Recursive Schemes,

Krivine Machines, and
Monadic Logic

lgor Walukiewicz

Bordeaux University

Joint work with Sylvain Salvati

S
niﬁhp,dgf

=
i
o

3/127

PCF (Programming Computable Functions)

search =Ap : nat — bool.
letrec f(z : nat) : nat = if (pz) then z else f(z + 1) in f0

e Proposed by Scott (1969)

e Mitchell "Foundations for Programming Languages" (1996):
Designed to be easily analyzed, rather than practical
language for writing programs. However with some
syntactic sugar it is possible to write many functional
programs in a comfortable style.

e PCF has been in the center of interest of semantics
e "sequentially computable functional”, parallel OR, full abstraction.

Finitary PCF: base types are finite.

search =Ap : "nat” — bool.
letrec f(z : "nat”) : "nat” = if (pz) then z else f(z + 1) in f0

e [Statman’04]: 34-equality on terms is undecidable.

e [Loader’96]: There is no recursive fully-abstract model

Finitary PCF = A Y-calculus
simply-typed X calculus with fixpoint operators.

map(f,l) = if | = nil then nil
else cons(f(head(l)), map(f, tail(l)))

map(f, (a, b, ¢)) = (f(a), (D), f(c))

map(f,1) = if | = nil then nil
else cons(f(head(l)), map(f, tail(l)))

if I=nil then

N

nil cons
f(head(1)) if tail(l)=nil then

nil cons

N

f(head(tail(1)) if tail(tail(l))=nil then

if 1=nil then
nil cons
f(head(l)) if tail(l)=nil then
nil cons

f(head(tail(l)) if tail(tqil(l}):nil then

Such trees are interesting because

e They reflect a part of the semantics of a program.

e They have decidable MSOL theory.
e Interesting properties can be expressed in MSOL.:
o All elements in the result are in the range of f

RESOURCE USAGE FOR FUNCTIONAL PROGRAMS
[KOBAYASHI'09)]

Vr*c
br
. c/ \r
let rec g x = if b then close(x) |
else read(x); g(x) in J(br
let r = open_in "foo" in g(r) c/ \r
Lok
c/ \r

One can verify if usage patterns are correct.

2

127

WHILE-PROGRAMS
z:=e|if £ =0 then [} else I | while z > 0do [

variables range over N and e are arithmetic expressions

e While-programs are Turing powerful.

e Does this mean that all other programming concepts are
obsolete?

e Schemes give a way to show that they are not:

e There is a recursive scheme whose tree cannot be generated by a
scheme of a while program.

RECURSION = STACKS

RECURSION = STACKS

F=MXz.if r=0thenlelse F(z —1)-z.

RECURSION = STACKS

F=MXz.if r=0thenlelse F(z —1)-z.

Thm [Courcelle PhD] -
1-st order recursive schemes = deterministic pushdown automata.

RECURSION = STACKS
F=MXz.if r=0thenlelse F(z —1)-z.
Thm [Courcelle PhD] -

1-st order recursive schemes = deterministic pushdown automata.

Thm [Senizergues] =
Equivalence of 1-st order schemes (in terms of trees they generate) is
decidable.

Thm [Courcelle] -
MSOL theory of trees generated by 1-st order schemes is decidable.

WHAT ABOUT HIGHER-ORDER SCHEMES?

SECOND-ORDER SCHEME
Map = M Az. if £ = nil then nil else f(hd(z)) - Map(f, ti(z))

Thm [Knapik, Niwinski, Urzyczyn] .
Higher-order safe schemes = higher-order pushdown automata

Theorem [Hague, Murawski, ong & serre]: 1-th order schemes = unfoldings of n-th
order collapse pushdown automata.

Thm [Parys] .
Safety is a true restriction

HERE:

On MSO theories of trees generated by higher-order schemes
(These are also the tress generated by programs of finitary PCF).

Languages,

Schemes Higher-order pushdowns

+ lanov’58 “The logical schemas of algorithms”
+ Park PhD’68 Recursive schemes
+ Scott, Elgot abstacion

Program — "+ Scheme

+ ANhO’68 indexed languages

solutionin + Maslov’74 *76 higher-order indexed
free algebra languages and higher order pushdown automata.

Interpretation
Meaning ————— Infinite tree

+ Milner’73 Plotkin’77 rcr

+ Courcelle’76 for trees: 1-st order schemes=CFL

+ Engelfriet Schmidt’77 1o/

+ Damm’82 for languages: rec schemes= higher-order pusdowns

+ Kanpik Niwinski Urzyczyn’02 safe schemes = higher-order pusdown

+ Senizergues’97 Equivalence of 1st order schemes is decidable
+Statman’04 Equivalence of PCF terms is undecidable
+L.oader’01: Lambda-definabilty is undecidable

+Ong’06: pecidability of MSOL theory

TWO MAIN ALGORITHMIC PROBLEMS

if I=nil then
nil cons
f(head(l)) if tail(l)=nil then
nil cons

f(head(tail(l)) if ﬁail(tqil(l)):nil then

Deciding equality of schemes:
Do two schemes generate the same trees?
Deciding MSOL theory for schemes:
Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues]
Ad MSOL: Decidable [Ong]

The model-checking problem:
Given S and an MSOL formula ¢ decide if [S] F .

Theoremong:
This problem is decidable.

MOTIVATION

Finitary PCF is an important abstraction of functional languages.

