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1 Introduction19

Most distributed algorithms solving problems like consensus, leader election, set agreement,20

or renaming are essentially one iterated loop. Yet, their behavior is difficult to understand due21

to unbounded number of processes, asynchrony, failures, and other aspects of the execution22

model. The general context of this work is to be able to say what happens when we change23

some of the parameters: modify an algorithm or the execution model. Ideally we would like24

to characterize the space of all algorithms solving a particular problem.25

To approach this kind of questions, one needs to restrict to a well defined space of all26

distributed algorithms and execution contexts. In general this is an impossible requirement.27

Yet the distributed algorithms community has come up with some settings that are expressive28

enough to represent interesting cases and limited enough to start quantifying over “all29

possible” distributed algorithms [11, 40, 1].30

In this work we consider the consensus problem in the Heard-Of model [11]. Consensus31

problem is a central problem in the field of distributed algorithms; it requires that all correct32

processes eventually decide on one of the initial values. The Heard-Of model is a round- and33

message-passing-based model. It can represent many intricacies of various execution models34

and yet is simple enough to attempt to analyze it algorithmically [9, 14, 15, 28, 27]. Initially,35

our goal was to continue the quest from [28] of examining what is algorithmically possible36

to verify in the Heard-Of model. While working on this problem we have realized that a37

much more ambitious goal can be achieved: to give a simple, and in particular decidable,38

characterization of all consensus algorithms in well-defined fragments of the Heard-Of model.39

The Heard-Of model is an open ended model: it does not specify what operations processes40

can perform and what kinds of communication predicates are allowed. Communication41

predicates in the Heard-Of model capture in an elegant way both synchrony degree and42

failure model. In this work we fix the set of atomic communication predicates and atomic43
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9:2 Consensus in the Heard-Of model

operations. We opted for a set sufficient to express most prominent consensus algorithms (cf.44

Section 7), but we do not cover all operations found in the literature on the Heard-Of model.45

Our characterization of algorithms that solve consensus is expressed in terms of syntactic46

conditions both on the text of the algorithm, and on the constraints in the communication47

predicate. It exhibits an interesting way all consensus algorithms should behave. One could48

imagine that there can be a consensus algorithm that makes processes gradually converge49

to a consensus: more and more processes adopting the same value. This is not the case.50

A consensus algorithm, in models we study here, should have a fixed number of crucial51

rounds where precise things are guaranteed to happen. Special rounds have been identified52

for existing algorithms [33], but not their distribution over different phases. Additionally,53

here we show that all algorithms should have this structure.54

As an application of our characterization we can think of using it as an intermediate55

step in analysis of more complicated settings than the Heard-Of model. An algorithm in56

a given setting can be abstracted to an algorithm in the Heard-Of model, and then our57

characterization can be applied. Instead of proving the original algorithm correct it is enough58

to show that the abstraction is sound. For example, an approach reducing asynchronous59

semantics to round based semantics under some conditions is developed in [8]. A recent60

paper [13] gives a reduction methodology in a much larger context, and shows its applicability.61

The goal language of the reduction is an extension of the Heard-Of model that is not covered62

by our characterization. As another application, our characterization can be used to quickly63

see if an algorithm can be improved by taking a less constrained communication predicate,64

by adapting threshold constants, or by removing parts of code (c.f. Section 7).65

Organization of the paper. In the next section we introduce the Heard-Of model and formulate66

the consensus problem. In the four consecutive sections we present the characterizations for67

the core model as well as for the extensions with timestamps, coordinators, and with both68

timestamps and coordinators at the same time. We then give examples of algorithms that69

are covered by these characterizations. Proofs can be found in the appendix, as well as in70

the full version of the paper [3].71

Related work72

The celebrated FLP result [18] states that consensus is impossible to achieve in an asyn-73

chronous system in presence of failures, even in the presence of one crash failure. There is a74

considerable literature investigating the models in which the consensus problem is solvable.75

Even closer in spirit to the present paper are results on weakest failure detectors required to76

solve the problem [6, 19]. Another step closer are works providing generic consensus algo-77

rithms that can be instantiated to give several known concrete algorithms [31, 22, 21, 5, 34, 33].78

The present paper considers a relatively simple model, but gives a characterization result of79

all possible consensus algorithms.80

The cornerstone idea of the Heard-Of model is to represent both asynchrony and failures81

by the constraints on the message loss expressed by communication predicates. This greatly82

simplifies the model, that in turn is very useful for a kind of characterizations we present here.83

Unavoidably, not all aspects of partial synchrony [17, 12] or failures [7] are covered by the84

model. For example, after a crash it may be difficult for a process to get into initial state, or85

in terms of the Heard-of model, do the same round as other processes [38, 8]. Faults are not86

malicious: a sent value may be lost, but the value may not be modified during transmission.87

These observations just underline that there is no universal model for distributed algorithms.88

