
Under consideration for publication in Math. Struct. in Comp. Science

Simply typed fixpoint calculus and
collapsible pushdown automata

Sylvain Salvati and Igor Walukiewicz†

Received 30 October 2012 Revised 5 November 2014

Simply typed λ-calculus with fixpoint combinators, λY -calculus, offers an interesting

method for approximating program semantics. The Böhm tree of a λY -term represents

the meaning of the program up to the meaning of built-in constants. It is much easier to

reason about properties of such trees than properties of interpreted programs. Moreover

some interesting properties of programs are already expressible on the level of these trees.

Collapsible pushdown automata (CPDA) give another way of generating the same class

of trees as λY -terms. We clarify the relationship between the two models. In particular,

we present two relatively simple translations from λY -terms to CPDA using Krivine

machines as an intermediate step. The latter are general machines for describing

computation of the weak head normal form in the λ-calculus. They provide the notions

of closure and environment that facilitate reasoning about computation.

1. Introduction

Terms of simply typed λ-calculus with fixpoint combinators, λY -calculus, are abstract

forms of programs where the meaning of constants is not specified. In consequence, the

meaning of a term is its Böhm tree: a potentially infinite tree labeled with constants

obtained from the evaluation of the term. In the context of this paper, Böhm trees are

much more appropriate than normal forms, since due to the free interpretation of con-

stants λY -terms representing programs rarely have a normal form. Collapsible pushdown

automata (CPDA) is another, more recent, model with the same generating power. The

main contribution of the paper are two translations from λY -terms to CPDA that clarify

the relation between the two formalisms. Our translations show how to implement to

standard notions of functional programming, environments and closures, with higher-

order stacks and the collapse operation. The translations also explain the behavior of the

so-called safe fragment of the λY -calculus that can be translated to CPDA not using the

collapse operation.

Ianov (Ianov 1969) has introduced recursive schemes as a means for studying pro-

gram transformation and control structures. Such schemes correspond to λY -terms of

order 0. In a series of papers (Nivat 1972a; Nivat 1972b), Nivat studies algebraic recur-

sive schemes that correspond to λY -terms of order 1. The study of recursion on higher

† Supported by ANR 2010 BLAN 0202 01 FREC

types as a control structure for programming languages was started in (Milner 1973)

and (Plotkin 1977). Higher-order features allow for compact high-level programs. They

have been present since the beginning of programming, and appear in modern program-

ming languages like Java 8, C++, Haskell, Javascript, Python, or Scala. Higher-order

features allow one to write code that is closer to the specification and, consequently,

more reliable. This is particularly useful in contexts where high assurance should come

together with very complex functionality. Telephone switches, simulators, translators,

statistical programs operating on terabytes of data, have been successfully implemented

using functional languages†.

The Böhm tree semantics of λY -terms is an informative intermediate step in giving

a denotational semantics of a program. The meaning of a program can be obtained by

considering it as a λY -term, taking the Böhm tree of the term, and applying a homo-

morphism giving a meaning to each of the constants. Yet, in some cases the Böhm tree

gives already interesting information about the program. For example, resource usage

patterns can be formulated in fragments of monadic second-order logic and verified over

such trees (Kobayashi 2013). This is possible thanks to the fact that MSOL model check-

ing is decidable for trees generated by higher-order recursive schemes (C.-H. L. Ong

2006), and consequently for Böhm trees of λY -terms.

The study of Böhm trees generated by λY -terms has been mostly done by the language

theory community. Following the tradition initiated by Ianov, these trees were studied

under the form of recursive schemes rather than λY -terms. Damm (Damm 1982) has

shown that considered as word generating devices, a class of so called safe schemes is equi-

expressive with the higher-order indexed languages introduced by Aho and Maslov (Aho

1968; Maslov 1974). These languages in turn have been known to be equivalent to the

higher-order pushdown automata of Maslov (Maslov 1976; Damm and Goerdt 1986).

Later it has been shown that trees generated by higher-order safe schemes are the same

as those generated by higher-order pushdown automata (Knapik, Niwinski, and Urzyczyn

2002). This gave rise to the so called pushdown hierarchy (Caucal 2002) and its numerous

characterizations (Carayol and Wöhrle 2003).

The safety restriction has been tackled much more recently. First, because it has been

somehow implicit in (Damm 1982), and only brought on the front stage by (Knapik,

Niwinski, and Urzyczyn 2002). Secondly, because it required new insights in the nature

of higher-order computation. Pushdown automata have been extended with a so called

panic operation (Knapik, Niwinski, Urzyczyn, and Walukiewicz 2005; Aehlig et al. 2005).

This lead to the characterization of trees generated by schemes of order one. Later this

operation has been extended to all higher-order stacks, and has been renamed collapse.

Higher-order stack automata with collapse (CPDA) characterize recursive schemes at all

orders (Hague et al. 2008). The fundamental question whether the collapse operation

adds expressive power has been answered affirmatively only very recently (Parys 2012):

there is a tree generated by an order 1 scheme that cannot be generated by a higher-order

stack automaton without collapse.

† For some examples see “Functional programming in the real world”

http://homepages.inf.ed.ac.uk/wadler/realworld/

2

The two formalisms, λY -calculus and CPDA, are equi-expressive but very different. In

λY -calculus we have the notion of computation given by αβδ-reduction. Such a compu-

tation can be unbounded because reductions may make the term grow, but also, and this

is very important, because α-conversion may introduce an unbounded number of fresh

variables during computation. CPDA come with an explicit notion of state and explicit

unbounded storage in the form of a higher-order stack equipped with collapse operation.

The computation is modeled by the change of state and operations on the stack. The

CPDA model is conceptually easier, at least at first sight. It is used in the fundamental

result of Parys cited above. Induction on the stack size of CPDA has been successfully

employed in numerous instances. For example, the only approaches known at present to

prove the very useful reflection and selection theorems go through CPDA (C. Broadbent

et al. 2010; Carayol and Serre 2012). In contrast, λY -calculus has much more structure:

it allows a semantic approach using models of the calculus, and it can profit from the rich

theory of β-reduction. For example, in this paper we heavily rely on Krivine machine for

organizing the reduction process.

The first contribution of this paper is to clarify the correspondence between λY -terms

and recursive schemes. Recursive schemes can be seen as a particular form of λY -terms,

and indeed the translation from schemes to λY -terms is straightforward. A simple trans-

lation in the other direction also exists but makes the type order of the obtained scheme

grow unnecessarily. In other words, composing the two translations produces a scheme

whose type has order higher than the initial one. Since the order of a scheme is a crucial

parameter, this was probably one of the reasons why the community has concentrated

its attention on schemes rather than on the λY -calculus (as for example in (C. H. Broad-

bent et al. 2012)). In this paper we explain the sources of this mismatch: we introduce a

notion of λY -terms in canonical forms, show how to translate λY -terms into this form,

and prove that the blowup does not happen in this case. This result shows that working

in λY -calculus does not induce any handicap as compared to schemes.

The second, and main, result of the paper are two translations of λY -terms to CPDA.

They both use Krivine machines to organize reduction of λY -terms. The first works with

all λY -terms, and is made optimal with respect to order for terms in canonical forms.

Hence in particular it is also optimal for recursive schemes. The translation shows how to

implement the search of the value of a parameter with the help of the collapse operation.

Indeed the only nontrivial case of the translation is that of variable look-up. The second

translation starts immediately from λY -terms in a canonical form, and is also optimal

with respect to order. It is more direct, in the sense that it starts with a fixed encoding

of environments on the stack, and makes the structure of the stack always reflect this

encoding.

The third contribution of the paper is to explain the role of safety in this context.

Recall that safe recursive schemes can be translated to CPDA that do not use the collapse

operation. We introduce a notion of safe λY -terms, and show that our translations applied

to safe λY -terms produce automata where the collapse operation can be replaced by the

pop operation. Naturally, the class of safe λY -terms contains all the terms resulting from

the translation of safe recursive schemes.

3

Related work. Until now, most of the related works have used the formalism of recursive

schemes rather than λY -calculus. The first translations from schemes to CPDA have been

limited to schemes of order 1 (Knapik, Niwinski, Urzyczyn, and Walukiewicz 2005; Aehlig

et al. 2005). They used directly the definition of a tree generated by the scheme. They have

been based on ideas from (Kfoury and Urzyczyn 1988) where a similar translation but

for call-by-value calculus has been presented. At that time, this direct approach seemed

too cumbersome to generalize to higher orders. The first translation for schemes of all

orders (Hague et al. 2008) used traversals, a concept based on game semantics (Hyland

and C.-H. L. Ong 2000). Very recently, Carayol and Serre (Carayol and Serre 2012)

have presented a translation extending the one from (Knapik, Niwinski, Urzyczyn, and

Walukiewicz 2005) to all orders. This translation has been obtained independently from

the one presented here. The translation of (Carayol and Serre 2012) is limited to recursive

schemes, and is based on a mechanism for controlling evaluation specifically invented for

the translation. We think that our translations using λY -terms and Krivine machine for

evaluation represent a further substantial simplification.

We should also mention the status of the inverse translation: from CPDA to schemes.

The translation for order 2 CPDA has been given in (Knapik, Niwinski, Urzyczyn, and

Walukiewicz 2005; Aehlig et al. 2005) and the general case in (Hague et al. 2008). While

the translation is technical, it represents no fundamental difficulty. The idea is to simulate

states of CPDA with some sort of continuations.

The notion of safety has been implicitly introduced in (Damm 1982), but had to wait

until (Knapik, Niwinski, and Urzyczyn 2002) to attract a well-justified attention. Blum

and Ong (Blum and L. Ong 2009) transfer this notion to simply typed λ-calculus without

fixpoints but also to PCF, and study its basic properties. Here we follow this path and

adapt the notion to λY -calculus so that it coincides with that of safety as defined for

schemes.

The present article is a journal version of (Salvati and Walukiewicz 2012).

