
Guarded Fixed Point Logic

Erich Grädel
�

RWTH Aachen
Igor Walukiewicz

�

Warsaw University

Abstract

Guarded fixed point logics are obtained by adding least
and greatest fixed points to the guarded fragments of first-
order logic that were recently introduced by Andréka, van
Benthem and Németi. Guarded fixed point logics can also
be viewed as the natural common extensions of the modal� -calculus and the guarded fragments. We prove that the
satisfiability problems for guarded fixed point logics are de-
cidable and complete for deterministic double exponential
time. For guarded fixed point sentences of bounded width,
the most important case for applications, the satisfiability
problem is EXPTIME-complete.

1 Introduction

Modal logics are widely used in a number of areas in
computer science, in particular for the specification and ver-
ification of hardware and software systems, for knowledge
representation, in databases, and in artificial intelligence.
The most important reason for the successful applications
of these logics is that they provide a good balance between
expressive power and computational complexity. Indeed, a
great number of logical formalisms have successfully been
tailored in such a way that they are powerful enough to ex-
press interesting properties for a specific application but still
admit reasonably efficient algorithms for their central com-
putational problems, in particular for model checking and
for satisfiability or validity tests. Many of these formalisms
are essentially modal logics although this is not always ap-
parent from their ‘official’ definitions (as for instance in the
case of description logics [3]).

The basic propositional (poly)modal logic ML (for a
given set � of ‘actions’ or ‘modalities’) extends proposi-
tional logic by the possibility to construct formulae �����
	
and � �
��	 (where �����) with the meaning that 	 holds at

1 Mathematische Grundlagen der Informatik, RWTH Aachen, D-52056
Aachen, graedel@informatik.rwth-aachen.de

2 Instytut Informatyki UW, Banacha 2, 02-097 Warszawa,
igw@mimuw.edu.pl. Supported by Polish KBN grant No. 8 T11C
027 16.

some, respectively each, � -successor of the current state.
An equivalent formalism from a different application area
is the description logic ����� . Although ML and ����� are
too weak for most of the really interesting applications, they
can be extended by features like path quantification, transi-
tive closure operators, counting quantifiers, least and great-
est fixed points etc. It has turned out that most of these ex-
tensions are still decidable and indeed of considerable prac-
tical importance.

Up to now, the reasons for these good algorithmic prop-
erties of modal logics have not been sufficiently understood.
In [15] Vardi explicitly asked the question: “Why is modal
logic so robustly decidable?”.

To discuss this question, it is useful to consider proposi-
tional modal logic as a fragment of first-order logic. Kripke
structures (or equivalently, transition systems), which pro-
vide the semantics for modal logics, are relational structures
with only unary and binary relations. Every formula 	��
ML can be translated into a first-order formula 	������ � with
one free variable, which is equivalent in the sense that for
every Kripke structure ! with a distinguished node " we
have that !$#%"'& ()	 if and only if !*& ()	�����"+� . This
translation takes an atomic proposition , to the atom ,-� ,
it commutes with the Boolean connectives, and it translates
the modal operators by quantifiers as follows:

�.���
	0/1�2�����
	3� � ��� �546(87:9 ��;=<>�?9�@A	 � ��9?�%�
� ���B	0/1�2� �
�B	C� � ���D�546(FED9 ��;�<G�H9$IJ	 � ��9K�2�L#

where 	3�M��9?� is obtained from 	3����� � by replacing all oc-
currences of � by 9 and vice versa and where ; < is the
transition relation associated with the modality � .

The modal fragment of first-order logic is the image
of propositional modal logic under this translation. It has
turned out that the modal fragment has interesting algorith-
mic and model-theoretic properties (see [1] and the refer-
ences given there). On the other side, the modal fragment is
a very small part of first-order logic. It is properly con-
tained in NPO+Q , relational first-order logic with only two
variables. But although NPO-Q is decidable and has the fi-
nite model property (see [10, 6]), it lacks the nice model-
theoretic properties [1, 9] and, in particular, the robust de-
cidability properties of modal logics. Indeed while the ex-

tensions of modal logic by path quantification, transitive
closure operators, least and greatest fixed points etc. are still
decidable and actually algorithmically quite manageable,
most of the corresponding extensions of N O�Q are highly
undecidable (see [7, 8]). In particular this is the case for
fixed-point logic with two variables, which is the natural
common extension of N O+Q and the � -calculus. The embed-
ding of ML in NPO Q therefore does not give a satisfactory
answer to Vardi’s question.

An alternative explanation for the good properties of
modal logics has been proposed by Andréka, van Ben-
them and Németi [1]. Starting from the observation that
in the translation of modal formulae into first-order formu-
lae, the quantifiers are used only in a very restricted way,
they defined the guarded fragment of first-order logic. They
dropped the restriction to use only two variables and only
monadic and binary predicates, but imposed that all quan-
tifiers must be relativized by atomic formulae. This means
that quantifiers appear only in the form

7 � ��� ���C# � � @ 	 ���C# � �2� or

E � ��� ���C# � ��IJ	 ���C# � �%���
Thus quantifiers may range over a tuple � of variables, but
are ‘guarded’ by an atom � that contains all the free vari-
ables of 	 .

The guarded fragment GF extends the modal fragment
and turns out to have interesting properties [1, 5]: (1) The
satisfiability problem for GF is decidable; (2) GF has the
finite model property, i.e., every satisfiable formula in the
guarded fragment has a finite model; (3) GF has (a gen-
eralized variant of) the tree model property; (4) Many im-
portant model theoretic properties which hold for first-order
logic and modal logic, but not, say, for the bounded-variable
fragments N O

�
, do hold also for the guarded fragment; (5)

The notion of equivalence under guarded formulae can be
characterized by a straightforward generalization of bisim-
ulation.

In a further paper, van Benthem [2] generalized the
guarded fragment to the loosely guarded fragment (LGF)
where quantifiers are guarded by conjunctions of atomic
formulae of certain forms (details will be given in the next
section.) Most of the properties of GF generalize to LGF.

In [5] Grädel showed that the the satisfiability problems
for GF and LGF are complete for 2EXPTIME, the class
of problems solvable by a deterministic algorithm in time
	 Q

��
���
, for some polynomial � ��� � .

If it is indeed the case that, as suggested by Andréka, van
Benthem and Németi, the guarded nature of quantification
in modal logics is the main responsible also for their good
algorithmic properties, then we are naturally lead to the fol-
lowing question:

If we extend the guarded fragments of first-order

logic by least and greatest fixed points, do we still
get a decidable logic? If yes, what is its complex-
ity? To put it differently, what is the penalty, in
terms of complexity, that we pay for adding fixed
points to the guarded fragment?