There exists several other proposals of relatively simple and expressible models [20, 40, 1, 32].89
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The Heard-Of model, while not perfect, is in our opinion representative enough to merit a90

more detailed study.91

On the verification side there are at least three approaches to analysis of the Heard-Of or92

similar models. One is to use automatic theorem provers like Isabelle [10, 9, 14]. Another is93

deductive verification methods applied to annotated programs [16, 15]. The closest to this94

work is a model-checking approach [37, 28, 27, 2]. Particularly relevant here is the work95

of Maric et al. [28]. who show cut-off results for a fragment of the Heard-Of model and96

then perform verification on a resulting finite state system. Our fragment of the Heard-Of97

model is incomparable with the one from that work, and arguably it has less restrictions98

coming from purely technical issues in proofs. While trying to extend the scope of automatic99

verification methods along the lines in the above papers, we have realized that in our case it100

is possible to obtain a characterization result.101

Of course there are also other models of distributed systems that are considered in the102

context of verification. For example there has been big progress on verification of threshold103

automata [26, 24, 25, 35, 4]. There are also other methods, as automatically generating104

invariants for distributed algorithms [23, 39, 36], or verification in Coq proof assistant [41, 42].105

2 Heard-Of model and the consensus problem106

In the Heard-Of model a certain number of processes execute the same code synchronously.107

An algorithm consists of a sequence of rounds, every process executes the same round at108

the same time. The sequence of rounds, called phase, is repeated forever. In a round every109

process sends the value of one of its variables to a communication medium, receives a multiset110

of values, and uses it to adopt a new value (cf. Figure 1).
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Figure 1 A schema of an execution of a round and of a phase. In every round i every process
sends a value of its variable xi, and sets its variable xi+1 depending on the received multiset of
values: Hj

i . At the beginning of the phase the value of inp is sent, at some round inp may be
updated; we use ir for the index of this round. In the last round dec may be set. Both inp and dec
are not updated if the value is ?, standing for undefined.

111

At the beginning every process has its initial value in variable inp. Every process is112

expected to eventually set its decision variable dec. Every round is communication closed113

meaning that a value sent in a round can only be received in the same round; if it is not114

received it is lost. A communication predicate is used to express a constraint on acceptable115

message losses. Algorithm 1 is a concrete simple example of a 2-round algorithm with two116

rounds. In the first round the value of inp is send, in the second the value of x1. We will117

explain the algorithm later in the text.118

We proceed with a description of the syntax and semantics of Heard-Of algorithms. Next119

we define the consensus problem. In later sections we will extend the core language with120

CONCUR 2020



9:4 Consensus in the Heard-Of model

timestamps and coordinators.121

Algorithm 1 Parametrized OneThird algorithm [11], thr1, thr2 are constants from (0, 1)

send (inp)
if uni(H) ∧ |H| > thr1 · |Π| then x1 := inp := smor(H);
if mult(H) ∧ |H| > thr1 · |Π| then x1 := inp := smor(H);

send x1
if uni(H) ∧ |H| > thr2 · |Π| then dec := smor(H);

Communication predicate: F(ψ1 ∧ Fψ2)
where: ψ1 := (ϕ= ∧ ϕthr1 , true) and ψ2 := (ϕthr1 , ϕthr2)

122

Syntax123

An algorithm has one phase that consists of two or more rounds. In the first round each124

process sends the value of inp variable, in the last round it can set the value of dec variable.125

A phase is repeated forever, all processes execute the same round at the same time. A round126

i is a send statement followed by a sequence of conditionals:127

send xi−1
if cond1

i (H) then xi := op1
i (H);

...
if cond li(H) then xi := opli(H);

128

The variables are used in a sequence: first x0, which is inp, is sent and x1 is set, then x1 is129

sent and x2 is set, etc. (cf. Figure 1). There should be exactly one round (before the last130

round) where inp is updated; the conditional lines in this round are:131

if condjir(H) then xir := inp := opjir(H)132
133

Since this is a special round, we use the index ir to designate this round number. In the last134

round, only instructions setting variable dec can be present:135

if condjr(H) then dec := opjr(H)136
137

Because of this special form of the last round, a phase needs to have at least two rounds.138

Of course one can also have a syntax and a characterization for one round algorithms, but139

unifying the two hinders readability. Our fragment roughly corresponds to the fragment140

from [28], without extra restrictions but with a less liberty at the fork point.141

The intuition behind the syntax is that in the ith round, after a process sends its value of142

the xi−1 variable and receives a multiset H, it finds the first instruction whose condition is143

satisfied by H and performs the corresponding assignment. Hence, even if multiple conditions144

are satisfied by a multi-set, only the first such condition is executed.145

As an example, consider Algorithm 1. It has two rounds, each begins with a send146

statement. In the first round both x1 and inp are set, in the second round dec is set. The147

conditions talk about properties of the received H multiset; we describe them below.148

