Games for the p-calculus

Damian Niwinski* Igor Walukiewicz*

Institute of Informatics, Warsaw University,
Banacha 2, 02-097 Warsaw, POLAND
niwinski,igw@mimuw.edu.pl

Abstract

Given a formula of the propositional u-calculus, we construct a tableau
of the formula and define an infinite game of two players of which one
wants to show that the formula is satisfiable, and the other seeks the op-
posite. The strategy for the first player can be further transformed into a
model of the formula while the strategy for the second forms what we call a
refutation of the formula. Using Martin’s Determinacy Theorem, we prove
that any formula has either a model or a refutation. This completeness
result is a starting point for the completeness theorem for the u-calculus
to be presented elsewhere. However, we argue that refutations have some
advantages of their own. They are generated by a natural system of sound
logical rules and can be presented as regular trees of the size exponential in
the size of a refuted formula. This last aspect completes the small model
theorem for the p-calculus established by Emerson and Jutla [3]. Thus,
on a more practical side, refutations can be used as small objects testify-
ing incorrectness of a program specification expressed by a u-formula, we
illustrate this point by an example.

1 Introduction

It is now common to view computer programs as state transformers, that is,
actions that can change one state of computer hardware to another. The notion
of change is intrinsic in modal logic which admits a hypothesis that the world may
change; rather than a single unique world, one considers there multiple possible
worlds and relations between them, as, for example, the states of an environment
evolving in time. This aspect makes the modal logic a valuable tool for reasoning
about program behavior.

*Supported by Polish KBN grant No. 2 1192 91 01

A variety of logical formalisms have been proposed in this context, including
Hoare logic, Dijkstra’s weakest precondition calculus, dynamic logic, temporal
logic and automata-based formalisms. A uniform mathematical framework sub-
suming all of these and more is provided by the p-calculus, a formalism permitting
characterization of correctness properties as extremal fixed points of predicate
transformers [13, 2, 8].

In spite of its great expressive power, a propositional version of the u-calculus [8]
was proven decidable in deterministic single exponential time [3], which makes
this logic interesting for applications to verification of real life systems.

Although the p-calculus, and especially the propositional y-calculus attracted
much interest [8, 17, 1, 5] the attempts to find a complete finitary axiomatization
for the calculus systematically failed. Even for strictly weaker modal logics such
as PDLA no finitary complete axiom system has been known.

A complete axiomatization of any calculus is still interesting even when it
is decidable. The main gain is that a complete axiomatization gives us deeper
insight into the calculus. On a more practical side, we can think of a prover
instead of a model checker for verifying properties. An advantage of a prover
could be that it would allow an interaction between computer and user, in which
a user might give some hints, for example, an auxiliary formula for an application
of a cut rule. This would help the computer in what is essentially an exponential
task.

The present paper constitutes the first part of the work the final goal of
which is to prove a completeness theorem for the p-calculus. The second part
which gives an actual system and proves its completeness is due to the second
author [19, 20] and will be presented at length elsewhere.

In the present paper, we introduce a concept of refutation which can be viewed
as some approximation of (or substitute for) the concept of proof. Refutations are
trees generated by some natural system of tableau rules which are sound logical
rules, but, unlike proofs, refutations may have infinite branches. We show that
any formula of the propositional y-calculus has either a model or a refutation.
This result is an advance toward the completeness theorem for the p-calculus to
be proved in the second part of the work (for a preliminary version, see [19])

Indeed, the proof system proposed there is designed in such a way that a
proof of a valid pu-formula ¢ can be obtained from a refutation of —¢. Thus the
completeness theorem follows from the above mentioned completeness result for
refutations.

We believe, however, that the concept of refutation and the relevant result
are of some interest of their own, and this is at least for two reasons.

First, refutations turn out to be small objects: using results from automata
theory, we show that a refutation of a p-calculus formula can be always made a
regular tree of the size exponential in the size of the formula. This result com-
pletes the small model theorem for the p-calculus due to Emerson and Jutla [3].
Combining the two results, we can state the following.

2

A formula of the propositional p-calculus has either a model or a
refutation, any of which may be chosen to be a regular tree which can
be presented as a graph of exponential size, produced in exponential
time.

This suggests that refutations may play some role in program verification as small
objects that witness the validity of u-formulas; we illustrate this point by some
examples. In this context, it would be interesting to estimate the length of “real”
proofs in the existing proof systems, as the system for the p-calculus given in [19],
or a system for much weaker logic PDL [9]. The question seems to be difficult,
but we know that the length of proofs in any reasonable proof system must be at
least exponential and we are tempted to conjecture that it is much bigger than
that.

The second aspect of refutations which is, we believe, of some theoretical
interest is the connection with determinacy of certain infinite games. In our
paper we consider an infinite game that is played on a tableau of a pu-calculus
formula. Roughly speaking, one of the players wants to show that the formula is
satisfiable, and the other seeks the opposite. The game is determined by Martin’s
determinacy theorem [10]. Now it turns out that a winning strategy (if it exists)
for the first player induces a model of the formula, while a strategy for his/her
opponent can be identified with a refutation.

