
Krivine machines and higher-order schemesI

Sylvain Salvati

Bordeaux University/INRIA

Igor Walukiewicz

Bordeaux University/CNRS

Abstract

We propose a new approach to analyzing higher-order recursive schemes. Many
results in the literature use automata models generalizing pushdown automata,
most notably higher-order pushdown automata with collapse (CPDA). Instead,
we propose to use the Krivine machine model. Compared to CPDA, this model
is closer to lambda-calculus, and incorporates nicely many invariants of compu-
tations, as for example the typing information. The usefulness of the proposed
approach is demonstrated with new proofs of two central results in the field:
the decidability of the local and global model checking problems for higher-
order schemes with respect to the mu-calculus.

Keywords: Higher-order model checking, Simply typed lambda-calculus,
Monadic second order logic, Krivine machine, Parity games

1. Introduction

Higher-order recursive schemes were introduced by Damm [Dam82] as a
respelling of λY -calculus. Since they were investigated mainly in formal lan-
guage community, the tools developed were largely inspired by the treatment
of pushdown-automata and context-free grammars. Subsequent research has
shown that it is very useful to have an automaton model characterizing schemes.
For the class of all schemes, we know only one such model, that is higher order
pushdown automata with collapse [HMOS08]. In this paper we propose another
model based on Krivine machines [Kri07], [Wan07]. Actually, even though Kriv-
ine’s paper [Kri07] has been published in 2007, Krivine defined his machine in the
80’s about the time when Damm introduced higher-order schemes and proved
with Goerdt that higher-order OI languages were equivalent to the languages
recognized by higher-order pushdown automata [DG86]. The notion of Krivine

ISupported by ANR project FREC: ANR 2010 BLAN 0202 01 FREC
Email addresses: salvati@labri.fr (Sylvain Salvati), igw@labri.fr (Igor Walukiewicz)

Preprint submitted to Information and Computation January 17, 2015

machine is actually a standard concept in the lambda-calculus community, and
it needs almost no adaptation to treat higher-order schemes. We claim that
the proposed model offers a fresh tool to analyze schemes. To substantiate this
claim we give new proofs of two central results in the field: decidability of local
and global model-checking problems for higher-order schemes with respect to
the mu-calculus.

In the last decade the interest in higher-order schemes has been renewed
by the discovery by Knapik et al.[KNU02] of the equivalence between order n
higher-order pushdown automata with schemes of order n satisfying a syntac-
tic constraint called safety. Subsequently, higher order pushdowns have been
extended with the panic operation to handle all order 2 schemes [KNUW05,
AdMO05], and with the collapse operation for schemes of all orders [HMOS08].
In recent years, most theoretical advances on the subject have used pushdown
automata with collapse model [HMOS08, BO09, BCOS10, CS12].

The model checking problem for schemes with respect to the mu-calculus is
to decide if a given formula holds at the root of the tree generated by a given
scheme. The problem has proved to be very stimulating, and generated many
advances in our understanding of schemes. Its decidability has been shown by
Ong [Ong06], but even afterwards the problem continued to drive interesting
work. Several different proofs of Ong’s result have been proposed [HMOS08,
KO09]. In a series of recent papers [CHM+08, BO09, BCOS10, BCHS12] the
global version of the problem is considered. In the last citation it is shown that
the set of nodes satisfying a given mu-calculus formula is definable in a finitary
way.

In this paper, we go several steps back with respect to the usual ways of
working with higher-order recursion schemes. First, instead of using Damm’s
definition of higher-order schemes, we turn to the λY -calculus as the means of
generating infinite trees. The Y combinator, or the fixpoint combinator, has
first been considered in [CF58] and is at the core of Plotkin’s PCF [Plo77]. Sec-
ond, instead of using higher-order collapsible automata as an abstract machine,
we use the Krivine abstract machine [Kri07]. This machine is much closer to
the λ-calculus, it performs standard reductions and comes with typing. These
features are hard to overestimate as they allow one to use standard techniques
to express powerful invariants on the computation. For example, in the main
proof presented here, we use standard models of the λY -calculus to express such
invariants.

Using these tools, we reprove in a rather succinct way Ong’s result. Similarly
to a recent proof of Kobayashi and Ong [KO09], our proof gives a reduction to
a finite parity game. It seems though that our game is simpler, at least at
the level of presentation. For example, the paper [BCOS10] on global model
checking continues to use collapsible pushdown automata and gives an involved
proof by induction on the rank of the stack. On the other hand, we can reuse
our game to give a short proof of this result. In particular unlike op cit. we
use finite trees to represent positions, and standard automata on finite trees to
represent sets of winning positions.

2

Related work. We have already mentioned a body of related work, we will com-
ment more on the proof of Kobayashi and Ong [KO09] in the concluding sec-
tion. Concerning the global model-checking result, Carayol et al. [CHM+08]
showed regularity of winning regions in parity games over higher-order push-
down automata without collapse. More recently, Broadbent and Ong [BO09]
showed that winning positions of a parity game generated by an order n recursive
scheme are recognizable by a non-deterministic collapsible pushdown automa-
ton. The proof uses game semantics instead of automata. Finally, Broadbent
et al. [BCOS10] show that the winning positions can be also recognized by a
deterministic collapsible pushdown automaton. Here we show that in a different
representation they are recognizable by a tree automaton. In this context we
would like to mention a result of Kartzow [Kar10] showing that order-2 collapsi-
ble stacks can be encoded as trees in such a way that the set of stacks reachable
from the initial configuration is a regular set of trees. Broadbent [Bro12] shows
that such an encoding is not possible for collapsible stacks of higher-order. This
paper is a long version of the paper [SW11], that provides the detailed proofs
that were sketched there.

Organization of the paper. In the next section we introduce λY -calculus and
Krivine machines. We also define formally the local model checking problem.
In the following section we prove the decidability of the local model checking
problem. For this, we reduce the problem to determining a winner in a game
over configurations of the Krivine machine, K(A,M). Next, we define a finite
game G(A,M). We then show that the same player is winning in the two games.
This gives decidability of the local model checking problem. In Section 4 we
reuse this result to obtain the proof for the global model checking problem.

2. Basic notions

The set of types T is constructed from a unique basic type 0 using a binary
operation →. Thus 0 is a type and if α, β are types, so is (α → β). The
order of a type is defined following Huet [Hue76]: order(0) = 1, and order(α→
β) = max(1 + order(α), order(β)). Notice that this convention is different from
the usual convention adopted in the literature on recursive schemes for which
ground types have order 0.

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types from T . We will assume that for every type α ∈ T we have ωα

and Y (α→α)→α standing for the undefined value and the fixpoint operator. As
usual in recursion schemes, it is important for us that all other constants have
types of order smaller or equal to 2. So we assume this for the rest of the paper.
For simplicity of notation we will consider only constants of type 0→ 0→ 0. It
is straightforward to extend our arguments to constants of arbitrary arity; that
is of types 0 or 0→ · · · → 0→ 0.

The set of simply typed λ-terms is defined inductively as follows. A con-
stant of type α is a term of type α. For each type α there is a countable
set of variables xα, yα, . . . that are also terms of type α. If M is a term of

3

type β and xα a variable of type α then (λxα.M) is a term of type α → β.
Finally, if M is of type α → β and N is of type α then (MN) is a term
of type β. We take usual conventions for dropping parentheses in λ-terms:
we write λx1 . . . xn.M for (λx1.(. . . (λxn.M) . . .)), we write MN1 . . . Nn for
(. . . (MN1) . . . Nn) and we assume that application takes precedence over λ-
abstraction, that is λx1 . . . xn.MN1 . . . Np denotes the term

(λx1.(. . . (λxn.(. . . (MN1) . . . Np)) . . .)).

We will also often omit type annotations. We take for granted the notion of
free variables and of α-conversion and we shall write FV (M) for the set of free
variables occurring in a λ-term M .

We shall write M [N1/x1, . . . , Nn/xn] for the simultaneous capture avoiding
substitution of N1, . . . , Nn respectively for the free occurrences of x1, . . . , xn
in M . When we are given a function σ that maps variables to λ-terms, we
shall write M [σ] for the result of M [σ(x1)/x1, . . . , σ(xn)/xn] where FV (M) =
{x1, . . . , xn}.

Together with the usual operational semantics of λ-calculus, that is β-
contraction, we use δ-contraction (→δ) giving the semantics to the fixpoint op-
erator: YM →δ M(YM). Thus, the operational semantics of the λY -calculus is

the βδ-contraction whose reflexive transitive closure
∗→βδ is called βδ-reduction

and whose least equivalence it generates, =βδ, is called βδ-conversion. It is
well-known that this semantics is confluent and enjoys subject reduction (i.e.
the type of terms is invariant under computation).

It is usual to consider also η-contraction rule saying that: λx.Mx →η M
when x /∈ FV (M). This rule is a bit complex to implement because its applica-
tion requires one to check whether a variable is free in a term. A convenient way
of forgetting about η-contraction, is to work with terms in η-long form [Hue76].
A term M is in η-long form when every subterm of a functional type (i.e. of a
type of the form α → β) is either a λ-abstraction or is applied to some other
term in M . It is well-known (see [Hue76]) that: (i) for every term M there is
a term M ′ in η-long form such that M ′ can be η-reduced to M ; (ii) the set of
terms in η-long form is closed under βδ-reduction; and (iii) two terms M1 and
M2 are βδη-convertible iff their long forms are βδ-convertible. Working with
terms in η-long form makes the presentation easier as the structure of types is
reflected syntactically in terms. Later we will point out the place where we use
this assumption.

