g(r)

One can verify if usage patterns are correct.
While-programs

\[x := e | \text{if } x = 0 \text{ then } I_1 \text{ else } I_2 | \text{while } x > 0 \text{ do } I \]

variables range over \(\mathbb{N} \) and \(e \) are arithmetic expressions

- While-programs are Turing powerful.
- Does this mean that all other programming concepts are obsolete?
- Schemes give a way to show that they are not:
 - There is a recursive scheme whose tree cannot be generated by a scheme of a while program.
Recursion \equiv stacks

Thm [Courcelle PhD]: 1st order recursive schemes \equiv deterministic pushdown automata.

Thm [Senizergues]: Equivalence of 1st order schemes (in terms of trees they generate) is decidable.

Thm [Courcelle]: MSOL theory of trees generated by 1st order schemes is decidable.
Recursion \equiv \text{stacks}

\[F \equiv \lambda x. \begin{cases} 1 & \text{if } x = 0 \\ F(x - 1) \cdot x & \text{else} \end{cases} \]
Recursion \equiv stacks

$$F \equiv \lambda x. \text{if } x = 0 \text{ then } 1 \text{ else } F(x - 1) \cdot x.$$

Thm [Courcelle PhD]:

1-st order recursive schemes \equiv deterministic pushdown automata.
Recursion ≡ stacks

\[F \equiv \lambda x. \text{if } x = 0 \text{ then } 1 \text{ else } F(x - 1) \cdot x. \]

Thm [Courcelle PhD]:
1-st order recursive schemes ≡ deterministic pushdown automata.

Thm [Senizergues]:
Equivalence of 1-st order schemes (in terms of trees they generate) is decidable.

Thm [Courcelle]:
MSOL theory of trees generated by 1-st order schemes is decidable.
What about higher-order schemes?

Second-order scheme

\[
\text{Map} \equiv \lambda f . \lambda x. \text{if } x = \text{nil} \text{ then nil else } f(hd(x)) \cdot \text{Map}(f, \text{tl}(x))
\]

Thm [Knapik, Niwiński, Urzyczyn]:

Higher-order **safe** schemes \(\equiv\) higher-order pushdown automata

Theorem [Hague, Murawski, Ong & Serre]: \(n\)-th order schemes \(\equiv\) unfoldings of \(n\)-th order collapse pushdown automata.

Thm [Parys]:

Safety is a true restriction

Here:

On MSO theories of trees generated by higher-order schemes
(These are also the tress generated by programs of finitary PCF).
Schemes

+ Ianov’58 “The logical schemas of algorithms”
+ Park PhD’68 Recursive schemes
+ Scott, Elgot
+ Milner’73 Plotkin’77 PCF

Languages, Higher-order pushdowns

+ Aho’68 indexed languages
+ Maslov’74 ’76 higher-order indexed languages and higher order pushdown automata.

+ Courcelle’76 for trees: 1-st order schemes=CFL
+ Engelfriet Schmidt’77 IO/OI
+ Damm’82 for languages: rec schemes= higher-order pusdowns
+ Kanpik Niwinski Urzyczyn’02 Safe schemes = higher-order pusdown
+ Senizergues’97 Equivalence of 1st order schemes is decidable
 + Statman’04 Equivalence of PCF terms is undecidable
 + Loader’01: Lambda-definability is undecidable
+ Ong’06: Decidability of MSOL theory
Deciding equality of schemes:
Do two schemes generate the same trees?

Deciding MSOL theory for schemes:
Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues]
Ad MSOL: Decidable [Ong]
The model-checking problem:
Given S and an MSOL formula φ decide if $[S] \models \varphi$.

Theorem [Ong]:
This problem is decidable.
Motivation

- Finitary PCF is an important abstraction of functional languages.
- Finitary PCF \equiv schemes $\equiv \lambda Y$-calculus.
- It has been studied by semantics and language communities since 60’ties.
- The “schematological” approach to semantics gives non-trivial insights and without (sometimes) sacrificing decidability.

Objective: Understanding trees generated by PCF programs
Preparation

- λY-terms.
- Evaluation.
- Böhm trees.
- MSOL and automata.

$$M \xrightarrow{\text{eval}} BT(M) \in L(A)$$
Simply typed \(\lambda\)-calculus

Types:
- 0 is a type;
- \(\alpha \to \beta\) is a type if \(\alpha, \beta\) are types.

Eg. \((0 \to 0) \to 0\)

Typed constants:
- \(c^\alpha\) for a type \(\alpha\).

Tree signature:
All constants of types \(0 \to \cdots \to 0 \to 0\).

Typed terms:
- \(c^\alpha\),
- \(x^\alpha\),
- \((M^\alpha \to \beta N^\alpha)^\beta\),
- \((\lambda x^\alpha.M^\beta)^{\alpha \to \beta}\).
- **Types:** $0 | \alpha \to \beta$
- **Constants:** c^α
- **Terms:** $c^\alpha, \ x^\alpha, \ (M^{\alpha\to\beta}N^\alpha)^\beta, \ (\lambda x^\alpha.M^\beta)^{\alpha\to\beta}$.

Example: $c, d : 0, \ g : 0 \to 0, \ f : 0 \to 0 \to 0$

![Diagrams](image)
β-reduction: \((\lambda x. M) N \rightarrow^\beta M[N/x]\)

- \((\lambda x.f(gx)d)c \rightarrow^\beta f(gc)d\)
- \((\lambda z. z(gc)d)(\lambda xy.y) \rightarrow^\beta (\lambda xy.y)(gc)d \rightarrow^\beta d\)

Substitution is as in logic: one should avoid variable capture

\((\lambda h. \lambda x.g(hx))(fx) \rightarrow^\beta \lambda y.g(fxy)\)

and not \(\lambda x.g(fxx)\)

\[f : 0 \rightarrow 0 \rightarrow 0, \quad g, h : 0 \rightarrow 0\]
Result of the computation \(\equiv \) normal form

- \((\lambda x. f(gx)d)c \rightarrow_\beta f(gc)d\)
- \((\lambda z.z(gc)d)(\lambda xy.y) \rightarrow_\beta (\lambda xy.y)(gc)d \rightarrow_\beta d\)
- \((\lambda h. \lambda x.g(hx))(fx) \rightarrow_\beta \lambda y.g(fxy)\)
Example (QBF)

- \(\text{tt} = \lambda xy. x \), \(\text{ff} = \lambda xy. y \), They are of type \(0 \to 0 \to 0 \).
- \(\text{and} = \lambda b_1 b_2. \lambda xy. b_1(b_2xy)y \), \(\text{or} = \lambda b_1 b_2. \lambda xy. b_1x(b_2xy) \),
- \(\text{neg} = \lambda b. \lambda xy. byx \)
- \(\text{All} = \lambda f. \text{and}(f \text{tt})(f \text{ff}) \), \(\text{Exists} = \lambda f. \text{or}(f \text{tt})(f \text{ff}) \).