Infinite games were studied in set theory [10, 11], they also appear in au-
tomata theory in several different proofs that have been proposed for Rabin’s
Complementation Lemma [7, 12, 5]. The present paper exhibits yet another as-
pect of such games which is an intriguing link between determinacy (“one of the
player has a winning strategy”) and completeness (“a formula has a model or a
refutation”).

The paper is organized as follows. After a preliminary Section 2, we introduce,
in Section 3, a system of rules for generating tableaux of the p-calculus formulas.
We present also two subsystems that can generate what we call refutations and
pre-models, respectively. The concept of a game is introduced in Section 4,
where we also use the Martin’s Theorem to show that any p-calculus formula has
either a refutation or a pre-model. In Section 5, we show that a pre-model can
indeed be transformed into a model and wvice versa. In Section 6, we consider
the complexity of the constructions in consideration. In the Appendix A, we
illustrate by a simple example, how our concept of refutation can be helpful in
the analysis of specifications.

2 Syntax and Semantics

Let Prop = {p,q,...} be a set of propositional letters, Var = {X,Y,...} a set of
variables and Act = {a,b,...} a set of actions. Formulas of the p-calculus over

these three sets can be defined by the following grammar:
F:=Var | Prop | =Prop | FVF | FAF | (Act)F | [Act]F | pVar.F |vVar.F

Observe that we allow negations to occur only before propositional letters.
The negation of a formula is defined inductively by DeMorgan laws and the
equivalences —[ala = (a)-a and ~pX.a(X) = vX.—~a(-X). Symbol ff is an
abbreviation of a formula p A —p for some propositional constant p. We will
sometimes use 0 X.a(X) to denote pX.a(X) or vX.a(X). Formulas are inter-
preted in Kripke models of the form M = (S, R, p), where:

e S is a nonempty set of states,

e R is a function assigning a binary relation R(a) on S to each action ¢ in
Act.

e pis a function assigning a set of states to each propositional letter in Prop.

For a given model M and an assignment Val : Var — P(S), the set of states
in which a formula « is true, || « ||%l is defined inductively as follows (we will
omit superscript M when it causes no ambiguity):

I X v = Val(X)

Ipllva = »)
=P llya = S—p)
lanBllya = llallvanll 8 llva
laVBlyu = llallyaVll 8 llva
[{a)allyy = {s:3s'(s,s") e Rla) A" €| a [y}
Ialallyy = {s:Vs'.(s,s') € R(a) =" €| allyy}

I pX.a(X) Iy = (HS'CS: 1l @llyas s €S}
lvX.o(X) [y = UGS SS9 Cllallyas s}

We will also write M, s, Val |= a to mean that s € || o |2}, Formula ¢ will be
called valid, in symbols = ¢, iff it is true in every state of every model.

Definition 2.1 A variable X in o X.a(X) is guarded iff every occurrence of X
in a(X) is in scope of some modality operator () or [|. We say that a formula is

guarded iff every bound variable in the formula is guarded.

Lemma 2.2 (Kozen) Every formula is equivalent to some guarded formula.

Proof

Let ¢ be a formula, we show how to obtain an equivalent guarded formula.

Suppose ¢ = puX.a(X) and a(X) is a guarded formula. Suppose X is un-
guarded in some subformula of a(X) of the form oY.3(Y, X) and Y is guarded in
oY.5(Y, X). Then one can use the equivalence oY.3(Y, X) = 8(cY.0(Y, X), X)
to obtain a formula with all unguarded occurrences of X outside the fixpoint op-
erator. This way we obtain a formula equivalent to «/(X) but with all unguarded
occurrences of X not in the scope of a fixpoint operator.

Now using the laws of classical propositional logic we can transform this for-
mula to conjunctive normal form (considering formulas of the form (a)7y and [a]y
as propositional constants). This way we obtain a formula

(XVar(X)AN...A (X VX)) ABX) (1)

where all occurrences of X in ay(X),...,0;(X), 3(X) are guarded. Observe that
it may happen that some of ;(X) may be just false and (X) may be true.

Variable X occurs only positively in (1) because it did so in our original
formula. Formula (1) is equivalent to

(X V(a1 (X) A ... A (X)) A B(X)

We will show that pX.(X V @(X)) A B(X) is equivalent to pX.a(X) A 5(X). It
is obvious that

= (uX.a(X) A B(X)) = (X.(XVa(X))AB(X))

Let v(X) and 7(X) stand for @(X)AB(X) and (X Va(X))AB(X) respectively.
To prove the other implication it is enough to observe that = ¥(uX.y(X)) =
uX.y(x) as the following calculation shows:

(X 7(X)) V a(pXy (X)) AB(pXy(X)) =
(@(pXA(X)) A B(pXy(X))) Va(pX (X)) ABpXy(X)) =
a(pX.y(X) A B(pX.y(X))

O

Henceforth we will consider only guarded formulas. This restriction is not
necessary but simplifies some of the definitions to follow (see Remark 3.7).

3 Tableaux

In this section we present a system of rules for constructing a tableau for a
formula. Tableaux will serve as arenas for a game we will consider later. We also
define two kinds of substructures of tableaux: quasi-model and quasi-refutation.