Organization of the paper. In the next section we introduce the objects of our study:

λY -calculus, recursive schemes, Krivine machine, and collapsible pushdown automata

(CPDA). Section 3 presents translations between recursive schemes and λY -terms. While

the translation from schemes to λY -terms is straightforward, the opposite is less so. This

leads to a useful notion of λY -terms in a canonical form. Syntactically, terms in the

canonical form are in a mid way between λY -terms and recursive schemes. The two

consecutive sections give the two translations from λY -terms to CPDA. The case of safe

λY -terms is also analyzed there.

2. Basic notions

In this preliminary section we introduce the basic objects of interest. We start with

λY -calculus: a simply-typed λ-calculus with a fixpoint combinator. We then recall the

standard notion of the Böhm tree of a λY -term. This permits us to briefly introduce

recursive schemes. Later in this section we present Krivine machines that allow for a

4

more operational way of generating Böhm trees of terms. Finally, we present collapsible

pushdown automata and the trees they generate.

2.1. Simply typed λ-calculus and recursive schemes

Here we present a classical notion of simply-typed λ-calculus with fixpoints: the λY -

calculus. We will look at a λY -term as means of generating a potentially infinite tree:

the Böhm tree of the term (Barendregt 1977). At the end of the subsection we present

recursive program schemes as λY -terms in a restricted form. In this subsection the only

less standard definitions are that of a tree signature and of the complexity of a term

(Definitions 1 and 2). The first is an essential assumption present in all the literature on

recursive schemes. The second introduces a measure on terms that we will use frequently.

The set of simple types T is constructed from a unique basic type 0 using a binary

operation →. Thus 0 is a type and if α, β are types, so is (α→ β). As usual, so as to use

fewer parentheses, we consider that → associates to the right. For example, 0 → 0 → 0

stands for 0→ (0→ 0). We will write 0i → 0 as short notation for 0→ 0→ · · · → 0→ 0,

where there are i + 1 occurrences of 0. The order of a type is defined by: order(0) = 0,

and order(α → β) = max(1 + order(α), order(β)). For a type α = α1 → · · · → αn → 0,

we say that α has arity n, which we may write arity(α) = n.

A signature, denoted Σ, is a set of typed constants, that is symbols with associated

types from T . Of particular interest to us will be constants of types of order 1. Observe

that types of order 1 have the form 0i → 0 for some i. The arity of a constant is the arity

of its type and we may denote the arity of a constant c with arity(c).

Definition 1. Tree signature is a signature where all constants have order at most 1.

In the sequel of the paper we shall only consider tree signatures, so we always assume

that constants have a type with order at most 1.

The set of simply-typed λY -terms is defined inductively as follows. A constant of type

α is a term of type α. For each type α there is an infinite countable set of variables

xα, yα, . . . that are also terms of type α. If M is a term of type β and xα a variable of

type α then λxα.M is a term of type α→ β. If M is a term of type α and xα is a variable

of type α, then Y xα.M is a term of type α. Finally, if M is of type α→ β and N is a term

of type α then (MN) is a term of type β. The order of a term order(M) is the order of its

type. In the sequel we often omit the typing decoration of variables and the unnecessary

parentheses following the usual conventions. For technical convenience we do not use Y

as a term per se, but as a variable binder. This slight modification of the syntax will not

affect the computational power of the λY -calculus. The notion of free variable is defined

as it is usual, and we write FV (M) for the set of free variables of the term M . A term

M is closed when it has no free variables, i.e. when FV (M) = ∅. We write M [N/x] for

the capture-avoiding substitution of N for the free occurrences of x in M . We may write

M [N1/x1, . . . , Np/xp] for the simultaneous capture-avoiding substitutions of Ni for the

free occurrences of the xi in M .

The usual operational semantics of the λ-calculus is given by β-contraction (→β). To

5

give the meaning to the Y -binder we use δ-contraction (→δ). These are defined by the

rewriting rules:

(λx.M)N →β M [N/x] Y x.M →δ M [Y x.M/x] .

We write →∗βδ for the reflexive and transitive closure of the sum of the two relations. It

is called βδ-reduction. This relation defines an operational equality on terms. We write

=βδ for βδ-conversion, the smallest equivalence relation containing →∗βδ.
We now define the central notion of complexity of λ-terms. This is the principal pa-

rameter bounding the length of reductions in terms. As we will see later this parameter

translates into an order of the stack of the simulating CPDA.

Definition 2. Given a term M we define sub(M) to be the set subterms of M . It is

defined inductively as: sub(λx.M) = {λx.M}∪sub(M); sub(Y x.M) = {Y x.M}∪sub(M),

sub(MN) = {MN} ∪ sub(M) ∪ sub(N), sub(x) = {x} and sub(c) = {c}.
The complexity of a term M , denoted comp(M), is the maximal order of the type of

a subterm of M : max{order(N) | N ∈ sub(M)}.
The variable complexity of a term M , denoted vcomp(M), is the maximal order of a

variable occurring in M (it is 0 if M contains no variables).

For example, consider the term M = Y x0. ax0x0. The set of its subterms is sub(M) =

{M,ax0x0, ax0, a, x0}, moreover comp(M) = 1 and vcomp(M) = 0. As another example

take M ′ = Y x0→0. λy0. y0. We have comp(M ′) = 1, as Y is not a subterm of M ′. At the

same time vcomp(M ′) = 1 too because of the variable x.

Having two measures of complexity allows us to give precise bounds in our results.

Fortunately, in most contexts of this paper the two are the same, so they can be confused

without much harm. Indeed, when M of type 0 is in β-normal form and vcomp(M) > 0

then vcomp(M) = comp(M). So, roughly, comp is a good measure for all terms, and

vcomp is more precise for terms in β-normal form. Notice that, when vcomp(M) = 0

we may have comp(M) = 1. This is due to occurrences of constants, as in the term

Y x0.ax0x0.

Lemma 3. Let M be a λY -term of type 0 and in β-normal form. If vcomp(M) > 0 then

vcomp(M) = comp(M).

Proof. Since every variable occurring in M is a subterm of M we get vcomp(M) ≤
comp(M). We now prove that every subterm N of M is such that order(N) ≤ vcomp(M).

For this, let us call rigid, the subterms of M which have the form PN1 . . . Nk (k can

be 0) where P is either a constant c, a variable x, or a term of the form Y x.Q. By

induction on the size of a rigid subterm N of M we prove that for all subterms N ′ of N :

order(N ′) ≤ vcomp(M). The lemma is a consequence of this property since M is rigid

as M is in β-normal form and of type 0.

In case P is a constant, we have order(N) ≤ 1 and as, by assumption, vcomp(M) > 0

we have order(N) ≤ vcomp(M). Since order(Ni) = 0 for all 1 ≤ i ≤ k, and since M is

in β-normal form, all the Ni’s must be rigid. By induction hypothesis we obtain that all

the subterms N ′ of N satisfy order(N ′) ≤ vcomp(M).

If P is a variable x or a term Y x.Q then order(N) ≤ order(x) ≤ vcomp(M). As M

6

is in β-normal form, Ni = λx1 . . . xki .N
′
i where N ′i is rigid. By induction hypothesis, we

have that all the subterms of N ′i have order smaller than vcomp(M). Since all terms Ni
have order smaller than order(x) we can conclude.

Another usual reduction rule is η-contraction (→η) defined by the rewriting rule:

λx.Mx→η M when x is not in the set FV (M) of free variables of M .

Following our naming conventions, η-reduction and η-conversion are, respectively, the

reflexive transitive closure, and the symmetric reflexive transitive closure of η-contraction.

We will not use η-contraction in this paper, but we introduce it so as to explain a

particular syntactic presentation of simply typed λY -terms. It is customary in simply

typed λ-calculus to work with terms in η-long forms that have a convenient property of

syntactically reflecting the structure of their typing. A term M is in η-long form when

each of its subterms is either of type 0, or starts with a λ-abstraction, or is applied to an

argument in M . It is known that every simply typed term is η-convertible to a term in

η-long form.

For example, the term M = λx0→(0→0)→0λy0. x0→(0→0)→0y0 is not in η-long form.

Indeed the subterm xα→(α→β)→βyα has type (0→ 0)→ 0, but it is not a λ-abstraction,

and it is not applied to an argument in M . Its η-long form is

M ′ = λx0→(0→0)→0λy0λz0→0. x0→(0→0)→0y0(λu0.z0→0u0) .

We can remark that the subterm xα→(α→β)→βyα receives (λu0.z0→0u0) as an argument

in M ′ and that every subterm of M ′ satisfies the required properties for M ′ to be in

η-long form.

The operational semantics of the λY -calculus is the βδ-reduction. It is well-known

that βδ-reduction is confluent and enjoys subject reduction (i.e. the type of terms is

invariant under computation). So every term has at most one normal form, but due to

δ-reduction there are terms without a normal form. It is classical in the theory of λ-

calculus to consider a kind of infinite normal form that by itself is an infinite tree, and

in consequence is not a term of λY -calculus (Barendregt 1977; Dezani-Ciancaglini et al.

1998; Barendregt and Klop 2009). We define it below.

A Böhm tree is an unranked, ordered, and potentially infinite tree with nodes labeled

by terms of the form λx1. . . . xn.N (we may write such a label λ−→x .N) where N is a

variable or a constant (the sequence of λ-abstractions can be empty); or the symbol ωα

that denotes the undefined Böhm tree of type α. So for example x0, ω0 are labels, but

λy0.x0→0 y0 and λx.ω0 are not.

Definition 4. A Böhm tree of a term M is obtained in the following way.

— If M →∗βδ λ
−→x .N0N1 . . . Nk with N0 a variable or a constant then BT (M) is a tree

having root labeled by λ−→x .N0 and having BT (N1), . . . , BT (Nk) as subtrees.

— Otherwise BT (M) = ωα, where α is the type of M .

Notice that the confluence of→∗βδ, known as the Church-Rosser property, guaranties that

for every term M , BT (M) is uniquely defined.

Observe that a term M has a βδ-normal form if and only if BT (M) is a finite tree

7

with no occurrence of ω. In this case the Böhm tree is just another representation of the

normal form. Unlike in the standard theory of the λ-calculus we will be rather interested

in terms with infinite Böhm trees.