QBF to terms

Every QBF formula \(\alpha \) can be translated to a term \(M_\alpha \):

\[
\forall x. \exists y. x \land \neg y \quad \mapsto \quad \text{All}(\lambda x. \text{Exists}(\lambda y. \text{and} x (\text{neg} y)))
\]

Fact For every QBF formula \(\alpha \):

\(\alpha \) is true iff \(M_\alpha \) evaluates to tt.
Let us reduce: \(\text{or (neg tt) tt} \)

\[
\begin{align*}
\lambda b_1 b_2. & \lambda xy. b_1 x (b_2 xy) \\
\lambda xy. & (\text{neg tt}) x (\text{tt} x y)
\end{align*}
\]

We obtain: \(\text{or (neg tt) tt} \rightarrow^* \lambda x y. x \equiv \text{tt} \)
A Böhm tree of a term M:

$BT(M)$ is

$\lambda \vec{x}.K$

when $M \rightarrow^*_\beta \lambda \vec{x}.K N_1 \ldots N_i$

$BT(N_1) \ldots BT(N_i)$

Important: If $M : 0$ over tree signature then $BT(M)$ is a ranked tree, the only possible head normal form of M is $aN_1 \ldots N_k$.

Böhm tree of $(\lambda y. g (h \times y))$ c is

g

$\frac{}{h}$

$\frac{x}{c}$
We add constants $Y^{\alpha \rightarrow \alpha} \rightarrow \alpha$ and Ω^{α}, for every type α.

New reduction rule $YM \rightarrow_\delta M(YM)$.

Example: YM with $M = (\lambda x.Ax)$

$$YM \rightarrow_\delta M(YM) \equiv (\lambda x.Ax)(YM)$$
$$\rightarrow_\beta A(YM)$$
$$\rightarrow_\delta A(M(YM))$$
$$\rightarrow_\beta A(A(YM)) \rightarrow \ldots$$

What is the result of the computation? $BT(YM) = A^\omega$.
A Böhm tree of a λY-term M is:

\[Y(\lambda F.\lambda x.ax(F(bx))) : 0 \rightarrow 0 \]

For closed terms of type 0 over tree signatures, Böhm tree is a tree.
Digression: Recursion schemes \(\equiv \lambda Y\text{-calculus}\)

\[
F_1 = \lambda \vec{x}. M_1 \\
\vdots \\
F_n = \lambda \vec{x}. M_n
\]

\[
T_1 = Y(\lambda F_1. M_1) \\
T_2 = Y(\lambda F_2. M_2)[T_1/F_1]) \\
\vdots \\
T_n = Y(\lambda F_n. (\ldots ((M_n[T_1/F_1])[T_2/F_2]) \ldots)[T_{n-1}/F_{n-1}])
\]

Fact

The tree generated from \(F_n\) is \(BT(T_n)\).

There is also a translation from \(\lambda Y\)-terms to schemes.
Specifying properties of Böhm trees

Proviso: \(\Sigma \) has only constants of types 0 or 0 → 0 → 0 (plus constants \(\Omega^\alpha \), \(Y(\alpha \rightarrow \alpha) \rightarrow \alpha \)).

Recall: For tree signature: if \(M \) is a closed term of type 0 then \(BT(M) \) is a ranked tree.

\[
\begin{array}{c}
g \\
| \\
h \\
| \\
\Omega \\
| \\
c
\end{array}
\]

Monadic second order logic:

\[
\exists X. \forall y \in X. \exists z \in X. y < z \land a(z)
\]

Tree automata:
Proviso:

\[\Sigma = \Sigma_0 \cup \Sigma_2 \text{ with } \Sigma_0 \text{ constants of type } 0 \text{ and } \Sigma_2 \text{ of type } 0 \rightarrow 0 \rightarrow 0. \]

Tree automaton:

\[A = \langle Q, \Sigma \cup \{\Omega\}, q^0 \in Q, \delta_1 : Q \times \Sigma_0 \rightarrow \{\text{false, true}\}, \delta_2 : Q \times \Sigma_2 \rightarrow \mathcal{P}(Q^2) \rangle \]

Run of \(A \):

- \(a_q \):
 - \((q_0, q_1) \in \delta(q, a) \)
- \(c_{q^0} \)
- \(a_{q^1} \)
- \(c_q \): \(\delta(q, c) = tt \)
- \(\Omega^q \): \(q \in Q \)

Trivial acceptance condition: every run is accepting.

Parity acceptance condition: max rank on every path is even.
First camp

- λ-terms $\xrightarrow{\beta\text{-red}}$ Böhm trees (normal form)
- λY-terms $\xrightarrow{\beta\delta\text{-red}}$ Böhm trees with Ω.
- Tree automata running on Böhm trees.
Models
Models

- The meaning of a term is its Böhm tree
- But we can also evaluate terms in models

\[\text{if } BT(M) = BT(N) \text{ then } [M] = [N] \]
- **Types:** $0 \mid \alpha \to \beta$
- **Constants:** c^α
- **Terms:** $c^\alpha, \ x^\alpha, \ (M^\alpha \to ^\beta N^\alpha)^^\beta, \ (\lambda x^\alpha . M^\beta)^{\alpha \to ^\beta}$.

Model: $D = \langle \{D^\alpha\}_{\alpha \in \mathcal{T}}, \rho \rangle$

- D^0 is a complete lattice;
- $D^{\alpha \to ^\beta}$ monotone functions from D^α to D^β ordered coordinatewise;
- $\rho(\Omega^\alpha)$ is the greatest element of D^α;
- $\rho(Y^{(\alpha \to ^\alpha) \to ^\alpha})$ is a mapping assigning to a function $f \in D^{\alpha \to ^\alpha}$ its fixpoint.

GFP model: when Y assigns greatest fixpoints.

Finitary model: when every D^α is finite.
Interpretation of a term $M : \alpha$ in a model \mathcal{D} is an element $[M]_\mathcal{D} \in D^\alpha$.

- $[c]_\mathcal{D}^\nu = \rho(c)$
- $[x^\alpha]_\mathcal{D}^\nu = \nu(x^\alpha)$
- $[MN]_\mathcal{D}^\nu = [M]_\mathcal{D}^\nu[N]_\mathcal{D}^\nu$
- $[\lambda x^\alpha.M]_\mathcal{D}^\nu$ is a function mapping an element $d \in D^\alpha$ to $[M]_\mathcal{D}^\nu[d/x^\alpha]$. (this is a monotone function).

Fact:
For every model \mathcal{D}: if $M =_{\beta,\delta} N$ then $[M]^\mathcal{D} = [N]^\mathcal{D}$.

- β-reduction $(\lambda x. M) N \rightarrow_\beta M[N/x]$
- δ-reduction $Y(M) \rightarrow_\delta M(YM)$.
Example

Take $D^0 = \{0, 1\}$.

Then $D^{0 \rightarrow 0 \rightarrow 0}$ is $\{0, 1\} \rightarrow \{0, 1\} \rightarrow \{0, 1\}$.

$$[\lambda xy. x] = \pi_1 \in D^{0 \rightarrow 0 \rightarrow 0}$$ is the projection on the first component.

$$[\lambda xy. y] = \pi_2 \in D^{0 \rightarrow 0 \rightarrow 0}.$$

For every QBF sentence α: $[M_\alpha] = \pi_1$ iff α is true.