5

It is convenient to introduce the concept of a definition list [15] which will name
the fixpoint subformulas of a given formula in order of their nesting. We will
employ the technique of reusing definition constants as described in [16].

We extend vocabulary of the u-calculus by a countable set Dcons of fresh sym-
bols that will be referred to as definition constants and usually denoted U, V...
These new symbols are now allowed to appear positively in formulas, like propo-
sitional variables.

A definition list is a finite sequence of equations :

D= (U =0XoX)),. .. U,=0,Xc,(X))

where Uy, ..., U, € DCons and 0;X.;(X) is a formula such that all definition
constants appearing in o; are among Uy, ..., U;_1. We call U; a p-constant or a
v-constant according to o; = p or 0; = v. We assume that U; # U; and «; # o,
for ¢ # j. If i < j then U; is said to be older than U; (U; younger then U;) with
respect to the definition list D.

Given a formula o, we construct a definition list for o by means of the con-
traction operation)« defined recursively as follows:

L pp{=D-p{=DX{=DU{=0;

2. [{a)a{ = hlala{ = af;

3. baAB{=)aV 3] =D)afo]s{, operation o is defined below;
4. puX.a(X)(| = (U = pX.a(X)),)a(U){) where U is new;

5. WwX.a(X){| = (U = vX.a(X)), Da(U){) where U is new.

The operation ja{ o)3{ is defined as follows. First, we make sure that the
definition constants used in)« are disjoint form those used in)3{. Then if it
happens that (U = v) € Ja{ and (V = v) €)3{, we delete the definition from
the list)4{ and replace V' with U in)£{. This may cause other formulas to be
doubly defined and we deal with them in the same way.

For a formula o and a definition list D containing all definition constants
occurring in « we define the ezpansion operation (a)p, which subsequently re-
places definition constants appearing in the formula by the right hand sides of
the defining equations,

{a)p = oo, /Uy ... [on/U1] , where D= (U =a),..., (U, =)

A tableau sequent is a pair (I', D), where I is a finite set of formulas and D is
a definition list that includes all the definition constants occurring in I'.

A tableau axiom is a sequent I’ k-, such that some formula and its negation
occur in I'.

We extend expansion operations to tableau sequents in a natural way:

(T o={{(Wp:7€T}

In what follows we will often drop the prefix “tableau” if it is clear from the
context.

Below we present the set of rules for constructing tableaux. These rules can be
considered as logical rules when read upside-down. We write them with premises
below the line because it is more appropriate for tableaux construction; we prefer
to view a tableau as a tree expanding downwards. This style also puts emphasis
on the fact that this rules are used to construct tableaux rather than proofs.

Definition 3.1 Let S be the following set of tableau rules :

(and) %

(or) e X e

(cons) % whenever (U = 0 X.a(X)) € D
w (O;(‘f)FDF > whenever (U = uX.a(X)) € D
w 2 g(if)F: > whenever (U = vX.a(X)) € D

(ot} [, 1B a3 err?g (@aer)

where in the last rule each formula in I' is a propositional constant, a variable, a
negation of one of them or a formula of the form (b)3 or [b] for some action b
and a formula g (in other words, no other rule is applicable to I' I—D).

Observe that each rule, except (or) and (all()), has exactly one premise. The
rule (or) has two premises and the number of premises in the rule (all()) is equal
to the number of formulas of the form (a)a in I' and may be 0.

The system S,,04 is obtained from S by replacing the rule (or) by two rules
(oriest) and (0ryign) defined in the obvious way.

The system S,.f is obtained from S by replacing the rule (all()) by the rule

(a)o,T'
() a, {8 :[a]B €T} K

with the same restrictions on formulas in I" as in the case of (all()) rule.

Remark 3.2 If we consider a sequent I' I as a formula A(I')p = ff then the
rules of the system S,.; become sound logical rules written upside-down.

Definition 3.3 Given a positive guarded formula v, a tableau for ~y is any labeled
tree (K, L), where K is a tree and L a labeling function, such that

1. the root of K is labeled with v - where D =)v(,
2. if L(n) is a tableau axiom then n is a leaf of K,

3. if L(n) is not an axiom then the sons of n in K are created and labeled
according to the rules of the system S.

The definition of a quasi-model of ~y is defined in a similar to that of a tableau,
except that the system S,,,q is used instead of & and we impose the additional
requirement that no leaf is labeled by a tableau axiom.

The definition of a quasi-refutation of 7 is similar to that of tableau, except
that the system S,.; is used instead of S and we impose the additional require-
ment that every leaf is labeled by a tableau axiom. n

Remark 3.4 Each quasi-model, as well as a quasi-refutation can be obtained
from a tableau by cutting off some nodes.