In round i every process first sends the value of variable xi−1, and then receives a multiset149

of values H that it uses to set the value of the variable xi. The possible tests on the received150

set H are uni, mult, and |H| > thr · |Π| saying respectively that: the multiset has only151

one value; has more than one value; and that is of size > thr · n where n is the number of152

processes and 0 ≤ thr < 1. The possible operations are min(H) resulting in the minimal153

value in H, and smor(H) resulting in the minimal most frequent value in H. For example, the154
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first conditional line in Algorithm 1 tests if there is only one value in H, and if this value has155

multiplicity at least thr1 · n in H; if so inp and x1 are set to this value, it does not matter if156

min or smor operation is used in this case. The test in the second line holds when received H157

set has at least two values and is of size at least thr1 · n. In this case x1 is set to the smallest158

most frequent value in H.159

In addition to description of rounds, an algorithm has also a communication predicate160

putting constraints on the behavior of the communication medium. A communication161

predicate for a phase with r rounds is a tuple ψ = (ψ1, . . . , ψr), where each ψl is a conjunction162

of atomic communication predicates that we specify later. A communication predicate for an163

algorithm is164

(Gψ) ∧ (F(ψ1 ∧ F(ψ2 ∧ . . . (Fψk) . . . )))165

where ψ and ψi are communication predicates for a phase. Predicate ψ is a global predicate,166

and ψ1 . . . , ψk are sporadic predicates. So the global predicate specifies constraints on every167

phase of execution, while sporadic predicates specify a sequence of special phases that should168

happen: first ψ1, followed later by ψ2, etc. We have two types of atomic communication169

predicates: ϕ= says that every process receives the same multiset; ϕthr says that every170

process receives a multiset of size at least thr · n where n is the number of processes. In171

Algorithm 1 the global predicate is trivial, and we require two special phases. In the first of172

them, in its first round every process should receive exactly the same H multiset, and the173

multiset should contain values from at least thr1 fraction of all processes.174

Semantics175

The values of variables come from a fixed linearly ordered set D. Additionally, we take a176

special value ? /∈ D standing for undefined. We write D? for D ∪ {?}.177

We describe the semantics of an algorithm for n processes. A state of an algorithm is a178

pair of n-tuples of values; denoted (f, d). Intuitively, f specifies the value of the inp variable179

for each process, and d specifies the value of the dec variable. The value of inp can never be180

?, while initially the value of dec is ? for every process. We denote by mset(f) the multiset181

of values appearing in the tuple f . Only values of inp and dec survive between phases. All182

the other variables are reset to ? at the beginning of each phase.183

There are two kinds of transitions:184

(f, d) ψ−→(f ′, d′) a phase transition185

f
ϕ=⇒if

′ a transition for round i186
187

Phase transitions will be defined as a composition of round transitions. In a transition for188

round i, tuple f describes the values of xi−1, and f ′ the values of xi Phase transition is189

labeled with a phase communication predicate, while a round transition has a round number190

and a conjunction of atomic predicates as labels.191

Before defining these transitions we need to describe the semantics of communication192

predicates. At every round processes send values of their variable to a communication medium,193

and then receive a multiset of values from the medium (cf. Figure 1). Communication medium194

is not assumed to be perfect, it can send a different multiset of values to every process,195

provided it is a sub-multiset of received values. An atomic communication predicate puts196

constraints on multisets that every process receives. In other words, such a predicate specifies197

constraints on a tuple of multisets ~H = (H1, . . . ,Hn). Predicate ϕ= requires that all the198

multisets are the same. Predicate ϕthr requires that every multiset is bigger than thr · n for199

CONCUR 2020



9:6 Consensus in the Heard-Of model

some number 0 ≤ thr < 1. Predicate true does not put any restrictions. We write ~H � ϕ200

when the tuple of multisets ~H satisfies the conjunction of atomic predicates ϕ.201

Once a process p receives a multiset Hp, it uses it to do an update of one of its variables.202

For this it finds the first condition that Hp satisfies and performs the operation from the203

corresponding assignment.204

Recall that a condition is a conjunction of atomic conditions: uni, mult, |H| > thr · |Π|.205

A multiset H satisfies uni when it contains just one value; it satisfies mult if it contains more206

than one value. A multiset H satisfies |H| > thr · |Π| when the size of H is bigger than thr · n,207

where n is the number of processes. Observe that only predicates of the last type take into208

account possible repetitions of the same value.209

We can now define the update value updatei(H), describing to which value the process210

sets its variable in round i upon receiving the multiset H. For this the process finds the first211

conditional statement in the sequence of instructions for round i whose condition is satisfied212

by H− {?} and looks at the operation in the statement:213

if it is x := min(H) then updatei(H) is the minimal value in H− {?};214

if it is x := smor(H) then updatei(H) is the smallest most frequent value in H− {?};215

if no condition is satisfied then updatei(H) =?.216

A transition f
ϕ=⇒i f

′ is possible when there exists a tuple of multisets (H1, . . . ,Hn) � ϕ217

such that for all p = 1, . . . , n: Hp ⊆ mset(f), and f ′(p) = updatei(Hp). Observe that ? value218

in Hp is ignored by the update function, but not by the communication predicate.219

A transition (f, d) ψ−→ (f ′, d′), for ψ = (ϕ1, . . . , ϕn), is possible when there is a sequence:220

f0
ϕ1=⇒1 f1

ϕ2=⇒2 · · ·
ϕr−1=⇒r−1 fr−1

ϕr=⇒r fr where221

f0 = f ;222

f ′(p) = fir(p) if fir(p) 6=?, and f ′(p) = fir(p) otherwise;223

d′(p) = d(p) if d(p) 6=?, and d′(p) = fr(p) otherwise.224

This means that if in round ir, the value of fir(p) was ?, then the process p retains its value225

of the inp onto the next phase; otherwise the process p updates its value of inp to fir(p).226