Recall that in a tree signature all constants are of order at most 1. A closed term in

normal form of type 0 over such a signature is just a finite tree, where constants of type

0 are in leaves and constants of a type 0k → 0 are labels of inner nodes with k children.

The same holds for Böhm trees:

Lemma 5. If M is a closed term of type 0 over a tree signature then BT (M) is a

potentially infinite tree whose leaves are labeled with constants of type 0 (possibly ω0)

and whose internal nodes with k children are labeled with constants of type 0k → 0.

Higher-order recursive schemes use a somehow simpler syntax: the fixpoint operators

are implicit and so is the λ-abstraction. A recursive scheme over a finite set of nontermi-

nals N is a collection of equations, one for each nonterminal. A nonterminal is a typed

functional symbol. On the left side of an equation we have a nonterminal, and on the

right side a term that is its meaning. For a formal definition we will need the notion of an

applicative term, that is a term constructed from nonterminals λ-variables and constants

using the application construction. More precisely, fixing a finite set of nonterminals N ,

the set of applicative terms over N , is the smallest set of λ-terms containing all the

nonterminals of N , all λ-variables and all constants; if M and N are applicative terms

respectively of type α → β and β then (MN) is in an applicative term of β. Let us fix

a tree signature Σ, and a finite set of typed nonterminals N . A higher-order recursive

scheme is a function R assigning to every nonterminal F ∈ N , a term λ−→x .MF where: (i)

MF is an applicative term over N , (ii) the type of λ−→x .MF is the same as the type of F ,

and (iii) the free variables of MF are among −→x . Sometimes we will say that right hand

sides of a scheme are applicative terms, although more precisely they are applicative

terms preceded by a sequence of λ-abstractions.

Definition 6. The order of a scheme R is the maximal order of the type of its nonter-

minals. We write order(R) for the order of R.

For example, the following is a scheme of the map function that applies its first argument

f to every element of the list l given as its second argument.

map(0→0)→0→0 ≡ λf0→0.λl0. if(eqnil l) nil (cons(f(head l))) (map f (tail l)) (1)

It is a scheme of order 1 which can be seen as the syntactic abstraction of the ML

program for the map function where the if . . . then . . . else . . . construct is abstracted

with the syntactic ternary tree constructor if and the operations on lists are abstracted

with the syntactic tree constructors cons, nil, head, tail and eqnil. These constructors

respectively represent the operations that push an element in front of a list; the empty

list; the extraction of the top-most element of a list; the operation that removes the

top-most element of a list; and the test of whether a list is empty or not.

We will not recall formally here a rather lengthy definition of a tree generated by a

recursive scheme referring the reader to (Knapik, Niwinski, and Urzyczyn 2002; Damm

1982). But so as to give an overall idea to the reader, a scheme defines a rewriting system

8

over applicative terms; indeed, given a non-terminal F of type α1 → · · · → αn → 0 to

which the scheme assigns the term λx1 . . . xn.MF , if FN1 . . . Nn occurs in an applicative

term M , then M may be rewritten in M ′ obtained by replacing that occurrence of

FN1 . . . Nn in M by MF [N1/x1, . . . ,Mn/xn]. Applying those rewriting from the starting

symbol of the scheme we obtain in the limit the infinite tree generated by the scheme.

This definition is sound thanks to the confluence of the rewriting relations induced by

schemes. As we shall remark, this infinite tree can simply be seen as the Böhm tree of a

term obtained from the translation presented in Section 3.1.

2.2. Krivine machines

A Krivine machine (Krivine 2007), is an abstract machine that computes the weak head

normal form of a λ-term. For this it uses explicit substitutions, called environments.

Environments are functions assigning closures to variables, and closures themselves are

pairs consisting of a term and an environment. This mutually recursive definition is

schematically represented by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x 7→ C] .

As in this grammar, we will use ∅ for the empty environment. The notation ρ[x 7→ C]

represents the environment which associates the same closure as ρ to variables except for

the variable x that it maps to C. We require that in a closure (M,ρ), the environment is

defined for every free variable of M . Intuitively such a closure denotes a closed λ-term:

it is obtained by substituting for every free variable x of M the λ-term denoted by the

closure ρ(x). When ρ(x) = C, we say that ρ binds C to x. Given a closure (M,ρ), we say

that it has type α when M has type α.

A configuration of the Krivine machine is a triple (M,ρ, S), where M is a term, ρ is

an environment, and S is a stack. A stack is a sequence of closures. By convention the

topmost element of the stack is on the left. The empty stack is denoted by ε. The rules

of the Krivine machine are as follows:

(λx.M, ρ, (N, ρ′)S)→(M,ρ[x 7→ (N, ρ′)], S)

(MN, ρ, S)→(M,ρ, (N, ρ)S)

(Y x.M, ρ, S)→(M,ρ[x 7→ (Y x.M, ρ)], S)

(x, ρ, S)→(M,ρ′, S) when ρ(x) is defined

and equal to (M,ρ′)

Note that the machine is deterministic. We will write (M,ρ, S) →∗ (M ′, ρ′, S′) to say

that the Krivine machine goes in some finite number of steps from configuration (M,ρ, S)

to (M ′, ρ′, S′).

Intuitions behind the rules are rather straightforward. The first rule says that in order

to evaluate an abstraction λx.M , we should look for the argument at the top of the

stack, then we bind this argument to x, and calculate the value of M . To evaluate an

application MN we create a closure out of N and the current environment so as to be

able to evaluate N correctly when necessary and put that closure on the stack; then we

9

continue to evaluate M . The rule for Y x.M simply amounts to bind the variable x in

the environment to the current closure of Y x.M and to calculate M . Finally, the rule for

variables says that we should take the value of the variable from the environment and

should evaluate it; the value is not just a term but a closure: a term with an environment

giving the right meanings to the free variables of the term.

We will be only interested in configurations accessible from (M, ∅, ε) for some closed

term M of type 0. Every such configuration (N, ρ, S) enjoys very strong typing invariants

summarized in the following definition and lemma.

Definition 7. Given M a term of type 0, an environment ρ is M -correct when for every

variable xα, if ρ(xα) is defined, then ρ(xα) is a closure (N, ρ′) of type α that is M -correct,

meaning that:

1 N is in sub(M),

2 ρ′ is M -correct, and

3 for every variable y, if y ∈ FV (N), then ρ′(y) is defined.

A configuration of a Krivine machine (N, ρ, S) is M -correct when:

1 (N, ρ) is an M -correct closure, and

2 if N has type αn → · · · → α1 → 0, then S = Cn . . . C1 and the closures Ci are

M -correct and have types αi.

Lemma 8. If M is a simply typed term of type 0, given two configurations (N1, ρ1, S1)

and (N2, ρ2, S2) so that (N1, ρ1, S1) → (N2, ρ2, S2), if (N1, ρ1, S1) is M -correct, then

(N2, ρ2, S2) is also M -correct.

Let us explain how to use Krivine machines to calculate the Böhm tree of a term (cf.

Figure 1). For this we define an auxiliary notion of a tree constructed from a configuration

(M,ρ, ε) where M is a term of type 0 over a tree signature. (Observe that the stack should

be empty when M is of type 0.) We let KTree(M,ρ, ε) be the tree consisting only of a

root labeled with ω0 if the computation of the Krivine machine from (M,ρ, ε) does

not terminate. If it terminates then (M,ρ, ε) →∗ (b, ρ′, (N1, ρ1) . . . (Nk, ρk)), for some

constant b. In this situation KTree(M,ρ, ε) has b in the root and for every i = 1, . . . , k it

has a subtree KTree(Ni, ρi, ε). Due to typing invariants and since we are working with

a tree signature, we have that the constant b must have type 0k → 0. In consequence all

terms Ni have type 0.

Definition 9. For a closed term M of type 0 we let KTree(M) be KTree(M, ∅, ε) where

∅ is the empty environment, and ε is the empty stack.

The next lemma says what KTree(M) is. The proof is immediate from the fact that

Krivine machine performs head reduction.

Lemma 10. For every closed term M of type 0 over a tree signature: KTree(M) =

BT (M).

Example 1. We give a very simple illustration of the computation of a Böhm tree by

10

*

* *

Fig. 1. Computation of Krivine machine and the resulting KTree(M,ρ, ε).

the Krivine machine. We compute the Böhm tree of the term M defined as follows:

M =
(
λy. (λgx. Y f. gx)ay

)
e

For readability we adopt the following shorthands:

M = (λy.N)e, N = Pay, P = λgx.Y f.gx

We take this example because it illustrates all the reduction rules of the Krivine machine.

It also gives us the opportunity to introduce a graphical representation of configurations

of the Krivine machine. The reduction sequence is presented in Figure 2 (as expected,

the order of execution is represented from left to right and top to bottom).

In the pictures of Figure 2, a closure (Q, ρ) is represented by a node labeled by Q

followed to the right by boxes containing the variables bound in ρ. Each variable-box

is linked to the closure it is bound to. This closure is drawn lower in the graph. When

there are no such box on the right, it means that the environment is empty. Finally a

configuration (Q, ρ,Cn . . . C1) is represented similarly to a closure, it is represented by a

node labeled Q followed by variable-boxes but also by numbered boxes, the box numbered

i is linked to the representation of the closure Ci. So as to make the representation

sufficiently compact to fit in the paper, we allowed ourselves to make different variables

point to the same closure. This graphical sharing is just an artifact of the presentation

and even though implementations of the Krivine machines perform some sharing, it is

not in general maximal as in our representation.

To make it clear how to interpret those graphical representations as configurations, we

have written the six first configurations below their representations.

The ten first configurations correspond to the computation of the label of the root

of the Böhm tree. Indeed the tenth configuration is of the form (a, ρ, (x, ρ′)). This tells

us that the root of KTree(M, ∅, ε) is labeled by a. The eleventh configuration, (x, ρ′, ε),

11

starts the computation of the daughter of the root that is simply given by the thirteenth

configuration and is e. The Böhm tree of M is therefore

a

e .