We recall that a term is in head normal form when its form is λ~x.N0N1 . . . Nk
with N0 a variable or a constant. A term M is said to be solvable when there
is N in head normal form such that M

∗→βδ N ; otherwise it is said unsolvable.
Another related notion is that of terms in weak head normal form, that is terms
which are either of the form λx.N or of the form N0N1 . . . Nk with N0 a variable
or a constant.

In the presence of the Y combinator, simply typed terms do not in general
have a normal form. But, as for the untyped lambda-calculus, a notion of
infinitary normal form, called a Böhm tree is defined for each term. A Böhm

4

tree is an unranked ordered, and potentially infinite tree with nodes labeled by
ωα, or terms of the form λx1. . . . xn.N ; where N is a variable or a constant, and
the sequence of lambda abstractions is optional. So, for example, x0, λx.ω0 are
labels, but λy0.x0→0y0 is not. Formally a Böhm tree of a term M is obtained
as follows.

Definition 1 If M →∗βδ N = λ~x.N0N1 . . . Nk with N in head normal form then
BT (M) is the tree with the root labeled λ~x.N0 and with BT (N1), . . . , BT (Nk)
as the sequence of trees starting from successors of the root. If M is unsolvable
then BT (M) = ωα where α is the type of M .

Remark: If M is a closed term of type 0 then given our assumption on the type
of constants we get that BT (M) is a binary tree with finite branches ending in
ω0. Indeed we have two cases. If M is unsolvable then BT (M) consists just
of a root labeled ω0. Otherwise M can be reduced to a head normal form N .
Because M is of type 0, N cannot start with λ-abstraction. As M is closed, N
must be of the form aM1M2 where a is a constant. So M1,M2 are closed terms
of type 0. Repeating the argument on M1 and M2 shows that BT (M) is indeed
a binary tree with finite branches ending in ω0.

Recursive schemes and λY -calculus. In many works on model checking higher-
order systems, these systems are presented as recursive schemes. We here choose
an equivalent presentation in terms of λY -calculus that we find more convenient
to work with. Nevertheless, we here give a slight introduction to the notion of
recursive schemes.

A recursive scheme is a set of equations defining a λY -term by mutual recur-
sion. Formally, a recursive scheme is a function R assigning to every variable
Fα from a finite set N a term of type α with free variables only from N . Fix-
ing F 0 in N as the starting symbol, the semantics of a scheme is the infinite
tree computed by unfolding the definitions of the variables starting from F 0.
This tree can also be seen as the Böhm tree generated from F 0 by recursively
applying the substitution defined by R.

To transform λY -term into a recursive scheme, it is enough to name ev-
ery subterm with a new variable, and then write a straightforward assignment
function R. To transform a recursive scheme into a λY -term one can solve the
system of equations given by R using the fixpoint combinator Y . With some
care these transformations are inverse to each other and do not increase the
order of a term unnecessary. The details of these translations can be found
in [SW12].

Krivine machine. A Krivine machine [Kri07], is an abstract machine that com-
putes the weak head normal form of a λ-term using explicit substitutions called
environments. Environments are functions assigning closures to variables, and
closures themselves are pairs consisting of a term and an environment. This
mutually recursive definition is schematically represented by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x 7→ C] .

5

As in this grammar, we will use ∅ for the empty environment. We require that
in a closure (M,ρ), the environment is defined for every free variable of M .
Intuitively such a closure denotes a closed λ-term: it is obtained by substituting
for every free variable x of M the lambda term denoted by the closure ρ(x). For
a closure C we write term(C) for the term that it denotes; when C = (N, ρ),
we have term(C) = N [term(ρ(x1))/x1, . . . , term(ρ(xn))/xn].

A configuration of the Krivine machine is a triple (M,ρ, S), where M is a
term, ρ is an environment, and S is a stack (a sequence of closures with the
topmost element on the left). The rules of the Krivine machine are as follows:

(λx.M, ρ, (N, ρ′)S)→(M,ρ[x 7→ (N, ρ′)], S)

(YM, ρ, S)→(M(YM), ρ, S)

(MN, ρ, S)→(M,ρ, (N, ρ)S)

(x, ρ, S)→(M,ρ′, S) where (M,ρ′) = ρ(x) .

Note that the machine is deterministic. A configuration (M,ρ, S) represents the
term M in the environment ρ determining the values of its free variables, applied
to terms represented by the closures in S. The first rule simulates β-contraction,
it binds in the environment the variable introduced by the λ-abstraction to the
top-most element of the stack, thus the λ-abstraction is evaluated by assigning
the value of the argument to the correct variable. The second rule, simulates
δ-contraction in the obvious way. The third rule decomposes the evaluation of
an application into the evaluation of the function in the current environment
applied to the closure made out of its argument and the current environment.
Finally, the last rule finds the value of a variable in the environment and eval-
uates it, restoring the environment in which it was created, with the current
stack for its arguments.

We will be only interested in configurations accessible from (M0, ∅, ε) for
some closed term M0 of type 0 in η-long form. Recall that ∅ stands for the empty
environment and ε for the empty stack. Every such configuration (M,ρ, S) is
called a configuration of type 0 and enjoys very strong typing invariants. The
environment ρ associates to a variable xα a closure (N, ρ′) such that N has type
α; we will say that the closure is of type α too. If M has type α1 → · · · → αn →
0, then S is a stack of n closures, with i-th closure from the top being of type
αi. Another property of the configurations that are reachable from (M0, ∅, ε)
is that the terms involved in the configuration (M,ρ, S), that is M , the terms
that are used to build the environment ρ and the closures in S, are all subterms
of M0. One should be careful with a definition of a subterm though. Since we
have a fixpoint operator we consider that N(Y N) (but not N(N(Y N))) is a
subterm of Y N . Of course even with this twist, the number of subterms of a
term remains finite.

For aesthetic reasons we prefer to stop the Krivine machine in configurations
of the form (bM0M1, ρ, ε), where b is a constant; since b is of type 0 → 0 → 0,
the stack must be empty. We shall write this configuration as (b(M0,M1), ρ, ε)
to make a link with the Böhm tree being constructed. (Notice that formally
from such a configuration the machine should perform two more reductions to

6

put the arguments on the stack.) Now the Krivine machine may be used to
compute the Böhm tree of a term M . Indeed, if we start with a closed term M
of type 0 we get a sequence of reductions from (M, ∅, ε) that is either infinite or
terminates in a configuration of a form (b(M0,M1), ρ, ε). Because we work with
terms in η-long form, and the constants occurring in M must, by definition of
η-long forms, be applied to two arguments, as the Krivine machine decomposes
the terms in a top-down manner, the first time a term starting with a constant
b appears as the main term of the configuration, it must be applied to its two
arguments. Thus the use of η-long forms justifies the shape of the configurations
in which the Krivine machine stops. At that point we create a node labeled b
and start reducing both (M0, ρ, ε) and (M1, ρ, ε). This process gives at the end
a tree labeled with constants.

Definition 2 Given a configuration (M,ρ, S) of type 0, if this configuration
reduces to (b(M0,M1), ρ, ε) then we let KT (M,ρ, S) be the tree whose root is
labeled with b and has as left child the tree KT (M1, ρ, ε) and as right child the
tree KT (M2, ρ, ε). Otherwise KT (M,ρ, S) = ω0.

For a closed term of type 0, M , we write KT (M) for KT (M, ∅, ε).

The Krivine machine implements a particular reduction strategy of the λ-
calculus called weak-head reduction. This strategy amounts to systematically
reducing the top-most redex of a term. If there is a way of reducing a term M to
a term N , then the standardization Theorem [CF58] shows that the reduction
from M to N can be done by reducing top-most redices first and then other
redices below. Therefore, when a term has a head normal form, it can be put in
head-normal form by reducing the top-most redices only. This implies that the
reduction strategy of the Krivine machine always computes, when it has one,
the head-normal form of a closed term of type 0. Another consequence is that
KT (M) is no other than BT (M). Here we state this result for the closed terms
of type 0, because, for simplifying the exposition, we have defined BT (M) and
KT (M) only for such terms. As a digression let us note that this equality holds
for all closed terms in η-long form. For terms not in η-long form the Krivine
machine would actually compute a slight variant of Böhm trees called Lévy-
Longo trees which are to weak head normal forms what Böhm trees are to head
normal forms. A consequence of the correctness of the Krivine machine [Kri07]
is the following theorem.

Theorem 3 Given a closed term M of type 0, we have BT (M) = KT (M).

We present an execution of a Krivine machine on an example taken from
[KO09]. For clarity, in this example we suspend our convention on types of the
constants and take constants a : 0→ 0→ 0, b : 0→ 0 and c : 0. The scheme is
defined by S 7→ F c and F 7→ λx.a x (F (b x)) which can be represented by the
following term in the λY -calculus:

YM c where M = λfx.a x (f(b x)).

7

Starting from a configuration (YMc, ∅, ε), the Krivine machine produces the
following sequence of reductions(
YMc, ∅, ε

)
→
(
YM, ∅, (c, ∅)

)
→

(
M(YM), ∅, (c, ∅)

)
→

(
M, ∅, (YM, ∅)(c, ∅)

)
→(

λx.a x (f(b x)), [f 7→ (YM, ∅)], (c, ∅)
)
→(

a x (f(b x)), [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε
)
.

At this point we have reached a final configuration and we get the constant a
that is the symbol of the root of BT (YMc). We can start reducing separately
the two arguments of a, that is reducing the configurations:(

x, [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε
)

and
(
f(b x), [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε

)
.