The value of dec cannot be updated, it can only be set if it has not been set before. For227

setting the value of dec, the value from the last round is used.228

An execution is a sequence of phase transitions. An execution of an algorithm respecting229

a communication predicate (Gψ) ∧ (F(ψ1 ∧ F(ψ2 ∧ . . . (Fψk) . . . ))) is an infinite sequence:230

(f0, d0) ψ−→
∗

(f1, d1) ψ∧ψ
1

−→ (f ′1, d′1) · · · ψ−→
∗

(fk, dk) ψ∧ψ
k

−→ (f ′k, d′k) ψ−→
ω

· · ·231

where ψ−→
∗
stands for a finite sequence of ψ−→ transitions, and ψ−→

ω

for an infinite sequence.232

For every execution there is some fixed n determining the number of processes, f0 is any233

n-tuple of values without ?, and d0 is the n-tuple of ? values. Observe that the size of the234

first tuple determines the size of every other tuple. By definition of transitions, there is235

always a transition from every configuration, so an execution cannot block. Thus we can236

think of every execution as being infinite.237

I Definition 1 (Consensus problem). An algorithm has agreement property if for every238

number of processes n, and for every state (f, d) reachable by an execution of the algorithm,239

for all processes p1 and p2, either d(p1) = d(p2) or one of the two values is ?. An algorithm240

has termination property if for every n, and for every execution there is a state (f, d) on this241

execution with d(p) 6=? for all p = 1, . . . , n. An algorithm solves consensus if it has agreement242

and termination properties.243
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I Remark 2. Normally, the consensus problem also requires irrevocability and integrity244

properties, but these are always guaranteed by the semantics: once set, a process cannot245

change its dec value, and a variable can be set only to one of the values that has been246

received.247

I Remark 3. The original definition of the Heard-Of model is open ended: it does not limit248

possible forms of a communication predicate, conditions, or operations. Clearly, for the kind249

of result we present here, we need to fix them.250

I Remark 4. In the original definition processes are allowed to have identifiers. We do not251

need them for the set of operations we consider. Later we will add coordinators without252

referring to identifiers. This is a relatively standard way of avoiding identifiers while having253

reasonable expressivity.254

3 A characterization for the core language255

We present a characterization of all the algorithms in our language that solve consensus. In256

later sections we will extend it to include timestamps and coordinators. As it will turn out,257

for our analysis we will need to consider only two values a, b with a fixed order between them:258

we take a smaller than b. This order influences the semantics of instructions: the result of259

min is a on a multiset containing at least one a; the result of smor is a on a multiset with260

the same number of a’s and b’s. Because of this asymmetry we mostly focus on the number261

of b’s in a tuple. In our analysis we will consider tuples of the form bias(θ) for θ < 1, i.e., a262

tuple where we have n processes (for some large enough n), out of which θ · n of them have263

their value set to b; and the remaining ones to a. The tuple containing only b’s (resp. only264

a’s) is called solo (resp. soloa).265

We show that there is essentially one way to solve consensus. The text of the algorithm266

together with the form of the global predicate determines a threshold thr . We prove that in267

the language we consider here, there should be a unifier phase which guarantees that the268

tuple of inp values after the phase belongs to one of the following four types: solo, soloa,269

bias(θ), or bias(1−θ) where θ ≥ thr . Intuitively, this means that there is a dominant value in270

the tuple. This phase should be followed by a decider phase which guarantees that if the tuple271

of inp values is of one of the above mentioned types, then all the processes decide. While272

this ensures termination, agreement is ensured by proving that some structural properties on273

the algorithm should always hold.274

Before stating the characterization, we will make some observations that allow us to275

simplify the structure of an algorithm, and in consequence simplify the statements.276

It is easy to see that in our languge we can assume that the list of conditional instructions277

in each round can have at most one uni conditional followed by a sequence of mult conditionals278

with non-increasing thresholds:279

if uni(H) ∧ |H| > thr iu · |Π| then x := opiu(H)280

if mult(H) ∧ |H| > thr i,1m · |Π| then x := opim(H)281

...282

if mult(H) ∧ |H| > thr i,km · |Π| then x := opim(H)283
284

We use superscript i to denote the round number: so thr1
u is a threshold associated to uni285

instruction in the first round, etc. If round i does not have a uni instruction, then thr1
u will286

be −1. For the sake of brevity, thr i,km will always denote the minimal threshold appearing in287

any of the mult instructions in round i and −1 if no mult instructions exist in round i.288
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We fix a communication predicate:289