Fact For every QBF formula α:

α is true iff M_α reduces to $\lambda xy. x$
Thm [Statman’s Weak Completeness Theorem ’82]:
For every λ-term M there is a finitary model D_M such that for every λ-term K:

$$[M]^{D_M} = [K]^{D_N} \text{ iff } M = \beta K.$$

Thm [Loader’s λ-definability theorem ’96]:
For every nontrivial finitary model D. It is not decidable if a given element d of the model is a denotation of a term.
Interpretation of a term $M : \alpha$ in a model \mathcal{D} is an element $[M]_\mathcal{D} \in D^\alpha$.

- $[c]_\mathcal{D}^\nu = \rho(c)$
- $[x^\alpha]_\mathcal{D}^\nu = \nu(x^\alpha)$
- $[MN]_\mathcal{D}^\nu = [M]_\mathcal{D}^\nu [N]_\mathcal{D}^\nu$
- $[\lambda x^\alpha . M]_\mathcal{D}^\nu$ is a function mapping an element $d \in D^\alpha$ to $[M]_\mathcal{D}^\nu[d/x^\alpha]$.

Fact:
For every model \mathcal{D}: if $M =_{\beta,\delta} N$ then $[M]_\mathcal{D} = [N]_\mathcal{D}$.

Theorem [Barendregt]: For every finitary GFP-model \mathcal{D}:
if $BT(M) \equiv BT(N)$ then $[M]_\mathcal{D} = [N]_\mathcal{D}$.
$ABT(M)$ is defined by

$$ABT(M) \begin{cases} \lambda x. K & \text{when } M \equiv \lambda x. KN_1 \ldots N_i \\ BT(N_1) & \ldots \\ BT(N_i) & \end{cases}$$

otherwise

$Y(\lambda F. \lambda x.ax(F(bx))) : 0 \rightarrow 0$

$\lambda x.a \ x \ (a \ (bx) \ (YF \ (b^2x)))$
Meanings of Böhm trees

\[\lambda x.a \]

\[x \]

\[a \]

\[b^2x \]

\[a \]

\[b^2x \]

\[\omega \]

\[\lambda x.a \]

\[x \]

\[a \]

\[b^2x \]

\[a \]

\[b^2x \]

\[\omega \]

Lemma

\[BT(M) = \bigsqcup \{ ABT(N) : N =_\beta,\delta M \}; \]

here we are taking syntactic limit over trees.

Semantics

\[[BT(M)]^D = \bigwedge \{ [ABT(N)]^D : N =_\beta,\delta M \} \]

Theorem [?]

If \(D \) is a finitary GFP model then: \([M]^D = [BT(M)]^D \).
Theorem

If D is a finitary GFP model then: $[M]^D = [BT(M)]^D$.

Proof $[BT(M)] \geq [M]$:

- $[BT(M)]^D = \bigwedge \{[ABT(N)]^D : N = \beta,\delta M\}$.
Theorem

If \mathcal{D} is a finitary GFP model then: $\llbracket M \rrbracket^\mathcal{D} = \llbracket BT(M) \rrbracket^\mathcal{D}$.

Proof $\llbracket M \rrbracket \geq \llbracket BT(M) \rrbracket$:

- Let $N : \alpha \rightarrow \alpha$ without Y:
 - Define $\text{iterate}^i(N)$ to be $N(\ldots(N\Omega^\alpha)\ldots)$.
- Define $\text{iterate}^i(M)$ as the result of repeatedly replacing all YN by $\text{iterate}^i(N)$.

Obs: If \mathcal{D} is a finitary GFP model then there is i such that
$\llbracket M \rrbracket^\mathcal{D} = \llbracket \text{iterate}^i(M) \rrbracket^\mathcal{D}$.

$\llbracket M \rrbracket = \llbracket \text{iterate}^i(M) \rrbracket = \llbracket BT(\text{iterate}^i(M)) \rrbracket \geq \llbracket BT(M) \rrbracket$
We have

1. Models $\mathcal{D} = \{D^\alpha\}_{\alpha \in \mathcal{T}, \rho}$ interpreting fixpoint operators.
2. Models are capable of talking about Böhm trees:

$$[[M]^\mathcal{D} = [[BT(M)]^\mathcal{D}$$

We want

- A model \mathcal{D}_A such that $[[M]^{\mathcal{D}_A}$ tells us if $BT(M)$ is accepted by A.
\[A = \langle Q, \Sigma \cup \{\Omega\}, q^0 \in Q, \]
\[\delta_1 : Q \times \Sigma_0 \rightarrow \{false, true\}, \delta_2 : Q \times \Sigma_2 \rightarrow \mathcal{P}(Q^2) \rangle \]

TAC (trivial acceptance condition) : all runs are accepting.

Model \(D_A \):
- \(D^0 = \mathcal{P}(Q) \).
- If \(c : 0 \) then \([c] = \{q : \delta_1(q, c) = true\} \). \([\Omega] = Q \)
- If \(a : 0^2 \rightarrow 0 \) then \([a] \) is a function that for \((S_0, S_1) \in \mathcal{P}(Q)^2 \) returns \(\{q : \delta_2(q, a) \in S_0 \times S_1\} \)

Theorem
For every closed term \(M \) of type 0:
\[BT(M) \in L(A) \iff q_0 \in [M]^{D_A} \]
If $BT(M) \in L(\mathcal{A})$ then $q_0 \in [M]^\mathcal{D}_\mathcal{A}$

Take a run of \mathcal{A} on $BT(M)$ and show that $q^0 \in [BT(M)]^\mathcal{D}_\mathcal{A} = [M]^\mathcal{D}_\mathcal{A}$.

Recall that $[BT(M)]^\mathcal{D} = \bigwedge\{[ABT(N)]^\mathcal{D} : N =_{\beta,\delta} M\}$

We show: $q^0 \in [ABT(N)]$ for $N =_{\beta,\delta} M$.

\[
\begin{array}{c}
\text{a}^{q_0} \\
\downarrow \\
\text{c}^{q_2} \\
\downarrow \\
\text{b}^{q_4} \\
\downarrow \\
\text{c}^{q_2} \\
\downarrow \\
\cdots \\
\text{a}^{q_3} \\
\downarrow \\
\text{a}^{q_1} \\
\downarrow \\
\text{b}^{q_4} \\
\downarrow \\
\text{c}^{q_2} \\
\downarrow \\
\cdots \\
\text{a}^{q_3} \\
\downarrow \\
\text{a}^{q_0} \\
\downarrow \\
\text{c}^{q_2} \\
\downarrow \\
\cdots \\
\text{a}^{q_3} \\
\downarrow \\
\text{a}^{q_1} \\
\downarrow \\
\text{b}^{q_4} \\
\downarrow \\
\text{c}^{q_2} \\
\downarrow \\
\text{c}^{q_2} \\
\downarrow \\
\Omega^{q_2} \\
\downarrow \\
\Omega^{q_3} \\
\end{array}
\]
If \(q_0 \in [M] \) then \(BT(M) \in L(A) \)

Property of the interpretation:

If \(q \in [a(M_0, M_1)] \) then there is \((q_0, q_1) \in \delta(q, a)\) such that: \(q_0 \in [M_0] \), and \(q_1 \in [M_1] \).
A = \langle Q, \Sigma \cup \{\Omega\}, q^0 \in Q, \delta_1 : Q \times \Sigma_0 \rightarrow \{false, true\}, \delta_2 : Q \times \Sigma_2 \rightarrow \mathcal{P}(Q^2) \rangle

Model \(D_A \):

- \(D^0 = \mathcal{P}(Q) \).
- If \(c : 0 \) then \([c] = \{ q : \delta_1(q, c) = true \}\). \(([\Omega] = Q) \)
- If \(a : 0^2 \rightarrow 0 \) then \([a] \) is a function that for \((S_0, S_1) \in \mathcal{P}(Q)^2 \) returns

\[\{ q : \delta_2(q, a) \in S_0 \times S_1 \} \]

Theorem

For every closed term \(M \) of type 0:

\[BT(M) \in L(A) \quad \text{iff} \quad q_0 \in [M]^{D_A} \]
To decide $BT(M) \in L(A)$ it is enough to:

- Construct \mathcal{D}_A,
- Calculate $[M]^{\mathcal{D}_A}$.