2.3. Collapsible pushdown automata

Collapsible pushdown automata (CPDA), are like standard pushdown automata, except

that they work with a higher-order stack, and can do a collapse operation. We will first

introduce higher-order stacks and operations on them. Then we will define collapsible

pushdown automata, and explain how they can be used to generate infinite trees. In this

subsection we fix a tree signature Σ.

A stack of order m is a stack of stacks of order m− 1. Let Γ be a stack alphabet. An

order 0 stack is a symbol from Γ. An order m stack is a nonempty sequence [S1 . . . Sl]

of order (m − 1) stacks. A higher-order stack is a stack of order m for some m. The

topmost element of an m-stack S, top(S), is S if m = 0, and the topmost element of the

topmost (m − 1)-stack of S otherwise. We write Ord(S) = m to denote the fact that S

is an m-stack.

Collapsible pushdown automaton of order m (m-CPDA) works with m-stacks. Symbols

on stacks are symbols from Γ with a superscript that is a pair of numbers, written ai,k.

As we will see below, this superscript is a recipe for the collapse operation: it means to

do k-times the operation popi. So k may be arbitrary large but i ∈ {1, . . . ,m}. We call

such a superscript a pointer of order i. By abuse of notation top(S) will, most of the

time (apart in the definition of the collapse operation), refer to a rather than to ai,k.

The operations on a stack of order m are indexed by their order i ∈ {1, . . . ,m} when

needed. We have popi, copy i, pusha,i for a ∈ Σ, and collapse. On a stack S = [S1 . . . Sl+1]

of order j ≥ i these operations are defined as follows:

popi(S) =

{
[S1 . . . Sl] if i = Ord(S) and

[S1 . . . Sl popi(Sl+1)] otherwise

copy i(S) =

{
[S1 . . . SlSl+1 S

�i
l+1] if i = Ord(S)

[S1 . . . Sl copy i(Sl+1)] if i < Ord(S)

Here S�il is Sl with all the superscripts (i, ki), for some ki, replaced by (i, ki + 1). Usually

the operation copy1 is not allowed in the definition of CPDA. Here we allow it, but it

does not change the expressive power of CPDA.

pusha,i(S) =

{
[S1 . . . SlSl+1a

i,1] if Ord(S) = 1

[S1 . . . Sl pusha,i(Sl+1)] otherwise

So we can push new elements only on the topmost order 1 stack: the copy operation

allows one to replicate a stack of a given order and is thus responsible for the creation

of stacks of order strictly greater than 1. Observe that with a push operation we also

12

(M, ∅, ε) (λy.N, ∅, (e, ∅)) (N, ρ, ε)

(Pa, ρ, (y, ρ)) (P, ρ, (a, ρ)(y, ρ)) (λx.Y f.gx, ρ[g 7→ (a, ρ)], (y, ρ))

M = (λy.N)e, N = Pay, P = λgx.Y f.gx and

ρ is the environment such that ρ(y) = (e, ∅).

Fig. 2. Computation of the Krivine machine from the configuration (M, ∅, ε)

specify the order of the pointer that is attached to the letter we put on the stack.

collapse(S) = popki (S) where top(S) = ai,k, for some a ∈ Γ

13

*

* *

Fig. 3. Computation of CPDA and the resulting CTree(M,ρ, ε).

We write popki (S) as a shorthand for applying k times the operation popi to S. Thus,

the collapse operation performs the popi operation k times, where k and i are specified

by the pointer, i.e. superscripts attached to the topmost letter of the stack.

A CPDA of order m is a tuple A = 〈Σ,Γ, Q, q0, δ〉, where Σ is the tree signature, Γ is

the stack alphabet, Q is a finite set of states, q0 is an initial state, and δ is a transition

function:

δ : Q× Γ→ (Q×Opm(Γ)) ∪
⋃
b∈Σ

({b} ×Qarity(b)) .

where Opm(Γ) is the set of stack operations of order m obtained by composing popi,

copy i, pusha,i and collapse with 1 ≤ i ≤ m and a ∈ Γ.

The idea is that a state and a top stack symbol (without its superscript pair of numbers)

determine either a stack operation or a constant that the automaton is going to produce.

The arity of the constant determines the number of new branches of the computation of

the automaton. As usual, we will suppose that there is a symbol ⊥ ∈ Γ used to denote

the bottom of the stack. We will also denote by ⊥ the initial stack containing only ⊥.

We now explain how a CPDA A produces a tree when started in a state q with a stack

S. We let CTree(q, S) to be a the tree consisting of only a root labeled ω0 if from (q, S)

the automaton does an infinite sequence of stack operations. Otherwise from (q, S) after

a finite number of stack operations the automaton arrives at a configuration (q′, S′) with

δ(q′, top(S′)) = (b, q1, . . . , qk) for some constant b. In this situation CTree(q, S) has the

root b and for every i = 1, . . . , k it has CTree(qi, S
′) as a subtree (Figure 3).

Definition 11. For a CPDA A we let CTree(A) be CTree(q0,⊥); where q0 is the initial

state of A, and ⊥ is the initial stack.

14

3. From recursive schemes to λY -calculus and back

We present a translation of recursive schemes to λY -terms such that the tree generated

by a scheme is a Böhm tree of a term obtained from the translation (Lemma 12). We also

show how λY -terms can be translated into schemes (Theorem 19). The latter translation

is an inverse of the first one in a sense that composed together the two translations do

not increase the order of the scheme. To obtain this property we need to have a closer

look at the structure of λY -terms, and introduce a notion of canonical form. This form

will be also very useful in the context of CPDA in later sections.

3.1. From recursive schemes to λY -calculus

The translation from a recursive scheme to a λ-term is given by a standard variable

elimination procedure, using the fixpoint binder Y . Suppose R is a recursive scheme over

a set of nonterminals N = {F1, . . . , Fn}. The term Tn representing the meaning of the

nonterminal Fn is obtained as follows:

T1 =Y F1.R(F1)

T2 =Y F2.R(F2)[T1/F1]

...

Tn =Y Fn.(. . . ((R(Fn)[T1/F1])[T2/F2]) . . .)[Tn−1/Fn−1]

(2)

The translation (2) applied to the recursion scheme for map (c.f. (1) p. 8) gives a term:

Y map(0→0)→0→0.λf0→0.λl0. if (eqnil l) nil
(
cons (f(head l))) (map f (tail l))

For completeness we state the equivalence property. Anticipating contexts where the

order of a scheme or a term is important let us observe that the complexity of the term

obtained from the translation may be smaller than the order of the scheme.

Lemma 12. Let R be a recursion scheme and let Fn be one of its nonterminals. A term

Tn obtained by the translation (2) is such that BT (Tn) is the tree generated by the

scheme from nonterminal Fn. Moreover vcomp(Tn) ≤ order(R).

The reason why we have vcomp(Tn) ≤ order(R) and not vcomp(Tn) = order(R) is that

in a schemeR there may be nonterminals that are not accessible from the starting symbol

and that the process described in (2) may erase certain non-accessible nonterminals. We

use vcomp instead of comp in the above lemma, but the two are almost the same since

Tn is in β-normal form (cf. Lemma 3).

Let’s take the scheme defined by the equations:

S ≡ Ab

A ≡ λx.ax(Ax)

B ≡ λf.fI

I ≡ λx.x

15

The λY -term that we obtain by applying the translation (2) is the term

M = Y S.(Y A.λx.ax(Ax))b .

While M has variable complexity 1, the scheme has order 2 because of the non-accessible

nonterminal B. Of course, for schemes where all nonterminals are accessible, the variable

complexity of the λY -term obtained from translation (2) is equal to the order of the

scheme.

3.2. From λY -calculus to recursive schemes

As already noted by Damm (Damm 1982), recursive schemes are a representation of the

whole λY -calculus. Yet we think that it is very instructive to spell out a translation. We

are actually going to present two translations. The first one will be rather straightforward

and will not assume any particular property of λY -terms that it transforms. However

it will not be dual to the one from Lemma 12 above in the sense that applying the

two translations one after another can increase the order of a scheme by 1. To obtain

a dual translation we will first need to transform a λY -term into a form that we call

canonical. As we will see later, the translation from Lemma 12 produces directly a term

in a canonical form. We will present a translation of canonical terms into schemes that

gives a scheme of the expected order: translating a scheme to a λY -term using Lemma 12

and back to scheme does not increase the order (Theorem 19).

For the first translation we assume that the bound variables of M are pairwise distinct

and that they are totally ordered; thanks to this total order, we associate to each subterm

N of M the sequence of its free variables SV (N), that is the set of free variables of N

ordered with respect to that total order. We then define a recursive scheme RM whose

set of nonterminals is NM = {〈N〉 | N ∈ sub(M)}; if 〈N〉 is in NM , SV (N) = xα1
1 . . . xαnn

and N has type α, then 〈N〉 has type α1 → · · · → αn → α. Each element 〈N〉 of NM
determines a single equation in RM as described in following this table:

Term The associated equation

y 〈y〉 ≡ λy.y

a 〈a〉 ≡ a

N1N2 〈N1N2〉 ≡ λ−→x .〈N1〉−→y (〈N2〉−→z)

where SV (N1N2) = −→x , SV (N1) = −→y and SV (N2) = −→z

λy.P 〈λy.P 〉 ≡ λ−→x y.〈P 〉−→z where SV (λy.P) = −→x and SV (P) = −→z

Y x.P 〈Y x.P 〉 ≡ λ−→z .〈P 〉−→z1(〈Y x.P 〉−→z)−→z2

when x ∈ FV (P), SV (Y x.P) = −→z and SV (P) = −→z1x
−→z2

Y x.P 〈Y x.P 〉 ≡ λ−→z .〈P 〉−→z when x /∈ FV (P) and SV (P) = −→z

The next lemma summarizes the properties of the translation. We omit the proof: it

follows directly from the definitions.

16

Lemma 13. For every term M the tree generated from nonterminal 〈M〉 by RM defined

in the table above is identical to BT (M). The order of RM is at most comp(M) + 1.

The order of the obtained scheme does not correspond to the order of the translation

from schemes to λY -terms. In principle, each time we compose the two translations, the

order of the scheme we obtain is increased by 1 with respect to the original scheme.