Finitary PCF = schemes = A\ Y-calculus.

It has been studied by semantics and language communities
since 60’ties.

e The “schematological" approach to semantics gives non-trivial
insights and without (sometimes) sacrificing decidability.

Objective : Understanding trees generated by PCF programs

Preparation

AY-terms.
Evaluation.

Béhm trees.

MSOL and automata.

M eval

20

127

SIMPLY TYPED A-CALCULUS

Types:
e Ois atype;
e a — fis atype if a, 5 are types.

Eg. (0—0)—0

Typed constants:
c” for a type a.
Tree signature: All constants of types 0 — --- — 0 — 0.

Typed terms:
C(k,
x(},
(Ma%‘dNa)‘d
()\l,(x'Mﬂ)uﬁf?'

e Types: O0|a—p
e Constants: ¢“
Y Terms: C(Y, I(x, (M(y%ﬂN(,\z)ﬂ, ()\:B(X'MB)(Y—)B.

Example: ¢,d:0, ¢:0—0, f:0—-0—0

f(ge)d : 0 f Az.f(gx)d: 0 — 0 Az.f

/N /N

9 d 9 d
i

Az.z(ge)d : (0—-0—=0) —0 Az.z

/N

g d
:

p-reduction: (A\z.M)N =g M[N /z]

o (Az.f(gz)d)c —p f(gc)d

o (Az.z(gc)d)(Azy.y) —=p (Azy.y)(gc)d —p d

Substitution is as in logic: one should avoid variable capture

(A Az.g(ha))(fz) =5 Ay.g(fry)
and not \z.g(frz)

f:0=-0—0, ¢g,h:0—0

Result of the computation = normal form

o (Az.f(gr)d)c —p f(gc)d
o (Az.z(ge)d)(Azy.y) =5 (Azy.y)(ge)d —5 d

o (AhAz.g(hz))(fr) —p Ay.g(fry)

ExampPLE (QBF)
o tt = Aay. z, ff = Azy. v, They are of type 0 — 0 — 0.
e and = Abybe. Axy. bi(bozy)y, or = Abibe. Axy. biz(bexy),
e neg = A\b. \xy. byx
o All = \f.and(ftt)(fff), Exists = Af. or(f tt)(f ff).

QBF TO TERMS
Every QBF formula « can be translated to a term M,,:

Ve.dy. . A-y +— All(Az. Exists(\y. and z (neg v)))

Fact For every QBF formula «:

«ais true iff M, evaluates to tt.

Letusreduce: or (neg tt) tt

or (neg tt) tt
Ab1ba. Axy. biz(bazy)
Azy. (neg tt) z (tt = y)

We obtain: or (neg tt) tt

(neg tt), tt

Lk

Azy.x = tt

(neg tt) = (tt x y)
b Azy. byx
tt (ttzxy)w

Ary.x
(ttzy)
A\zy.x
x

tt, =, (ttxy)

(ttzy), =

A Bohm tree of a term M:

constant or variable

BT(M) is A K when M =3 AZ.KN; ... N;
BT (N1) T BT(N;) head normal form
Béhm tree of (\y. g (hay)) cis g

h
I'/ \C

Important: If M : 0 over tree signature then BT (M) is a ranked tree,
the only possible head normal form of M is aN; ... Ny.

P “CALCULUS

We add constants Y (@)= and Q, for every type a.

New reduction rule YM —s M(YM).
Example: YM with M = (Az.ax)
YM —5 M(YM) = (Az.az)(YM)
— a(YM)

—s5 a(M(YM))
— g o N =

What is the result of the computation? BT (YM) = a”.

A Bohm tree of a \Y-term M is:

Ax. K when M —7% ANC.KNy...N;
BT (N- ‘ BT(N;
BT(M) is (M) ™)
Qe otherwise

Y(AF.Az.az(F(bz))) : 0—=0

(Az.az(Y F(bz))
Ag.a~"

/\ Y F(bz) —(Az.az(Y F(bz))(bx) -

i (z‘/ a(bx)(Y F(b(bx)))
/ \ YF(bz)
bz o
T

For closed terms of type 0 over tree signatures, Béhm tree is a tree.

DIGRESSION: RECURSION SCHEMES =)\ Y-CALCULUS

=

BN

Ty =Y (AF1.M;)
Ty =Y (\Fy.My)[T1/F1])

T =Y(AFo.(... (Mu[T1/F1))[To/F3)) .. N[To_1/F1])

Fact

The tree generated from F, is BT(T,).
There is also a translation from)\ Y-terms to schemes.

SPECIFYING PROPERTIES OF BOHM TREES

Proviso: X has only constants of types 0 or0 — 0 — 0
(plus constants Q¢, Y(a—a)—a),

Recall: For tree signature: if M is a closed term of type 0 then BT (M)
is a ranked tree.

Monadic second order logic:
dX.Vye X. 3ze X. y < zAa(z)

Tree automata:

Proviso:
3 = 3y U X, with 3y constants of type 0 and X, of type 0 — 0 — 0.

Tree automaton:

A=(Q,2U{Q}, " € Q,81 : QxT¢ — {false, true},dy : Qx Ty — P(Q?))

al (q0,q1) € 6(q, a) ¢ O(go)=tt

Run of A: O 1€Q

Cq() aql

Trivial acceptance condition: every run is accepting.