This works only for TAC conditions. (Simple models \equiv TAC conditions)

We can do Ω-aware TAC, but the climb is rather steep.
Reflective Böhm tree wrt. a model \mathcal{D}:

Thm [Broadbent, Carayol, Ong, Serre]: For every finitary model \mathcal{D} and λY-term M there is a λY-term N such that $BT(N) = rBT_{\mathcal{D}}(M)$.
\[(\alpha \to \beta)^\bullet = \alpha^\bullet \to [\alpha] \to \beta^\bullet \text{ and } \alpha^\bullet = \alpha \text{ when } \alpha \text{ is atomic.}\]

\[
[MN, \nu] = [M, \nu] [N, \nu] [N]^\nu
\]
\[
[x^\alpha, \nu] = x^{\alpha^\bullet}
\]
\[
[Y^{(\alpha \to \alpha) \to \alpha} M, \nu] = Y^{(\alpha^\bullet \to \alpha^\bullet) \to \alpha^\bullet} (\lambda x^{\alpha^\bullet}. [M, \nu] x^{\alpha^\bullet} [YM]^\nu)
\]
\[
[\lambda x^\alpha. M, \nu] = \lambda x_0^\alpha \lambda y_{[\alpha]} \cdot \text{case } y_{[\alpha]} \{ d \to [M, \nu[d/x^\alpha]] \} d \in S_\alpha
\]
\[
[a, \nu] = \lambda x_1^0 \lambda y_1^{[0]} \lambda x_2^0 \lambda y_2^{[0]} \cdot \text{case } y_1^{[0]} \{ d_1 \to \text{ case } y_2^{[0]} \{ d_2 \to a^{\rho(a)d_1 d_2 x_1 x_2} \} d_2 \in S_0 \} d_1 \in S_0
\]
Krivine machines
Krivine machines

- The meaning of a term is its Böhm tree.
- It can be computed with a Krivine machine.
- So now instead of using semantics we use syntax.
Our objective is to decide, for a fixed \mathcal{A},

if for a given M: $BT(M) \in L(\mathcal{A})$.

We will:

1. use Krivine machine to compute $BT(M)$,
2. construct a game $\mathcal{K}(\mathcal{A}, M)$ on this computation,
3. reduce it to $G(\mathcal{A}, M)$ that will be a finite game.
1. Krivine machine calculating $BT(M)$

2. Acceptance in terms of a game $\mathcal{K}(A, M)$

3. Reduction of $\mathcal{K}(A, M)$ to $G(A, M)$
Krivine machine

- Closure \(C ::= (N, \rho) \)
- Environment \(\rho ::= \emptyset \mid \rho[x \mapsto C] \)

<table>
<thead>
<tr>
<th>Term</th>
<th>Environment</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda z. z(gc)d)(\lambda xy. y))</td>
<td>\emptyset</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Krivine machine

- **Closure** \[C ::= (N, \rho) \]
- **Environment** \[\rho ::= \emptyset \mid \rho[x \mapsto C] \]

<table>
<thead>
<tr>
<th>Term</th>
<th>Environment</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda z. z(gc)d)(\lambda xy. y))</td>
<td>(\emptyset)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(\lambda z. z(gc)d)</td>
<td>(\emptyset)</td>
<td>((\lambda xy. y, \emptyset))</td>
</tr>
</tbody>
</table>
Krivine machine

- **Closure** \(C ::= (N, \rho) \)
- **Environment** \(\rho ::= \emptyset | \rho[x \mapsto C] \)

<table>
<thead>
<tr>
<th>Term</th>
<th>Environment</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda z. z(gc)d)(\lambda xy. y))</td>
<td>(\emptyset)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(\lambda z. z(gc)d)</td>
<td>(\emptyset)</td>
<td>((\lambda xy. y, \emptyset))</td>
</tr>
<tr>
<td>(z(gc)d)</td>
<td>([z \mapsto (\lambda xy. y, \emptyset)])</td>
<td>(\bot)</td>
</tr>
</tbody>
</table>
Krivine machine

- **Closure**
 \[C ::= (N, \rho) \]

- **Environment**
 \[\rho ::= \emptyset \mid \rho[x \mapsto C] \]

<table>
<thead>
<tr>
<th>Term</th>
<th>Environment</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda z. z(gc)d)(\lambda xy. y))</td>
<td>(\emptyset)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(\lambda z. z(gc)d)</td>
<td>(\emptyset)</td>
<td>((\lambda xy. y, \emptyset))</td>
</tr>
<tr>
<td>(z(gc)d)</td>
<td>([z \mapsto (\lambda xy. y, \emptyset)])</td>
<td>(\bot)</td>
</tr>
</tbody>
</table>

Let \(\rho \equiv [z \mapsto (\lambda xy. y, \emptyset)]\)
Krivine machine

- **Closure** \(C ::= (N, \rho) \)
- **Environment** \(\rho ::= \emptyset \mid \rho[x \mapsto C] \)

<table>
<thead>
<tr>
<th>Term</th>
<th>Environment</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda z. z(gc)d)(\lambda xy. y))</td>
<td>\emptyset</td>
<td>\perp</td>
</tr>
<tr>
<td>((\lambda z. z(gc)d))</td>
<td>\emptyset</td>
<td>((\lambda xy. y, \emptyset))</td>
</tr>
<tr>
<td>((g(d)c))</td>
<td>([z \mapsto (\lambda xy. y, \emptyset)])</td>
<td>\perp</td>
</tr>
<tr>
<td>(z)</td>
<td>(\rho)</td>
<td>((g(c), \rho) (d, \rho))</td>
</tr>
</tbody>
</table>

Let \(\rho \equiv [z \mapsto (\lambda xy. y, \emptyset)] \)
Krivine machine

- **Closure** \(C ::= (N, \rho) \)
- **Environment** \(\rho ::= \emptyset \mid \rho[x \mapsto C] \)

<table>
<thead>
<tr>
<th>Term</th>
<th>Environment</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda z. z(gc)d)(\lambda xy. y))</td>
<td>(\emptyset)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(\lambda z. z(gc)d)</td>
<td>(\emptyset)</td>
<td>((\lambda xy. y, \emptyset))</td>
</tr>
<tr>
<td>(z(gc)d)</td>
<td>([z \mapsto (\lambda xy. y, \emptyset)])</td>
<td>(\perp)</td>
</tr>
</tbody>
</table>