The problem comes from the fact that all the variables in a λY -term are treated

uniformly while nonterminals, that correspond to variables bound by Y in λY -terms, in

schemes have a special treatment.

Example 2. Let’s take the λY -term M = Y x0→0.λz0.a(x0→0z0)e where a and e are

constants with respective types 0 → 0 and 0. The scheme RM obtained by translating

M as described above is:

〈M〉 ≡ 〈Y x0→0.λz0.a(x0→0z0)〉〈e〉
〈e〉 ≡ e

〈Y x0→0.λz0.a(x0→0z0)〉 ≡ 〈λz0.a(x0→0z0)〉〈Y x0→0.λz0.a(x0→0z0)〉
〈λz0.a(x0→0z0)〉 ≡ λx0→0z0.〈a(x0→0z0)〉x0→0z0

〈a(x0→0z0)〉 ≡ λx0→0z0.〈a〉(〈x0→0z0〉x0→0z0)

〈a〉 ≡ a

〈x0→0z0〉 ≡ λx0→0z0.〈x0→0〉x0→0(〈z0〉z0)

〈x0→0〉 ≡ λx0→0.x0→0

〈z0〉 ≡ λz0.z0

While comp(M) = 1, the order of the scheme is 2 because every non-terminal of the form

〈N〉, for N a subterm of M containing both x0→0 and z0, has type (0 → 0) → 0 → 0

which is of order 2.

Example 3. If we now take M = Y x0.ax0x0, the translation will yield the following

scheme:

〈M〉 ≡ 〈axx〉〈M〉
〈axx〉 ≡ λx.〈ax〉x(〈x〉x)

〈ax〉 ≡ λx.〈a〉(〈x〉x)

〈a〉 ≡ a

〈x〉 ≡ λx.x .

The scheme has order 1 since, except 〈M〉, all nonterminals have order 1. Observe that

comp(M) = 1 but vcomp(M) = 0. So even in that case we do not obtain an order

matching that from Lemma 12. This example shows that we should treat in a special

way not only recursive variables but also constants.

As a first step towards obtaining a better translation from terms to schemes we need

to make the distinction between the variables that are bound by a λ and the ones that

are bound by a Y .

17

Definition 14. For each type α the set of variables of type α is partitioned into two

infinite sets: the set of λ-variables and the set of Y -variables which can respectively only

be bound with λ or Y .

We will mark this distinction between λ-variables and Y -variables by writing Y -variables

in boldface font.

From now on we will assume that every Y -variable in a term M is bound at most

once. This means that, given a Y -variable x of M , we can write termM (x) for the unique

subterm Y x.N of M starting with the binder of x. We will omit a subscript M if it is

clear from the context.

Definition 15. The term M is in canonical form when it satisfies the following two

properties:

1 M is in β-normal form: it has no subterms of the form (λx.P)Q.

2 If Y x.N is a subterm of M then all the free variables in N are Y -variables.

It is worth noticing that the translation from schemes to terms we have described in

the previous subsection produces terms in canonical form. We first note an interesting

property of terms in β-normal form over a tree signatures.

Lemma 16. Let M be a term over a tree signature. If M is closed of type 0 and in

β-normal form then for every λ-variable z in M there is a Y -variable x in M such that

order(z) < order(x).

Proof. Since M is closed, the variable z is bound somewhere in M . We proceed by

induction on the depth to which z is bound (more precisely, we here mean the distance

from the root to the node of the λ-abstraction binding z in the syntactic tree of M). As

M is in β-normal form we have two cases:

— the variable z appears in the sequence −→z in a term Y x.(λ−→z .Q). Here we get imme-

diately that order(z) < order(x) from the fact that the type of λ−→z .Q is the same as

the type of x.

— Otherwise z is a variable in one of the sequences −→z1 , . . . , −→zp in a subterm like

P (λ−→z1 .N1) . . . (λ−→zp .Np) where, either P = y, or P = x, or P = Y x.Q. Observe

that P cannot be a constant, since all our constants are of order at most 1 so the

sequences −→z1 , . . . , −→zp would be empty. In case P = y, we have order(z) < order(y).

But the λ-variable y is bound at a shorter depth than z and by induction there is a

Y -variable x such that order(y) < order(x) and therefore order(z) < order(x) which

gives the desired result. In both the cases where P = x and where P = Y x.Q we

obviously have order(z) < order(x).

As expected, every term can be put into a canonical form.

Lemma 17. For every term M over a tree signature and of type 0 there is a term M ′

in canonical form such that BT (M ′) = BT (M) and vcomp(M ′) ≤ vcomp(M).

Proof. Consider a term M0 of type 0. The first step is to normalize M0 with respect

18

to β-reduction without performing δ-reductions. It is well known that simply typed λ-

calculus has the strong normalization property so this procedure terminates. Let M1 be

the resulting term. By definition BT (M1) is the same as BT (M0) and vcomp(M1) ≤
vcomp(M0). Moreover M1 satisfies the first condition of being in a canonical form (cf.

Definition 15).

The second step involves removing λ-variables from fixpoint subterms. We replace,

starting from outermost subterms, every subterm Y xα.P of M1 by Q−→y where

Q = Y zγ .λ−→y .P [zγ−→y /xα] ,

−→y = yβ1

1 . . . yβmm is a sequence of the λ-variables that are free in P , γ = β1 → · · · →
βm → α and zγ is a fresh Y -variable. Notice that the replacement may introduce new free

variables to some subterms. As order(α) ≤ vcomp(M1), and as Lemma 16 implies that the

orders of β1, . . . , βm are strictly smaller than vcomp(M1) we have order(γ) ≤ vcomp(M1).

This transformation thus gives a term M2 such that vcomp(M2) = vcomp(M1). To show

that BT (M2) = BT (M1) it is sufficient to show that Q−→y and Y xα.P have the same

Böhm trees. By the fact that equivalence of Böhm trees is a congruence for λ-calculus

(see (Barendregt 1985)), we will get the desired identity BT (M2) = BT (M1). To obtain

BT (Q−→y) = BT (Y xα.P), let us first remark that:

Q−→y = (Y zγλ−→y .P [zγ−→y /xα])−→y
→δ (λ−→y .P [Q−→y /xα])−→y
→∗β P [Q−→y /xα]).

By iterating this sequence of reduction steps we obtain

Q−→y →∗δβ P [Q−→y /xα])

→∗βδ P [P [Q−→y /xα]/xα]

→∗βδ P [P [. . . [Q−→y /xα] . . .]/xα].

This identity and an easy induction shows that BT (Q−→y) = BT (Y xα.P).

Therefore we have that M2 satisfies all the conditions of being in a canonical form.

Moreover we have BT (M2) = BT (M0) and vcomp(M2) ≤ vcomp(M0).

It remains to present a translation of terms M in canonical form into schemes RM such

that order(RM) = vcomp(M). This is made possible thanks to the distinction between

the two kinds of variables. The scheme obtained by this translation will use λ-abstraction

only for λ-variables of the original λY -term and not, as in the previous translation, for

the Y -variables.

Again we assume that we have a fixed total order on variables in M . For a subterm

N of M , we let λSV (N) be the sequence, ordered according to the fixed total order,

of λ-variables that are free in N . The non-terminals NM of RM are [N] where N is

in isub(M) the set of interesting terms of M . This set is recursively defined as follows:

isub(λx.M) = {λx.M}∪isub(M), isub(Y x.M) = {Y x.M}∪isub(M), isub(aN1 . . . Nn) =

{aN1 . . . Nn} ∪
⋃n
i=1 isub(Ni), isub(x) = {x}, isub(c) = {c}; isub(MN) = {MN} ∪

19

isub(M) ∪ isub(N) (when M is not of the form aN1 . . . Np for some constant a). The

notion of interesting subterms is very similar to the notion of subterm; the only difference

it that when aN1 . . . Nk is a subterm of M then for every i < k, aN1 . . . Ni is not an

interesting subterm of M . This small technical difference is used to avoid the effects of

constants as illustrated in Example 3.

If N has type α and [N] is in NM , then its type will be α1 → · · · → αn → α when

λSV (N) = xα1
1 . . . xαnn . We associate with each element [N] of NM an equation according

to the following table:

Term The associated equation

y [y] ≡ λy.y when y is a λ-variable

x [x] ≡ [term(x)] when x is a Y -variable

aN1 . . . Np [aN1 . . . Nn] = λ−→x .a([N1]−→x1) . . . ([Np]
−→xp) where

λSV (aN1 . . . Np) = −→x , λSV (Ni) = −→xi for i ∈ [1, p].

N1N2 [N1N2] ≡ λ−→x .[N1]−→y ([N2]−→z)

where λSV (N1N2) = −→x , λSV (N1) = −→y , and λSV (N2) = −→z

λy.P [λy.P] ≡ λ−→x y.[P]−→z where y is a λ-variable, λSV (λy.P) = −→x ,

and λSV (P) = −→z

Y x.P [Y x.P] ≡ [P]

Let us compare this translation to the previous one. First, Y -variables are not translated

at all. The case for abstraction is as before but notice that the rule for [Y x.P] is partic-

ularly simple, this is mostly because Y -variables do not need to be passed as parameters

because recursive terms do not contain free λ-variable. There is also a slight modification

in the case of application. When the head of a sequence of applications is a constant, we

do not decompose the applications in the translation. If we would do this then the order

of the obtained scheme would be at least 1 because of the order of constants.

Example 4. Consider the term M = Y x0→0.λz0. a(x0→0z0)e from Example 2 . Notice

that M is in canonical form so that we can use the translation we have just given. The

scheme RM obtained by translating M is then:

[M] ≡ [Y x0→0.λz0a(x0→0z0)][e]

[e] ≡ e

[Y x0→0.λz0a(x0→0z0)] ≡ [λz0.a(x0→0z0)]

[λz0.a(x0→0z0)] ≡ λz0.[a(x0→0z0)]z0

[a(x0→0z0)] ≡ λz0.a([x0→0z0]z0)

[x0→0z0] ≡ λz0.[x0→0]([z0]z0)

[x0→0] ≡ [Y x0→0.λz0a(x0→0z0)]

[z0] ≡ λz0.z0

20

Here the maximal order of a non-terminal of RM is 1 while vcomp(M) = comp(M) = 1.