In this paper we answer these questions. We show that
the model-theoretic and algorithmic methods that are avail-
able for the � -calculus on one side, and the guarded frag-
ments of first-order logic on the other side, can be combined
and generalized to provide positive results for guarded fixed
point logic. In fact we can give precise complexity bounds.

Theorem 1.1. The satisfiability problem for guarded fixed
point logic is 2EXPTIME-complete.

Note that this is the same complexity as for guarded first-
order sentences, so we essentially do not pay any penalty for
fixed points! Even so, double exponential time is of course
a very high complexity level, which is usually beyond prac-
tical possibilities. However, the reason for this doubly ex-
ponential complexity is just the fact that the formulae have
unbounded width, i.e., they may contain subformulae with
an unbounded number of free variables. Given that even
a single predicate of arity � over a domain of just two ob-
jects leads to

	 Q
�

possible types already on the atomic level,
the double exponential lower complexity bound is hardly a
surprise.

Fortunately, in most practical applications, formulae
have only bounded width. In particular, for a fixed finite
vocabulary all guarded formulae have bounded width. For
example, the translation of the � -calculus into guarded fixed
point logic uses at most binary relations and leads to formu-
lae of width two. Our proof shows that guarded fixed point
sentences of bounded width have only single exponential
complexity.

Theorem 1.2. The satisfiability problem for guarded fixed
point sentences of bounded width is EXPTIME-complete.

In particular this generalizes the EXPTIME-completeness
of the � -calculus and the � -calculus with inverse modali-
ties, as well as a number of EXPTIME-completeness results
for description logics. Note that EXPTIME is a complex-
ity level we have to live with even for rather modest exten-
sions of ML or ����� . For most of the popular formalisms in
automatic verification (in particular CTL, CTL � and the � -
calculus) and for many description logics the common rea-
soning problems, in particular the satisfiability problems,
are EXPTIME-hard. And indeed, we can often cope with
this level of complexity since it is in terms of the length of
the formulae, which in many practical applications tend be
rather small compared to the often huge size of the struc-
tures (i.e., the transition systems or knowledge bases) on
which the formulae are evaluated.

Hence, the guarded nature of quantification does indeed
seem to provide a convincing explanation for the good algo-
rithmic and model theoretic properties of modal logics. Fur-
ther, let us point out that guarded fixed point logic provides
considerably more expressive power than the � -calculus or
other modal logics. In particular it is not restricted to unary
and binary predicates, it allows the use of equalities and in-
equalities, and it avoids the rigid distinction between state
properties and modalities. Given that most of the successful
methods for dealing with modal logics or description logics
seem to extend to guarded fixed point logic, we may hope
that this logic will turn out to be useful also in practical ap-
plications.

Here is the plan of this paper. In Sect. 2 we explain the
guarded fragments of first-order logic GF and LGF and the
guarded fixed point logics ��� N and ����� N . Further, we
show that guarded fixed point logics do not have the finite
model property. In Sect. 3 we explain some technical no-
tions on fixed point formulae, like binding definitions and
signatures, which are adapted from the corresponding no-
tions on the propositional � -calculus [13, 14]. In Sect. 4 we
introduce the notion of a tableau for a guarded fixed point
sentence. Essentially, a tableau is a tree representation of
a model of a sentence. In Sect. 5 we will introduce a par-
ticular variant of alternating two way automata designed to
accept tableaux. Then we will reduce the satisfiability prob-
lem to the emptiness problem for these automata

2 Guarded fixed point logic

Definition 2.1. The guarded fragment GF of first-order
logic is defined inductively as follows:

(1) Every relational atomic formula belongs to GF.

(2) GF is closed under propositional connectives � , @ ,�
, I and � .

(3) If �C# � are tuples of variables, � ���C# � � is a positive
atomic formula and 	 ���C# � � is a formula in GF such
that �
	��
�
��	3�����
	���� ��� ��(��� � , then the formulae

7 � ��� ���3# � � @ 	 ����# � �2�
E � ���5���3# � � IJ	+���C# � �%�

belong to GF.

Here �
	���� ��	C� means the set of free variables of 	 . An
atom � ���3# � � that relativizes a quantifier as in rule (3) is
the guard of the quantifier. Notice that the guard must con-
tain all the free variables of the formula in the scope of the
quantifier.

While the guarded fragment clearly contains the modal
fragment of first-order logic, it seems not to be able to ex-
press all of temporal logic over ���5#�� � . Indeed, the straight-
forward translation of ��	 until ��� into first-order logic

7:9 �����F9+@��C��9?� @AE�� �%�������=@���� 9?� IJ	+�����%�
is not guarded in the sense of Definition 2.1. However, the
quantifier E�� in this formula is guarded in a weaker sense,
which lead van Benthem [2] to the following generalization
of GF.

Definition 2.2. The loosely guarded fragment LGF is de-
fined similarly to GF, but the quantifier-rule is relaxed as
follows:

(3)’ If 	+���C# � � is in LGF, and �5���3# � � (�! @#"�"
" @ ��$ is
a conjunction of atoms, then

7 � �%���% @#"�"
" @ �&$ �D@ 	 ���C# � �%�
E � �%���' �@("
"�" @ ��$-� I 	 ����# � �2�

belong to LGF, provided that �
	���� ��	3�)�*�
	��
����� � (
�+� � and for every quantified variable 9 � � and
every variable � � ��� � there is at least one atom �&,
that contains both 9 and � .

In the translation of ��	 until � � described above, the
quantifier E�� is loosely guarded by ���+�-�-@.��� 9?� since
� coexists with both � and 9 in some conjunct of the guard.
On the other side, the transitivity axiom

E �?9/� ��;��H9 @ ;�9/� I ;��0�:�
is not in LGF. The conjunction ;��?9 @ ;�9/� is not a proper
guard of E �H9/� since � and � do not coexist in any conjunct.
Indeed, it has been shown in [5] that there is no way to
express transitivity in LGF.

Notation. We will use the notation � 7 � � �P� and � E � � �P� for
relativized quantifiers, i.e., we write guarded formulae in
the form �.7 � � � � 	+���C# � � and �BE � � � � 	+���C# � � . When this
notation is used, then it is always understood that � is in-
deed a proper guard as specified by condition (3) or (3)’.