Parity automata and the definition of the problem. Recall that Σ is a fixed set
of constants of type 0→ 0→ 0. These constants label nodes in BT (M). Since
BT (M) is a possibly infinite binary tree (cf. Remark on page 5) we can use
standard non-deterministic parity automata to describe its properties. Such an
automaton has the form

A = 〈Q,Σ, q0 ∈ Q, δ : Q× Σ→ P(Q2), rk : Q→ {1, . . . , d}〉 (1)

where Q is a finite set of states, q0 is the initial state, δ is the transition function,
and rk is a function assigning a rank (a number between 1 and d) to every state.

In general, an infinite binary tree is a function t : {0, 1}∗ → Σ. A run
of A on t is another function r : {0, 1}∗ → Q such that r(ε) = q0 and for
every sequence w ∈ {0, 1}∗: (r(w0), r(w1)) ∈ δ(q, t(w)). The run is accepting if
for every infinite path in the tree, the sequence of states assigned to this path
satisfies the parity condition determined by rk ; this means that the maximal
rank of a state seen infinitely often should be even.

Formally, it may be the case that BT (M) contains also nodes labelled with
ω0. We will simply assume that every tree containing ω0 is rejected by the
automaton. This assumption is frequently made in this context. Handling
ω0 would not be difficult but would require to add one more case in all the
constructions. Another solution is to convert a term to a term not generating ω0.
Haddad [Had12] proposes such a transformation at the level of schemes. Another
such transformation would consist in transforming each rule Fx1 . . . xn → N of
a scheme into a rule Fx1 . . . xn → eN where e is a fresh unary constant. Then
the scheme becomes always productive and the MSOL theory of its generated
tree can be translated into the MSOL theory of the tree generated by the new
scheme. Those transformations can also be performed on λY -terms.

Definition 4 The (local) model-checking problem for λY -calculus is to decide
if for a given parity automaton A and a λY -term M , the automaton accepts
the tree BT (M).

8

3. Decidability of the model checking problem

This section presents the proof of the decidability of the model checking
problem for λY -calculus.

Theorem 5 (Ong [Ong06]) Given M a closed λY -term of type 0, the modal
mu-calculus model checking problem of BT (M) is decidable, thus BT (M) has a
decidable MSOL theory.

As over infinite trees, modal mu-calculus is equivalent to MSOL, for the proof we
will work with parity automata instead of formulas. For every MSOL formula
ϕ, there is a parity automaton A accepting precisely the trees satisfying ϕ.

The first step is to construct, given a parity automaton A and a closed λY -
term M of type 0, an infinite parity game K(A,M) such that Eve has a winning
strategy in K(A,M) iff A accepts BT (M). The game K(A,M) is constructed
from the computation tree of the Krivine machine constructing KT (M), and
from Theorem 3 we know that KT (M) is isomorphic to BT (M). So K(A,M) is
a potentially infinite game, and we want to decide who has a winning strategy in
it. The core of the proof consists in the effective construction of a finite parity
game G(A,M) such that Eve has a winning strategy in that game iff she has
a winning strategy in the game K(A,M). This yields the decidability of the
model checking problem.

Krivine machine plays a key role in the construction of G(A,M). The labels
of positions in K(A,M) contain configurations of the Krivine machine. The
positions of G(A,M) are approximations of the labels in K(A,M) with respect
to property being checked by the automaton A. These bounded approximations
are made thanks to a notion of a residual. The proof of the equivalence of the two
games amounts to translating winning strategies for Eve or Adam in K(A,M)
into respective winning strategies in G(A,M). In this translation the invariants
are naturally expressed in terms of configurations of the Krivine machine.

3.1. Game K(A,M)

In this subsection we define the game K(A,M). The game will be based on
the tree RT (A,M) of the runs of the automaton A on the tree of configurations
of the Krivine Machine computing BT (M). The actual runs of A on BT (M)
can easily be read from RT (A,M).

Definition 6 For a given closed term M of type 0 , and a parity automaton A
we define the tree of all runs RT (A,M) of A on BT (M):

1. The root of the tree is labeled with q0 : (M, ∅, ε) .

2. A node labeled q : (a(N0, N1), ρ, ε) has a successor (q0, q1) : (a(N0, N1), ρ, ε)
for every (q0, q1) ∈ δ(q, a).

3. A node labeled (q0, q1) : (a(N0, N1), ρ, ε) has two successors q0 : (N0, ρ, ε)
and q1 : (N1, ρ, ε).

4. A node labeled q : (λx.N, ρ, CS) has a unique successor labeled q :
(N, ρ[x 7→ C], S).

9

5. A node q : (Y N, ρ, S) has a unique successor q : (N(Y N), ρ, S).

6. A node v labeled q : (NK, ρ, S) has a unique successor that is labeled
q : (N, ρ, (v,K, ρ)S). We say that here a v-closure is created.

7. A node v labeled q : (x, ρ, S), with ρ(x) = (v′, N, ρ′), has a unique succes-
sor labeled q : (N, ρ′, S). We say that the node v uses a v′-closure.

The definition is as expected but for the fact that in the rule for application we
store the current node in the closure. When we use the closure in the variable
rule (rule 7), the stored node does not influence the result. The stored node
allows us to detect what is exactly the closure that we are using. This will be
important in the proof.

Notice also that the rules 2, 3, and 4 rely on the typing properties of the con-
figurations of the Krivine machine we discussed earlier (cf. pages 5–8). Indeed,
when the machine reaches a configuration of the form (a(N1, N2), ρ, ε) then, by
our convention on the types of constants, a is of type 0 → 0 → 0. In conse-
quence, so as to have a term of type 0, it must be applied to two arguments of
type 0, while the stack is empty. Also from typing invariant we get that, when
the machine is in a configuration like (λx.N, ρ, S), S cannot be the empty stack.

Definition 7 We use the tree RT (A,M) to define a game between two players:
Eve chooses a successor in nodes of the form q : (a(N0, N1), ρ, S), and Adam
in nodes (q0, q1) : (a(N0, N1), ρ, S). We set the parity rank of nodes labeled
q : (a(N0, N1), ρ, S) to rk(q), and the parity ranks of all the other nodes to 1,
and the minimal parity rank that we use is 1. We use the parity condition to
decide who wins an infinite play. Let us call the resulting game K(A,M).

The following is a direct consequence of the definitions and of Theorem 3.

Proposition 8 For every parity automaton A and closed term M of type 0.
Eve has a strategy from the root position in K(A,M) iff A accepts BT (M).

The only interesting point to observe is that it is important to disallow rank 0 in
the definition of parity automaton since we assign rank 1 to all “intermediate”
positions. This is linked to our handling of infinite sequences of reductions of the
Krivine machine without reaching a head normal form. Such a sequence results
in a node labeled ω in a Böhm tree, hence the tree should not be accepted by
the automaton. Indeed, in the game K(A,M) this will give an infinite sequence
of states of rank 1.

By Proposition 8 deciding whether BT (M) is accepted by A is reduced to
deciding who has a winning strategy from the root of K(A,M). Using K(A,M)
we will construct a finite game G(A,M), and show that the winner in the two
games is the same.

3.2. Game G(A,M)

The game K(A,M) may have infinitely many positions because there may
be infinitely many closures that are created. We reduce this game to G(A,M)
where we remove this source of infiniteness.

10

Figure 1: Game K(A,M) on the left, and G(A,M) on the right.

The idea of the reduction is to eliminate stacks and environments using
alternation. Consider the situation in Figure 1. On the top left we have a
position v in the game K(A,M) where the application rule is used. This means
that the new closure (v,K, ρ) is put on the stack of the Krivine machine (node
v1). In some descendant v′ of v1 the closure may be used. In other words, the
machine gets to the variable x whose value is the closure in question. Let us
consider the simplest case when K is of type 0. Due to the typing invariants
on configurations of the Krivine machine, we know that the stack is empty in
v′. So the configuration in the successor v′1 of v′ is constructed just from the
closure. This observation allows to shortcut the path from v to v′1. This is what
we do in the game G(A,M).

The right part of Figure 1 represents the result of taking these shortcuts.
In a set R, that we call residual of the closure (v,K, ρ), we have collected all
states q′ which appear when the closure (v,K, ρ) is used: as in the node v′1. For
every such state we add directly a successor of v labeled with the corresponding
configuration. So the edge from v to v′1 in the right picture simulates the path
from v to v′1 in the left picture. Now the question is where we get R from.
We actually just guess it and check if it is big enough. This is the task of the
leftmost transition in the right picture. The gray triangle is the same as in
the original game. But this time instead of a closure we have put R on the
stack. When we get to v′ we just check that the state in v′ is in R. This check
guarantees that we have put all uses of the closure into R.

The successive level of complication comes from the fact that K(A,M) is a
parity game and not a reachability game. This complication is not just cosmetic:
the model-checking problem for reachability games can be solved using much
lighter methods [Aeh07, Kob09, SW13]. In order to deal with parity conditions
we need not only to remember the state in which the closure is used, but also
the biggest rank on the path from the creation of the closure to its use. This is
symbolized by r′ in the left part of the figure. We use the same r′ as the rank
of the edge in the reduced game.

Till now we have assumed in our discussion that K is of type 0, but in

11

general we need to deal with terms K of types of any order. The difference
is that if K is not of type 0 then the configuration in v′ on the left will be of
the form q′ : (x, ρ′, S′) for some stack S′ whose contents is not related with the
contents of S. The important thing though is that the type of elements in S′ is
determined by the type of x, that is the same as the type of K. Observe that
the typing invariant of the Krivine machine tells us that the orders of types of
closures on the stack are always strictly smaller than that of K. So by induction
on types we can assume that S is composed of residuals and not of closures.
Since there are finitely many residuals of a given type, the residual for K will
be now a function from sequences of residuals representing possible stacks S to
a set of states with ranks as in the case when K had type 0.