Example 5. If we take the term M = Y x0. ax0x0 from Example 3, now we would get

the scheme:

[M] ≡ [ax0x0]

[ax0x0] ≡ a[x0][x0]

[x0] ≡ [M]

This scheme is of order 0 as desired since vcomp(M) = 0.

Lemma 18. For every λY -term M of type 0 in canonical form, the scheme RM defined

by the above table generates the tree BT (M), and moreover order(RM) = vcomp(M).

Proof. The proof that the tree generated by RM is BT (M) follows from compar-

ing reduction sequences, and we will not present it here. We are going to explain why

order(R) = vcomp(M). Recall that order(R) is the maximal order of a nonterminal in R
and that vcomp(M) is the maximal order of a variable occurring in M . In case M does

not contain variables, M is a finite term in normal form of type 0 and is thus a finite

tree. Then vcomp(M) = 0 and, obviously, the order of RM is also 0.

In the case vcomp(M) = 0 andM contains occurrences of variables, then from Lemma 16,

we have that M does not contain any λ-abstraction. A simple induction on the structure

of M shows that order(RM) = 0.

Let us now assume that vcomp(M) > 0. By Lemma 16 it must contain a Y -variable and

we know that vcomp(M) = order(x) for some Y -variable x occurring in M . Moreover,

from Lemma 3 we have that for every term N in sub(M), order(N) ≤ order(x). Now

take a nonterminal [N] of RN , and let α the type of N . By definition [N] has type

α1 → · · · → αn → α where α1, . . . , αn are the types of the λ-variables occurring

free in N . From Lemma 16, we get order(αi) < order(x) for all i in [1, n] and, as

order(α) ≤ order(x), we have order(α1 → · · · → αn → α) ≤ order(x). It then follows

that order([N]) ≤ vcomp(M).

Combining Lemma 18 and Lemma 17 we obtain:

Theorem 19. For every closed term M over a tree signature and of type 0 there is

a scheme R generating the tree BT (M) and such that order(R) ≤ vcomp(M). In the

special case when M is in canonical form and vcomp(M) = 0 then R is of order 0 too.

4. From λY -calculus to CPDA

In this section we will show how to construct for a λY -term M0 a CPDA A such that

the tree generated by A, that is CTree(A), is the Böhm tree of M0, i.e, BT (M0). Put

together with the results from the previous section this will also give us a translation

for recursive schemes. The construction uses the characterization of Böhm trees in terms

of computations of the Krivine machine. Thanks to this characterization it is enough to

simulate the Krivine machine using CPDA.

21

The first step will be to change the representation of the configurations of the Krivine

machine. This is done purely for reasons of exposition. Then we will present the construc-

tion of the CPDA A simulating the behaviour of the Krivine machine on a fixed term

M0. From the correctness of the simulation it will follow that CTree(A) = KTree(M0) =

BT (M0) (Theorem 26). The order of the stack of A can be as high as comp(M0) + 1.

Put together with the translation from Lemma 12 this does not give an optimal (with

respect to order) translation from recursive schemes to CPDA. In the following subsec-

tion we explain how to avoid this problem using some simple manipulations on λY -terms

and Krivine machines. In the last subsection we introduce the notion of safe λY -terms

and show that if the translation is applied to such a term then all collapse operations

are actually pop operations. In other words, as in (Carayol and Serre 2012), the general

translation gives directly CPDA that do not use the collapse operation.

For the entire section we fix a tree signature Σ.

4.1. Stackless Krivine machines

From Lemma 8 it follows that the initial term M0 determines a bound on the size of

the stack in reachable configurations of a Krivine machine. Hence one can eliminate the

stack at the expense of introducing auxiliary variables. This has two advantages: the

presentation is more uniform, and there is no confusion between the stack of the Krivine

machine and the stack of the CPDA. From now on we shall call max the bound on the

size of the stack in the configurations reachable from (M0, ∅, ε).
We will use a variable γi to represent the i-th element of the stack of the Krivine

machine. Technically we will need one variable γi for every type, but since this type can

be always deduced from the value we will omit it. With the help of these variables we

can make the Krivine machine stackless. Nevertheless we still need to know how many

elements there are on the stack. This, of course, by Lemma 8, can be deduced from the

type of M , but we prefer to keep this information explicitly for the sake of clarity. So

the configurations of the new machine are of the form (M,ρ, k) where k is the number

of arguments M requires, that is the size of the stack that the usual configuration of the

Krivine machine would have. The new rules of the Krivine machine become:

(λx.M, ρ, k)→(M,ρ[x 7→ ρ(γk)][γk 7→ ⊥], k − 1)

(MN, ρ, k)→(M,ρ[γk+1 7→ (N, ρ)], k + 1)

(Y x.M, ρ, k)→(M,ρ[x 7→ (Y x.M, ρ)], k)

(z, ρ, k)→(N, ρ′′, k) where (N, ρ′) = ρ(z)

and ρ′′ = ρ′[γ1 7→ ρ(γ1), . . . , γmax 7→ ρ(γmax)]

There are two novelties in these rules. The first is in the variable rule where the stack

variables of ρ′ are overwritten with the values they have in ρ. The second one is in the

abstraction rule, where the value of the stack variable is used. Observe that due to the

form of the rules, if x is a normal variable and ρ(x) = (N, ρ′) then N is a normal term

(not a stack variable) and the values associated to stack variables in ρ′ are never going to

22

be used in the computation since, as we already mentioned, each time a closure is invoked

with the variable rule the values of the stack variables are overwritten. Let strip(ρ) denote

the result of removing, recursively, values of stack variables from ρ. This means that for

every normal variable x: strip(ρ)(x) = (N, strip(ρ′)) where ρ(x) = (N, ρ′).

We say that a configuration (M ′, ρ′, k) represents a configuration (M,ρ, S) if

— M ′ = M ,

— ρ = strip(ρ′),

— k is the number of elements on the stack S, and for (Ni, ρi) = ρ′(γi) we have that

(Ni, strip(ρi)) is the i-th element on S for i = 1, . . . , k; with 1 being at the bottom of

the stack. Moreover ρ′(γi) = ⊥ for i > k.

The following simple lemma says that the stackless machine behaves in the same way

as the original one.

Lemma 20. Suppose that (M ′, ρ′, k′) represents (M,ρ, S). There is a transition from

(M ′, ρ′, k′) iff there is a transition from (M,ρ, S). Moreover, if (M ′, ρ′, k′)→ (M ′1, ρ
′
1, k
′
1)

and (M,ρ, S)→ (M1, ρ1, S1) then (M ′1, ρ
′
1, k
′
1) represents (M1, ρ1, S1).

Thanks to this lemma we can use stackless Krivine machines for constructing KTree(M)

(cf. Definition 9) which is no other than BT (M). Moreover, we shall use for configurations

of the stackless Krivine machine the same graphical representations as the one we used in

Example 1. The configuration (M,ρ, k) of a Krivine machine is represented with k boxes

numbered from k to 1, where the box numbered i being linked to the representation of

the closure associated to γi in ρ.

4.2. Simulation

Fix a closed term M0, let m0 = comp(M0) + 1 and let max be the maximal size of

the stack among the configurations of the Krivine machine reachable from (M0, ∅, ε).
We want to simulate the computation of the stackless Krivine machine on M0 by an

m0-CPDA.

The idea is that a configuration (M,ρ, k) will be represented by a state (M,k) of the

machine and ρ will be encoded by the higher-order stack. Since M is a subterm of M0

and k is the number of arguments M has, there are only finitely many states.

The alphabet Γ of the stack of the CPDA will contain elements of the form

(x, γi), (γi, N), (γi,⊥), for i = 1, . . . ,max, (x,N) and spl for l = 1, . . . ,m0.

Here x is a normal variable, γi is a stack variable, N is a subterm of M0, and spl are

special symbols whose only purpose is to make the stack pointers explicit in order to

facilitate the presentation. The meaning of an element (x, γi) is that the value of the

variable x is the same as the value of the stack variable γi, that in turn is determined

by the rest of the stack. Symbols (x,N) and (γi, N) respectively say that the value of x

and γi is N with the environment determined by the stack up to this symbol. Normally

the values will be found on the topmost order 1 stack. But for stack variables we will

sometimes need to follow a stack pointer spl. To define this precisely we will need two

23

auxiliary functions val(z, S) and find(γi, S) that, given a variable z, a stack variable γi
and a stack S return a pair (N,S′) of a term N and a stack S′ that represent respectively

the value of z and the value of γi in S.

val(z, S) =


find(γi, pop1(S)) if top(S) = (z, γi) for some i

(N, pop1(S)) if top(S) = (z,N)

val(z, pop1(S)) otherwise.

find(γi, S) =


(N, pop1(S)) if top(S) = (γi, N)

find(γi, collapse(S)) if top(S) = spl for some l

find(γi, pop1(S)) otherwise.

The first function traverses the top-most order 1 stack looking for a pair determining

the value of the variable z. In case this value is a stack variable, the second function is

called to get to the real value of the variable. The function find looks for a definition of

γi. If it finds on the top of the stack a pair (γi, N), it returns N as a value of γi with the

environment that is represented by the stack just below. If on the top of the stack it sees

an spl pointer then it means that it should do collapse to search for the value. Observe

that the index l is not used; it is there to simplify the proof of the correctness. If none

of these cases holds then the find function continues the search on the top-most 1-stack.

With the help of these two functions it is straightforward to specify the environment

ρ[S] determined by S:

Definition 21. A stack S determines an environment ρ[S] as follows:

ρ[S](x) = (N, ρ[S′]) if (N,S′) = val(x, S) and x is a normal variable

ρ[S](γi) = (N, ρ[S′]) if (N,S′) = find(γi, S) and γi is a stack variable

Observe that ρ[S] is a partial function.