Definition 2.3. The guarded fixed point logics ��� N and���&� N are obtained by adding to � N and �&� N , respec-
tively, the following rules for constructing fixed-point for-
mulae:

Let 1 be a 2 -ary relation variable and let � (
�� M# � � � #%� � be a 2 -tuple of distinct variables. Further, let
	 �31 # ��� be a guarded formula where 1 appears only pos-
itively and not in guards. Moreover we require that all the
free variables of 	 �31 # ��� are contained in � . For such a
formula 	 �31 # �5� we can build the formulae

� � N�4)1 � �%	��
�����
� � N'451 � �%	��
����� �

The parts in square brackets, i.e. � � N'4#1 � �2	�� and
� � N'4#1 � �2	�� , are called fixed point predicates.

The semantics of the fixed point formulae is the usual
one: Given a structure � and a valuation � for the free
second-order variables in 	 , other than 1 , the formula
	 � 1 # ��� defines an operator on 2 -ary relations 1 � � �

,
namely

	���� � � 1 �546(��
	 � �
�
4���#���&(8	 �31 #�	 ��
 �

Since 1 occurs only positively in 	 , this operator is
monotone (i.e., 1 � 1�� implies 	 ��� � � 1 � � 	 ��� � �31��B�)
and therefore has a least fixed point LFP(��� �) and a great-
est fixed point GFP(��� �). Now, the semantics of least fixed
point formulae is defined by

��#�� & (� � N'4#1 � �%	+� 1 # ��� �
��	 �
iff 	 � � N'4 ��	���� �H�

and similarly for the greatest fixed points.

Notation. We write � N'4)1 � �%	�� when we do not want to
specify whether we talk about a least or a greatest fixed
point.

Proviso. We will always assume that our formulae are in
negation normal norm, i.e., that all negations are pushed
through to the atoms so that negation signs are only in front
of atomic formulae.

Please observe that we do not allow to use fixed point
predicates in guards. Otherwise guarded quantification
would be as powerful as unrestricted quantification. Indeed,
for every 2 , we can define the universally true 2 -ary rela-
tion by the fixed point predicate � � N'4�� � �� '"
"�"2� � ��������� �
(where ������� stands for any tautology). Using these predi-
cates as guards one could obtain unrestricted quantification.
Also the use of the fixed point variable 1 as a guard inside
the formula defining it at as a least or greatest fixed point,
or the use of additional first-order variables as parameters
in fixed point formulae would lead to an undecidable logic,
as has been shown by Martin Otto.

Infinity axioms. Contrary to both GF and the � -calculus,
guarded fixed-point logic does not have the finite model
property. An infinity axiom is a satisfiable sentence that
does not have a finite model.

Proposition 2.4. Guarded least fixed point logic (even with
only two variables, without nested fixed points and without
equality) contains infinity axioms.

Proof. Consider the formulae

7:�H9��-�H9
�BE �H9 ���-�?9?� 7:���-9:�

� E �H9 ���-�H9?� � � N'4)1 � � �BED9 ���-9:�D� 1 9
�
��� �

The first two formulae say that a model should contain
an infinite � -path and the third formula says that � is well-
founded, thus, in particular, acyclic. Therefore every model
of these formulae is infinite. On the other side, the formulae
are clearly satisfiable, for instance by �! �#�� � .

3 Signatures of fixed point formulae

A formula is well-named if every fixed-point variable is
bound at most once in the formula and free second-order
variables are distinct from bound variables. Obviously ev-
ery formula is equivalent to a well-named one. Let us fix in
this section a well-named sentence 	 of ����� N .

Definition 3.1. If " is bound in 	 then the binding defi-
nition of " in 	 is the (unique) fixpoint predicate in 	 of
the form � N�4#"%$ �'& �!"�#�$ � � . The definition list for 	 is the
function (*) assigning to each fixed point variable in 	 its
binding definition. A variable " is called an LFP-variable
if (+) ��"+� is an LFP-predicate; similarly we define GFP-
variables. Let ,) be a binary relation on variables bound in
	 defined by "-,) ".� iff " occurs free in () ��"%�B� .
Lemma 3.2. The transitive closure of ,.) is a partial order.

Proof. It is enough to show that this transitive closure is
asymmetric. This follows because whenever "/,0)*"%� , then
"21(3" � and (*)��!" � � is properly included in (4)���"+� .
Definition 3.3. A dependency order for a well named for-
mula 	 is a linear order �%) that extends ,5) .

Example. It may be the case that 687�9;: although 6 does not
occur free in <=9?>�:A@ . Consider:

BDCFEHGJILK 6NM�O�PHQ R ILKTS MVU�P 6;MVU�W
Q G�ILK :XMVY
P S MZY[W\:]MZY�^�>!M U @�^�>!M O @�_
>a`b@

We have 62c]9 S and
S c]90: hence 6d7]9N: .

Example. It is not the case that 6e7�9 S whenever <=9?> S @ is a
subformula of <59?>a6f@ . For the formula:

BDCFEgG�ILK 6;MhO�PZ6;MhO�WiQ G�ILK;S M�UZP S MVU'^�>!MhO�@�_�>a`�@
we have that 6 and

S
are incomparable in c�9 as 6 does not occur

free in <=9�> S @ C Q GJILK;S MVUVP S M�Uj^ . Because 7�9 is an arbitrary
extension of c]9 it may be the case that

S 7]946 .

Given a formula & with a free 2 -ary second-order vari-
able " and a formula kP����� with free variables � (
�� M# � � � #%� � , we write &D� k?lh"3� for the formula obtained by
replacing all occurrences of atoms " � in & by kP� � � .
Definition 3.4. For all ordinals � , the approximations
&nm ����� of an LFP-predicate � � N'4D" � ��&D��"�# ��� � are defined
inductively in the usual way. Let &no:����� 46(qpZr�sutV� ; if �
is a limit ordinal, let &vm ����� 46(xw*yvz m &

y ����� ; finally let

&�m�� ����� (& �%� &nm l�"3� # ��� for every � . (Note that &vm �����
is in general not a formula in ���&� N since the ordinals need
not be finite. However, the approximations of the fixed point
predicates are contained in a guarded infinitary logic that
extends ����� N by conjunctions and disjunctions over arbi-
trary sets of formulae.)