(Gψ) ∧ (F(ψ1 ∧ F(ψ2 ∧ . . . (Fψk) . . . ))) (1)290

Without loss of generality we can assume that every sporadic predicate implies the global291

predicate; in consequence, ψ ∧ ψi is equivalent to ψi. Recall that each of ψ,ψ1, . . . , ψk is292

an r-tuple of conjunctions of atomic predicates. We write ψ�i for the i-th element of the293

tuple and so ψ is (ψ�1, . . . , ψ�r). By thr i(ψ) we denote the threshold constant appearing in294

the predicate ψ�i, i.e., if ψ�i has ϕthr as a conjunct, then thr i(ψ) = thr, if it has no such295

conjunct then thr i(ψ) = −1. We call ψ�i an equalizer if it has ϕ= as a conjunct. In this case296

we also say that ψ has an equalizer.297

Recall (cf. page 2) that a transition f ψ=⇒i f
′ for a round i under a phase predicate ψ is298

possible when there is a tuple of multisets (H1, . . . ,Hn) � ψ�i such that for all p = 1, . . . , n:299

Hp ∈ mset(f) and f ′(p) = updatei(Hp).300

I Definition 5. A round i is preserving w.r.t. ψ iff one of the three conditions hold: (i) it301

does not have an uni instruction, (ii) it does not have a mult instruction, or (iii) thr i(ψ) <302

max(thr iu, thr i,km ). Otherwise the round is non-preserving. The round is solo safe w.r.t. ψ if303

0 ≤ thr iu ≤ thr i(ψ).304

If i is a preserving round, then there exists a tuple f such that ? /∈ mset(f) and such that305

a transition f ψ=⇒i f
′ is possible for f ′ a tuple consisting solely of ?. The consequence of306

such a transition is that inp is not updated in the phase, i.e., old values of inp are preserved.307

On the other extreme, if all transitions in the phase are non-preserving then all inp values308

are necessarily updated by the phase. Finally, a solo safe round cannot alter the solo state,309

i.e., solo ψ=⇒i solo is the only transition possible from solo.310

I Remark 6. Suppose rounds 1, . . . , i− 1 are non-preserving under ψ, the global predicate.311

In this situation, since ? /∈ mset(f), if f ψ�1=⇒1 f1
ψ�2=⇒2 . . .

ψ�i−1=⇒ i−1 fi−1 then ? /∈ mset(fi−1).312

Hence, no heard-of multi-set H constructed from fi−1 can have ? value. Notice that every313

process is bound to receive a heard-of set of size at least thr i(ψ) in round i. For a sake of314

example, suppose thr i(ψ) > thr i,2m . The semantics then guarantees that every heard-of set315

sent during the ith round either satisfies the uni instruction, or one of the first two mult316

instructions, or no instruction at all. Hence, in such a case all the mult instructions except317

the first two can be removed from the description of round i as they will be never executed.318

This implies that we can adopt the following assumption.319

I Assumption 1. For every round i, if rounds 1, . . . , i− 1 are non-preserving under ψ then320 {
thr iu ≥ thr i(ψ) if round i has uni instruction
thr i,km ≥ thr i(ψ) if round i has mult instruction

(2)321

We put some restrictions on the form of algorithms we consider in our characterization.322

They greatly simplify the statements, and as we argue, are removing cases that are not that323

interesting anyway.324

I Proviso 1. We adopt the following additional syntactic restrictions:325

We require that the global predicate does not have an equalizer.326

We assume that there is no mult instruction in the round ir + 1.327

Concerning the first of the above requirements, if the global predicate has an equalizer328

then it is quite easy to construct an algorithm for consensus because equalizer guarantees329



A. R. Balasubramanian and I. Walukiewicz 9:9

that in a given round all the processes receive the same value. The characterization below330

can be extended to this case but would require to mention it separately in all the statements.331

Concerning the second requirement, We can show that if such a mult instruction exists then332

either the algorithm violates consensus, or the instruction will never be fired in any execution333

of the algorithm and so it can be removed without making an algorithm incorrect.334

In order to state our characterization we need to give formal definitions of concepts we335

have discussed at the beginning of the section.336

I Definition 7. The border threshold is thr = max(1− thr1
u, 1− thr1,k

m /2).337

I Definition 8. A predicate ψ is a338

Decider, if all rounds are solo safe w.r.t. ψ339

Unifier, if the three conditions hold:340

thr1(ψ) ≥ thr1,k
m and either thr1(ψ) ≥ thr1

u or thr1(ψ) ≥ thr,341

there exists i such that 1 ≤ i ≤ ir and ψ�i is an equalizer,342

rounds 2, . . . , i are non-preserving w.r.t. ψ and rounds i+ 1, . . . ir are solo-safe w.r.t. ψ343

Finally, we list some syntactic properties of algorithms that, as we will see later, imply344

the agreement property.345

I Definition 9. An algorithm is syntactically safe when:346

1. First round has a mult instruction.347

2. Every round has a uni instruction.348

3. In the first round the operation in every mult instruction is smor.349

4. thr1,k
m /2 ≥ 1− thr ir+1

u , and thr1
u ≥ 1− thr ir+1

u .350

Recall that ψ1, . . . , ψk are the set of sporadic predicates from the communication predicate.351

Without loss of generality we can assume that there is at least one sporadic predicate; at352

a degenerate case it is always possible to take a sporadic predicate that is the same as the353

global predicate. With these definitions we can state our characterization:354

I Theorem 10. Consider algorithms in the core language satisfying syntactic constraints355

from Assumption 1 and Proviso 1. An algorithm solves consensus iff it is syntactically safe356

according to Definition 9, and it satisfies the condition:357

T There is i ≤ j such that ψi is a unifier and ψj is a decider.358

A two value principle is a corollary from the proof of the above theorem: an algorithm359

solves consensus iff it solves consensus for two values. Indeed, it turns out that it is enough360

to work with three values a, b, and ? standing for undefined. The proof considers separately361

safety and liveness aspects of the consensus problem. Notice that the properties from362