Let \(\rho \equiv [z \mapsto (\lambda xy. y, \emptyset)]\)

<table>
<thead>
<tr>
<th>Term</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>(\rho)</td>
</tr>
<tr>
<td>(\lambda xy. y)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

\((gc, \rho) \ (d, \rho) \)
Krivine Machine

- **Closure** \(C ::= (N, \rho) \)
- **Environment** \(\rho ::= \emptyset \mid \rho[x \mapsto C] \)

<table>
<thead>
<tr>
<th>Term</th>
<th>Environment</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda z. z(gc)d)(\lambda xy. y))</td>
<td>(\emptyset)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(\lambda z. z(gc)d)</td>
<td>(\emptyset)</td>
<td>((\lambda xy. y, \emptyset))</td>
</tr>
<tr>
<td>(z(gc)d)</td>
<td>([z \mapsto (\lambda xy. y, \emptyset)])</td>
<td>(\bot)</td>
</tr>
<tr>
<td></td>
<td>Let (\rho \equiv [z \mapsto (\lambda xy. y, \emptyset)])</td>
<td></td>
</tr>
<tr>
<td>(z)</td>
<td>(\rho)</td>
<td>((gc, \rho) (d, \rho))</td>
</tr>
<tr>
<td>(\lambda xy. y)</td>
<td>(\emptyset)</td>
<td>((gc, \rho) (d, \rho))</td>
</tr>
<tr>
<td>(y)</td>
<td>([x \mapsto (gc, \rho)][y \mapsto (d, \rho)])</td>
<td>(\bot)</td>
</tr>
</tbody>
</table>
Krivine Machine

- **Closure** \[C ::= (N, \rho) \]
- **Environment** \[\rho ::= \emptyset \mid \rho[x \mapsto C] \]

<table>
<thead>
<tr>
<th>Term</th>
<th>Environment</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda z. z(gc)d)(\lambda xy. y))</td>
<td>(\emptyset)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(\lambda z. z(gc)d)</td>
<td>(\emptyset)</td>
<td>((\lambda xy. y, \emptyset))</td>
</tr>
<tr>
<td>(z(gc)d)</td>
<td>([z \mapsto (\lambda xy. y, \emptyset)])</td>
<td>(\perp)</td>
</tr>
<tr>
<td>Let (\rho \equiv [z \mapsto (\lambda xy. y, \emptyset)])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z)</td>
<td>(\rho)</td>
<td>((gc, \rho) (d, \rho))</td>
</tr>
<tr>
<td>(\lambda xy. y)</td>
<td>(\emptyset)</td>
<td>((gc, \rho) (d, \rho))</td>
</tr>
<tr>
<td>(y)</td>
<td>([x \mapsto (gc, \rho)][y \mapsto (d, \rho)])</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(d)</td>
<td>(\rho)</td>
<td>(\perp)</td>
</tr>
</tbody>
</table>
A configuration of a Krivine machine is a triple \((N, \rho, S)\) where:

- \(N\) is a term (a subterm of \(M\));
- \(\rho\) is an environment defined for all free variables of \(N\);
- \(S\) is a stack \(C_1 \ldots C_k\), where \(k\) and the types of the closures are determined by the type of \(N\): the type of \(C_i\) is \(\alpha_i\) where the type of \(N\) is \(\alpha_1 \rightarrow \cdots \rightarrow \alpha_k \rightarrow 0\).

A configuration \((N, \rho, S)\) represents a term:

\[
E((N, \rho, S)) = E(N, \rho)E(C_1) \ldots E(C_n)
\]

Example:

\((z^{0 \rightarrow 0 \rightarrow 0}, \rho, (gc, \rho)(d, \rho))\) with \(\rho \equiv [z \mapsto (\lambda xy. y, \emptyset)]\) gives

\((\lambda xy. y) \ (gc) \ d\)
Krivine machine

\[(\lambda x.N, \rho, (K, \rho')S) \rightarrow (N, \rho[x \mapsto (K, \rho')], S)\]

\[(YN, \rho, S) \rightarrow (N(YN), \rho, S)\]

\[(NK, \rho, S) \rightarrow (N, \rho, (K, \rho)S)\]

\[(x, \rho, S) \rightarrow (N, \rho', S) \quad \text{where} \quad (N, \rho') = \rho(x)\]

Lemma: Term \(E(N, \rho, \bot)\) has a head normal form iff Krivine machine reduces \((N, \rho, \bot)\) to a \((b(N_1, N_2), \rho', \bot)\) for some constant \(b \neq \Omega\).

Lemma: All the terms appearing in configurations of the Krivine machine during the computation from \((M, \emptyset, \bot)\) are subterms of \(M\).
The Böhm tree of

\[Y(\lambda F. \lambda x. a \ x \ (F(bx))) \ c : 0 \]

is

\[(\lambda x. \ a \ x \ (YF(bx)))c \]

\[ac(YF(bc)) \]

\[c \quad YF(bc) \]

\[a(bc)YF(b^2c) \]

\[b \quad YF(b^2c) \]

\[c \]
Computing Böhm tree

Lemma: Term $E(N, \rho, \perp)$ has a head normal form iff Krivine machine reduces (N, ρ, \perp) to a $(b(N_1, N_2), \rho', \perp)$ for some constant $b \neq \Omega$.

\[K_{\text{tree}}(N, \rho, \perp) = BT(N\rho) \]
Proposition: For every closed λY-term M of type 0:

\[
BT(M) = Ktree(M, \emptyset, \bot).
\]
1. Krivine machine calculating $BT(M)$

\[(\lambda x. a x (YF(\lambda x)))c\]

\[\alpha(YF(bc))\]

\[c \quad YF(bc)\]

\[\alpha(bc)YF(b^2c)\]

\[b \quad YF(b^2c)\]

\[c \quad \ldots\]

2. Acceptance in terms of a game $\mathcal{K}(A, M)$

3. Reduction of $\mathcal{K}(A, M)$ to $G(A, M)$
Game for Automaton Acceptance

Run of A on t

- $q : b$
- $(q_1, q_2) \in \delta(q, b)$
- $q_1 : c$
- $q_2 : d$

Acceptance game $G(A, t)$

- $q : b$
- $(q_1, q_2) : b$
- $(q_1^k, q_2^k) : b$
- for all $(q_1^i, q_2^j) \in \delta(q, \delta)$
- $q_1^i : c$
- $q_2^i : d$
- $q_1^k : c$
- $q_2^k : d$
Eve has a strategy in $G(\mathcal{A}, t)$ iff t is accepted by \mathcal{A}.
Defining $\mathcal{K}(A, M)$

Bohm tree

Krivine machine computing BT

(N, ρ, \bot)

$(b(N_1, N_2), \rho', \bot)$

(N_1, ρ_1, \bot)

(N_2, ρ_2, \bot)

(c, \ldots)