Let (+) be a definition list for 	 and let "& �5)/" Q �5)"�"�"'�5)�"�� be the enumeration of the fixed point variables
of 	 with respect to an arbitrary, but fixed dependency order
for 	 . Note that all free fixed-point variables in ()���"�� �
are among "& # � � � #'"����� and (due to the restrictions on the
use of fixed-point operators in Definition 2.3) the predicate
(+) ��"�� � has no free first-order variables.

Definition 3.5. Let � be a formula in ���&� N without free
first order variables and whose free second order variables
belong either to the vocabulary of 	 or to the domain of () .
For an � -tuple of ordinals

�	 (� 	 # � � � # 	 � � we define the
sentence �

�
by:

�C� (�
�!"��?��lh"��
� � (�

�!"��
�� ��lh"��
� L� "
"�" � (�
�!"� �'lh"� L�

where (� ��"+� ((��"+� if " is a GFP variable and
(� �!"�� � (& ��� if "�� is an LFP-variable with (�!"��
� (
� � N�4 "���� �'& �!"=# ��� � .

The LFP-signature of � in � , denoted �
����� � �5#'� � , is the
smallest tuple of ordinals

�	 (with respect to the lexicograph-
ical ordering) such that � & (�
�

.

Please observe that a signature �
��� � � � #�� � is defined if
and only if � & (�5� (��" � �'l�" � � "�"
" � (�!" �'lh" � . Further the
definition implies that ����� � ���5#'� � is � on positions corre-
sponding to GFP-variables.

The following technical lemma about signatures will be
useful in the proofs of correctness of our constructions.

Lemma 3.6. The following facts hold for signatures (as-
suming that in all formulas under consideration all free
fixed- point variables are in the domain of ()):

(i) If � � & has signature
�	 in � then either � or & has

signature
�	 in � .

(ii) If � @ & has signature
�	 in � then both � and & have

signature not bigger than
�	 in � .

(iii) If � E � � �5�����%� �C��� � has signature
�	 in � then for ev-

ery tuple 	 such that � & (�5��	�� , the sentence �C��	P�
has signature not bigger than

�	 .

(iv) If �.7 � � � �����%� �5��� � has signature
�	 in � then there

is a tuple 	 such that � & (�5��	�� and �C��	 � has sig-
nature

�	 in � .

(v) If � N'4 " � � ��& �!" � # ��� �
��	 � has signature
�	 then

& �!"�� #�	P� has the same signature on the positions� # � � � #���� �
.

(vi) If "���	 has signature
�	 and (��"�� � (

� � N'4D"�� � ��&D��"��%# � � � then & �!"��%#�	 � has a strictly
smaller signature and the difference is on the first �
positions.

(vii) If "%	 has signature
�	 and (�!"+� (

� � N�4#" � �'& �!"�# ��� � then & �!"�#�	 � has also sig-
nature

�	 .

Proof. We will consider only the case of an LFP-variable.
Let "�� be the � -th variable in the �%) ordering and let� �!"�� � (J� � N'4#"���� �'& �!"��2# ��� � . Suppose that � 	 ># � � � # 	 �?�
is the signature of " � 	 in � . Observe that that " � does not
appear in (�!" ,>� if �+� 2 . Hence by the definition of the
signature we get:

� & (& � � � (�
�!"�� � ��lh"�� � � "�"
" � (�

�!"� ��lh"� 2�
��	 � (1)

where (� ��" ,G� is as in Definition 3.5. We know that 	 � is the
least ordinal such that (1) is satisfied. So in particular it is
a successor ordinal. By the definition of the approximation
we have

� & (& � & ��� � lh"�� �
� (�
�!"�� � ��lh"�� � � "�"
" � (�

�!"� ��lh"� 2�
��	 ���
Hence the signature of & �!" � #�	P� is not bigger than
� 	 M# � � � # 	 � � M# 	 ��� � � on the first � positions.

4 Tableaux for !#"%$'&

A tableau for 	 will be a tree labelled with 	 -types
which we are going to define now.

First we define a closure (Vs ��	3� of the formula 	 to be the
smallest set of formulae such that

(i) All subformulas of 	 belong to (Vs ��	3� .
(ii) for every relation symbol) occurring in 	 , (Zs ��	C�

contains formulae)+� '"�"�"2� � and �*)+�� %"�"
"%� � with
distinct variable symbols � M# � � � #%� � .

Definition 4.1. For any set + of constants, let:

(Vs ��	 #,+ �546(� �C��	 � 4 	5�-++#��C��� � �.(Vs ��	C�
 �
�G� (� # �C��� (0/ � 4�� #1/=�2++#2� 1(0/h

A ��	 #,+ � -type is a subset 3 of (Vs ��	 #,+ � with the follow-
ing properties:

(a) � � (� 4 � �2+
 �#� �C��� (4/ �C4 � #,/+�5++#2�#1(4/

 �
3 .

(b) For all atomic ���.(Zs ��	=#1+ � either � �23 or � ���63 ,
but not both.

(c) If � �87 �93 then ���63 or
7 �23 .

(d) If � @ 7 �93 then � �93 and
7 �63 .

(e) If �BE � � � ��	�# ���%� �C��	 # ��� � 3 and for some
� � +

we have � ��	�# � �C�93 , then also �C��	 # � � �23 .

(f) If � N'4 " � ��& �!"�# � � � ��	�� �93 then also & �!"�#�	P� �63 .

(g) If "%	 � 3 and () �!"-� ()� N'4#" � ��& �!"�# � � � then
& �!"�#�	 �5�63 .

Let �������Zt ��	 #,+ � denote the set of all the ��	=#,+ � -types.

Definition 4.2. A tableau over a set of constants � for a
sentence 	 � � -LGF is a tree � labelled with pairs � 3�#,+ �
where + �	� and 3 is a ��	 #,+ � -type. � is constructed
inductively according to the following rules:

(1) The root is labelled by � 3�#�
�� where 3 is a ��	=#�
�� -
type containing 	 .

(2) Suppose that a node � of � is labelled by � 3�#,+ � and
that there is an existential sentence 7 � ���C��	�# � � in
3 such that for all

� �8	 we have �'�C��	5# � � � 3 .
In this case we choose a tuple

� � 	 � �
��� + �
and construct a child " of � labelled by � 3 �.#�	�� � �
where 3[� is a ��	=#�	.� � � -type that contains the sen-
tence �C��	�# � � and that also contains all the sentences
of 3 referring only to constants from 	 .