Parity acceptance condition: max rank on every path is even.

First camp

o Merms 7% Bghm trees (normal form)

o \V-terms 222% Bahm trees with €.

e Tree automata running on Béhm trees.

.

33 /127

Models

thechinatourism.cor

Models

e The meaning of a term is its B6hm tree
e But we can also evaluate terms in models

if BT(M) = BT(N) then [M] = [N]

e Types: O0|a—p
e Constants: ¢*
e Terms: C(k, JJ(‘Y, (Mu.ﬁﬂN(\z)ﬂ’ ()\JJ”’.MB)”H“S.

MoDEL: D = ({D*} T, p)
e DY is a complete lattice;
e D> monotone functions from D* to D” ordered coordinatewise;

p(Q%) is the greatest element of D;

p(Y@= is a mapping assigning to a function f € D~ its
fixpoint.

e GFP model: when Y assigns greatest fixpoints.
e Finitary model: when every D¢ is finite.

Interpretation of a term M : a in a model D is an element [M],, € D“.

[e]p = p(e)
o [+°]p = v(a?)
[MN]7
[

MN]p = [M]p[N]p

o [\z*.M]3% is a function mapping an element d € D° to [[M]]“Wza].
(this is @ monotone function).

Fact:
For every model D: if M =35 N then [M]” = [N]".

B-REDUCTION (Az.M)N —g M[N/z]
J-REDUCTION Y (M) —5 M(YM).

EXAMPLE

Take D° = {0,1}.
Then D*~9=0is {0,1} — {0,1} — {0,1}.

[Azy. 2] = m € D°70=0 s the projection on the first component.
[Azy. y] = mo € D700,

For every QBF sentence a: [M,] = m iff ais true.

Fact For every QBF formula «:

ais true iff M, reduces to Azy. x

DIGRESSION

Thm [Statman’s Weak Completeness Theorem ’82]:

For every A-term M there is a finitary model D,, such that for every
A-term K

[M]P = [K]PY iff M=K .

Thm [Loader’s \-definability theorem *96]:
For every nontrivial finitary model D. It is not decidable if a given
element d of the model is a denotation of a term.

Interpretation of a term M : « in a model D is an element [M], € D°.

v[d/ma]-

Fact:
For every model D: if M =45 N then [M]” = [N]".

Theorem [Barendregt]: For every finitary GFP-model D:
if BT(M) = BT(N) then [M]” = [N]".

APPROXIMATE BOHM TREE
ABT (M) is defined by

Az K
BT(N- ‘ BT(N;
ABT(M) is (V1))
Q otherwise
Y (AF.Az.az(F(bz))) : 0—0

(Az.az(Y F(bx))
=

Ap.a@
/\ Y F(bx) —(Az.ax(Y F(bz))(bx)

i — a(ba) (Y F(b(bx)))

Q.

b/ \a JF(bZI)
b,;z/ \W_/YF(b%)

when M = AZ.KN7...N;

Az.a z (a (bz) (YF (b*z)))

Az.a

P b/a,\a
b;x/ \a

11 /127

MEANINGS OF BOHM TREES

4 /N
. 2
2N e

LEMMA
BT(M) = | |{ABT(N): N =5 M};
here we are taking syntactic limit over trees.

SEMANTICS

[BT(M)]” = N{[ABT(N)]” : N =55 M}

THEOREM [7]

If D is a finitary GFP model then: [M]? = [BT(M)].

THEOREM
If D is a finitary GFP model then: [M]? = [BT(M)]P.

Proof [BT(M)] > [M]:
o [BT(M)]P = MIABT(N)]” : N =55 M}.

o [ABT(MP > [N]P = [M]”.

Az.a Az.a

7O\ o
/i N
N 20 R

THEOREM
If D is a finitary GFP model then: [M]? = [BT(M)]P.

Proof [M] > [BT(M)]:

o Let N : o — a without Y
Define jterate'(N) tobe N(...(NQ%)...).

° Definebiterate”:(M) as the result of repeatedly replacing all YN by
iterate'(N).

Obs: If Dis a finitary GFP model then there is ¢ such that
[M]P = [iterate’ (M)]".

[M] = [iterate’(M)] = [BT (iterate'(M))] > [BT(M)]

ALMOST THERE

WE HAVE
@ Models D = ({D*}.eT, p) interpreting fixpoint operators.
@ Models are capable of talking about B6hm trees:

[M]” = [BT(M)]”

WE WANT
o A model D4 such that [M]P4 tells us if BT(M) is accepted by A.

A=(Q,2u{0},¢" € q,
61: Q x Xo — {false, true}, 0y : Q x Xy — P(Q?))

TAC (trivial acceptance condition) : all runs are accepting.

Model D 4:
o D' ="P(Q).
o If c:0then [c] ={q:01(q, c) =true}. ([= Q)
e If a: 02 — 0 then [a] is a function that for (Sg, S1) € P(Q)? returns
{q:02(q,a) € So x 51}

THEOREM
For every closed term M of type 0:

BT(M) € L(A) iff g € [M]P4

Ir BT(M) € L(A) THEN ¢ € [M]"*
Take a run of A on BT (M) and show that ¢° € [BT(M)]P4 = [M]PA.