Residuals. After these intuitive explanations we will proceed to define residuals,
the lifting operation on residuals, and finally the game G(A,M). The lifting
operation on residuals will permit us to deal with all the book-keeping required
by the parity condition.

Definition 9 (Residuals) Recall that Q is the set of states of A and d is the
maximal value of the rank function of A. Let [d] stand for the set {1, . . . , d}.
For every type τ = τ1 → · · · → τk → 0, the set of residuals Dτ is the set of
functions Dτ1 → · · · → Dτk → P(Q× [d]).

For example, D0 is P(Q × [d]) and D0→0 is P(Q × [d]) → P(Q × [d]). The
meaning of residuals will become clearer when we define the game.

We need one more operation before defining the game. Indeed, when a set
of residuals is guessed in G(A,M), it is, as mentioned above, the role of the
left transition on the right of Figure 1 to check that the guess covers all the
possibilities. In the particular case where the term K is of type 0, checking
that the residual is correct makes it necessary to verify that the biggest ranks
guessed on the paths from the node where the closure is created to the nodes
where it is used are correct. The role of the lifting operation we introduce here
is to implement this verification. Of course this operation is defined for residuals
of any orders.

Definition 10 A lifting of a residual R : Dτ1 → · · · → Dτk → D0 by a rank r is
a residual R�r of the same type as R satisfying for every sequence of arguments
S:

R�r(S) = {(q1, r1) ∈ R(S) : r1 > r} ∪ {(q1, r2) : (q1, r1) ∈ R(S), r2 ≤ r1 = r}.

If ρ is an environment assigning residuals to variables then ρ�r is an environment
such that for every x: (ρ�r)(x) = ρ(x)�r.

Recall that D0 = P(Q× [d]) so what R�r does is to modify the set of pairs
R(S) which is the value of R on the sequence of residuals S of appropriate type.
The operation leaves unchanged all pairs (q1, r1) with r1 > r. For every pair

12

(q1, r1) with r1 = r it adds pairs (q1, r2) for all r2 ≤ r. All pairs (q1, r1) of R(S)
with r1 < r do not contribute to the result.

Example Let’s take the residual R = {(q1, 1); (q2, 2); (q3, 3)} of type 0. We
have that

R�1 ={(q1, 0); (q1, 1); (q2, 2); (q3, 3)},
R�2 ={(q2, 0); (q2, 1); (q2, 2); (q3, 3)},
R�3 ={(q3, 0); (q3, 1); (q3, 2); (q3, 3)}, and

R�4 =∅.

If we take a residual R of type 0→ 0 that maps {(q1, 1)} to {(q2, 2); (q3, 3)} and
{(q2, 1)} to {(q1, 1); (q3, 1)}, and all other residuals to ∅ then R�2 maps {(q1, 1)}
to {(q2, 0); (q2, 1); (q2, 2); (q3, 3)} and all other residuals to ∅.

As the lifting operation will be performed all along a path inBT (M), we need
the following technical lemma to handle multiple applications of this operation.

Lemma 11 For every residual R and ranks r1, r2: (R�r1)�r2 = R�max(r1,r2).

Proof
Let’s assume that R is a residual of type α = α1 → · · · → αn → 0 and take
R1, . . . , Rn residuals of Dα1

, . . . , Dαn . If (q, r) is in (R�r1)�r2(R1, . . . , Rn),
then either r ≥ r2 and (q, r) is in R�r1(R1, . . . , Rn), or r < r2 and (q, r2) is in
R�r1(R1, . . . , Rn). Each case can then be split in two.

In the first case, (q, r) is in R�r1(R1, . . . , Rn) either since r ≥ r1 and (q, r) is
in R(R1, . . . , Rn) or since r < r1 and (q, r1) is in R(R1, . . . , Rn). If r ≥ r1 and
(q, r) is in R(R1, . . . , Rn), then, because r ≥ r2, we have r ≥ max(r1, r2) and
thus, (q, r) is in R�max(r1,r2)(R1, . . . , Rn). If r < r1, then because r ≥ r2, we
have max(r1, r2) = r1, then because (q, r) is in R�r1(R1, . . . , Rn), we also have
that (q, r) in R�max(r1,r2)(R1, . . . , Rn).

In the second case, (q, r2) is in R�r1(R1, . . . , Rn) either since r2 ≥ r1 and
(q, r2) is in R(R1, . . . , Rn) or since r2 < r1 and (q, r1) is in R(R1, . . . , Rn).
If r2 ≥ r1, then r2 = max(r1, r2), and since (q, r2) is in is in R(R1, . . . , Rn),
because r < r2, we obtain that (q, r) is in R�max(r1,r2)(R1, . . . , Rn). If r2 < r1,
then r1 = max(r1, r2) and as, (q, r1) is in R(R1, . . . , Rn), we obtain that (q, r)
is in R�max(r1,r2)(R1, . . . , Rn).

We have thus showed that

(R�r1)�r2(R1, . . . , Rn) ⊆ R�max(r1,r2)(R1, . . . , Rn),

we now turn to the converse inclusion. If (q, r) is in R�max(r1,r2)(R1, . . . , Rn),
then it is either because r ≥ max(r1, r2) and (q, r) is in R(R1, . . . , Rn) or because
r < max(r1, r2) and (q,max(r1, r2)) is in R(R1, . . . , Rn). In both cases, the def-
initions immediately lead to the fact that (q, r) is also in (R�r1)�r2(R1, . . . , Rn).
In the first case, since r ≥ max(r1, r2) and (q, r) is in R(R1, . . . , Rn), we
have that (q, r) is in R�r1(R1, . . . , Rn) which finally entails that (q, r) is in
(R�r1)�r2(R1, . . . , Rn). In the second case, we have that (q,max(r1, r2)) is

13

in R(R1, . . . , Rn) which implies that for every r′ ≤ max(r1, r2), (q, r′) is in
(R�r1)�r2(R1, . . . , Rn) and, thus, (q, r) is in (R�r1)�r2(R1, . . . , Rn). �

Definition of G(A,M). We have all the necessary ingredients to define the game
G(A,M). A position of the game will be of one of the forms:

q : (N, ρ, S), or (q0, q1) : (N, ρ, S), or (q,R) : (N, ρ, S) ,

where q, q0, q1 are states of A, N is a subterm of M ; ρ is a function assigning
a residual to every variable that has a free occurrence in N ; and S is a stack
of residuals. Of course the types of residuals have to agree with the types of
variables/arguments they are assigned to. Notice that we use the same letter ρ
to denote an environment as well as an assignment of residuals. Similarly for S.
It will be always clear from the context what object is denoted by these letters.

Most of the rules of G(A,M) are just reformulations of the rules in K(A,M):

• q : (λx.N, ρ,R · S)→ q : (N, ρ[x 7→ R], S)

• q : (a(N0, N1), ρ, ε)→ (q0, q1) : (a(N0, N1), ρ, ε) for (q0, q1) ∈ δ(q, a)

• (q0, q1) : (a(N0, N1), ρ, ε)→ qi : (Ni, ρ�rk(qi), ε) for i = 0, 1

• q : (Y N, ρ, S)→ q : (N(Y N), ρ, S).

Observe the use of �rk(qi) in the third rule. Residuals express the constraints
on contexts where we perform variable lookup. The lifting operation �rk(qi) is
used to modify these constraints taking into account that we have seen a state
of rank rk(qi).

Figure 2: Dealing with application in G(A,M).

We now proceed to the rule for application (cf. Figure 2). Consider q :
(NK, ρ, S) with K of type τ = τ1 → · · · → τl → 0. We have a transition

• q : (NK, ρ, S)→ (q,R) : (NK, ρ, S)
for every residual R : Dτ1 → · · · → Dτl → D0.

From this position we have transitions

• (q,R) : (NK, ρ, S)→ q : (N, ρ,R�rk(q) · S)

14

• (q,R) : (NK, ρ, S)→ q′ : (K, ρ�r′ , R1 · · ·Rl)
for every R1 ∈ Dτ1 ,. . . ,Rl ∈ Dτl and (q′, r′) ∈ R�rk(q)(R1, . . . , Rl).

The operation R�rk(q) is needed to “normalize” the residual, so that it satisfies
the invariant described below.

Since we are defining a game, we need to say who makes a choice at which
vertices. Eve chooses a successor from vertices of the form q : (NK, ρ, S), and
q : (a(N0, N1), ρ, ε). It means that she can choose a residual, and a transition of
the automaton. This leaves for Adam the choices in nodes of the form (q,R) :
(NK, ρ, S). So he decides whether to accept (by choosing a transition of the
first type) or to contest the residual proposed by Eve; cf. Figure 2.

Observe that we do not have a rule for nodes with a term being a variable.
This means that we need to say who is the winner in variable nodes. Eve wins
in a position:

• q : (x, ρ, S) when (q, rk(q)) ∈ ρ(x)(S).

Recall that ρ(x) is a residual, call it Rx, and S = R1 · · ·Rk is a sequence of
residuals; so ρ(x)(S) is Rx(R1 · · ·Rk) which is an element of P(Q× [d]).

Finally, we need to define ranks. It will be much simpler to define ranks on
transitions instead of nodes. All the transitions will have rank 1 but for two
cases

• transitions of the form (q,R) : (NK, ρ, S) → q′ : (K, ρ�r′ , R1 · · ·Rk)
where (q′, r′) ∈ R�rk(q)(R1, . . . , Rk) have rank r′;

• transitions of the form (q0, q1) : (a(N0, N1), ρ, ε) → qi : (Ni, ρ�rk(qi), ε)
have rank rk(qi).