5 Two-way alternating automata on trees (of
arbitrary degree)

Automata play a very important role for the satisfiability
testing and model checking of modal logics. In particular,
alternating tree automata seem to be the right model to get
optimal complexity bounds for the � -calculus and its rela-
tives. In [16] Vardi used alternating two-way tree automata
(A2A) to establish decidability and EXPTIME-completeness
of the � -calculus with backward modalities. His model of
A2A works on trees of bounded branching where nodes
have outgoing arcs labelled by indices

� # 	 # � � � # 2 . The val-
ues of the transition function are positive Boolean formulae
over pairs ���:#��%�����	�3��� � #,�K# � # � � � #�2�
 . A pair ���:#��%�
means that the automaton assumes state � and proceeds into
direction � . Here the direction 0 means that the automaton
stays at the current node and direction -1 means that the
automaton goes to the parent node. Vardi proved that the
emptiness problem for his A2A can be solved in exponential
time with respect to the number of states of the automaton.

To obtain a decision procedure for the � -calculus with
backward modalities Vardi first proves, adapting techniques
of Streett and Emerson [14], that this logic has the tree
model property: every satisfiable sentence has a tree model
with bounded degree. Then he shows, that for every sen-
tence 	 one can build an alternating automaton �\) that ac-
cepts a tree of bounded degree iff it is a model for 	 .

We will use here a different model of alternating au-
tomata that work on trees of arbitrary, finite or infinite, de-
gree. While the trees will have directed edges (from fathers
to sons), the automata will not distinguish this orientation
and will be able to proceed to any neighbour of a node, i.e.,
either to the father of the current node or to any son. A gen-
eral forgetful determinacy theorem for graph games can be
used to reduce the emptiness problem for our automata to
the emptiness problem for Vardi’s automata.

Definition 5.1. An alternating two-way automaton on trees
is a tuple � (�����:#����?#�� #�� o #��>#��3� where � (����&��� � is
a finite set of states, partitioned into existential and universal
states, � is an input alphabet and � o �!� is an initial state.
The transition function has the form

� 4"�#�$� I&% ����� �"'(� 4"� �$�\
M�
Intuitively ��� �)���
�:#�* � means that a copy of the automaton
should stay at the current node and assume a new state � � . If
'+��� �)���
�:#�* � then a copy of the automaton should proceed
to some neighbour of the current node and assume state � � .
The function � 4"� I � specifies the acceptance condition
of the automaton.

We will define a run of our automata in terms of par-
ity games. For this we will first introduce general concepts
concerning such games.

A parity game is a tuple , (��- o #�-0 >#2; #��3� where - (
- o �.-� is a, possibly infinite, set of positions; ; �/-0�.-
is an edge relation and � 41-)I � is a function defin-
ing parity winning condition. A game is played between
two players (player � and

�
). A move of the game consists

of moving a token from one position to the other along an
edge of the game graph. If a token is in a vertex from - o
then player � makes the move, otherwise player

�
moves the

token. The result of a play from an initial position � o is a
finite or an infinite sequence of positions � o #�� # � � � This se-
quence can be finite only because one of the players cannot
make a move. In this case he looses. If the play is infi-
nite we look at the sequence of numbers �-�2� o �L#��-�2� �L# � � �
Player � wins iff this sequence satisfies the parity condition
given by � , i.e., the smallest number among the numbers
appearing infinitely often in the sequence is even.

A strategy for player � in , is a partial function 3 4
- �4�5- o I6- such that whenever 3P� ��7��� is defined then
�2� #�3P� ��"�K�%� is an edge from ; . A finite path � o � %"�"
"8� � is
consistent with 3 if for every �P(0�K# � � � # � � �

with � � �.- o
we have � � � (#3P�2� o "
"�"9� � � . An infinite path is consistent
with 3 if every its finite prefix is. A strategy 3 is winning
from a position � o if:

1. every consistent path starting in � o and ending in a po-
sition from - o can be prolonged to a consistent path,
and

2. every infinite consistent path starting in � o is winning
for player � .

We can now go back to our tree automata. Let � (
�!"�#��'4D" I �C� be a tree labelled by symbols from
� . We will use games to define the notion of acceptance.
For a given automaton � and a tree � let ,5��� #�� � (
��- o #�-0 >#2; #��3� be parity game where:� - o (3" �.� � and - (" �)� � ;� �2� #���� ;A�2��� #���� � iff either

(i) ��� �)���
�:#��=�
���2� , and ���H(� , or

(ii) '+��� �.���
�:#��=�2�K�%� and ��� is a neighbour of � .� �-�2� #���� (��-�
��� .
We say that � accepts � iff player � has a winning strategy
from the position ��� #�� o � where � is the root of � and � o is
the initial state of � .

Our first goal is to show that if an automaton accepts
some tree then it accepts a tree of a degree bounded by some
function in the number of states of the automaton. For this
we will use a memoryless determinacy theorem for parity
games [4, 11, 17].

A strategy 3 in a parity game , is called memoryless if
3P� �� �� �A(3P� �� Q � Q � whenever � (� Q ; in other words a
memoryless strategy depends only on the current position
of the play and not on its history.

Theorem 5.2 (Emerson, Jutla). For every parity game
there exist a memoryless winning strategy for player � that
is defined for every position from which there is a winning
strategy for player � .

As a consequence we can derive the following result.

Theorem 5.3. If an alternating two-way automaton ac-
cepts some input tree, then it also accepts a tree whose
branching is bounded by the number of states of the au-
tomaton.

Proof. Suppose that � accepts � . Then player 0 has a
memoryless winning strategy in ,5�.� #��$� from position
��� #�� o � . This strategy can be presented as a labelling 3 4
" I ����� I "0�5� � assigning to each node � of " the
function 3�� 4 ���I 3P�
�H#���� . For each node � of " consider
the set of relevant vertices for � :	 �Zs
�2�K��(�� " 4
7�� �)��� such that

3P�
�H#���� (��" #�� � � for some � � �.�\

Clearly & 	 �Zs
�2�K� & �J& �A& for all nodes � . Now consider

the restriction � � of � obtained by starting at the root and
keeping only the relevant children of each node. One can

easily see that 3 restricted to �4� defines a memoryless win-
ning strategy for player � in the game ,5���A#��\� � . Hence �4�
is accepted by � . By definition vertices of � � have degrees
bounded by & �A& .

For input trees of bounded degree our automata can eas-
ily be translated into alternating two-way automata accord-
ing to Vardi’s definition and the translation at most dou-
bles the number of states. Since the emptiness problem for
Vardi’s automata is in EXPTIME, we get via Theorem 5.3
the same result for our automata.