The following simple observation is the central place where the collapse operation is

used. Since the val and find functions use only the pop1 and collapse operations, the

environment represented by a stack is not affected by the copy operations.

Lemma 22. For every d = 2, . . . ,m: if S′ = copyd(S) then ρ[S] = ρ[S′]

Example 6. We start here a running example for this section. We consider the term

S =
(
Y f. λg. g(f(λz.gz))

)
(λx.x) .

As in Example 1, we shorten the presentation by using the following abbreviations:

T = λz. gz P = fT R = Y f. λg. gP I = λx. x S = RI .

The term S is producing a Böhm tree which is ω. Nevertheless, as we are interested in

the relation between the computations of the Krivine machine and CPDA, it allows us

to illustrate most of the interesting cases. We start here by showing in Figure 4 a third

order stack and the representation of the corresponding environment that is obtained

according to Definition 21. The environment of the Krivine machine follows the graphical

24

conventions we used in Example 1. The convention for high-order stacks is that the stacks

of order 1, 3, . . . , 2n+1,. . . , grow upward while the stacks of order 2, 4, . . . , 2n, . . . grow

rightward. Moreover, for the sake of space and readability we write (1), (2), (3), . . . ,

for sp1, sp2, sp3, . . . , (x, 1), (x, 2), (x, 3), . . . for (x, γ1), (x, γ2), (x, γ3), . . . and (1, N),

(2, N), (3, N), . . . for (γ1, N), (γ2, N), (γ3, N), . . . Since only stack variables in the root

environement can ever be accessed by an execution, we will never display stack variables

in other nodes.

T = λz.gz P = fT R = Y f.λg.gP I = λx.x S = RI

Fig. 4. Higher-order stack and the corresponding environment

Now we describe the behaviour of the CPDA simulating the stackless Krivine machine.

Definition 23. Let M0 be a closed term M0 and m0 = comp(M0) + 1. For a variable z

of M0, we define its link order by ll(z) = m0 − order(z) + 1.

We define the m0-CPDA A(M0) whose states are pairs (M,k), where M is a subterm

of M0 and k the number of its arguments (or equivalently, the arity of its type). The

stack S of the CPDA will represent the environment ρ[S] as described above. We define

the behaviour of the CPDA by cases depending on the form of its state. In most cases

they simulate directly the computation rules of the Krivine machine from page 22.

— In a state (z, k):

If ll(z) < m0 + 1,

let (N,S′) = val(z, copy ll(z)(S)), and S′′ = pushsporder(z),ll(z)(S′),

the automaton changes its state to (N, k) and its stack to S′′.

If ll(z) = m0 + 1 then,

let (N,S′) = val(z, S) and S′′ = S′,

the automaton changes its state to (N, k) and its stack to S′′. These operations

implement the search for a value of the variable inside the higher-order stack. The

copy operation is necessary to preserve the arguments of z. In the special case when

25

ll(z) = m0 + 1, the variable z has type 0 so it has no arguments and we do not need

to do a copy operation.

— In a state (λx.M, k)

let S′ = push(x,γk),1(S) and S′′ = push(γk,⊥),1(S′),

the new state is (M,k− 1) and the new stack is S′′. These two operations implement

the assignment to x of the value at the top of the stack: this value is pointed by γk.

Then the value of γk is set to undefined.

— In a state (MN, k)

let S′ = push(γk+1,N),1(S),

the state becomes (M,k+ 1) and the stack S′. So M becomes the head term and the

variable γk+1 gets assigned (N, ρ[S]).

— In a state (Y x.M, k)

let S′ = push(x,Y x.M),1(S),

the state becomes (M,k) and the stack S′. So M becomes the head term, and in the

environment x is bound to the fixpoint term.

— In a state (b, k) with b a constant from Σ of arity k the automaton executes the

transition (b, qfk, . . . , qf1). From a state qfi and stack S it goes to ((Ni, 0), Si) where

(Ni, Si) = find(γi, S). This move implements outputting the constant and going to

its arguments (cf. definition of CTree(A) on page 14)

Let us comment on this definition. The case of (z, k) is the most complicated. Observe

that if order(z) = m0−1 then ll(z) = 2, and if order(z) = 0 then ll(z) = m0+1. The goal

of the copy operation is to preserve the meaning of stack variables. The later push makes

a link to the initial higher-order stack where the values of stack variables can be found.

More precisely we have that if we do S1 = copy ll(z)(S) followed by S2 = pusha,ll(z)(S1)

and S3 = collapse(S2) then S3 = S; in other words we recover the original stack. We

will prove later that the operation val(z, . . .) destroys only the part of the stack of order

< ll(z).

Observe that apart from the variable case, the automaton uses just the push operation.

For the proof of correctness we will need one more definition. We define the argument

order of a higher-order stack S to be the maximal order of types of elements assigned to

stack variables (recall that max is the maximal index of a stack variable).

ao(S) = max{order(Ni) : ρ[S](γi) = (Ni, ρi), and i = 1, . . . ,max}.

We are going to show that the CPDA defined above simulates the computation of the

Krivine machine step by step. In the proof we will show that the stack S of the CPDA

satisfies the following invariant:

For every element spl in S: (Inv)

(i) the collapse pointer at spl is of order d = m0 − l + 1, and

(ii) l > ao(S′) where S′ is the part of S up to this element spl.

This property says that the subscript l of the spl symbol determines the order of the

26

collapse pointer, and that, moreover, l is strictly greater than the orders of the stack

variables stored on the stack obtained by following this pointer. This means that the

orders of these stack variables give an upper bound on the collapse order d since d

depends inversely on l. In other words, for every variable z: the meaning of z is on the

topmost ll(z) stack. This is a very important property as it will ensure that we will not

destroy a stack too much when we look for the value of a variable. The following lemma

states this property formally. It is the central point in the correctness proof.

Lemma 24. Let S be a stack satisfying the condition (Inv). For every variable z, such

that ρ[S](z) is defined, every collapse operation that is used during the computation of

val(z, S) has order strictly smaller than ll(z).

Proof. Let us examine the behaviour of the val function. First, the val function does

a sequence of pop1 operations until it gets to a pair (z,N) for some N or a pair (z, γi)

for some γi. In the first case, since no collapse operation is used to compute val(z, S),

the lemma trivially holds. In the second case, we have that order(γi) = order(z). The

operation find is then started. This operation does pop1 operations until it sees either

a pair (γi, N), in which case the lemma holds trivially, or until it sees spl on the top

of the stack; at that moment it does collapse. Suppose that it does collapse on a stack

S1. We know that the value of γi is defined for S1 since it is defined for S and S1 is

an intermediate stack obtained when looking for the value of γi. Hence, by (Inv)(ii),

l > ao(S1) ≥ order(z). By the invariant (Inv)(i) the collapse done on S1 is of order

m0 − l + 1 < m0 − order(z) + 1 = ll(z). Repeating this argument, we see that during

the val operation the only stack operations are pop1 and collapse of order smaller than

ll(z).

We are ready to prove that the CPDA simulates the stackless Krivine machine.

Lemma 25. Let (M,ρ, k)→ (M ′, ρ′, k′) be two successive configurations of the stackless

Krivine machine. Let S be a higher order stack satisfying the condition (Inv) and ρ[S] =

ρ. From the state (M,k) and the stack S the CPDA A(M0) reaches the state (M ′, k′)

with a stack S′ satisfying (Inv) condition and ρ′ = ρ[S′].

Proof. The only case that is not straightforward is that of variable access. We have:

(z, ρ, k)→ (N, ρ′′, k) where (N, ρ′) = ρ(z) and ρ′′ = ρ′[γ1/ρ(γ1), . . . , γmax/ρ(γmax)]

There are two cases to examine. The simpler one is when order(z) = 0. In this case k = 0,

and in consequence ρ′′ = ρ′. So we do not need to update stack variables. By hypothesis

the CPDA is in the state (z, 0) and ρ = ρ[S]. By definition, the CPDA goes to state

(N, 0) with the stack S′ with (N,S′) = val(z, S). Since ρ(z) = ρ[S](z), by the definition

of ρ[S](z) we have ρ[S′] = ρ′, and we are done.

Now consider the case when order(z) > 0. By hypothesis the CPDA is in the state

(z, k) and ρ = ρ[S]. We recall the operations of the stack machine that are performed

in this case, the automaton goes into the configuration whose state is (N, k) and whose

27

stack is S′′ where:

(N,S′) = val(z, copy ll(z)(S)), and S′′ = pushsporder(z),ll(z)(S′).

By Lemma 22 and the assumption of the present lemma we have that ρ[copy ll(z)(S)] =

ρ[S] = ρ. In particular, ρ(z) = ρ[S](z). By definition of ρ[S] we have (N, ρ′) = (N, ρ[S′]).

Once again by definition of ρ[S′], the meaning of every normal variable in ρ[S′] is the

same as in ρ[S′′].

We need to verify that the meaning of every stack variable is the same in ρ[S′′] and

in ρ[S]. By definition ρ[S′′](γi) = (Ni, Si) where (Ni, Si) = find(γi, S
′′). Then looking

at the meaning of find we have find(γi, S
′′) = find(γi, collapse(S′′)). But then we have

collapse(S′′) = S since by Lemma 24 the value operation can destroy only the part of

the topmost ll(z)-stack.

It remains to show that condition (Inv) holds. The first part of the condition follows

from the definition as ll(z) = m0 − order(z) + 1. The second part of the condition is

clearly satisfied by S′ since it is preserved by the copy operation. Next we do S′′ =

pushsporder (z),ll(z)(S′). By the above, we have that popll(z)(S
′) = S, so ao(S′′) = ao(S).

Now since the stack variables on the stack are the arguments of z we have that for all

i it holds that order(z) > order(Ni) where (Ni, ρi) = ρ(γi). Since ρ = ρ[S] we have

order(z) > ao(S). This shows the second condition.

Theorem 26. Consider terms and automata over a tree signature Σ. For every term

M0 of type 0 there is a CPDA A such that BT (M0) = CTree(A). The order of A is

comp(M0) + 1.