Recall that [BT(M)]? = A{[ABT(N)]® : N =35 M}

We show: ¢° € [ABT(N)] for N =55 M.

a® BT (M) a® ABT(N)
LN LN,
b{ \ a’! :4/ \

WA AN,

q2
¢ a%® 02

IF ¢ € [M] THEN BT (M) € L(A)

Property of the interpretation:
If ¢ € [a(Mo, My)] then there is (qo, ¢1) € 0(q, a) such that: ¢y € [My],
and ¢ € [Mi].

a q € [M]=[a(My,M)]

0 € [Mo] = [e(Moo, Mo1)] ¢ b ¢ € [Mi] = [b(Mo, M11)]

F

A=(Q,2U{Q}, ¢* € Q,01: Q x To — {false, true}, 85 : Q x T — P(Q?))
Model D 4:

SWE—D ().
e If c:0then [c] ={q:d1(q,c) =true}. ([Q] = Q)
o If a: 0> — 0 then [a] is a function that for (Sp, S1) € P(Q)? returns

{q:02(q,a) € Sy x S1}

THEOREM
For every closed term M of type 0:

BT(M) € L(A) iff g [M]"A

To decide BT(M) é L(A) itis enough to:
e Construct D4,
e Calculate [M]"4.
This works only for TAC conditions. (Simple models = TAC conditions)

We can do Q-aware TAC, but the climb is rather steep.

52 /127

Reflective Bohm tree wrt. a model D:

BT(M) rBT(M) —
/ \ VRN
BT(N,) BT(N») rBT(Ny) rBT(N»)

Thm [Broadbent, Carayol, Ong, Serre]: For every finitary model D
and AY-term M there is a AY-term N such that BT (N) = rBTp(M).

BT (M) rBT(M)

b b[[leNz]]
/ N
BT(N;) BT(Ns) rBT(N) rBT(No)

(a = p)°*=a®*—[a] > p4* and a® = a when ais atomic.

[MN,v] =[M,v][N,v] [N]"

a®

[z%,v] ==
|:Y(044)04)~>QM’ ,Ui| - Y(a'ﬁa')%a' (Axop 3 [M’ U] xa' H YM]]’U)
[Az®. M, v] =Az®" Myl case yl{d — [M,v][d/z]|} 4es.,

[a, V] :)\x?)\ygo])\xg)\yéo].case ygo}{dl —

(a)di da

0
case y£]{dz o x1$2}d2€30}d1€30

Krivine machines

Krivine machines

e The meaning of a term is its B6hm tree.
e It can be computed with a Krivine machine.
e So now instead of using semantics we use syntax.

Our objective is to decide, for a fixed A,

if fora given M: BT(M) e L(A).

We will:
@ use Krivine machine to compute BT'(M),
@ construct a game (A, M) on this computation,
@ reduce itto G(A, M) that will be a finite game.

Krivine machine
* calculating BT'(M)

2. Acceptance in terms of a game K(A, M)

3. Reduction of K(A, M) to G(A, M)

KRIVINE MACHINE

e Closure C :=(N,p)
e Environment p =0 p[z— C]

Term

Environment

Stack

(Az. 2(gc)d)(Azy. y)

0

KRIVINE MACHINE

e Closure C :=(N,p)
e Environment p =0 p[z— C]

Term Environment Stack
(Az. z(gc)d)(Azy. y) | O i
Az. z(gc)d 1) (Azy. y,0)

60 /127

KRIVINE MACHINE

e Closure C :=(N,p)
e Environment p =0 p[z— C]

Term Environment Stack

(Az. z(gc)d)(Azy. y) | O i

Az. z(gc)d 0 (Azy. y,0)
2(gc)d [z = (Azy. y,0)] it

KRIVINE MACHINE

e Closure C :=(N,p)
e Environment p =0 p[z— C]

Term Environment Stack

(Az. z(gc)d)(Azy. y) | O i

Az. z(gc)d 0 (Azy. y,0)
2(gc)d [z = (Azy. y,0)] it

Let p = [z — (Azy. y,0)]

KRIVINE MACHINE

e Closure C :=(N,p)
e Environment p =0 p[z— C]

Term Environment Stack

(Az. z(gc)d)(Azy. y) | O i

Az. z(gc)d 0 (Azy. y,0)
2(gc)d [z = (Azy. y,0)] it

Let p = [z — (Azy. y,0)]

P

(ge, p) (d,p)

KRIVINE MACHINE

e Closure C :=(N,p)
e Environment p =0 p[z— C]

Term Environment Stack
(Az. z(gc)d)(Azy. y) | O i
Az. z(gc)d 0 (Azy. y,0)
2(gc)d [z = (Azy. y,0)] it

Let p = [z — (Azy. y,0)]
z p (g9¢,p) (d,p)
Azy. y 0 (9¢,p) (d,p)

KRIVINE MACHINE

e Closure C :=(N,p)

e Environment p =0 p[z— C]

Term Environment Stack
(Az. z(gc)d)(Azy. y) | O i
Az. 2(gc)d 1) (Azy. y,0)
2(gc)d [z = (Azy. y,0)] i

Let p = [z — (Azy. y,0)]
z p (gc.p) (d,p)
Azy. y 0 (gc,p) (d,p)
y [z = (ge,p)]ly = (d,p)] | L

KRIVINE MACHINE

e Closure C :=(N,p)

e Environment p =0 p[z— C]

Term Environment Stack
(Az. z(gc)d)(Azy. y) | O i
Az. 2(gc)d 1) (Azy. y,0)
2(gc)d [z = (Azy. y,0)] i

Let p = [z — (Azy. y,0)]
z p (gc.p) (d,p)
Azy. y 0 (gc,p) (d,p)
y [z = (ge,p)]ly = (d,p)] | L
d) AL

KRIVINE MACHINE (2)

A configuration of a Krivine machine is a triple (N, p, S) where:
e N is aterm (a subterm of M);
@ pis an environment defined for all free variables of N;

e Sisastack (... Cy, where k and the types of the closures are

determined by the type of N: the type of C; is «; where the type of
Nisag — -+ — a — 0.