Theorem 5.4. The emptiness problem for alternating two-
way automata (on trees with arbitrary branching) can be
decided in EXPTIME.

6 The satisfiability test

In this section we will construct an automaton �) ac-
cepting exactly those tableaux for 	 that represent a model
for 	 . Hence 	 will be satisfiable iff there is tableau ac-
cepted by �4) .

Definition 6.1. Let 	 be a well named ����� N sentence of
vocabulary 	 , let (*) be its definition list and "& �5)#"�"�" �5)
"�� a dependency ordering on the fixed point variables of 	 .
For a set of constants � we define an automaton

�*)0(�����:#�� �H#

�
��� � �������Zt ��	 #,+ � �#� +
M�L#2	=#��M#��3�

where

� � (*� ���.(Vs ��	=#�� � 4 � (3& � 7
or � (7 � � &�

�D��pZr�sutV�

� � (� (Vs ��	=#�� � � ����� � �b��������

and � is defined as follows.

(1) ���'�������
� 3�#,+ �2��(��� pZr�sutV�:# � 3�#1+ �%��(
 �

(2) If � is a 	 -atom or a negated 	 -atom then

������# � 3�#1+ �%� (�� ������� if � �23
pZr�sutV� if � 1�23

(3) ����� � 7 # � 3�#,+ �%��(��� � @ 7 # � 3�#,+ �2��(�� �5# 7
 .
(4) ���%� N'4 " � � &D��"�# ��� � ��	P� # � 3�#,+ �2��(��
& �!"�#�	 ��
 .
(5) ���!"%	�# � 3�#,+ �2� (��& �!"=#�	 �
 where (��"+� (

� N�4#" ��� � � & ��"�# ��� � .
(6) Let � be of the form � 7 � � �5��	 # ���%� & ��	5# ��� or

�BE � � � ��	�# ���%� &D��	�# ��� . If 	5� + , then

�����5# � 3�#1+ �%��(4�
& ��	�# � �C4 � �-++# �5��	 # � � �93X

� �"'%��

If 	 1�-+ , then ��� �5# � 3�#,+ �2��(�
 .

Finally � is defined by

�-� ����(������ ����
	 � for � (3"���	 and "�� a GFP-variable
	 ��� �

for � (3"���	 and "�� an LFP-variable
	
��� �

for � (7 � �'&
	
��� 	

otherwise.

The size of the automaton �) is linear in the size of
��������t ��	=#�� � . In turn, the size of this set depends linearly
on the size of 	 and exponentially on the size of � . As we
will see the required number of constants in � will depend
linearly on a parameter we call the width of a formula:

Definition 6.2. The width of 	 is� �
	���
 ��	C�546(������J��& �
	����
����� &K4 � �.(Vs ��	C�
 �
Note that for each sentence 	 from � N or ��� N the width
is bounded by the maximal arity of the relation symbols in
	 . However, for loosely guarded sentences the width may
be larger than the arity of the relation symbols.

Lemma 6.3. Let � be a structure and 	 a well-named� LGF sentence of width � . Let � be a set of at least
	 �

constants. If � & (8	 then there is a tableau � for 	 over �
that is accepted by �) .

Proof. Let � be a model for 	 with the universe
�

. We will
construct a tableau for 	 accepted by �) . Given a sentence
� , possibly with some constants 	 � � , and a valuation
� 4J	�I �

we denote by �
� � � � � � the LFP-signature of �
in � extended with the interpretation of constants from 	
as given by � . We construct a tableau

� (�!"�#��F4�" I

�
� � � ��������t:��	 #,+ � �#� +
M� �

and a function � assigning to each node " �D" a valuation
of constants from the label of " .

Label the root � of the tableau with � 3�#�
�� , where 3 is
the ��	=#�
�� -type realized in � . The function ��� � � gives the
empty valuation as there are no constants.

Suppose now that we have a node " labelled by � 3�#1+ �
and a function � (� ��"+� 4 + I �

giving the mean-
ing to each constant in + . Suppose moreover that 3 is
such that � #�� & (3 . Take an existential sentence � ��	 �-46(
7 � � & ��	 # ��� � 3 such that for every tuple

� � 	 we have
either � #�� & (� & ��	 # � � or ����� � ������	 �%��� ����� � �!& ��	�# � �2� .
Since � #�� & (�����	P� , there is an extension of � to � � 4

��	 � ��� I �
such that � #��[� & (& ��	 # ��� and more-

over �
� � � ������	��2� (�
��� ��� �!& ��	5# ���2� . Let ��� # � � � #�� �
 (
��� ��	�� ��� �5� ��	 � be all the elements of the model used in
��� that are different than the meanings of the constants in
	 . By our assumption this set is nonempty. We take con-
stants

� (� /
 G# � � � #,/ � � not appearing in the label of " , i.e.,� � � � + . This is possible by our assumption on the size
of � . We define the function �[� � 4H��	 � � ��I �

by

� � � � / � � 4 (�� � and � �u� �.��� 46(�����K� for � � 	 �

Let 3�� be the unique ��	=#�	�� � � -type such that � #�� � � & (03[� .
We create a son ".� of " labelled with � 3[� #�	 � � � and put
����"%��� (3�[� � .

To check that the constructed tableau � is accepted by
�) we define a strategy 3 for player � from ��� #%	C� in the
game ,5�.�) #�� � .

Given a node ��" #�� �87 � such that � #�����"-�3& (� �87
we

define 3P��" #�� �'7 �+(��" #�� � if ����� ��� �"! ����� � �
� � �#�$�"! � 7 �
and 3P��" #�� �87 ��(��" # 7 � otherwise.

For
7 (7 � ��& ��	 # ��� consider a node ��" # 7 � with�=��"+� (� 3�#,+ � and � #�����"+� & (7

. We define
3P��" # 7 � (��" #�& ��	5# � �%� if there is

� � + such that
�
� � ��� �"! �!& ��	 # � �%��� �
��� ���$�"! � 7 � . If it is not the case then
we put 3P��" # 7 � (��"%� # 7 � , where "%� is a son of " such that
�
� � ��� �"�%! �!& ��	 # � �2�(� �
� � �#�$�"! � 7 � (such a ".� exists by the
construction of �).

To check that the strategy defined above is winning for
player � let us take any play � � #2	C�L# ��" �#'k � # ��" Q #�k Q �L# � � �
played according to this strategy. If the play is finite then it
is winning for player � because k�� appears in the label of " �
for all � .