Definition 3.5 Given a path P of a tableau T = (T, L), a trace on P will be
a function 7r assigning a formula to every node in some initial segment of P
(possibly to the whole P), satisfying the following conditions:

1. If Tr(n) is defined then 7r(n) € L(n).
2. Suppose Tr(m) is defined and let n € P be a son of m.

e If a rule different from (all()) is applied in m then 7r(n) is defined,
and
— if the rule does not reduce the formula 7r(m) then Tr(n) = Tr(m);
— if Tr(m) is reduced by the rule applied in m then Tr(n) is one of
the results of the reduction (nondeterministically).

e Suppose the rule (all()) is applied in m, and the label of n is «, {3 :
[a]3 € L(m)} I, where (a)a € L(m). Then,
— if Tr(m) = [a]B then Tr(n) is defined and equals f;
— if Tr(m) = (a)a then Tr(n) is defined and equals «;

— otherwise, Tr(n) is undefined. (Note that, in this last case, Tr(m)
is the last element of the trace.)

Definition 3.6 A constant U regenerates on the trace Tr if for some i, oy = U
and o;1 = a(U), where (U = oX.a(X)) € D

The trace Tr is called v-trace iff it is infinite and some v-constant is the oldest
constant which regenerates infinitely often. The trace is called p-trace iff some
pu-constant is the oldest constant which regenerates infinitely often on it. [

Remark 3.7 Observe that any infinite trace in a tableau for a guarded formula
is either v or p-trace. This is because every rule except regeneration decreases
the size of the formula and every formula is eventually reduced. This second
fact is true because on any trace there cannot be two regenerations of the same
definition constant without application of (mod) rule in between. Note that this
last property does not hold for unguarded formulas.

Definition 3.8

— A quasi-model PM is called pre-model iff any infinite trace on any path of
PM is a v-trace.

— A quasi-refutation of 7 is called a refutation of v iff, on every infinite path of
it, there exists a p-trace.

We will show in the next sections that a formula is satisfiable iff it has a
pre-model, and that it is unsatisfiable iff it has a refutation. The condition laid
on pre-models is due to an observation that if, for some structure M and a
state s, M, s = pX.a(X) then the smallest ordinal 7 s.t. M,s = o (ff) must
be a successor ordinal. Hence M, s = a(a’(ff)) for some ¢ < 7. That is, in
the process of investigating “the reasons” why a p-formula is satisfied, we have
managed to reduce the index of the formula. Since the ordinals are well ordered,
it means that we will need to regenerate particular instance of the p-formula
only finitely many times. The condition on refutations is dual and obtained from
analysis of a game we are going to describe in the next section.

4 Games

In this section we show that any formula v has either a pre-model or a refutation.

Let 7 be a tableau for v. We define an infinite game G(7) for two players,
to be played on 7. Intuitively, player I will try to show that + is satisfiable and
player II that it is not. Our two players play the game as follows.

e game starts in the root of T,

e in any (or) node, i.e. node where (or) rule was applied player I chooses one
of the sons,

e in any (all()) node, player II chooses one of the sons,

e in other nodes which are not leaves, automatically the only son is chosen.

The result of such a game is either a finite or an infinite path of the tableau
7. A path can be finite only when it ends in a leaf which can be labeled either
by an axiom or by an unreducible sequent but not an axiom. In the former case
player II wins and in the latter case player I is the winner. If the resulting path
is infinite, then player II wins iff there exists a u-trace on the path.

Our interest in such a game is justified by the following.

Proposition 4.1 There is a strategy for the first player in the game G(7) iff
there is a pre-model for 7 contained in 7. There is a strategy for the second
player in the game G(7) iff there is a refutation for v contained in 7.

Proof

If there is a pre-model of v contained in 7 then the strategy for player I is to
stay in the nodes belonging to this pre-model. Conversely, a strategy for the first
player induces a pre-model as follows. The root of 7 is of course included in
a pre-model. If a node is included in a pre-model and this is a position where
player I has to play, we select the son designated by the strategy. If player II is

to play, we select all the sons. An argument for the case of refutations is similar.
]

Clearly, at most one of the players may have a winning strategy in the game
G(T). Therefore, a formula cannot have a pre-model and a refutation at the
same time. However, it is not obvious that it must have one of them. Indeed,
an infinite games may be undetermined, i.e. with no strategy existing for either
player [11].

In what follows, we show that the game G(7) is nevertheless determined,
viz there is always a winning strategy for one of the players. This fact can be
deduced from general theory of infinite games of Gale and Stewart as considered,
e.g. in [10, 11]. We briefly recall the definition of these games.

A game G(Y, A) is defined by an arena Y and a winning set A, say, for the
first player. Here Y C X™ is a set of strings over some set X which is closed
under initial segments, and such that any string in Y has a prolongation in Y.
Let F(Y) C X“ be the set of infinite sequences which have all finite prefixes in
the arena Y. The winning condition A is a subset of F(Y).

The players I and II pick alternatively elements in X constructing by this
an infinite sequence from F(Y), x1, zo,.... At infinity, the player I wins if the
selected sequence is in A, otherwise II is the winner. The set F(Y) can be
equipped with the Cantor topology, that is a topology induced by the metric
d(u,v) = 27" whenever u # v and n is the least position such that u(n) # v(n).
Martin [10] proved that if A is a Borel set then the game is determined.