Definition 9 intervene also in the proof of termination.363

I Lemma 11. An algorithm violating structural properties from Definition 9 cannot solve364

consensus. An algorithm with the structural properties has the agreement property.365

I Lemma 12. An algorithm with the structural properties from Definition 9 has the366

termination property iff it satisfies condition T from Theorem 10.367
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4 A characterization for algorithms with timestamps368

We extend our characterization to algorithms with timestamps. Now, variable inp stores not369

only the value but also a timestamp, that is the number of the last phase at which inp was370

updated. These timestamps are used in the first round, as a process considers only values371

with the most recent timestamp. The syntax is the same as before except that we introduce372

a new operation, called maxts, that must be used in the first round and nowhere else. So373

the form of the first round becomes:374

send (inp, ts)
if cond1

1(H) then x1 := maxts(H);
...
if cond l1(H) then x1 := maxts(H);

375

The semantics of transitions for rounds and phases needs to take into account timestamps.376

The semantics changes only for the first round; its form becomes (f, t) ϕ=⇒ f ′, where t is a377

vector of timestamps (n-tuple of natural numbers). Timestamps are ignored by communication378

predicates and conditions, but are used in the update operation. The operation maxts(H)379

returns the smallest among values with the most recent timestamp in H.380

The form of a phase transition changes to (f, t, d) ψ−→ (f ′, t′, d′). Value t(p) is the381

timestamp of the last update of inp of process p (whose value is f(p)). We do not need382

to keep timestamps for d since the value of dec can be set only once. Phase transitions383

are defined as before, taking into account the above mentioned change for the first round384

transition, and the fact that in the round ir when inp is updated then so is its timestamp.385

Some examples of algorithms with timestamps are presented in Section 7.386

As in the case of the core language, without loss of generality we can assume conditions387

from Assumption 1. Concerning Proviso 1, we assume almost the same conditions, but now388

the second one refers to the round ir and not to the round ir + 1, and is a bit stronger.389

I Proviso 2. We adopt the following syntactic restrictions:390

We require that the global predicate does not have an equalizer.391

We assume that there is no mult instruction in the round ir, and that thr ir
u ≥ 1/2.392

The justification for the first restriction is as before. Concerning the second restriction,393

we can prove that if these two assumptions do not hold then either the algorithm violates394

consensus, or we can remove the mult instruction and increase thr ir
u without making an395

algorithm incorrect.396

Our characterization resembles the one for the core language. The structural conditions397

get slightly modified: the condition on constants is weakened, and there is no need to talk398

about smor operations in the fist round.399

I Definition 13. An algorithm is syntactically t-safe when:400

1. Every round has a uni instruction.401

2. First round has a mult instruction.402

3. thr1,k
m ≥ 1− thr ir+1

u and thr1
u ≥ 1− thr ir+1

u .403

We consider the same shape of a communication predicate as in the case of the core404

language (1). A characterization for the case with timestamps uses a stronger version of a405

unifier that we define now. The intuition is that we do not have thr constant because of406

maxts operations in the first round. In other words, the conditions are the same as before407

but when taking thr > 1.408
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I Definition 14. A predicate ψ is a strong unifier ψ if it is a unifier in a sense of Definition 8409

and thr1
u ≤ thr1(ψ).410

Modulo the above two changes, the characterization stays the same.411

I Theorem 15. Consider algorithms in the language with timestamps satisfying syntactic412

constraints from Assumption 1 and Proviso 2. An algorithm satisfies consensus iff it is413

syntactically t-safe according to Definition 13, and it satisfies:414

sT There are i ≤ j such that ψi is a strong unifier and ψj is a decider.415

5 A characterization for algorithms with coordinators416

We consider algorithms equipped with coordinators. The novelty is that we can now have417

rounds where there is a unique process that receives values from other processes, as well as418

rounds where there is a unique process that sends values to other processes. For this we419

extend the syntax by introducing a round type that can be: every, lr (leader receive), or420

ls (leader-send):421

A round of type every behaves as before.422

In a round of type lr only one arbitrarily selected process receives values.423

In a round of type ls, the process selected in the immediately preceding lr round sends424

its value to all other processes.425

If an ls round is not preceded by an lr round then an arbitrarily chosen process sends its426

value. We assume that every lr round is immediately followed by an ls round, because427

otherwise the lr round would be useless. We also assume that inp and dec are not updated428

during lr rounds, as only one process is active in these rounds.429

For ls rounds we introduce a new communication predicate. The predicate ϕls says that430

the leader successfully sends its message to everybody; it makes sense only for ls rounds.431