If the play is infinite then we have two possibilities. It
may be the case that after some point, a universal or an ex-
istential formula is never reduced, i.e., k � (#� � ��� , for all
sufficiently large � . By the definition of our strategy, if �
is an existential quantifier then � � �&� is reduced in at most
two steps. Hence � must be the universal quantifier and
such a play is winning for player � .

If the play is infinite and every quantifier is eventually re-
duced then there are infinitely many positions � for which k��
is of the form " , 	 for some fixed point variable " , . In this
case we say that " , is regenerated at position � in the play.
Let ' be the smallest among all the indices � such that " ,
is regenerated infinitely often on the play. Towards a con-
tradiction suppose that ")(is an LFP-variable. Let us look
at the sequence of signatures � �
� � ���$� � ! �!k
� #�� ��
 �$*& � Q �,+,+,+ . By
Lemma 3.6 and the definition of out strategy, from some
point these signatures never increase on positions �-' .
Moreover the signatures decrease on one of these positions
each time " (is met on the play. This is impossible as a
lexicographical ordering of ' -tuples of ordinals is a well-
order. Hence ")(is a GFP-variable and the play is winning
for player � .

Next we want to show how to construct a model for 	
from a tableau � for 	 accepted by �) . For a tableau

� (�!"�#��F4�" I

�
� � � ��������t:��	 #,+ � �#� +
M� �

we define the structure � �
� � . First, for every constant� �.� we call two nodes � and " � -equivalent if each node
on the path from � to " (including � and ") has � in its
label. This is an equivalence relation on the set of those
nodes in " whose label contains � . The carrier of � �
� � is
the set of all � -equivalence classes for all � � � . Given
equivalence classes - # � � � #�- � for � # � � � # � � -equivalences,
respectively, we put) � � � ! ��- # � � � #�- � � iff there is a ver-
tex � � �

�$*& �,+,+,+ � � - � such that) � "
"�" � � appears in �=�2�K� .
From the definition of a tableau we immediately get:

Lemma 6.4. Let - # � � ��- � be a tuple of equiva-
lence classes of constants � # � � � # � � respectively. If
) �)� � ! ��-� ># � � � #�- �H� then for every vertex � � �

� *& �,+,+,+u� � - �we have) � �"�"
" � � in the label of � .
The following slightly more involved lemma is needed

for the case of loosely guarded formulas.

Lemma 6.5. Let � (�% M���C# � � @#"�"
" @ � � ���C# � � be a con-
junction of atomic formulas such that every variable from
� coexists with every variable from ��� � in some con-
junct. If there is a valuation � 4 �(� � I � ��� � such that
� �
� � #�� & (� and

� �
� ���D�=4K� � �A
 1(
 (as a set of ver-
tices of �) then

� �
� ��� �54M� � ��
�� � �h����9?��4�9 � �
N1(�
 .

Proof. By definition each element of � �
� � is a subtree of
� , hence each ������� is a subtree of � ��� � for ��� � � � .
We are going to show that for every � #�� Q � �+� � the
intersection � ��� ��� ����� Q � is nonempty. The lemma will
then follow from a well-known result in graph theory saying
that any collection of pairwise overlapping subtrees of a tree
has a common node (see e.g. [12, p. 94]).

If � G#�� Q � � then � ��� ���#��� � Q � by assumption of the
lemma. Suppose � � � . By the other assumption of the
lemma � and � Q coexist in some atom of � . By definition
of � ��� � this implies that � ��� ��� ��� � Q �%1(
 .

Lemma 6.6. Let � be a tableau for 	 . If � is accepted by
�) (over some set of constants �) then � �
� �C& (8	 .

Proof. Suppose � �
� �f1& (� for some sentence � . For �'�
(or rather, an equivalent sentence obtained by pushing the
negations to the leaves), the LFP-signature is defined. We
can call this signature the GFP-signature of � in � �
� � and
denote it by �
�����?����� . The name comes from the fact that
when pushing negation downwards every LFP-operator is
changed to GFP and vice versa. For GFP-signatures the
dual of Lemma 3.6 holds.

Suppose that 	 is not true in � �
�$� , hence �
���	����	3� is
defined. By the assumption that � is accepted by �\) , there
is a winning strategy 3 for player � from the position ��� #%	3�
in ,5���) #�� � . Towards a contradiction we will construct a
play consistent with 3 that is winning for player

�
.

We start the play from the node ��� #%	3� . A node " of the
tableau labelled by a pair � 3�#,+ � defines a valuation ����"-�
of the constants from + by setting ����"+� � � � to be the � -
equivalence class containing " . Clearly ��� � � is the empty
function and we have � �
� �L#�� ���D�i1& (from our assump-
tion. Let us denote by �
� � ��� �"!� ����� the GFP-signature of the
formula � in the structure � �
� � extended with constants
from � with the meaning given by ����"-� .

Suppose we have constructed our play up to a node la-
belled by ��" # 7 � with � ��"+�C(� 3�#,+ � and

7 � 3 . The way
in which we prolong the play depends on the form of

7
.

(i) By the definition of � ��� � it is impossible that
7

is
an atomic formula. From Lemma 6.4 it follows that7

cannot be a negation of an atomic formula.

(ii) If
7 (� � & then we have 3P��" # 7 � (��" #'k � ,

where k�(� or k (d& . By the properties of GFP-
signatures �
� � ���$�"!� ��k �(� �
� � ���$�"!� � 7 � . As the next
node on the play we take ��" #'k � .

(iii) If
7 (�+@.& then we have �
� � ���$�"!� ��k ���-�
� � �#�$�"!� � 7 �

for k (� or k (& . As the next node on the play
we take ��" #�k � .

(iv) If
7 (�.7 � � � ��	�# ���%� & ��	�# ��� then we have

3P��" # 7 � (��" #�& ��	 # � �%� for some
�

with �5��	 # � � �
3 , or 3P��" # 7 � (J��".� # 7 � for some neighbour ".� of
" containing all the constants from 	 . In the first
case we have ����� �#�$�"!� �!& ��	 # � �%� � �
��� ���$�"!� � 7 � and
we put ��" #�&D��	5# � �%� as the next node on the path.
Otherwise we put ��".� # 7 � as the next node; cearly
�
� � �#�$�"�%!� � 7 ��(�
� � ���$�"!� � 7 � .