A configuration (N, p, S) represents a term:
E((N,p,S)) = E(N,p)E(C1)... E(Cy)

Example:
o (207070, p, (g¢,p)(d, p)) With p = [z — (Azy. y,0)] gives

(Azy. y) (gc) d

KRIVINE MACHINE

(Az.N,p, (K, p")S) =(N, plz — (K, p')],)
(YN, p,§) =(N(YN),p,5)
(NK, p, S) =(N, p, (K, p)5)
(z,p,8) —=(N,p',S) where (N,p') = p(z)

Lemma: Term E(N,p, L) has a head normal form iff Krivine machine
reduces (N, p, L) to a (b(Ny, Na), p’, L) for some constant b # Q.

Lemma: All the terms appearing in configurations of the Krivine
machine during the computation from (M, (), 1) are subterms of M.

BT(M) wWiTH KRIVINE MACHINES

(Mx. a z (YF(bz)))c
The Bohm tree of
Y (AF. Az.a z (F(bz))) ¢ : 0
) ac(Y F(bc)
1S

)
Y F(be)

o

a(be)Y F(b2c)
AN
l
C

Y F(b%c)

COMPUTING BOHM TREE

Lemma: Term E(N, p, L) has a head normal form iff Krivine machine
reduces (N, p, L) to a (b(N1, N2), o/, L) for some constant b # Q.

(N,p, L)
(b(leN2)7p,7J-) b
(Ny,p/, L) (Na, p', L)
l l BT(Nyp') BT(Nap')

Ktree(N,p, L) = BT (Np)

COMPUTING BOHM TREE

(N,p, 1)
(b(N17N2)7pI’L) b
(Nl’p,vL) (N27plvl)
l l BT(Nip')™, /BT (Nap)

Ktree(N,p, L) = BT (Np)

Proposition: For every closed A\ Y-term M of type 0:

BT(M) = Ktree(M, 0, 1).

Krivine machine

2. Acceptance in terms of a game K(A, M)
* calculating BT'(M)

(Az. a @ (YF(bx)))e

ac(Y F(bc))

Z\

c Y F(be)

a(be)Y F(b2c)

AN
x

YF(bc)

3. Reduction of K(A, M) to G(A, M)

GAME FOR AUTOMATON ACCEPTANCE

Run of A ont Acceptance game G(A,t)
q:b (g1, 42) € 6(q,b) A/qb\A for all (g3, 45) € 8(g,9)
‘ (dd,3):b] - (q¥,q5): b
/\ A/\AA Eve

q ¢ g2 :d gl e a@:d qf e g5 d
: : : : : : Adam

GAME FOR AUTOMATON ACCEPTANCE

Run of A ont Acceptance game G(A,t)
q:b (¢1,42) € 0(q,b) for all (¢}, ¢3) € 3(g,0)
/ \ Eve
q1:c q :d g : e kod
' ’ : : : ° Adam

Eve has a strategy in G(A, t) iff ¢ is accepted by A.

74 /127

DEFINING (A, M)

Bohm tree

//\

Krivine machine computing BT

(N,p, 1)
(b(Nh N2)7pl, J—)

— T

(N1, p1, 1) (N2, p2, L)

) @)

DEFINING (A, M)

Run of the automaton on Run of the automaton on
the Bohm tree Krivine machine comptuation
q:(N,p, L)
(q1,42) € 6(g;b) L
Y
(]:b q: (b(N17N2)>p,7L)
e C q2d QIZ(NbPl-,L) QQ:(N27,027J-)

76 /127

DEFINING (A, M)

Acceptance of the automaton Acceptance of the automaton
in terms of a game on the in terms of a game on Krivine machine
Bohm tree comptuation
q:(N,p, 1)
for all (¢4, ¢3) € d(q,9) x
\

s (b(N17N2)7pI7J-)

;(]Z\A T et gh) b (af, @) : O(N1, Na2), 0, L) 777 (4f.48) : (b(N1, Na), p', L)
gl e dqhie ghid| diNupl) g (Neprd) gb:(Nipr,l) ¢ (Naypr, L)
L Ly Lx Lx

A\ A\ A\ A\

s S

DEFINITION OF (A, M)

qO : (]\/[., 0, J_)
(¢ q: (aNoNy,p, L)
for (q1,¢2) € 8(g,b)
@oﬂh) s (aNoNy,p, L) q: (b(Ny, N2),p', L)
«
~ (g1,d5) : (b(N1, N2),p/, L) """ gk, qh) : (b(N1, No),p/, L)
|((I07Q1) : (aNOvapvJ-)l

\g : (No,p. 1) q1: (N1,p, L)

DEFINITION OF K (A, M)