(d, \ldots)
Defining $\mathcal{K}(A, M)$

Run of the automaton on the Bohm tree

$q : b$

$q_1 : c$

$q_2 : d$

$(q_1, q_2) \in \delta(q, b)$

Run of the automaton on Krivine machine computation

$q : (N, \rho, \perp)$

$q_1 : (N_1, \rho_1, \perp)$

$q_2 : (N_2, \rho_2, \perp)$

$q : (b(N_1, N_2), \rho', \perp)$

$q_1 : (c, \ldots)$

$q_2 : (d, \ldots)$
Defining $\mathcal{K}(A, M)$

Acceptance of the automaton in terms of a game on the Bohm tree

Acceptance of the automaton in terms of a game on Krivine machine computation

$q : (N, \rho, \bot)$

for all $(q^i_1, q^i_2) \in \delta(q, \delta)$
Definition of $\mathcal{K}(A, M)$

$q^0 : (M, \emptyset, \bot)$

$q : (aN_0N_1, \rho, \bot)$ for $(q_1, q_2) \in \delta(q, b)$

$(q_0, q_1) : (aN_0N_1, \rho, \bot)$

$(q_0, q_1) : (aN_0N_1, \rho, \bot)$

$q_0 : (N_0, \rho, \bot)$

$q_1 : (N_1, \rho, \bot)$

$q : (b(N_1, N_2), \rho', \bot)$

$(q_1^1, q_2^1) : (b(N_1, N_2), \rho', \bot)$

\cdots

$(q_1^k, q_2^k) : (b(N_1, N_2), \rho', \bot)$
Definition of $\mathcal{K}(A, M)$

$q^0 : (M, \emptyset, \bot)$

$q : (aN_0N_1, \rho, \bot)$

$(q_0, q_1) : (aN_0N_1, \rho, \bot)$

for $(q_1, q_2) \in \delta(q, b)$

$q : (\lambda x. N, \rho, CS)$

$q : (N, \rho[x \mapsto C], S)$

$q : (Y N, \rho, S)$

$q : (N(Y N), \rho, S)$
Definition of $\mathcal{K}(A, M)$

$q^0 : (M, \emptyset, \bot)$

- $q : (aN_0N_1, \rho, \bot)$ for $(q_0, q_1) : (aN_0N_1, \rho, \bot)$
 - $q_0 : (N_0, \rho, \bot)$
 - $q_1 : (N_1, \rho, \bot)$

- $q : (\lambda x.N, \rho, CS)$
 - $q : (N, \rho[x \mapsto C], S)$

- $q : (YN, \rho, S')$
 - $q : (N(YN), \rho, S)$

- $q : (NK, \rho, S')$
 - $q : (N, \rho, (v, K, \rho)S)$

- $q' : (x, \rho', S')$
 - $q' : (K, \rho, S)$

where $\rho' = (v, K, \rho)$

Closure is created

Closure is used
where closure is created closure is used

$q : (NK, \rho, S)$
$q : (N, \rho, (v, K, \rho)S)$

$q' : (x, \rho', S)$
$q' : (K, \rho, S)$

$\rho' = (v, K, \rho)$

where $\rho'(x) = (v, K, \rho)$
Thm: Eve wins in $\mathcal{K}(A, M)$ iff A accepts $BT(M)$.

Proposition: For every closed λY-term M of type 0: $BT(M) = Ktree(M, \emptyset, \bot)$.
1. Krivine machine calculating $BT(M)$

\[
(\lambda x. \ a \ x \ (YF(bx)))c \\
\text{with} \\
\text{Computation of the Krivine machine}
\]

2. Acceptance in terms of a game $\mathcal{K}(A, M)$

\[
q : (aN_0N_1, \rho, S) \\
(q_0, q_1) : (aN_0N_1, \rho, S) \\
q_0 : (N_0, \rho, S) \\
q_1 : (N_1, \rho, S) \\
\cdots \text{for all } (q_0, q_1) \in \delta(a, q)
\]

\[
q' : (y^*F([K_i^{K}]\rho, S')) \\
q' : (y^*F([K_i^{K}]\rho, S')) \\
\text{Computation of the Krivine machine}
\]

3. Reduction of $\mathcal{K}(A, M)$ to $G(A, M)$
Decomposition property for a pushdown

\[q_c \rightarrow q_a \alpha c \quad q_c \rightarrow q_{\text{pop}} \]

This part does not depend on \(c \). Continuation needs only bounded info about the path.

\((q_{c}, R)\)

\((q_{\alpha \alpha c}, R)\)

\((q_{\text{pop}}, R)\)

\((q'_c, R)\)

\((q''_c, R)\)
Reduction to a finite game

\[qc \mapsto q_a ac \quad qc \mapsto q_{pop} \]

\[R_a \subseteq Q \]
Reduction to a finite game (with ranks)

\[qc \mapsto q_a ac \quad qc \mapsto q_{pop} \]

\[R_a \subseteq Q \times \text{ranks} \]
Residual of type 0 is from $\mathcal{P}(Q \times [d])$.

Residual of type $0 \rightarrow 0$ is from $\mathcal{P}(Q \times [d]) \rightarrow \mathcal{P}(Q \times [d])$.

From $\mathcal{K}(A, M)$ to $G(A, M)$
\[G(\mathcal{A}, M) \]

\[
q : (\lambda x. N, \rho, R \cdot S) \rightarrow q : (N, \rho[x \mapsto R], S)
\]

\[
q : (\alpha(N_0, N_1), \rho, \bot) \rightarrow (q_0, q_1) : (\alpha(N_0, N_1), \rho, \bot)
\]

\[
\text{for } (q_0, q_1) \in \delta(q, \alpha)
\]

\[
(q_0, q_1) : (\alpha(N_0, N_1), \rho, \bot) \rightarrow q_i : (N_i, \rho \downarrow_{rk(q_i)}, \bot)
\]

\[
\text{for } i = 0, 1
\]

\[
q : (YN, \rho, S) \rightarrow q : (N(YN), \rho, S)
\]
Eve wins in a position:

- \(q : (x, \rho, S) \) if \((q, rk(q)) \in \rho(x)(S) \).
Properties of $G(\mathcal{A}, M)$

Obs:
For every N there are finitely many nodes in $G(\mathcal{A}, M)$ containing N.

Thm: Eve wins in $G(\mathcal{A}, M)$ iff Eve wins in $\mathcal{K}(\mathcal{A}, M)$.

\[
\begin{align*}
q &: (NK, \rho, S) \\
(q, R) &: (NK, \rho, S) \\
q &: (N, \rho, R \cdot S) \\
q' &: (K, \rho, R_1 \cdots R_l) \\
\end{align*}
\]
Thm: Eve wins in $G(\mathcal{A}, M)$ iff Eve wins in $K(\mathcal{A}, M)$.