A play is winning for Eve iff the sequence of ranks on transitions satisfies
the parity condition: the maximal rank appearing infinitely often is even.

3.3. Equivalence of G(A,M) and K(A,M)

We now prove the central property relating G(A,M) and K(A,M).

Proposition 12 For every parity automaton A and every closed term M of
type 0, Eve wins in K(A,M) iff Eve wins in G(A,M).

The proof of this proposition proceeds as follows. For the direction from
left to right we take a winning strategy for Eve in K(A,M), and with respect
to this strategy we define residuals for every closure. Then we show how Eve
can win in G(A,M) using these residuals: her winning strategy in G(A,M)
will simulate the one in K(A,M). For the other direction we will calculate
residuals with respect to Adam’s winning strategy in K(A,M) and use them to
define Adam’s winning strategy in G(A,M). As parity games are determined,
we obtain Proposition 12.

15

3.3.1. Residuals in K(A,M)

We here introduce the key notion of the proof, the notion of a residual of a
node. Given a subtree T of K(A,M), i.e. a tree obtained by pruning K(A,M),
we calculate the residuals RT (v) and resT (v, v′) for some nodes and pairs of
nodes of T . In particular, T may be taken as being a strategy of Eve or a
strategy of Adam. When T is clear from the context we will simply write R(v)
and res(v, v′).

Recall that a node v in K(A,M) is an application node when its label is
of the form q : (NK, ρ, S). We will assign a residual R(v) to every application
node v. Thanks to typing, this can be done by induction on the order of types.
We also define a variation of this notion: a residual R(v) seen from a node
v′, denoted res(v, v′). The role of residuals in the proof has been intuitively
explained on pages 10-12.

Before giving a formal definition we will describe the assignment of residuals
to nodes in concrete terms. We will need one simple abbreviation. If v is an
ancestor of v′ in T then we write max(v, v′) for the maximal rank appearing on
the path between v and v′, including both ends.

Consider an application node v in T (cf. Figure 1). It means that v has
a label of the form q : (NK, ρ, S), and its unique successor has the label q :
(N, ρ, (v,K, ρ)S). That is the closure (v,K, ρ) is created in v. We will look at
all the places where this closure is used and summarize the information about
them in R(v). We will do this by induction on the type of K.

First, suppose that the closure, or equivalently the term K, is of type 0. The
residual R(v) is a subset of Q× [d] obtained as follows:

We put (q′,max(v, v′)) ∈ R(v) when there is v′ in T labeled with
q′ : (x, ρ′, ε) such that ρ′(x) = (v,K, ρ).

For the induction step, suppose that K is of type τ1 → · · · → τk → 0 and
that we have already calculated residuals for all closures of types τ1, . . . , τk.
Suppose that we have a closure (v,K, ρ) created at a node v. This time R(v) :
Dτ1 → · · · → Dτk → P(Q× [d]). Consider a node v′ using the closure. Its label
has the form q′ : (x, ρ′, S′) for some x, ρ′ and S′ such that ρ′(x) = (v,K, ρ).
The stack S′ has the form (v1, N1, ρ1) . . . (vk, Nk, ρk) with Ni of type τi. We
put

(q′,max(v, v′)) ∈ R(v)(R(v1)�max(v1,v′), . . . , R(vk)�max(vk,v′)
) .

We now give a formal definition of R(v). By structural induction on types
it is easy to see that such an assignment of residuals exists and is unique for T .

Definition 13 (R(v) and res(v, v1)) Given T a subtree of K(A,M), we define
a residual R(v) for every application node v of T .

For more clarity we will use res(v, v1) for R(v)�max(v,v1). For a closure
(v,K, ρ) we define res((v,K, ρ), v′) = res(v, v′). We then extend this opera-
tion to stacks: res(S, v′) is S where res(·, v′) is applied to every element of the
stack; and to environments: res(ρ, v′)(x) = res(ρ(x), v′).

16

Let v be a node of T labeled by q : (NK, ρ, S) with K of type τ1 → · · · →
τk → 0. The residual R(v) is a function Dτ1 → · · · → Dτk → D0 such that for

every sequence of residuals ~R of appropriate types the set R(v)(~R) contains:

(q′,max(v, v′)) for every node v′ of T with the label of the form
q′ : (x, ρ′, S′) for some x, ρ′, S′ such that ρ′(x) = (v,K, ρ), and

res(S′, v′) = ~R.

3.3.2. Transferring Eve’s strategy in K(A,M) to G(A,M)

Let us assume that Eve has a winning strategy σ on K(A,M). This strategy
defines the subtree Kσ of K(A,M) of all the plays respecting the strategy σ. Let
us also assume that we have computed the residuals for Kσ as in Definition 13.
We will use those residuals to define a winning strategy for Eve in G(A,M).

The invariant. We will use positions in the game K(A,M) and the strategy σ
as hints. The strategy in G(A,M) will take a pair of positions (v1, v2) with v1 in
G(A,M) and a v2 in K(A,M). It will then give a new pair of positions (v′1, v

′
2)

such that v′1 is a successor v1, and v′2 is reachable from v2 using the strategy σ.
Moreover, all visited pairs (v1, v2) will satisfy the following invariant:

• v1 is labeled by q : (N, ρ1, S1), v2 is labeled by q : (N, ρ2, S2), ρ1 =
res(ρ2, v2) and S1 = res(S2, v2).

The strategy. The initial positions in both games have the same label q0 :
(M, ∅, ε), so the invariant is satisfied. In order to define the strategy we will
consider one by one the rules defining the transitions in G(A,M).

The two cases where Eve needs to decide which successor to choose are the
nodes with a constant or with an application. For all other transitions, the
invariant is trivially preserved.

A node with a constant is of the form q : (a(N0, N1), ρ1, ε). Eve should then
simply take from v1 the same transition of the automaton as taken from v2. So
she advances to a node labeled (q0, q1) : (a(N0, N1), ρ1, ε), and at the same time
Eve goes to (q0, q1) : (a(N0, N1), ρ2, ε) in K(A,M). Next Adam can choose a
successor, so he can go either to q0 : (N0, ρ1, ε) or q1 : (N1, ρ1, ε). This move
can be matched by going to q0 : (N0, ρ2, ε) or q1 : (N1, ρ2, ε) in K(A,M). This
shows that no matter what Adam’s next move is, the new pair of positions in
the two games will satisfy the invariant.

The strategy and its analysis in the case of application nodes is more compli-
cated. Figure 2 represents the part of the game G(A,M) from such a node. Sup-
pose that the term in the label of v1 is an application, say q : (NK, ρ1, S1). By
our invariant we have inK(A,M) a position v2 labeled by q : (NK, ρ2, S2), where
ρ1 = res(ρ2, v2) and S1 = res(S2, v2). To satisfy the invariant, the strategy in
G(A,M) needs to choose R(v2), that is the residual assigned to v2. This means
that from v1 the play proceeds to the node v′1 labeled (q,R(v2)) : (NK, ρ1, S1).

17

From this node Adam can choose either

q :(N, ρ1, (R(v2)�rk(q)) · S1), or (2)

q′ :(K, ρ1�r′ , R1 . . . Rl) where (q′, r′) ∈ R(v2)�rk(q)(R1, . . . , Rl). (3)

Suppose Adam chooses v′′1 whose label is as in (2). By definition R(v2)�rk(q) =
res(v2, v2). Hence the stack (R(v2)�rk(q)) · S1 is just res((v2,K, ρ2)S2, v2). The
unique successor v′2 of v2 is labeled by q : (N, ρ2, (v2,K, ρ2)S2). So the pair
(v′′1 , v

′
2) satisfies the invariant.

Let us now examine the case where Adam chooses for v′′1 a node of the
form (3) for some q′, r′ and R1 . . . Rl (see Figure 3). Looking at the definition
of R(v2), Definition 13, we have that, in Kσ, the node v2 has a descendant
v′2 labeled q′ : (x, ρ′2, S

′
2) with ρ′2(x) = (v2,K, ρ2), res(S′2, v

′
2) = R1 . . . Rl and

moreover r′ = max(v2, v
′
2). The successor v′′2 of v′2 is labeled by q′ : (K, ρ2, S

′
2).

We can take it as a companion for v′′1 since ρ1�r′ = res(ρ2, v2)�max(v2,v′′2) =

res(ρ2, v
′′
2) by Lemma 11. Hence the pair (v′′1 , v

′′
2) satisfies the invariant.

v1

v′1

v′′1

q : (NK, ρ1, S1)

(q, R(v2)) : (NK, ρ1, S1)

q′ : (K, ρ1�
r′ , R1 . . . Rl)

r′ = max(v2, v
′
2)

v2

v′2

v′′2

q : (NK, ρ2, S2)

q : (N, ρ2, (v2, K, ρ2)S2)

q′ : (x, ρ′2, S
′
2) where ρ′2(x) = (v2, K, ρ2)

and res(S′
2, v

′
2) = R1 . . . Rl

q′ : (K, ρ2, S
′
2)

Figure 3: Adam chooses a node of the form (3)

The strategy is winning. We need to show that the strategy defined above is win-
ning. Consider a sequence of nodes (v1

1 , v
1
2), (v2

1 , v
2
2), . . . obtained when playing

according to the strategy. Suppose that this sequence is infinite. By construc-
tion we have that v1

2 , v
2
2 , . . . is a path in Kσ, hence a play winning for Eve. We

have defined the strategy in such a way that a rank of a transition from vi1 to
vi+1

1 is the same as the maximal rank of a node on the path between vi2 and
vi+1

2 . Hence v1
1 , v

2
1 , . . . is winning for Eve too.