10

It remains to choose X,Y and A in such a way that our game could be
presented as a Gale and Stewart game with a Borel winning condition. We chose
X to be the set of all sequents that can appear in a tableau for v plus some
dummy symbol. Then the arena Y will be obtained from the tableau 7 by
extending paths ending with a leaf by repetitions of the dummy symbol. The
winning set A C F(Y) will be of course the set of paths that neither contain a
u-trace nor pass thorough an axiom sequent. Notice that the natural definition
of this set involves an existential second-order quantifier. In order to show that
A is indeed Borel, we first observe that the set of all infinite sequences over X
that do not contain infinite traces and do not pass through axiom sequents, is
an w-regular language, and hence it is 39 in the Borel hierarchy over X“ (c.f.,
e.g., [18]). Now A can be obtained by intersecting this set with F(Y'), and the
last is a closed set since it is the set of all infinite paths of a tree. Thus A is a
Borel subset of X“ with the Cantor topology. In order to see that it is Borel also
in F(Y), observe that every set Z C F(Y) which is closed in X“ is also closed
in F(Y).

Thus, from Martin’s theorem and Proposition 4.1 we deduce the following.

Proposition 4.2 Let v be arbitrary formula and 7 a tableau of . Then there
exists a pre-model of v in 7 or a refutation of v in 7.

5 Characterization

In this section we prove that v is satisfiable iff there exists a pre-model for it.
From the results of the previous section, it will follow that « is not satisfiable
(viz —y is valid) iff there exits a refutation for —y. Similar results concerning
pre-model were proved in [17] and [16].

It will be convenient to use a characterization of the extremal fixpoints in
terms of possibly transfinite induction. We introduce two new constructs p” X.c(X)
and " X.«(X), where 7 is any ordinal, with the following semantics:

— X X) v =0, [V*X.A(X) Iy = S,
— o™ X.a(X) [y = || a(X) ||Val[||arx.a(x)||m/x1 (o stands for y or v),
— | X a(X) |y = Urrer || #7 X.(X) ||}y, for 7 limit ordinal,
— | " X X) |lyg = Nyrcr || V7 X.(X) ||y for 7 limit ordinal.
Then we have:
I uX.a(X) llyg = LTJ|| pX.a(X) |lyq

lvX.a(X) lyy = NV XaX) vy

11

We extend the notion of definition list from Section 3, by allowing equations of
the form (U = 0" X.a(X)). The concept of expansion (a) extends immediately.

Now we introduce the notion of the signature similar to that considered by
Streett and Emerson [17].

Definition 5.1 Fix a formula § without free variables, a definition list D con-
taining all definition constants occurring in (3, and a state s of a model M such
that M, s = (B)p. Let Uy,,Us,, ..., Uk, be all y-constants occurring in D. We
define a signature of 8 in s, Sigp(f,s), as the least (in the lexicographical or-
dering) sequence of ordinals (74, ..., 74) such that M, s = (f)p, where D' is a
definition list constructed from D by replacing the ¢-th definition of a y-constant
(Uy, = uX.ox, (X)) € D by (U, = u" X.a, (X)) for each i = 1,...,dH.

We first show that signatures behave well with respect to formula reduction.

Lemma 5.2 For any state s of a model M, definition list D and formulas
a, B, pX.a(X),vX.a(X) such that every definition constant occurring in them
occurs also in D:

— If M, s |= {a A B)p then Sigp(a A B, 5) = max(Sign(a, 5), Sign(5, s)).

— If M,s = (aV B)p then Sigp(aV B,s) = Sigp(a,s) or Sigp(aV B,s) =
S/[:g'l)(ﬂ,s)'

— If M,s = {{(a)a)p then Sigp({a)a,s) = Sigp(a,t) for some t s.t. (s,t) €
RM(a).

— If M, s = ([a]a)p then Sigp([a]a, s) = sup{Sigp(a,t) : (s,t) € RM(a)}.

— It M,s = (vX.a(X))p and (V = vX.a(X)) € D then Sigp(vX.a(X),s) =
Sigp(V, s).

— IfM,s = (uX.a(X))p and (U; = pX.a(X)) € D is the i-th of the p-constants
in D then the prefixes of length i — 1 of Sigp(uX.a(X),s) and Sigp(Us, s) are
equal.

— If M,s = (W)p and (W = oX.a(X)) € D then Sigp(W,s) is equal to
Sigp(a(W),s) if W is a v constant. If W is the i-th p-constant in D then the
latter signature is smaller and the difference is at the position ¢ or less (in fact
the difference is exactly at the position ¢ but a weaker statement is enough for
our purposes).

Proof

We will consider only the last case. Suppose M,s = (Uy,])p, where Uy, is the
i-th definition constant from D. Let (Uy, = pX.ox,(X)) € D, remember that
only definition constant older than Uy, can appear in oy, (X). Let Sigp(Uy,, s) =

12

(11,...,7,) and D’ be a definition list obtained from D by replacing the j-th
p-constant definition (Uy, = pX.o4; (X)) € D by (Uy;, = p™ X.ay, (X)) for every
j =1,...,n. Let us denote (o;(X))p by B(X). From the definition of the
signature, we have M,s = pX.3(X). Observe that 7, must be a successor
ordinal hence M, s = 8(u" ' X.4(X)) which implies the thesis of the lemma. []

Proposition 5.3 If a positive guarded sentence is satisfiable then any tableau
for v contains a pre-model for 7 as its subtree.