These extensions of the syntax are reflected in the semantics. For convenience we introduce432

two new names for tuples: oneb is a tuple where all the entries are ? except for one entry433

which is b; similarly for onea. Abusing the notation we also write one? for solo?, namely the434

tuple consisting only of ? values.435

Let us define the semantics of lr and ls rounds. If i-th round is of type lr, we have436

a transition f
ψ=⇒i oned for every d ∈ firei(f, ψ). In particular, if ? ∈ firei(f, ψ) then437

f
ϕ=⇒i solo? is possible.438

Suppose i-th round is of type ls. If ψ�i contains ϕls as a conjunct then439

oned ψ=⇒isolod if round (i− 1) is of type lr440

f
ψ=⇒isolod for d ∈ set(f) otherwise441

442

When ψ�i does not contain ϕls then independently of the type of the round (i− 1) we have443

f
ψ=⇒i f

′ for every d ∈ set(f) and f ′ such that set(f ′) ⊆ {d, ?}.444

We consider the same shape of a communication predicate as in the case of the core445

language (1).446

The semantics allows us to adopt some more simplifying assumptions about the syntax447

of the algorithm, and the form of the communication predicate.448

I Assumption 2. We assume that ls rounds do not have a mult instruction. Indeed, from449

the above semantics it follows that mult instruction is never used in a round of type ls. It450

also does not make much sense to use ϕls in rounds other than of type ls. So to shorten some451
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definitions we require that ϕls can appear only in communication predicates for ls-rounds.452

For similar reasons we require that ϕ= predicate is not used in ls-rounds. As we have453

observed in the first paragraph, we can assume that neither round ir nor the last round are454

of type lr.455

The notions of preserving and solo-safe rounds get adapted to the new syntax.456

I Definition 16. A round of type ls is c-solo-safe w.r.t. ψ if ψi has ϕls as a conjunct, it is457

c-preserving otherwise. A round of type other than ls is c-preserving or c-solo-safe w.r.t ψ458

if it is so in the sense of Definition 5.459

I Definition 17. A c-equalizer is a conjunction containing a term of the form ϕ= or ϕls.460

I Proviso 3. We assume the same conditions as in Proviso 8, but using the concepts of461

c-equalizers instead of equalizers.462

To justify the proviso we prove that mult instruction in round ir + 1 cannot be useful.463

Assumption 1 is also updated to using the notion of c-preserving instead of preserving. We464

restate it for convenience.465

I Assumption 3. For every round i, if rounds 1, . . . , i − 1 are non-c-preserving under ψ466

then467 {
thr iu ≥ thr i(ψ) if round i has uni instruction
thr i,km ≥ thr i(ψ) if round i has mult instruction

(3)468

Finally, the above modifications imply modifications of terms from Definition 8.469

I Definition 18. A predicate ψ is called a470

c-decider, if all rounds are c-solo safe w.r.t. ψ.471

c-unifier, if472

thr1(ψ) ≥ thr1,k
m and either thr1(ψ) ≥ thr1

u or thr1(ψ) ≥ thr,473

there exists i such that 1 ≤ i ≤ ir and ψ�i is an c-equalizer,474

rounds 2, . . . , i are non-c-preserving w.r.t. ψ and rounds i + 1, . . . ir are c-solo-safe475

w.r.t. ψ.476

With these modifications, we get an analog of Theorem 10 for the case with coordinators477

subject to the modified provisos as explained above.478

I Theorem 19. Consider algorithms in the language with timestamps satisfying syntactic479

constraints from Assumptions 2, 3 and Proviso 3. An algorithm satisfies consensus iff the480

first round and the (ir + 1)th round are not of type ls, it is syntactically safe according to481

Definition 9, and it satisfies the condition:482

cT There are i ≤ j such that ψi is a c-unifier and ψj is a c-decider.483

6 A characterization for algorithms with coordinators and timestamps484

Finally, we consider an extension of the core language with both coordinators and timestamps.485

Formally, we extend the coordinator model with timestamps in the same way we have extended486

the core model. So now inp variables store pairs (value, timestamp), and all the instructions487

in the first round are maxts (cf. page 10).488

I Proviso 4. We assume the same proviso as for timestamps; namely, Proviso 2, but using489

the notion of c-equalizer.490
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As in the previous cases we justify our proviso by showing that the algorithm violating491

the second condition would not be correct or the condition could be removed.492

The characterization is a mix of conditions from timestamps and coordinator cases.493

I Definition 20. A predicate ψ is a strong c-unifier if it is a c-unifier (cf. Definition 14)494

and thr1
u ≤ thr1(ψ).495

I Theorem 21. Consider algorithms in the language with timestamps satisfying syntactic496

constraints from Assumptions 2, 3 and Proviso 4. An algorithm satisfies consensus iff the497

first round and the (ir + 1)th round are not of type ls, it has the structural properties from498

Definition 13, and it satisfies:499

scT There are i ≤ j such that ψi is a strong c-unifier and ψj is a c-decider.500

7 Examples501

We apply the characterizations from the previous sections to some consensus algorithms502

studied in the literature, and their variants.503

First, we can revisit the parametrized Algorithm 1 from page 4. This is an algorithm504

in the core language, and it depends on two thresholds. Theorem 10 implies that it solves505

consensus iff thr1/2 ≥ 1 − thr2. In case of thr1 = thr2 = 2/3 we obtain the well known506