(¢ (T &N, p,C9)
S)

for (q1,92) € 6(q,b |
\(90, 1) : (aNoN1,p, L) \(]:(N,p[xHC],

4 [(qo0, q1 (aNoNl p, L) (q: (Y]Tapwg)
\J0 : (N();P 1) : thl- \¢: (N(Y'N),p, S)

DEFINITION OF (A, M)

@ (M, 0, 1)
(" q: (aNoN1,p, 1) (q: (A\x.N,p,CS)
‘ for |
@0#}1): (GNOvap.,L) \(](N,p[.THC],S)
(qo,ql) 5 (aNoNl,p,J_) (q : (YN, P S)
SN |
\g : (No,p. 1) q1: (N1,p, L) \¢: (N(Y'N),p, S)

q:(NK,p,S) q : (z,p,8) where
| | P =(v,K,p)
q:(N,p,(U,K,p)S) q/:(K7p7S) H

closure is created 4 ; closure is used

q: (NK,p,S) 7 (x,p,8) where

| P =K, p)
q: (N,p,(v,K,p)S) q: (K,p,S5) |—+
closure is created # ; C|OSLIJI’e is used
@ q: (NK,p,S)
'
@ ¢: (N,p,(v,K,p)S)

(0, 0)
where p'(z) = (v, K, p)

Y
@ ¢ : (K.p,0)

S1FEIR

Thm: Eve wins in (A, M) iff Aaccepts BT(M).

q: (aNolNy, p, S)

for all (go,q1) € d(a,q)
(90, @1) : (aNoN1, p, S)

9 : (No, p, S) qi : (N1, p,5)

¢ (VKK .S o BRI 7, 8)

Proposition: For every closed A\ Y-term M of type 0:

BT(M) = Ktree(M,0, L).

1 Krivine machine 2. Acceptance in terms of a game K(A, M)
* calculating BT'(M)

q: (aNoNy, p, S)
(Az. a x (YF(bx)))c

for all (qo, 1) € 6(a, q)
(40, 1) : (aNo N1, p,)

ac(y F(bc))

r‘ Y F(be) @ : (No,p.S) a1 (N1,p,S)
a(be)Y F(b2c)
/ g (WKGK! ,SY) q": (W KYKY ", 5")
I YF(%)
[4

3. Reduction of K(A, M) to G(A, M)

DECOMPOSITION PROPERTY FOR A PUSHDOWN

qc = dgac qc — C_Ipop
(gc, R)
(qaaca R) (onp7 R)

Th@
depend on ¢
(dc.R 7'c,R) contmuann needs
only bounded info about
the path

84 /127

REDUCTION TO A FINITE GAME

gc — (qgac a1e =r (_Ipop
R =t
(qaacv R) (onp, R) Qs (qcr R) Gpop; (qC. R)

|

4a@, R, (qc, R)

< > / \\\A
(gaa, Ra) (¢e,R) - for all ¢’ € R,

5
27

REDUCTION TO A FINITE GAME (WITH RANKS)

qc — qgac qc = gpop
‘/(qq R)\~ el
(gaac, R) (dpops R) a0, (g, R) dpop: (46, R)

|

!

(gaa, Ra) (¢e,R) --. forall(¢,r")€ R,
(¢, Ra

R, C @ x ranks

86 /127

FroMm K(A, M) To G(A, M)

@ q: (NK,p,9)

@q (NK,p,S)
Y
©) q: (N,p, (v, K,p)S) r

@D q: (N,p,RS) @ q : (K, p,0)

for all (¢/,7') € R

¢ (w0 @) ¢ : (z.0,0)
where p(z) = (v, K, p) where p/(z) = R,
@ ¢ (K, p,0) and (¢',r") € R

e Residual of type 0 is from P(Q x [d]).

e Residual of type 0 — 0is from P(Q x [d]) — P(Q x [d]).

G(A, M)

q: (Ax.N,p,R-S)— q:(N,p[x— R],S)

q: (a(No, M1),p, L) = (g0, q1) : (a(No, N1),p, L)
for (qo, ¢1) € 0(q, a)

(QO7 Ch) : (a(N07 N1)7p7 J—) — ¢ (Nza p er(qz-)v J—) fori=0,1

g 8 (VA et B N ANE L o

G(A, M)

q: (NK,p,S) with K :7qy = =71 —0

forevery R: 714 — -+ =1 —0

for every (R1,...,Ri)
N .o and every (¢',7") € R(Ry,. ..

Q(vavRS) q/:(szle"'Rl)

Eve wins in a position:
° q:(z,p5) if(qrk(q) € p(z)(S).

7Rl)

89 /127

PROPERTIES OF G(A, M)

q(NK7p75) WithK:Tl—)-~~—)7-l_>()

N
. \foreveryR:Tl_>..._>7.l_>0
(¢, R): (NK,p,S)
— for every (Ry,...,R;)
N . . Nd every (q/7r/) c R(Rl,--.7Rl)

Q(N~P,RS) q/:(Kaple"'Rl)

Obs:
For every N there are finitely many nodes in G(.A, M) containing N.

Thm: Eve wins in G(A, M) iff Evewinsin IC(A, M).