It remains to check what happens when a maximal play is finite. This means
that the play ends in a pair (v1, v2) where v1 is a variable node. Such a node is
labeled by q : (x, ρ1, S1). To show that Eve wins here we need to prove that

(q, rk(q)) ∈ Rx(S1) where Rx = ρ1(x).

By the invariant we have that the companion node v2 is labeled by q : (x, ρ2, S2)
and ρ1 = res(ρ2, v2), S1 = res(S2, v2). Suppose that ρ2(x) = (v,N, ρ). We have
Rx = R(v)�max(v,v2), since ρ1 = res(ρ2, v2). By definition of R(v) we get

(q,max(v, v2)) ∈ R(v)(res(S2, v2)).

18

Then from the definition of the �max(v,v2) operation:

(q,max(v, v2)) ∈ R(v)(res(S2, v2))�max(v,v2).

Which implies that (q, rk(q)) ∈ R(v)(res(S2, v2))�max(v,v2) because rk(q) ≤
max(v, v2). But then R(v)(res(S2, v2))�max(v,v2) = Rx(S1), and we are done.

This completes the proof of left-to-right implication of Proposition 12.

3.3.3. Transferring Adam’s strategy from K(A,M) to G(A,M)

We will show how to get a winning strategy for Adam in G(A,M) from
his winning strategy in K(A,M). Once again we will use residuals. Let us
fix a winning strategy θ of Adam in K(A,M). Consider the tree Kθ of plays
respecting this strategy. This is a subtree of K(A,M). Consider the assignment
of residuals to application nodes in Kθ as in Definition 13. We will define a
strategy in G(A,M) that will preserve the invariant described below.

The invariant. In order to formulate the invariant for the strategy we introduce
the complementarity predicate Comp(R1, R2) between a pair of residuals:

• For R1, R2 ∈ D0 we define Comp(R1, R2) to be true if R1 ∩R2 = ∅.

• For R1, R2 ∈ Dτ where τ = τ1 → · · · → τk → 0 we put Comp(R1, R2)
if for all sequences (R1,1, . . . , R1,k), (R2,1, . . . , R2,k) ∈ Dτ1 × · · · × Dτk

such that Comp(R1,i, R2,i) for all i = 1, . . . , k we get R1(R1,1, . . . , R1,k)∩
R2(R2,1, . . . , R2,k) = ∅.

Remark: the Comp predicate is a logical relation (see [AC98]), but we have
preferred to formulate the definition in a form that will be more useful for proofs.

For two closures (v,N, ρ) and (v′, N, ρ′) we will say that the predicate
Comp((v,N, ρ), (v′, N, ρ′)) holds if Comp(R(v), R(v′)) is true. For two envi-
ronments ρ, ρ′ we write Comp(ρ, ρ′) if the two environments have the same
domain and for every variable x, the predicate Comp(ρ(x), ρ′(x)) holds. Fi-
nally, Comp(S, S′) holds if the two sequences are of the same length and the
predicate holds for every coordinate.

It is important to observe that Comp behaves well with respect to the �r
operation.

Lemma 14 If Comp(R1, R2) then also Comp(R1�r, R2�r) for every rank r.

Proof
Take two sequences S1 and S2 of the correct type with respect to R1 and R2

and such that Comp(S1, S2). Since Comp(R1, R2), we have R1(S1) ∩R2(S2) =
∅. Let’s suppose that (q1, r1) is in R1�r(S1), then either r1 > r and (q1, r1)
is in R1(S1) so that (q1, r1) is neither in R2(S2) nor in R2�r(S2); or r1 ≤ r
and (q1, r) is in R1(S1) so that (q1, r) is not in R2(S2) and (q1, r1) is not in
R2�r(S2). Similarly we get that whenever (q2, r2) is in R2�r(S2) it is not in
R1�r(S1). Therefore R1�r(S1) ∩ R2�r(S2) = ∅. Since S1, S2 were arbitrary, we
get Comp(R1�r, R2�r). �

19

As in the case for Eve, the strategy for Adam will take a pair of vertices
(v1, v2) from G(A,M) and K(A,M), respectively. It will then consult the strat-
egy θ for Adam in K(A,M) and calculate a new pair (v′1, v

′
2). All the pairs will

satisfy the invariant:

• Comp(ρ1, res(ρ2, v2)) and Comp(S1, res(S2, v2)), where v1 labeled by q :
(N, ρ1, S1) and v2 labeled by q : (N, ρ2, S2).

The strategy. We define the strategy by considering one by one the rules for
constructing the tree K(A,M). As in the case for Eve’s strategy, apart from
the constant and the application rules, it is easy to see that the invariant is
preserved. In the constant rule, Adam needs to make the same choices as in
K(A,M). The only complicated case is the application rule.

In the case of application, we are in a node labeled q : (NK, ρ1, S1) that
is a node of Eve and it has successors labeled (q,R) : (NK, ρ1, S1) for every
residual R of appropriate type (cf. Figure 2). Suppose Eve chooses some R and
in consequence a node v′1. Then Adam has a choice between the children of v′1
that have labels of one of the two forms:

q :(N, ρ1, R�rk(q) · S1)

q′ :(K, ρ1�r′ , R1 · · ·Rl) for (q′, r′) ∈ R�rk(q)(R1, . . . , Rl).

At the same time the node v2 of K(A,M) is an application node so it has
assigned residual R(v2). We have two cases.

Suppose Comp(R�rk(q), R(v2)) holds. In this case Adam chooses for v′′1 the
node labeled q : (N, ρ1, R�rk(q) · S1). This works since the successor v′2 of v2 is
labeled by q : (N, ρ2, (v2,K, ρ)S2); hence the pair (v′′1 , v

′
2) satisfies the invariant.

The other case is when Comp(R�rk(q), R(v2)) does not hold. This means
that there are (R1,1, . . . , R1,l) and (R2,1, . . . , R2,l) such that Comp(R1,i, R2,i)
for all i = 1, . . . , l and R�rk(q)(R1,1, . . . , R1,l) ∩ R(v2)(R2,1, . . . , R2,l) 6= ∅. Let
(q′, r′) be the element from the intersection. Examining the definition of R(v2),
Definition 13, the reason why (q′, r′) ∈ R(v2)(R2,1, . . . , R2,l) (see Figure 4) is
that there is in Kθ a node v′2 labeled by q′ : (x, ρ′2, S

′
2) such that ρ′2(x) =

(v2,K, ρ2), res(S′2, v
′
2) = (R2,1, . . . , R2,l) and r′ = max(v2, v

′
2). In that case,

we choose for v′′1 the node labeled q′ : (K, ρ1�r′ , R1,1 · · ·R1,l). As its compan-
ion node we choose the successor v′′2 of v′2 labeled by q′ : (K, ρ2, S

′
2). So the

new position becomes (v′′1 , v
′′
2). We need to show that Comp(ρ1�r′ , res(ρ2, v

′′
2))

holds. For this take an arbitrary variable y for which ρ1(y) is defined. From
Comp(ρ1, res(ρ2, v2)) we derive by definition Comp(ρ1(y), res(ρ2(y), v2)). As
r′ = max(v2, v

′
2) = max(v2, v

′′
2) we have res(ρ2(y), v′′2) = res(ρ2(y), v2)�r′ , and

then by Lemma 14 we get the required Comp(ρ1(y)�r′ , res(ρ2(y), v2)�r′). Since,
by hypothesis, we have Comp(R1,i, R2,i) for all i = 1, . . . , l, the new configura-
tion satisfies the invariant.

The strategy is winning. As in the case of the strategy for Eve, it is easy to
show that every infinite play is winning. It remains to check what happens if a
play reaches a node v1 that is a variable node.

20

v1

v′1

v′′1

q : (NK, ρ1, S1)

(q, R�rk(q)) : (NK, ρ1, S1)

q′ : (K, ρ1�
r′ , ε)

r′ = max(v2, v
′
2)

v2

v′2

v′′2

q : (NK, ρ2, S2)

q : (N, ρ2, (v2, K, ρ2)S2)

q′ : (x, ρ′2, S
′
2) where ρ′2(x) = (v2, K, ρ2)

res(S′
2, v

′
2) = R2,1 . . . R2,l,

and Comp(R1,i, R2,i)

q′ : (K, ρ2, S
′
2)

Figure 4: Case where (q′, r′) ∈ R�rk(q)(R1,1, . . . , R1,l) ∩R(v2)(R2,1, . . . , R2,l).

A variable node is labeled by q : (x, ρ1, S1). To show that Adam wins here
we need to prove that

(q, rk(q)) 6∈ ρ1(x)(S1) .

By the invariant, the companion node v2 is labeled by q : (x, ρ2, S2) and satis-
fying

Comp(Rx, res(ρ2, v2)(x)), Comp(S1, res(S2, v2)) .

Suppose ρ2(x) = (v,N, ρ). Then (q,max(v, v2)) ∈ R(v)(res(S2, v2)) by the
definition of R(v) (Definition 13). Hence we also have

(q,max(v, v2)) ∈ R(v)(res(S2, v2))�max(v,v2) ,

and in consequence

(q, rk(q)) ∈ R(v)(res(S2, v2))�max(v,v2) .

As R(v)�max(v,v2) = res(ρ2, v2)(x) we get Comp(ρ1(x), R(v)�max(v,v2)(x)), from
the invariant. As Comp(S1, res(S2, v2)) we can obtain (q, rk(q)) 6∈ ρ1(x)(S1) by
the definition of Comp.

This completes the proof of Proposition 12.