OneThird algorithm. But, for example, thr1 = 1/2 and thr2 = 3/4 are also possible solutions507

for this inequality. So Algorithm 1 solves consensus for these values of thresholds.508

Because of the conditions on constants, thr1,k
m /2 ≥ 1− thr ir+1

u coming from Definition 9,509

it is not possible to have an algorithm in the core language where all constants are at most510

1/2. This answers a question from [11] for the language we consider here.511

The above condition on constants is weakened to thr1,k
m ≥ 1 − thr ir+1

u when we have512

timestamps. In this case indeed it is possible to use only 1/2 thresholds [27].513

When we have both timestamps and coordinators, we get variants of Paxos algorithm.514

send (inp, ts) lr
if uni(H) ∧ |H| > 1/2 · |Π| then x1 := maxts(H);
if mult(H) ∧ |H| > 1/2 · |Π| then x1 := maxts(H);

send x1 ls
if uni(H) then x2 := inp := smor(H);

send x2 lr
if uni(H) ∧ |H| > 1/2 · |Π| then x3 := smor(H);

send x3 ls
if uni(H) then dec := smor(H);

Communication predicate: F(ψ1) where ψ1 := (ϕ1/2, ϕls, ϕ1/2, ϕls)
Algorithm 2 Paxos algorithm

515

The algorithm is correct by Theorem 21. One can observe that without modifying the516

code there is not much room for improvement in this algorithm. A decider phase is needed to517

solve consensus, and ψ1 is a minimal requirement for a decider phase. A possible modification518

is to change the thresholds in the first round to, say, 1/3 and in the third round to 2/3 (both519
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in the algorithm and in the communication predicate).520

send (inp, ts) lr
if uni(H) ∧ |H| > 1/2 · |Π| then x1 := maxts(H);
if mult(H) ∧ |H| > 1/2 · |Π| then x1 := maxts(H);

send x1 ls
if uni(H) then x2 := inp := smor(H);

send x2 every
if uni(H) ∧ |H| > 1/2 · |Π| then dec := smor(H);

Communication predicate: F(ψ1) where ψ1 := (ϕ1/2, ϕls, ϕ1/2)
Algorithm 3 Three round Paxos algorithm

521

The three round Paxos presented above is also correct by Theorem 21. Once again it is522

possible to change constants in the first round to 1/3 and in the last round to 2/3 (both in523

the algorithm and in the communication predicate).524

One can also wander about algorithms with coordinators but without timestamps. Here525

is a possibility that resembles three round Paxos:526

send (inp) lr
if uni(H) ∧ |H| > 2/3 · |Π| then x1 := smor(H);
if mult(H) ∧ |H| > 2/3 · |Π| then x1 := smor(H);

send x1 ls
if uni(H) then x2 := inp := smor(H);

send x2 every
if uni(H) ∧ |H| > 2/3 · |Π| then dec := smor(H);

Communication predicate: F(ψ) where ψ := (ϕ2/3, ϕls, ϕ2/3)
Algorithm 4 Three round coordinator algorithm

527

The algorithm solves consensus by Theorem 19. The constants are bigger than in Paxos528

because we do not have timestamps: the constraints on constants come from Definition 9,529

and not from Definition 13. The advantage is that we do not need time-stamps, while keeping530

the same structure as for three-round Paxos.531

It is possible to introduce more parameters in these algorithms to analyze for which532

choices of parameters they solve consensus.533

8 Conclusions534

We have characterized all algorithms solving consensus in a fragment of the Heard-Of model.535

We have aimed at a fragment that can express most important algorithms while trying to536

avoid ad hoc restrictions (c.f. proviso on page 8). The fragment covers algorithms considered537

in the context of verification [28, 10] with a notable exception of algorithms sending more than538

one variable. In this work we have considered only single phase algorithms while originally539

the model permits also to have initial phases. We believe that it is possible to extend540

the characterization to incorporate the initial phases, but this would further complicate541

the results and there are no well-know algorithms that use such phases. More severe and542

technically important restriction is that we allow to use only one variable at a time. In543

particular, it is not possible to send pairs of variables.544

One curious direction of further research would be to list all “best” consensus algorithms545

under some external constraints; for example the constraints can come from some properties546

of an execution platform external to the Heard-Of model. This problem assumes that there547

is some way to compare two algorithms. One guiding principle for such a measure could548
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be efficient use of knowledge [30, 29]: at every step the algorithm does maximum it can do,549

given its knowledge of the state of the system.550

This research is on the borderline between distributed computing and verification. From551

a distributed computing side it considers quite a simple model, but gives a characterization552

result. From a verification side, the systems are complicated because the number of processes553

is unbounded, there are timestamps, and interactions are based on a fraction of processes554

having a particular value. We do not advance on verification methods for such a setting.555

Instead, we observe that in the context considered here verification may be avoided. We556

believe that a similar phenomenon can appear also for other problems than consensus. It is557

also an intriguing question to explore how much we can enrich the current model and still558

get a characterization. We conjecture that a characterization is possible for an extension559

with randomness covering at least the Ben-Or algorithm. Of course, formalization of proofs,560

either in Coq or Isabelle, for such extensions would be very helpful.561
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