Thm: Eve wins in G(A, M) iff Evewinsin IC(A, M).

q:(NK,p,S) 7 (x,p,8) where

| p=(v,K,p)
q: (N,p,(v,K,p)S) q: (K,p,9)
closure is created # ; clostl.lre is used
@ q: (NK,p,S)
'
@) ¢: (N.p,(v,K,p)S)

q: (x,0,0)
where p'(z) = (v, K, p)

@ ¢ : (K.p,0)

Residual R(v) = {(¢,r'),...}

Adjusted residual R(v) |,

® R(v) = {(q1,1), (q2,2)}

R(v) la= {(g2,1), (g2,2)}

Adjusted residual R(v) |,

7

q1

® R(v) ={(q1,1), (g2,2), (g3,3)}

q3

25 R(v) la= {(g2,1), (g2,2), (g3,3)}
3 27
DN

q2

Adjusted residual R(v) |,

q1

q3

® R(w) = {(q1,1), (g2,2), (g3,3)}

7

2‘\77‘ R(’U) lo= {(QQ,1)7 (g2,2), (q373)}
3 27
{

q2

Notation : res(v, v1) = R() lmax(v,0)

o 7es(C,v1) = R(V) | max(v,0;) Where C = (v, L, p),
e res(p,v1) = p1 such that pi(z) = res(p(z), v1),

e res(S,v) = R1... R where R; = res(Cy,v1),and S = Cj ...

Ck.

q:(NK,p,S) 7 (x,p,8) where

| p=(v,K,p)
q: (N,p,(v,K,p)S) q: (K,p,9)
closure is created # ; clostl.lre is used
When K : 0 — 0
@ q: (NK,p,S)
'
@) ¢: (N,p,(v,K,p)S)

¢ (o, @ Lolh)
where p/(z) = (v, K, p)

¢+ (K, p,(w, L, p"))

@
i
@

Residual R(v)(R(w)|,») ={(¢,r"),...} where " = max(w,v")

Transferring Eve’s strategy from (A, M) to G(A, M)

G(A, M) K(A, M)
. . p1 = res(p2,v2)
@q: (N, p1,51) ®q: (N, p2, Sa) S = res(Sa,va)
q: (Ax.N, p1, RSy) q: (Az.N, pa, CSs) R = res(C,v9)
q: (N, pilz — R], S1) q: (N, p2[z— C], Sa)

Transferring Eve’s strategy from K(A, M) to G(A, M)

G(A, M) K(A, M)
s sy A=)
@q: (N,p1,51) ®@q : (N, p2,S2) S, = res(Sa. va)
q: (aNoNy,py, L) q: (aNoN1, p2, L)
| !
(90,q1) : (@NoNy, p1, L) (90, q1) : (aNo Ny, p2, L)
/ \
QO3(N07/017J-) q1 :(Nlaplvj—) qO:(NO~,p23L) q1 Z(thg,J_)

Transferring Eve’s strategy from (A, M) to G(A, M)

G(A, M) K(A, M)
@q: (N,p1,S ®q : (N, p2, S p1 = res(p2, v2)
@q: (N, p1,51) @q : (N, p2,52) 5, = res(S vs)
@ql(l’, P1, Sl) qt(l’, P2, Sg)
We want to show (g, rk() € p1(z)(S1)-
Suppose p(z) = (v, K, p)
e (¢, max(v, 1)) € R(v)(res(S2,v2)) by def.
C (Q7 max(v, U2)) (U)(Te (527 '02)) Lmax(v,vg) by prop of !
° (Q7 rk(q)) R(’U)(5(2,)) max(v,v2) by prop of L
° (g,7k(q)) € p1(x)(S1) by def.

DECOMPOSITION PROPERTY

@) ¢ (z. 0, (w, L, p"))
* where p'(z) = (v, K, p)
@

¢ : (5, p, @y L")

Closure (v, K°7° p) is replaced by R(v) :

We put (¢, ') in R(v)(Ry).

@q: (N0 R0)S) D : (K,p,RLS)

for all (¢/,7") € R(v)(RL)

P(Q x [d]) = P(Q x [d]).

We use induction on types.

100 / 127

Transferring Eve’s strategy from K(A, M) to G(A, M)

G(A, M)

@q: (N, p1,51)

@4 : (NK, p1, S1)
!

(¢, R(v2)) : (NK, p1, St)

q: (N7 P1, R(UZ) L'l'k:(q) Sl)

for some (¢',r") € R(Uz)(é)

K(A, M)

p1 = res(p2,v2)

®@q: (N, p2, 82)
22 S1 = res(Sa2,v2)

q : (NK, P2, SQ)

q: (Na P2, (1027 K7 P2)S2)

r’

q/ : (K7 P2, Sé)

101 /127

Krivine machine 2

. Acceptance in terms of a game (A, M)
calculating BT (M)

a: (aNoNi,p, S)
(A\z. az (YF(br)))e

for all (go, q1) € 8(a,q)
(q0,01) : (aNoNi, p,)

0 (No,p, S) @ (Ni,p,S)

3_ Reduction of K(A, M) to G(A, M)
© 0 VE0) © 1 (VKn5)
i

@ a: (N.p.RS) @ (K00
© ¢ (00 for all (¢',7') € R

Thm: Eve wins in G(A, M) iff Evewinsin IC(A, M).

Obs: G(A, M) is finite.

103

12

=

GLOBAL MODEL CHECKING

REPRESENTING CONFIGURATIONS OF A KRIVINE MACHINE
For closures: ((M,p)) is

e
(p(21))

M
N

e (o))

For configurations: ((M,p, S1...5))) is (M, p)), (S1)se .-y (S1)-

THEOREM
For every M and A, the set:

{(N.p,$) : BT(E(N,p,5)) € L(A)}

is a regular language of finite trees.