Proof:
where closure is created

\[R(v) = \{(q', r'), \ldots\} \]
Adjusted residual $R(v) \downarrow_r$

$R(v) = \{(q_1, 1), (q_2, 2)\}$

$R(v) \downarrow_2 = \{(q_2, 1), (q_2, 2)\}$
Adjusted residual $R(v) \upharpoonright_r$

\[R(v) = \{(q_1, 1), (q_2, 2), (q_3, 3)\} \]

\[R(v) \upharpoonright_2 = \{(q_2, 1), (q_2, 2), (q_3, 3)\} \]
Adjusted residual $R(v) \downarrow_r$

\[R(v) = \{(q_1, 1), (q_2, 2), (q_3, 3)\} \]

\[R(v) \downarrow_2 = \{(q_2, 1), (q_2, 2), (q_3, 3)\} \]

Notation: \(\text{res}(v, v_1) = R(v) \downarrow_{\max(v, v_1)} \)

- \(\text{res}(C, v_1) = R(v) \downarrow_{\max(v, v_1)} \) where \(C = (v, L, \rho) \),
- \(\text{res}(\rho, v_1) = \rho_1 \) such that \(\rho_1(x) = \text{res}(\rho(x), v_1) \),
- \(\text{res}(S, v_1) = R_1 \ldots R_k \) where \(R_i = \text{res}(C_i, v_1) \), and \(S = C_1 \ldots C_k \).
When $K : 0 \to 0$

Residual $R(v)(R(w) \mid_{r''}) = \{(q', r'), \ldots\}$ where $r'' = \max(w, v')$
Transferring Eve’s strategy from $\mathcal{K}(\mathcal{A}, M)$ to $G(\mathcal{A}, M)$

\[
\begin{array}{c|c}
G(\mathcal{A}, M) & \mathcal{K}(\mathcal{A}, M) \\
\hline
\circ_1 q : (N, \rho_1, S_1) & \circ_2 q : (N, \rho_2, S_2) \\
\hline
q : (\lambda x.N, \rho_1, RS_1) & \rho_1 = \text{res}(\rho_2, v_2) \\
\hline
q : (N, \rho_1[x \mapsto R], S_1) & S_1 = \text{res}(S_2, v_2) \\
\hline
q : (\lambda x.N, \rho_2, CS_2) & R = \text{res}(C, v_2) \\
\hline
q : (N, \rho_2[x \mapsto C], S_2)
\end{array}
\]
Transferring Eve’s strategy from $\mathcal{K}(\mathcal{A}, M)$ to $G(\mathcal{A}, M)$

$G(\mathcal{A}, M)$

$q : (aN_0N_1, \rho_1, \perp)$

$(q_0, q_1) : (aN_0N_1, \rho_1, \perp)$

$q_0 : (N_0, \rho_1, \perp)$

$q_1 : (N_1, \rho_1, \perp)$

$\mathcal{K}(\mathcal{A}, M)$

$q : (aN_0N_1, \rho_2, \perp)$

$(q_0, q_1) : (aN_0N_1, \rho_2, \perp)$

$q_0 : (N_0, \rho_2, \perp)$

$q_1 : (N_1, \rho_2, \perp)$

$\rho_1 = \text{res}(\rho_2, v_2)$

$S_1 = \text{res}(S_2, v_2)$
Transferring Eve’s strategy from $\mathcal{K}(A, M)$ to $G(A, M)$

We want to show $(q, rk(q)) \in \rho_1(x)(S_1)$.

Suppose $\rho_2(x) = (v, K, \rho)$

- $(q, \max(v, v_2)) \in R(v)(\text{res}(S_2, v_2))$ by def.
- $(q, \max(v, v_2)) \in R(v)(\text{res}(S_2, v_2)) \downarrow_{\max(v, v_2)}$ by prop of \downarrow
- $(q, rk(q)) \in R(v)(\text{res}(S_2, v_2)) \downarrow_{\max(v, v_2)}$ by prop of \downarrow
- $(q, rk(q)) \in \rho_1(x)(S_1)$ by def.
Decomposition property

Closure \((v, K^0 \rightarrow^0, \rho) \) is replaced by \(R(v) : \mathcal{P}(Q \times [d]) \rightarrow \mathcal{P}(Q \times [d]) \).

We put \((q', r') \) in \(R(v)(R_L) \).

We use induction on types.
Transferring Eve’s strategy from \(\mathcal{K}(\mathcal{A}, M) \) to \(G(\mathcal{A}, M) \)

\[
\begin{align*}
G(\mathcal{A}, M) & \\
& \circled1 q : (N, \rho_1, S_1) \\
& \quad \downarrow \\
& \quad (q, R(v_2)) : (NK, \rho_1, S_1) \\
& \quad \downarrow \\
& q : (N, \rho_1, R(v_2) \upharpoonright_{rk(q)} S_1) \\
& \quad \downarrow \\
& q' : (K, \rho_1 \downharpoonright_{r'} \mathcal{R}) \\
& \quad \text{for some } (q', r') \in R(v_2)(\mathcal{R}) \\
\end{align*}
\]

\[
\begin{align*}
\mathcal{K}(\mathcal{A}, M) & \\
& \circled2 q : (N, \rho_2, S_2) \\
& \quad \downarrow \\
& \quad \rho_1 = res(\rho_2, v_2) \\
& \quad \downarrow \\
& \quad S_1 = res(S_2, v_2) \\
& \quad \downarrow \\
& q : (N, \rho_2, (v_2, K, \rho_2)S_2) \\
& \quad \downarrow r' \\
& q' : (K, \rho_2, S_2')
\end{align*}
\]
1. Krivine machine calculating $BT(M)$

$$(\lambda x. ax (YF(bx)))c$$

2. Acceptance in terms of a game $\mathcal{K}(A, M)$

$$(q_0, q_1): (aN_0N_1, \rho, S)$$

$$(\cdots)$$

for all $(q_0, q_1) \in \delta(a, q)$

$q_0: (N_0, \rho, S)$

$q_1: (N_1, \rho, S)$

Computation of the Krivine machine

$q': (a^{NK}K_1, \rho', S')$

$q': (a^{NK}K_1, \rho', S')$

3. Reduction of $\mathcal{K}(A, M)$ to $G(A, M)$

$$q: (NK, \rho, S)$$

$q: (N, \rho, (NK, \rho)S)$

$q': (x, \rho', \emptyset)$

where $\rho'(x) = (NK, \rho)$

$q': (K, \rho, \emptyset)$

$q': (K, \rho, \emptyset)$

$q': (x, \rho', \emptyset)$

where $\rho'(x) = R_i$ and $(q', r') \in R$

$q: (N, \rho, RS)$

$q': (K, \rho, RS)$

$q': (K, \rho, \emptyset)$

for all $(q', r') \in R$

\textbf{Thm:} Eve wins in $G(A, M)$ iff Eve wins in $\mathcal{K}(A, M)$.

\textbf{Obs:} $G(A, M)$ is finite.
Global model checking

Representing configurations of a Krivine machine

For closures: \(\langle (M, \rho) \rangle \) is

\[
\begin{array}{c}
M \\
\langle \rho(x_1) \rangle \quad \cdots \\
\langle \rho(x_k) \rangle
\end{array}
\]

For configurations: \(\langle (M, \rho, S_1 \ldots S_l) \rangle \) is \(\langle (M, \rho) \rangle, \langle S_1 \rangle, \ldots, \langle S_1 \rangle \).

Theorem

For every \(M \) and \(A \), the set:

\[
\{ \langle N, \rho, S \rangle : BT(E(N, \rho, S)) \in L(A) \}
\]

is a regular language of finite trees.
Transfer Theorem
\[M \xrightarrow{eval} BT(M) \]

For all \(\varphi \) exists \(\widehat{\varphi} \) s.t.

\[M \models \widehat{\varphi} \quad \text{iff} \quad BT(M) \models \varphi \]
$M \xrightarrow{\text{eval}} BT(M)$
$
\hat{\varphi} \leftarrow \varphi$

Transfer Theorem

For all Σ, T, X.
For all φ exists $\hat{\varphi}$ s.t. for all $M \in \text{Terms}(\Sigma, T, X)$:

$M \models \hat{\varphi} \iff BT(M) \models \varphi$
Example: Unfolding

Graph $\xrightarrow{\text{unfold}}$ Tree

MSO-compatibility of unfolding

For all Σ.