(v) If
7 (� E � � �5��	 # ���2� & ��	5# ��� then we must choose

between ��" #�&D��	5# � �%� for some
�

with �5��	 # � � �
3 , or ��".� # 7 � for some neighbour "0� of " . We
know that there is an extension � � of ����"+� such
that ��#��[� & (�5��	 # ���-@-� & ��	5# ��� and moreover
�
� � � �� �!& ��	�# ���%� �4����� ���� � 7 � . By Lemma 6.5 there is
a node � � �

<�

� � ���K��� ���
�� ����� � . If �$(" then
we choose ��" #'& ��	5# � �2� for

�
such that � (����"+� � � � .

If �D1(" then we choose ��".� # 7 � where ".� is a neigh-
bour of " which is on the path to � . As all the con-
stants from 	 appear in the label of " and in the label
of � they must also appear in the label of "0� . Hence
also

7
appears in the label of "0� .

(vi) In the remaining cases of fixpoint predicates and fix-
point variables there is nothing to choose.

The play constructed above is infinite. We have two cases.
One is that a formula starting with a quantifier is never re-
duced. It cannot be an universal formula by the way the
play is defined. If it is an existential formula then the play
is winning for player

�
.

The other case is that we have infinitely many positions
where some variable "0, is regenerated, i.e., k � (3" ,�	 for in-
finitely many � . Let ' be the smallest among all the indices
� s.t. " , is regenerated infinitely often on the play. By the
assumption that the strategy 3 is winning for player � , " (
must be a GFP-variable. Let us look at the sequence of sig-
natures � �
� � ���$� � !� � 7 �
��
 �$*� � Q �,+,+,+ . By (the dual of) Lemma 3.6
from some point the signature never increases on positions
� ' . It also decreases on these positions each time " (is
met. As this is impossible, ")(must be an LFP-variable and
the play is winning for player

�
.

Corollary 6.7. Let 	 be a well-named � LGF sentence of
width � . The automaton �) , over a set of

	 � constants,
accepts some tableau for 	 if and only 	 is satisfiable.

Proof of Theorems 1.1 and 1.2 By results in [5], even
the satisfiability problems for GF and LGF (without fixed
points) are 2EXPTIME-hard.

Let 	 � ���&� N be a sentence of length � and width� . Let � be a set of constants of size
	 � . Note that if

sentences are encoded over a fixed finite alphabet, then
the encoding of a tuple of � distinct variables has length
�-� ����� � ��� , so ����� � � (�� ��� � . Hence the size of (Vs ��	 #�� �
is �A���." 		��
 ��
�� � (�� � � ! .

By Corollary 6.7 it is enough to check whether there ex-
ists a tableau for 	 over constants � that is accepted by
�) . To check this we construct an automaton �) recogniz-
ing all the tableaux for 	 over � . The construction of ��)
is routine; in particular, thanks to alternation, the states of
�X) can be just the elements of (Vs ��	 #�� � . Finally, let ��) be
an automaton checking whether a given tree is accepted by
both �4) and �X) . (This construction is trivial for alternating
automata.) We have that ��) accepts some tree iff 	 is satis-
fiable. By Theorem 5.4 the emptiness of ��) can be decided
in �A� 	�� � time, where � is the number of states of ��) . By
the construction

�+(�� �2& (Zs2��	=#�� � & � (��A���." 	 ��
 ��
�� � (� � � ! �
Hence the emptiness of �) can be decided in time

	 Q
� �
���

.
This gives the proof of Theorem 1.1. When � is bounded by
a constant we get � (��A��� � . This proves Theorem 1.2. �

References

[1] H. ANDRÉKA, J. VAN BENTHEM, AND I. NÉMETI, Modal
languages and bounded fragments of predicate logic, Journal
of Philosophical Logic, 27 (1998), pp. 217–274.

[2] J. VAN BENTHEM, Dynamic bits and pieces, ILLC research
report, University of Amsterdam, 1997.

[3] F. DONNINI, M. LENZERINI, D. NARDI, AND

A. SCHAERF, Reasoning in description logics, in Prin-
ciples of Knowledge Representation, G. Brewka, ed., CSLI
Publications, 1996, pp. 193–238.

[4] A. EMERSON AND C. JUTLA, Tree automata, mu-calculus
and determinacy, in Proc. 32nd IEEE Symp. on Foundations
of Computer Science, 1991, pp. 368–377.

[5] E. GRÄDEL, On the restraining power of guards, Journal of
Symbolic Logic. To appear.

[6] E. GRÄDEL, P. KOLAITIS, AND M. VARDI, On the decision
problem for two-variable first-order logic, The Bulletin of
Symbolic Logic, 3 (1997), pp. 53–69.

[7] E. GRÄDEL AND M. OTTO, On logics with two variables,
Theoretical Computer Science, (1999). To appear.

[8] E. GRÄDEL, M. OTTO, AND E. ROSEN, Undecidabil-
ity results on two-variable logics, in Proceedings of 14th
Symposium on Theoretical Aspects of Computer Science
STACS‘97, Lecture Notes in Computer Science Nr. 1200,
Springer, 1997, pp. 249–260.

[9] E. GRÄDEL AND E. ROSEN, On preservation theorems for
two-variable logic, Mathematical Logic Quarterly, (1999).
To appear.

[10] M. MORTIMER, On languages with two variables,
Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 21 (1975), pp. 135–140.

[11] A. MOSTOWSKI, Games with forbidden positions, Tech.
Rep. Tech. Report 78, University of Gdansk, 1991.

[12] B. REED, Tree width and tangles: A new connectivity mea-
sure and some applications, in Surveys in Combinatorics,
R. Bailey, ed., Cambridge University Press, 1997, pp. 87–
162.

[13] C. STIRLING, Bisimulation, model checking and other
games. Notes for the Mathfit instructional meeting on games
and computation. Edinburgh, 1997.

[14] R. STREETT AND A. EMERSON, An automata theoretic de-
cision procedure for the propositional mu-calculus, Informa-
tion and Computation, 81 (1989), pp. 249–264.

[15] M. VARDI, Why is modal logic so robustly decidable?, in
Descriptive Complexity and Finite Models, N. Immerman
and P. Kolaitis, eds., vol. 31 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, AMS,
1997, pp. 149–184.

[16] , Reasoning about the past with two-way automata,
in Automata, Languages and Programming ICALP 98,
vol. 1443 of Springer Lecture Notes in Computer Science,
1998, pp. 628–641.

[17] W. ZIELONKA, Infinite games on finitely coloured graphs
with applications to automata on infinite trees, Theoretical
Computer Science, 200 (1998), pp. 135–183.