105 / 127

Transfer Theorem

106 / 127

i R

TRANSFER THEOREM
For all ¢ exists ¢ s.t.

MEG iff BT(M)E¢

107 / 127

i e Y

TRANSFER THEOREM
Forall X, 7, X.

For all ¢ exists ¢ s.t. for all M € Terms(3,T,X) :

MEG iff BT(M)E¢

108 / 127

EXAMPLE: UNFOLDING

Graph nfold, Tree

MSO-COMPATIBILITY OF UNFOLDING
For all 2.
For all exists ¢ s.t. for all G € Graph(X) :

GEg iff Unf(G)E e

Rem: This theorem implies Rabin’s Theorem.

109

EXAMPLE: NORMALIZABLE TERMS

Transfer Theorem:
For all ¢ exists ¢ s.t. for all M € Terms(3,T,X) :

MEG iff BT(M)E

e Take ¢ = "finite tree"
e BT(M) E ¢ iff M has a normal form.

ME ¢ iff M has anormal form

So {M € Terms(X,T,X) : M has a normal form} is MSOL-definable.

110 / 127

TRANSFER THEOREM

Forall X, 7, X.
For all ¢ exists ¢ s.t. forall M € Terms(X,T,X) :

MEG iff BT(M)E o

3 is a tree signature
T is a finite set of terms
X is a finite set of A-variables

Terms(X,T,X): terms over ¥ with

o all subterms having type in 7,
o all A-variables from X.

Note: Theorem works also for infinite A Y-terms, and unobunded
number of Y variables.

111l

WHAT IT MEANS M F @7

M is represented as a tree Graph(M) over the alphabet

Talph(S,T,X) = YU{@* Y:aeT}HUXU

NP aeTAa—BeET Az € X} .

Transfer Thm: For all ¢ exists ¢ s.t. for all M € Terms(X, T, X) :

MEG iff BT(M)Eg

A sketch of the proof

Transfer Thm: For all ¢ exists ¢ s.t. for all M € Terms(X,7T,X) :

MEG iff BT(M)Eg

¢ BT(M)E ¢ M E F~ (i) M
1 iff iff 1r
iff iff

Eve wins in K(A, M) iff Eve wins in G(A, M)

114 /127

115 /127

Consequences of the transfer theorem

Transfer Thm: For all ¢ exists ¢ s.t. for all M € Terms(X,7T,X) :

MEG iff BT(M)E o

ONG’S THEOREM
It is decidable if for a given finite term M and MSOL formula ¢,
BT(M) E ¢ holds.

Proof: Justtest M F ¢.

Transfer Thm: For all ¢ exists ¢ s.t. forall M € Terms(X,7T,X) :

MEG iff BT(M)E

THE SET OF NORMALIZING TERMS IS MSOL DEFINABLE

For a fixed 7 and X there is a formula defining the set of terms
M € Terms(X, T, X) having a normal form.

Proof: Take ¢ defining the set of finite trees and consider ¢.

DIGRESSION: WHY LIMITING A-VARIABLES

QBF TO TERMS
Every QBF formula « can be translated to a term A,,:

Ve Jy. z A—y — All(Az. Ezists(Ay. and z (noty)))

aistrue iff BT(M,) is the term true

Take ¢ saying that the tree consists only of the root labeled true.
Consider ¢.

My E @ iff a is true.

If we could construct ¢ without limiting X then we get collapse of the
polynomial hierarchy.

119¥/8IR0

MATCHING WITH RESTRICTED NO OF VARIABLES

For a fixed X. Given M and K (without fixpoints) decide if there is a
substitution o such that
Mo =3 K

Substitution o can use only terms from Terms(3, T, X).

Proof:

o Let shape(N) be MSOL formula defining the set of terms in
Terms(X, T, X) that can be obtained from N by substitutions.

o Let p = shape(K).
e There is desired o iff the formula shape(M) A ¢ is satisfiable.
If there is a solution then there is a finite one.

SYNTHESIS FROM MODULES

Given finite A\Y-terms M, ..., M, and . Decide if one can construct a
AY term K from these terms such that BT (K) & ¢.

Proof:
e The candidate term K can be described as having the form
(Azy ... x5 N)M, ..., My for some term N without constants and

A-abstractions.
e Let ¢ be a formula defining terms of this form.
e There is a solution iff the formula ¢ A @ is satisfiable.

Every model of ¢ A ¢ gives a solution.

If there is a solution then there is a regular one, hence a finite one
thanks to the presence of Y.

Two ways looking at it.

Studding new properties of Bringing verification to a new
evaluation in simple types. ground.

In the beginner’s mind there are many
possibilities, in the expert’s mind there are few.

Decomposition property for a pushdown:

qc = ggac qc — qpop
(gc, R)
(Qaaca R) (qPopa R)

M &% BT(M) & L(A)

e Understanding BT (M) é L(A) in terms of models

[M] = [BT(M)]

e Understanding BT (M) 67 L(A) interms of (A, M)
K(A, M) equivalentto G(A, M)

e MSO compatibility of evaluation
M S BRE

G

e Getting closer to “real” computation.

e Transfer theorem covers: Rabin’s theorem, unfolding theorem,
pushdown hierarchy, Ong’s theorem, global model-checking,. . .

e The use of old techniques in a new way.