Proof
The proof is based on a Streett and Emerson’s proof [17], a similar idea was also
used in [15]. We present this proof in order to show the duality with the proof
of the converse proposition.

Let us take a sentence vy and a model M = (SM RM pM) in which v is
satisfiable. Let D =)v{ = (U1 = m), ..., (Us = 74) and let

(U, = pX.0, (X)), .-, Uy = X0t (X))

be the subsequence of all p-definitions in D.

Given a tableau 7T for 7, we will construct a pre-model PM = (K, L) as a
subtree of 7. Starting from the root of 7, we will subsequently select the nodes
of T that will be included in PM. With every node n of PM under construction,
we will associate a state s, of M such that M, s, = (L(n)).

The root of 7 becomes the root of PM and, for the associated state, we
choose any state of M in which the formula + is satisfied.

Suppose that we have already selected a node n of PM with an associated
state s,. We will show how to proceed from this point depending on what rule
was used in the node n of 7

L. If the (or) rule was applied to L(n) = aV §,T' i then select the son
of n with formula « if Sigp(«, s,) < Sigp(a V f,s,) and the son with
otherwise. Associate the state s, with the chosen node.

2. If the (all()) rule was applied then select all sons of n. For any son n' of n,
there is a formula of the form (a)a the reduction of which resulted in the
label of n'. For the node n', choose a state t such that (s,,t) € R(a) and
Sigp({a)a, s,) > Sigp(a, t). (Such a state exists, by Lemma 5.2.)

3. If n has no sons then it must be labeled by an unreducible sequent which
is not an axiom. This is because (L(n)) is satisfied in the state s,, hence
a formula and its negation cannot simultaneously appear in L(n).

4. For all other rules, just take the only son of n in 7 as the next node of PM
and associate the state s,» = s, with it.

13

We will show that PM constructed in this way is indeed a pre-model for v. As we
mentioned above, every leaf of PM is labeled by an unreducible sequent which is
not an axiom. Hence PM is a quasi-model and it only remains to show that any
infinite trace Tr = {ay, }nep On any path P is a v-trace. Suppose to the contrary,
that we can find a trace 7r such that the oldest constant regenerated infinitely
often on it is some 4-th p-constant Uy,. Clearly, after some point ng, Uy, must be
the oldest constant which will be regenerated on the trace.

Observe that Lemma 5.2 implies that, from the point ng, the prefix of length
1 of the signatures of formulas in 77 never increases. Indeed, the only way the
prefix could increase without regeneration of a definition constant older than Uy,
is an application of the rule () with a constant older than Uy,. But then the
next reduction on the trace would be a regeneration of the constant older than
Uy, -

Lemma 5.2 also says that the prefix actually decreases after each regeneration
of Uy,. Since we have assumed that Uy, is regenerated infinitely often, we obtain
a contradiction, because the lexicographical ordering on sequences of bounded
length over a well ordering is also a well ordering. This shows that every trace of

PM is a v-trace, hence PM is a pre-model. L]

Now we will show implication in the other direction, i.e. we show, given a
pre-model for v, how to construct a structure where + is satisfied.

Definition 5.4 Given a pre-model PM = (K, L), the canonical structure for
PM is a structure M = (SM RM pM) such that:

1. SM is the set of all nodes of PM which are either leaves or to which
(all{)) rule was applied. For any node n of PM we will denote by des,, the
closest descendant of n, or n itself, belonging to SM. (Note that des, is
well defined. Indeed, since the formulas in consideration are guarded, each
infinite path in the pre-model must contain infinitely many nodes where
the (all()) rule is applied and there are no other branching points in the
tree.)

2. (s,5') € RM(a) iff there is a son n of s with des,, = s', such that L(n) was
obtained from L(s) by reducing a formula of the form {(a)a.

3. p™(p) = {s: p occurs in the sequent L(s)}.

Proposition 5.5 If there exists a pre-model P.M for a positive guarded sentence
~ then < is satisfiable in the canonical structure for PM.

Proof

Let PM = (K, L) be a pre-model of a sentence . Let M =< SM RM oM >
be the canonical structure for PM. Let D = |y(be a definition list and let
Vi =vX.01(X)),..., (Vo = vX.Ba» (X)) be a sublist of v-definitions from D.

14

Suppose that M, des,, # 7, where ng is the root of PM. From now on we
will proceed in a similar way to the proof of Proposition 5.3.

First we define the notion of a v-signature, Sigp(a, s), which is defined for a
formula o and state s s.t. M, s & a

Slg‘;)(aa S) = Sig—'D(_'aa 5)

Definition list =D is obtained from the definition list D by replacing each
definition (U = o X.a(X) with (U = m0X.a(X)). (Recall that we have allowed
negation to occur only before propositional constants, but the negation of an
arbitrary formula can be defined by the De Morgan laws and other dualities of
the p-calculus.) Observe that Lemma 5.2 translates to v-signatures after inter-
changing p with v, () with [] and conjunction with disjunction.

Next we show that the assumption M, des,, ¥~ v implies that we can con-
struct a p-trace on some path P of PM, which contradicts the hypothesis that
PM is a pre-model of .