3.4. Model checking

We can now conclude the proof of the decidability of the model-checking
problem (Theorem 5). Our objective is to decide if BT (M) is accepted by
A for a given λY -term M and a parity automaton A. By Proposition 8 this
is equivalent to deciding if Eve has a winning strategy in the game K(A,M).
Proposition 12 tells us that Eve wins in K(A,M) if and only if she wins in
G(A,M). The latter is a finite parity game so it is decidable to determine
who is the winner in G(A,M). Hence the algorithm is to construct the game
G(A,M) and check if Eve has a winning strategy from the initial position in
this game.

Let us briefly estimate the complexity of the procedure obtained from our
proof. We write |M | for the size of M which also gives an upper bound on the
number of subterms of M . Let κ be the maximal order of a type of subterm

21

of M . Recall that an arity of a type is the number of arguments a term of this
type can be applied to. An extended arity of a term is the sum of the arity of
its type and the number of free variables in the term. Let ϑ denote the maximal
extended arity of a subterm of M . Finally, we use |A| to denote the size of A,
and use d to stand for the biggest rank in the range of the rk function. We will
write Towerκ(x) for the tower of exponentials function: Tower0(x) = x and
Tower i+1(x) = 2Toweri(x).

First we calculate the number of possible residuals of a type of a given
order (cf. Definition 9). For type 0, that has order 1, there are 2d|Q| residuals.

For a type of order 2 and arity bounded by ϑ, there are at most (2d|Q|)2d|Q|ϑ

residuals. One can express this quantity as Tower2(d|Q|ϑ)1+ε for a suitable
ε. In general for type of order r we have at most Towerr(d|Q|ϑ)1+ε residuals.
Given this, the number of configurations of G(A,M) of the form q : (N, ρ, S)
is bounded by |Q| · |M | · Towerκ(d|Q|ϑ)ϑ+ε thanks to the fact that ϑ gives
a bound on the sum of free variables in N and length of the stack S. The
number of configurations of the form (q,R) : (N, ρ, S) is bounded by the same
quantity since there is a bijection between such configurations and configurations
q : (N, ρ,R · S). Finally, there are |Q|2 · |M | · Towerκ(d|Q|ϑ)ϑ+ε configurations
of the form (q1, q2) : (N, ρ, S). Adapting ε we obtain that the game G(A,M)
has at most |M | · Towerκ(d|Q|ϑ)ϑ+ε states. Since it has d priorities it can be
solved in time (|M | · Towerκ(d|Q|ϑ)ϑ+ε)bd/2c+1. To compare this complexity
to that for schemes [KO09] let us note that a straightforward translation from
schemes to λY -terms increases the order of types by 1 due to the fact that a
recursive definition F = λ~x.NF is translated as Y (λF.λ~x.NF). Then we have
an additional exponent due to the fact that we need to consider also residuals
for Y (λF.λ~x.NF) while in op. cit. the fixpoint variables are treated externally.
These two exponentials can be avoided by introducing a notion of a term in a
canonical form and adapting the translation to give terms in such form. The
Krivine machine needs to be slightly adjusted to treat the fixpoints in a special
way, and not put YM on the stack as it is the case now. This construction is
presented in [SW12].

4. Global model checking

In this section we will show how to compute a finite representation of the set
of winning positions of Eve in the game K(A,M). For this we will first define
a, rather straightforward, representation of positions of the game as trees. We
will then show that there is a finite automaton accepting the representation of
a position of K(A,M) iff this position is winning for Eve.

Recall that positions of K(A,M) are of the form q : (N, ρ, S) where N is
a subterm of M , ρ is an environment assigning a closure to every free variable
of N , and S is a stack of closures. Recall also that terms appearing in all the
closures of ρ and S are subterms of M .

We start by defining tree representations of closures containing only sub-
terms of M . The alphabet ΣM of these trees is defined as follows. For every

22

Figure 5: Tree representation of a closure (N, ρ).

subterm N : τ1 → · · · → τl → 0 of M the alphabet ΣM contains N as well as
NzN1 . . . zNl for a fixed sequence of variables zN1 . . . , zNl not free in N of types
τ1, . . . , τl respectively. The arity of a letter N or NzN1 . . . zNl from ΣM is the
number of free variables in the term. In particular, if N does not have free
variables then a node labeled by N is a leaf in a tree. We denote by yNi the i-th
free variable of N in some fixed ordering on variables. We have the following
links between closure and tree notations (cf. Figure 5):

• A closure (N, ρ) is represented by a tree, tree(N, ρ), whose root is labeled
by N , and the subtree ti rooted in the i-th child represents ρ(yNi), that is
ti = tree(ρ(yNi)).

• Conversely, every tree t over ΣM represents a closure: closure(t) = (N, ρ)
where N is the label of the root of t and ρ(yNi) = closure(ti) for subtrees
t1 . . . tl of the root.

• Of course every t over ΣM can be seen also as the term represented by
closure(t) (i.e. the term term(closure(t))), that we will denote simply
term(t).

A configuration (N, ρ,C1 . . . Ck) of a Krivine machine is represented by a
closure (NzN1 . . . zNk , ρ

′), where ρ′ agrees with ρ on free variables of N , and
moreover ρ′(zNi) = Ci; for i = 1, . . . , k. So configurations of K(A,M) are also
represented as trees over ΣM . Recall that a position q : (N, ρ, S) of the game
K(A,M) is winning for Eve iff the Böhm tree of (N, ρ, S) is accepted by A from
state q (Proposition 8). The following theorem implies that there is a finite
automaton that can decide if a given configuration is winning.

Theorem 15 For every term M of type 0 and every MSOL formula ψ the set:

{t ∈ Trees(ΣM) : term(t) has type 0 and BT (term(t)) � ψ}

is a regular set of finite trees, and an automaton recognizing it can be effectively
computed.

23

Let A be a parity automaton recognizing trees having the property ψ. We
want to understand when for a given t, the automaton A accepts BT (term(t)).
Let QA be the set of states of A.

Of course we would like to use our reduction from infinite to finite games.
By Proposition 8, A accepts BT (term(t)) iff Eve has a winning strategy in the
game K(A, term(t)). By Proposition 12 the later is equivalent to Eve winning
in G(A, term(t)). This is this last characterization that we will use.

At the core of the proof we will have an alternating finite state automaton
B recognizing closures. Its states are pairs (q, S), where q is a state, and S is
a sequence of residuals. We will say that S is type compatible with a term N
if N has a type τ1 → · · · → τl → 0 and S is a sequence of l residuals of types
τ1, . . . , τl respectively. In a state (q, S) an automaton can read a symbol N that
is type compatible with S, and then it has to do the following actions:

B1 Guess an assignment ρN of residuals to the free variables of N , such that
the position q : (N, ρN , S) is winning for Eve in G(A,M). If there is no
such assignment then the automaton rejects.

B2 For every free variable yNi of N , every sequence S′ of residuals type con-
sistent with yNi , and every q′ such that for some r′ we have (q′, r′) ∈
ρN (yNi)(S′), the automaton will send a copy of itself with the state (q′, S′)
to the i-th child of the root. If N has no free variables then the automaton
accepts.

We describe in the next lemma the language accepted by the so constructed
automaton B, but before we need to define a slight generalization of the finite
games G(A,M) introduced in Section 3.2. These games were defined only for
terms M of type 0. Here we will consider G(A, N) for N of arbitrary type. The
definition from Section 3.2 still applies. The only difference is that in this game
there is no initial position q : (N, ∅, ε), but rather q : (N, ∅, S) for every S type
compatible with N .

The next lemma describes the language of B and at the same time concludes
the proof of the theorem.

Lemma 16 For every tree t over ΣM , state q of A, and sequence of residuals
S type compatible with term(t):

B accepts t from (q, S) iff

q : (term(t), ∅, S) is winning for Eve in G(A, term(t)) .

Proof
The proof is by induction on the size of t.

When t has only the root, the statement is immediate, by B1.
For the induction step suppose t has a root labeled by N and let t1, . . . , tk

be the subtrees rooted at its children. Recall that by definition term(t) = N [σ]
where σ(yNi) = term(ti) for yNi the i-th free variable in N , for i = 1, . . . , k.

24

We first consider the left to right direction. Assume that there is an accepting
run of B on t from (q, S). Our goal is to show how Eve can win from position
q : (term(t), ∅, S) of G(A, term(t)). Condition B1 of the definition of B gives
us an environment ρN such that the position q : (N, ρN , S) is winning for Eve
in G(A,M). It will be convenient to see term(t) as N [σ]. From the position
q : (N [σ], ∅, S) in G(A, term(t)) Eve should play in the exactly same way as
from q : (N, ρN , S) in G(A,M) as long as it is possible. It stops being possible
when the play reaches a position q′ : (term(ti), ρ

′′, S′) in G(A, term(t)) and at
the same time a leaf q′ : (yNi , ρ

′, S′) in G(A,M). To complete the description
of the winning strategy in G(A, term(t)) we need to show how Eve can win
from q′ : (term(ti), ρ

′′, S′). Since term(ti) is closed, it is enough to consider
q′ : (term(ti), ∅, S′) instead.

We need now to find a winning strategy from q′ : (term(ti), ∅, S′). Since
q′ : (yNi , ρ

′, S′) is winning for Eve we get that (q′,Ω(q′)) ∈ ρ′(yNi)(S′). Moreover,
as yNi is a variable free in N , we have ρ′(yNi) = ρN (yNi)�r for some r. So, there is
r′′ such that (q′, r′′) ∈ ρN (yNi)(S′). Now, by condition B2, term(ti) is accepted
from the state (q′, S′) of B. By induction hypothesis Eve has a winning strategy
from position q′ : (term(ti), ∅, S′) in G(A, term(ti)). This position also exists in
the game G(A, term(t)). Moreover in the two games the parts reachable from
this position are identical since the moves from a position depend only on the
form the position. So q′ : (term(ti), ∅, S′) is also winning in G(A, term(t)).