For all φ exists $\hat{\varphi}$ s.t. for all $G \in \text{Graph}(\Sigma)$:

$$G \models \hat{\varphi} \iff Unf(G) \models \varphi$$

Rem: This theorem implies Rabin’s Theorem.
Example: Normalizable terms

Transfer Theorem:
For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$:

$$M \models \hat{\varphi} \iff BT(M) \models \varphi$$

- Take $\varphi \equiv "\text{finite tree}"$
- $BT(M) \models \varphi$ iff M has a normal form.

$$M \models \hat{\varphi} \text{ iff } M \text{ has a normal form}$$

So $\{M \in Terms(\Sigma, \mathcal{T}, \mathcal{X}) : M \text{ has a normal form}\}$ is MSOL-definable.
Transfer Theorem

For all \(\Sigma, T, \mathcal{X} \).

For all \(\varphi \) exists \(\hat{\varphi} \) s.t. for all \(M \in \text{Terms}(\Sigma, T, \mathcal{X}) \) :

\[
M \models \hat{\varphi} \iff BT(M) \models \varphi
\]

- \(\Sigma \) is a tree signature
- \(T \) is a finite set of terms
- \(\mathcal{X} \) is a finite set of \(\lambda \)-variables
- \(\text{Terms}(\Sigma, T, \mathcal{X}) \): terms over \(\Sigma \) with
 - all subterms having type in \(T \),
 - all \(\lambda \)-variables from \(\mathcal{X} \).

Note: Theorem works also for infinite \(\lambda Y \)-terms, and unobunded number of \(Y \) variables.
What it means \(M \models \hat{\varphi} \)?

\(M \) is represented as a tree \(\text{Graph}(M) \) over the alphabet

\[
T_{\text{alph}}(\Sigma, \mathcal{T}, \mathcal{X}) = \Sigma \cup \{ @^\alpha, Y^\alpha : \alpha \in \mathcal{T} \} \cup \mathcal{X} \cup \{ \lambda^{\alpha \rightarrow \beta} x^\alpha : \alpha \in \mathcal{T} \land \alpha \rightarrow \beta \in \mathcal{T} \land x^\alpha \in \mathcal{X} \}.
\]
Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in \text{Terms}(\Sigma, \mathcal{T}, \mathcal{X})$:

$$M \models \hat{\varphi} \quad \text{iff} \quad BT(M) \models \varphi$$

A sketch of the proof
Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, T, X)$:

$$M \models \hat{\varphi} \iff BT(M) \models \varphi$$

φ \hspace{1cm} $BT(M) \models \varphi$

\downarrow

AB \hspace{1cm} $BT(M) \in L(A)$

\downarrow

Eve wins in $K(A, M)$

$M \models F^{-1}(\gamma_{win})$

\downarrow

$M \models F$

$G(A, M) \models \gamma_{win}$

$G(A, M)$

Eve wins in $G(A, M)$
Consequences of the transfer theorem
Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, T, \mathcal{X})$:

$$M \models \hat{\varphi} \iff BT(M) \models \varphi$$

Ong’s Theorem

It is decidable if for a given finite term M and MSOL formula φ, $BT(M) \models \varphi$ holds.

Proof: Just test $M \models \hat{\varphi}$.
Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$:

$$M \models \hat{\varphi} \iff BT(M) \models \varphi$$

The set of normalizing terms is MSOL definable

For a fixed \mathcal{T} and \mathcal{X} there is a formula defining the set of terms $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$ having a normal form.

Proof: Take φ defining the set of finite trees and consider $\hat{\varphi}$.
Digression: why limiting \(\lambda \)-variables

QBF to terms

Every QBF formula \(\alpha \) can be translated to a term \(M_\alpha \):

\[
\forall x. \exists y. x \land \neg y \quad \leftrightarrow \quad All(\lambda x. \exists y. \text{and } x (\text{not } y))
\]

\(\alpha \) is true iff \(BT(M_\alpha) \) is the term \(true \)

Take \(\varphi \) saying that the tree consists only of the root labeled \(true \). Consider \(\hat{\varphi} \).

\[
M_\alpha \models \hat{\varphi} \quad \text{iff} \quad \alpha \text{ is true.}
\]

If we could construct \(\hat{\varphi} \) without limiting \(\lambda \) then we get collapse of the polynomial hierarchy.
Matching with restricted no of variables

For a fixed \mathcal{X}. Given M and K (without fixpoints) decide if there is a substitution σ such that

$$M\sigma \equiv_\beta K$$

Substitution σ can use only terms from $\text{Terms}(\Sigma, \mathcal{T}, \mathcal{X})$.

Proof:

- Let $shape(N)$ be MSOL formula defining the set of terms in $\text{Terms}(\Sigma, \mathcal{T}, \mathcal{X})$ that can be obtained from N by substitutions.
- Let $\varphi \equiv shape(K)$.
- There is desired σ iff the formula $shape(M) \land \hat{\varphi}$ is satisfiable.

If there is a solution then there is a finite one.
SYNTHESIS FROM MODULES

Given finite \(\lambda Y \)-terms \(M_1, \ldots, M_k \) and \(\varphi \). Decide if one can construct a \(\lambda Y \) term \(K \) from these terms such that \(BT(K) \models \varphi \).

Proof:

- The candidate term \(K \) can be described as having the form \((\lambda x_1 \ldots x_k. \ N) M_1, \ldots, M_k \) for some term \(N \) without constants and \(\lambda \)-abstractions.
- Let \(\psi \) be a formula defining terms of this form.
- There is a solution iff the formula \(\psi \land \hat{\varphi} \) is satisfiable.

Every model of \(\psi \land \hat{\varphi} \) gives a solution.

If there is a solution then there is a regular one, hence a finite one thanks to the presence of \(Y \).
Two ways looking at it.

Studding new properties of evaluation in simple types.

Bringing verification to a new ground.
In the beginner’s mind there are many possibilities, in the expert’s mind there are few.
Decomposition property for a pushdown:

\[\text{qc} \rightarrow q_\alpha ac \quad qc \rightarrow q_{\text{pop}} \]

This part does not depend on c.
Continuation needs only bounded info about the path.
\[M \xrightarrow{\text{eval}} BT(M) \subseteq L(A) \]

- Understanding \(BT(M) \subseteq L(A) \) in terms of models

\[\llbracket M \rrbracket = \llbracket BT(M) \rrbracket \]

- Understanding \(BT(M) \subseteq L(A) \) in terms of \(K(A, M) \)

\[K(A, M) \text{ equivalent to } G(A, M) \]

- MSO compatibility of evaluation

\[M \xrightarrow{\text{eval}} BT(M) \]

\(\hat{\phi} \leftarrow \phi \)
Getting closer to “real” computation.

Transfer theorem covers: Rabin’s theorem, unfolding theorem, pushdown hierarchy, Ong’s theorem, global model-checking,…

The use of old techniques in a new way.