We will simultaneously construct a path P and a trace 7r = {ay}nep. The
first element will be of course a,,, = 7. Now suppose that we have constructed
Tr up to an element o, € L(m), such that M, des,, = (o). We select the next
element o, as follows:

— if a rule different from (all()) was applied to L(m) then there is only one son
m' of m and:

e if v, wasn’t reduced by this rule then o, = o,

o if o, = ¢ A ¢ was reduced then choose o,y = ¢ if Sigh(p A Y, des,,) >
Sig% (o, desy,), else choose ay,y = 1,

e if o, = V 4 then choose «,, to be the formula which occurs in L(m/),

e in other subcases just take the resulting formula as the next element of the
trace.

— if (all{)) rule was applied then:

o if o, = (a)¢p then there is a son m' of m the label of which was obtained by
reducing this formula. Take o,y = ¢

o if a,;, = [a]p then, because des,, ¥~ au,, there exists a state ¢ such that
(desm,t) € RM(a) and Sigh(p,t) < Sigh([alp, s). Observe that, from the
definition of our structure, this means that there is some son m' of m, such
that ¢ € L(m') and des,y = t. So let us take a,y = .

If the constructed trace were finite then from the definition of the canonical
structure and the restrictions on the application of the rule (all()) it follows
that either the last element of the trace, «,,, is a propositional constant p or its

15

negation, or m is a leaf of PM and a,, is a formula of the form [a]i). Then,
from the definition of the canonical structure, we have that M, des,, = ap,, a
contradiction.

Using an argument about signatures similar to the one from Proposition 5.3,
we can show that the oldest constant regenerated infinitely often on 7r must be
a p-constant. But PM is a pre-model hence all its traces are v-traces, contra-
diction. []

It should be clear that Propositions 5.3 and 5.5 hold not only for positive
guarded sentences but for all positive guarded formulas. Putting them together
we obtain:

Theorem 5.6 There exists a pre-model of a positive guarded formula « iff 7 is
satisfiable.

Finally, using our results from previous section we obtain also a characteriza-
tion of valid formulas.

Theorem 5.7 A positive guarded formula — is valid iff there exists a refutation
for ~.

Proof
Consider any tableau 7 for . Since there is no model for v, we cannot find a
pre-model in 7 hence from Proposition 4.2 there is a refutation in 7.

In other direction, if P is a refutation for v then we know that in the tableau 7,
of which P is a subtree, we cannot find a pre-model. Hence from Proposition 5.3
it follows that ~ is not satisfiable and —v is valid. L]

6 Complexity

In this section we give bounds on the size of a refutation of a formula and consider
the computational complexity of the problem for finding a refutation.

Emerson and Jutla [4] gave the exact bound of the decidability problem for
the p-calculus, by showing that the satisfiability problem for the p-calculus is
decidable in deterministic exponential time. The completeness of the problem
for this complexity class follows from the lower bound for PDL due to Fischer
and Ladner(1979) [6]. Streett and Emerson [17] also show a small model theorem
for the propositional p-calculus which, combined with the later results of Emerson
and Jutla [4] tells that if a sentence has a model then it has a finite model of the
size exponential in the size of the sentence. Considering the proof method used
in [4], we can restate this result as follows.

Theorem 6.1 (Emerson and Jutla) There is an algorithm which decides if
a p-calculus sentence 7y is satisfiable in time exp(|y|). If this is the case, the
algorithm constructs a model of the size exp(|y|) in time exp(|7y|).

16

The key fact needed for this theorem is a result on complexity of Rabin tree
automata that is also shown in [4].

Theorem 6.2 (Emerson and Jutla) There is an algorithm which, given a Ra-
bin automaton with n states and m pairs, decides in time O(n™) whether the
automaton accepts some tree. If it is the case, the algorithm constructs in time
O(n™) a regular tree of the size O(n) accepted by the automaton.

This last result can be also used for obtaining the upper bound for the size
and the time of construction of refutations.

Let a p-calculus sentence 7 be given. Let 3 be the alphabet consisting of all
the sequents that can appear in a tableau of y. Observe that |3| = exp(|7|). Since
the rules of the system S are nondeterministic, there may be many tableaux of ~.
Clearly, we can construct a tableau 7 of y, which is a regular tree of size exp(|7|),
and the construction can be performed in time exp(|y|). We construct a Biichi
automaton on infinite words over ¥ which nondeterministically chooses a trace
from a path in 7 and accepts iff this is a p-trace. It is easy to see that O(|y|) states
are sufficient for this job. Applying the Safra determinization construction [14],
we get a Rabin automaton on w-words with exp(|y|) states and O(|y|) pairs.
Finally, following the construction of exp(|y|) states and O(|y|) pairs, which
accepts precisely the refutations of . This automaton is actually obtained as a
product of the above Rabin automaton on w-words and an automaton checking
local consistency i.e. that a tree is a quasi-refutation contained in 7. We can
therefore state the following.

Theorem 6.3 There is an algorithm which, given a p-calculus sentence 7y, con-
structs a model of size exp(|y|) or a refutation of size exp(|y|). The algorithm
runs in time exp(|y|).