For the induction step for the right to left direction let us take a winning
strategy for Eve from a position q : (term(t), ∅, S) in G(A, term(t)). As be-
fore, let us write term(t) as N [σ]. Now follow the winning strategy from
q : (term(t), ∅, S) using N [σ] notation. For every free variable yNi of N look
at all the positions of the form q′ : (yNi [σ], ρ′, S′) reachable by a play consis-
tent with the winning strategy and let r be the maximal rank seen between the
initial position of the game and that position. Observe that yNi [σ] = term(ti).
Since term(ti) does not have free variables, the position qi : (term(ti), ∅, S′) is
winning in G(A, term(ti)). By induction hypothesis, we have an accepting run
on ti from the state (q′, S′) of B. Let Ri be the set of all such triples (q′, r, S′).
We define ρN (yNi)(S′) = {(q′, r) : (q′, r, S′) ∈ Ri}. This will make ρN satisfy
condition B2. By definition of ρN we also get that q : (N, ρN , S) is winning for
Eve in G(A,M). Indeed, the winning strategy of Eve on G(A, term(t)) can be
transposed on G(A,M): it suffices to reproduce the moves as long it is possi-
ble. Thus the strategy in G(A,M) maintains a pair of positions respectively
in G(A,M) and in G(A, term(t)) q′ : (P, ρ1, S

′) and q′ : (Q, ρ2, S
′) so that

P [σ] = Q and ρ1 is equal to ρ2 for every variable but for the variables yNi for
which ρ1(yNi) = ρN (yNi)�r with r being the maximal rank seen since the begin-
ning of the play. The strategy consists in replying to Adam in G(A,M) the same
thing as Eve would reply to the corresponding move in G(A, term(t)); a simple
case analysis shows that this maintains the invariant. Then if the play is infi-
nite or ends with a variable that is different from the yNi , the invariant together
with the fact that we play with a winning strategy in G(A, term(t)) implies
that Eve wins. Now if the play ends in a position of the form q′ : (yNi , ρ

′, S′),
then Eve wins because, if r is the maximal rank seen on that play we have that

25

ρ′(yNi) = ρN (yNi)�r, and thus by definition of ρN , (q′, r) is in ρN (S′) and thus
we have (q′, rk(q′)) in ρN (yNi)�r(S

′). Hence condition B1 is satisfied too, and
in consequence t is accepted from the state (q, S) of B. �

Theorem 15 follows from Lemma 16. It is enough to consider the statement
of the lemma when q is the initial state qinit of A, and S is the empty stack. By
Propositions 8 and 12, Eve winning from qinit : (term(t), ∅, ε) in G(A, term(t), ε)
is equivalent to BT (term(t)) being accepted by A, and this by definition of A
means that BT (term(t)) � ϕ. So the automaton required in Theorem 15 is
automaton B with (qinit, ε) as the initial state.

5. Conclusions

In this paper we have proposed to use the Krivine machine to analyze higher-
order recursive schemes. Considering two prominent results in the area we
have demonstrated that the rich structure of this formalism allows one to write
compact and powerful invariants on computation. The proof of decidability of
local model checking gives a good example of this. The proof for global model
checking shows that the structure of configurations of the Krivine machine,
although rich, is quite easy to work with. This said, the Krivine machine is
a very sophisticated model despite its simple presentation. As it happens, its
relatively rigid structure appears to be a good framework that helps one to
formulate strong invariants of the Böhm tree it computes with rather elementary
definitions.

Let us comment further the relationship with the proof of Kobayashi and
Ong [KO09]. The later has been a remarkable achievement showing that one
can prove the result with the assumption method (in the spirit of [Wal01])
on the level of terms instead of CPDA. Our residuals are very similar to the
additional indices in types introduced in that paper. Also the handling of ranks
via �Ω(q) operation is similar in both proofs. The typing rule for application
gives essentially the same rule as we use here. The finite game in that paper
is rather different though, as the typing system of Kobayashi and Ong has
not been designed to handle fixpoints or lambda-abstraction. The proof of
the correctness of the reduction is just different since without configurations of
Krivine machine it is very difficult to state the correspondence between nodes
in the tree generated by the scheme and nodes in the finite game.

In our opinion, the presented proof of decidability of global model checking
is an important argument in favor of the use of the Krivine machines. With
CPDA, the only induction parameter available is the rank of the stack. The
result in [BCOS10] is proved by reducing the stack level one by one. This is
technically quite difficult.

In the present paper we have kept models of λY -calculus in the background.
Yet, the two proofs strongly suggest that there may exist a finitary model where
we can calculate the behaviour of a fixed automaton on a given term. It would be
very interesting to find a useful representation of this model. The main obstacle

26

is to understand the meaning of the fixpoint operator. In the meantime we have
pursued this line of research [SW13].

References

[AC98] R. M. Amadio and P-L. Curien. Domains and Lambda-Calculi.
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1998.

[AdMO05] Klaus Aehlig, Jolie G. de Miranda, and C.-H. Luke Ong. The
monadic second order theory of trees given by arbitrary level-two
recursion schemes is decidable. In TLCA’05, volume 3461 of LNCS,
pages 39–54, 2005.

[Aeh07] Klaus Aehlig. A finite semantics of simply-typed lambda terms for
infinite runs of automata. Logical Methods in Computer Science,
3(1):1–23, 2007.

[BCHS12] Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and
Olivier Serre. A saturation method for collapsible pushdown sys-
tems. In ICALP (2), volume 7392 of LNCS, pages 165–176, 2012.

[BCOS10] C. Broadbent, A. Carayol, L. Ong, and O. Serre. Recursion schemes
and logical reflection. In LICS, pages 120–129, 2010.

[BO09] C. Broadbent and C.-H. L. Ong. On global model checking trees
generated by higher-order recursion schemes. In FOSSACS, volume
5504 of LNCS, pages 107–121, 2009.

[Bro12] C. H. Broadbent. The Limits of Decidability for First Order Logic
on CPDA Graphs. In STACS 2012, volume 14 of LIPIcs, pages
589–600, 2012.

[CF58] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-
Holland Publishing Co., Amsterdam, 1958.

[CHM+08] Arnaud Carayol, Matthew Hague, Antoine Meyer, Luke Ong, and
Olivier Serre. Winning regions of higher-order pushdown games. In
LICS, pages 193–204, Pittsburgh United States, 2008.

[CS12] Arnaud Carayol and Olivier Serre. Collapsible pushdown automata
and labeled recursion schemes equivalence, safety and effective se-
lection. In LICS, pages 165–174, 2012.

[Dam82] W. Damm. The IO- and OI-hierarchies. Theor. Comp. Sci., 20:95–
207, 1982.

[DG86] W. Damm and A. Goerdt. An automata-theoretical characteriza-
tion of the OI-hierarchy. Information and Control, 71(1-2):1–32,
1986.

27

[Had12] A. Haddad. IO vs OI in higher-order recursion schemes. In FICS,
volume 77 of EPTCS, pages 23–30, 2012.

[HMOS08] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In LICS, pages 452–
461, 2008.

[Hue76] G. Huet. Résolution d’équations dans des langages d’ordre 1,2,...,ω.
Thèse de doctorat en sciences mathématiques, Université Paris VII,
1976.

[Kar10] A. Kartzow. Collapsible pushdown graphs of level 2 are tree-
automatic. In STACS, volume 5 of LIPIcs, pages 501–512, 2010.

[KNU02] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown
trees are easy. In FoSSaCS, volume 2303 of LNCS, pages 205–222,
2002.

[KNUW05] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe
grammars and pannic automata. In ICALP, volume 3580 of LNCS,
pages 1450–1461, 2005.

[KO09] N. Kobayashi and L. Ong. A type system equivalent to modal
mu-calculus model checking of recursion schemes. In LICS, pages
179–188, 2009.

[Kob09] N. Kobayashi. Types and higher-order recursion schemes for veri-
fication of higher-order programs. In POPL, pages 416–428. ACM,
2009.

[Kri07] J-L. Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, 2007.

[Ong06] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. In LICS, pages 81–90, 2006.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theor.
Comput. Sci., 5(3):223–255, 1977.

[SW11] S. Salvati and I. Walukiewicz. Krivine machines and higher-order
schemes. In ICALP (2), volume 6756 of LNCS, pages 162–173,
2011.

[SW12] Sylvain Salvati and Igor Walukiewicz. Recursive schemes, Krivine
machines, and collapsible pushdown automata. In RP, volume 7550
of LNCS, pages 6–20, 2012.

[SW13] S. Salvati and I. Walukiewicz. Using models to model-check recur-
sive schemes. In TLCA, 2013. Full version submitted to a journal,
available from the authors webpage.

28

[Wal01] I. Walukiewicz. Pushdown processes: Games and model checking.
Information and Computation, 164(2):234–263, 2001.

[Wan07] M. Wand. On the correctness of the Krivine machine. Higher-Order
and Symbolic Computation, 20:231–235, 2007. 10.1007/s10990-007-
9019-8.

29

	Introduction
	Basic notions
	Decidability of the model checking problem
	Game K(A,M)
	Game G(A,M)
	Equivalence of G(A,M) and K(A,M)
	Residuals in K(A,M)
	Transferring Eve's strategy in K(A,M) to G(A,M)
	Transferring Adam's strategy from K(A,M) to G(A,M)

	Model checking

	Global model checking
	Conclusions