Acknowledgement

The second author would like to express his deep gratitude to professor Dexter
Kozen for introduction to the p-calculus and long discussions which inspired ideas
of this work.

References

[1] Mads Dam. CTL* and ECTL* as a fragments of the modal u-calculus. In
CAAP’92, volume 581 of LNCS, pages 145-165, 1992.

[2] E. Allen Emerson and E.M. Clark. Characterizing correctness properties
of parallel programs using fixpoints. In Seventh International Collogium on
Automata, Languages and Programming, pages 169-181, 1980.

17

[3] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata
and logics of programs. In 29th IEEE Symp. on Foundations of Computer
Science, 1988.

[4] E. Allen Emerson and Charanjit S. Jutla. On simultaneously determinizing
and complementing w-automata. In LICS’89, 1989.

[56] E.Allen Emerson and C.S. Jutla. Tree automata, mu calculus and determi-
nacy. In Proc. FOCS 91, 1991.

[6] M.J. Fisher and R.E. Ladner. Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences, 18:194-211, 1979.

[7] Yuri Gurevich and Leo Harrington. Trees, automata and games. Journal of
the ACM, 1982.

[8] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Com-
puter Science, 27:333-354, 1983.

[9] Dexter Kozen and R. Parikh. An elementary proof of the completeness of
the PDL. Theoretical Computer Science, 14:113-118, 1981.

[10] D.A. Martin. Borel determinacy. Ann. Math., 102:363-371, 1975.

[11] Y.N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic.
North-Holand, 1980.

[12] A.A. Muchnik. Games on infinite trees and automata with dead ends. Semi-
otics and Information, 24:17-44, 1984. in Russian.

[13] D.M.R. Park. Fixpoint inductinon and proof of program semantics. In
B. Meltzer and D. Michie, editors, Machine Inteligence, volume 5, pages
59-78. Edinburgh University Press, 1970.

[14] Shmuel Safra. On the complexity of w-automata. In 29th IEEE Symp. on
Foundations of Computer Science, 1988.

[15] Colin P. Stirling and David J. Walker. Local model checking in the modal
mu-calculus. Theoretical Computer Science, 89:161-171, 1991.

[16] C.S. Stirling. Modal and teporal logics for processes. to appear in LNCS.

[17] Robert S. Street and E. Allan Emerson. An automata theoretic procedure
for the propositional mu-calculus. Information € Computation, 81:249-264,
1989.

18

[18] Wolfgang Thomas. Automata on infinite objects. In J.van Leeuven, editor,
Handbook of Theoretical Computer Science Vol.B, pages 995-1072. Elsvier,
1990.

[19] Igor Walukiewicz. Gentzen-type axiomatization for pal. Theoretical Com-
puter Science, 118:67-79, 1993.

[20] Igor Walukiewicz. On completeness of the p-calculus. In LICS ’93, pages
136-146, 1993.

A An Example

In this section we would like to show an example of the use of refutations. Suppose
that we are given two specifications of modules. The first one

Fy =pX[a]X VvV (Y. [a]Y AC)

requires that on any execution of the program, from some point a condition C'
must be satisfied. The second one says that there always should be an execution
such that, from every point it can reach a state where C is unsatisfied

Fy=vX ()X N (pY.<a>YV-0)

We would like to find out why this two requirements are contradictory, or, in
other words, why the conjunction of the two formulas is unsatisfiable.

First we name all fixpoint subformulas of Fi A F; and obtain a definition list
D:

Uy = pX.|a]XV @Y.]a]Y AC)

Vi = vYalY AC

Vo = vX{(a)X A (Y. <a>YV-C)
Uy = pY.<a>YVvV-C

Below we present a refutation of F; A Fy; some simplifications were used for
notational convenience.

19

R, FE
Ul)‘/Z l_'D

[a]Uy V Vi, Va b

[a]Ula‘/é}_D ‘/1:‘/2|_D

[a]Un, (a)Va, (a)Us V =C

[a)Ur, (a)Va, (@)Uz = [a]Uy, (a)Va, =C' F

D

Ul)‘/Q}_/D Ula‘/QI_D

In this part of the refutation two nodes in frames are the same as the node
just below the root, hence we have two cycles here. The part of the tableau
starting from the node labeled Vi, V, I, will be presented below.

From first part of the refutation, we can read that there is a p-trace with
regenerations of U; on both cycles. This shows that in any potential model of
Fi A F,, we must have a state which satisfies (V7, V5 I—D). The rest of the tableau
for F1 A F5 shows that there is no way to satisfy (4, V3 E).

Vi, Ve b

[a]‘/la Ca <a>‘/2; <a>U2 VvV -C |_D

Vi, @V, (@)UaFy, —C,Chy

‘/IaU2 i_’D

[a]Vi A C,{a)Us vV =C H
Vi, Us F C,~C'k

In this part of the refutation we have one cycle, marked by the sequent in a
frame, and two leaves labeled by axioms. This part of the refutation shows that
in order to satisfy Vi AV, one must satisfy V; AUy. But this is impossible because
the marked cycle has a p-trace with a regeneration of Us.

20