Proof. We let m0 = comp(M0) + 1. Using Lemma 5 we consider KTree(M0) instead

of BT (M0). The tree KTree(M0) starts with the execution of a Krivine machine from

(M0, ∅, ε). By Lemma 20, we can as well look at the execution of the stackless Krivine

machine from (M0, ∅, 0). We take the automatonA(M0) as defined above: by construction

it is an m0-CPDA.

The CTree(A(M0)) starts from the configuration consisting of the state (M0, 0) and

stack ⊥. It is clear that ρ[⊥] = ∅ and ⊥ satisfies the condition (Inv). Repeated appli-

cations of Lemma 25 give us that either both trees consist of the root labeled with ω,

or on the KTree side we reach a configuration (b, ρ, k) and on the CTree side a con-

figuration ((b, k), S) with ρ = ρ[S] and S satisfying Inv. By definitions of both trees,

they will have b in the root and this root will have k subtrees. The i-th subtree on the

one side will be KTree(Ni, ρi, 0) where (Ni, ρi) = ρ(γk+1−i). On the other side it will

be CTree((Ni, 0), Si) where (Ni, Si) = find(γk+1−i, S). We have by definition of ρ[S]

that ρ[Si] = ρi. Since Si is an initial part of the stack S it satisfies the condition (Inv)

too. Repeating this argument ad infinimum we obtain that the trees KTree(M0) and

CTree(A(M0)) are identical.

Example 7. Consider the term S as defined in Example 6. Figure 5 illustrates the com-

putation of A(S), in parallel with that of the stackless Krivine machine. This allows us to

observe how the CPDA simulates the stackless Krivine machine. The current state of the

CPDA is written just above its stack. The first five configurations are consecutive steps of

28

CPDA and illustrate in order: the rule for Y -abstraction, the rule for λ-abstraction, the

rule for application and the rule for searching the value of a variable g with ll(g) ≤ m0.

Finally, the two last configurations (below the double line) illustrate the rule for searching

the value of a variable z when ll(z) = m0 + 1.

4.3. Lowering the order

If we start from a recursive scheme of order m, the translation from Lemma 12 will give

us a term with complexity m (cf. Definition 2). So the construction from Theorem 26

will produce a CPDA working with a stack of order m + 1. Nevertheless, it is possible

to produce an m-CPDA. For this, we adapt the previous method to terms that are

in canonical form (cf Definition 15). We show how to obtain m-CPDA from a term

M in a canonical form with vcomp(M) = m. Recall that every term of complexity m

can be converted to a term in canonical form and of variable complexity at most m

(Lemmas 3 and 17). By Lemma 3 we know that vcomp is a more precise measure than

comp for terms in canonical form. Recall also that a term obtained from a translation

of a recursive scheme of order m is a term in canonical form with variable complexity m

(Definition 15). Thus this new method that works on terms in canonical form allows to

show that m-CPDA can compute the trees of λY -terms of variable complexity m and of

schemes of order m.

As we did when we introduced terms in canonical form, we assume that variables are

partitioned between λ-variables and Y -variables and we write the latter in a boldface

font. We show below that this distinction allows one to store only λ-variables in the

environment. Since by Lemma 16 they have strictly smaller order than the Y -variables,

we get the desired optimization.

We assume that the machine starts in a configuration (M, ∅, ε) where M is a term

in canonical form with pairwise distinct Y -variables. Recall also that we use term(x) to

denote the subterm starting with the binder of x. We replace the rule for the Y -binder

of the stackless Krivine machine (cf. page 22) with two new rules to cater for recursive

variables:

(Y x.P, ρ, k)→(P, ρ, k)

(x, ρ, k)→(term(x), ρ, k) x is a Y -variable

The first rule replaces the original fixpoint rule: the difference is that the value of the

Y -variable x is no longer stored in the environment. The second rule tells us what to do

when we encounter a Y -variable; this is needed since x will not appear in the environment.

It is not difficult to see that for terms in canonical form the two rules faithfully simulate

the original Krivine machine: we simply store only λ-variables in the environment. The

environment is left unchanged in the first rule. This is harmless as all variables that are

free in P are Y -variables. This allows us to implement this rule in the CPDA as a simple

state change with no modification of the stack.

There is one more small special case that requires particular handling. For a term of

complexity 0 we would like to obtain CPDA of order 0, that is a finite automaton. For

29

T = λz.gz P = fT R = Y f.λg.gP I = λx.x S = RI

Fig. 5. Simulation of the stackless Krivine machine by A(S)

this we need to forbid the use of the rule for application for configurations of the form

(aN1 . . . Np, ρ, S).

30

It is easy to adapt the construction of a CPDA from Definition 23 to the new rules. The

first rule is simulated by the change of state from (Y x.P, k) to (P, k) without any change

to the stack. Similarly, the second new rule is simulated by the change of state from

(x, k) to (term(x), k). Finally, when the state is of the form (bN1 . . . Np, k), the CPDA

performs the transition (b,N1, . . . , Np). It is straightforward to check that Lemma 25 still

holds for the modified Krivine machine and for the modified CPDA.

To sum up, starting with a term M of complexity m, Lemma 17 tells us how to ob-

tain a term M ′ in the canonical form so that BT (M ′) = BT (M) and vcomp(M ′) ≤
comp(M ′) ≤ m. As M ′ is in the canonical form and has variable complexity m, by

Lemma 16 the only variables that are of order m are Y -variables. In our modified trans-

lation, the CPDA stores in its stack only λ-variables, and these have order at most m−1.

Hence in Definition 23 we can take m0 = m. We obtain m-CPDA equivalent to M .

In conclusion, if one is only interested in translating recursive schemes to CPDA then

the translation from the previous section can be taken as it is with the exception that

nonterminals are never stored in the environment, as their value is just given by the

scheme. This is summarized in the following theorem.

Theorem 27. Consider terms and automata over a tree signature Σ. For every term M

of type 0 there is a CPDA A such that BT (M) = CTree(A). Moreover the order of A
is vcomp(M). In particular, if M is obtained by the translation (cf. Theorem 19) of a

recursive scheme of order m then A is also of order m.

Example 8. So as to illustrate this new way of evaluating λY -terms we show in Figure 6

the configurations of the CPDA computing the Böhm tree of the term used in Examples 6

and 7. The transitions in Figure 6 are the same as the ones in Figure 5. One can remark

that, when compared to the CPDA presented in Figure 5, the order of the stack is indeed

lowered by 1.

4.4. Relation to safety

As we mentioned in the introduction, the safety restriction has played an important role

in the study of higher-order recursive schemes. At first, Damm (Damm 1982) studied

higher-order recursive schemes using implicitly the restriction of safety. Indeed, Damm

worked with the notion of derived types, which are types of the form αn → · · · → α1 → o

where the types αi are products (possibly empty) of derived types and order(αi+1) =

order(αi)+1. Actually, it is rather easy to show that every type is isomorphic to a derived

type so this form of types is not a restriction in itself. When one considers only schemes

defined with applicative terms though, the requirement that all the types need to be

derived types makes the scheme safe (Miranda 2006). In his original definition Damm

permits the use of λ-abstraction in schemes but then wrongly claims in Corollary 4.12 of

his paper that every scheme can be converted to an applicative scheme using only derived

types. The flaw in Damm’s proof of Corollary 4.12 stems from the unsoundness of the

procedure he proposes to eliminate λ-abstractions; in particular the problem is situated

at the transformation of schemes (with λ-abstraction) into what he calls locally closed

schemes. In consequence, Damm’s work is about safe schemes even though restriction to

31

T = λz.gz P = fT R = Y f .λg.gP I = λx.x S = RI

Fig. 6. Simulation of the stackless Krivine machine that reduces the order

safety in his work is implicit due the restrictions to applicative schemes. A recent result

of Parys (Parys 2012) shows that safety is indeed a restriction in a sense that there

exist schemes that are not equivalent to a safe scheme. The notion of safe schemes has

been made explicit by Knapik, Niwiński, and Urzyczyn (Knapik, Niwinski, and Urzyczyn

2002) who identified the class of safe recursive schemes. They have shown that this class

defines the same set of infinite trees as higher-order pushdown automata. The latter are

as CPDA but without the collapse operation.

In this section we will examine how our translation behaves with respect to safe

schemes. In particular, we are going to see that the collapse operations that are per-

formed during the execution of the CPDA can be eliminated: indeed, the depth of the

collapse pointer will always be 1.

32

It is worth noticing that Blum and Ong (Blum and L. Ong 2009) have extended the

notion of safety from (Knapik, Niwinski, and Urzyczyn 2002) to the simply-typed λ-

calculus in a clear way. Nevertheless, the straightforward adaptation of their notion of

safety to PCF does not yield a satisfactory notion of safe λY -calculus. In particular,

there is no simple translation of safe schemes into this safe λY -calculus. In order to

remedy this the first step is to once again make the distinction between λ-variables and

Y -variables; hence we assume that we are given two disjoint sets of variables λ-variables

and Y -variables. We write nFV (M) for the set of free λ-variables of M .

Definition 28. A term M is superficially safe when for every x in nFV (M), order(M) ≤
order(x).

A term M is almost safe when:

1 if Y x.N is a subterm of M then all the free variables in N are Y -variables.

2 if PQ is a subterm of M , then Q is superficially safe and if P is not an application

(i.e. P is not of the form P1P2) then P is superficially safe.

A term M is safe when it is both almost safe and superficially safe.

A scheme is safe when it associates to each non-terminal F a safe term λ−→x .M (where

M is an applicative term).

Observe that when M is almost safe and contains a subterm PQ, the definition implies

that Q is at the same time superficially safe and almost safe, so that Q needs to be safe.

Moreover, when P is not an application, P is also safe for the same reasons.

The reason why we need to make this distinction between λ-variables and Y -variables

comes from the fact that, without this distinction, it would be unclear how to translate

safe schemes into safe λY -terms. This distinction is actually present implicitly in the

definition of safety for schemes we have given and which is equivalent to the one given

by (Knapik, Niwinski, and Urzyczyn 2002), where, contrary to parameters (λ-variables

in our setting), the nonterminals of schemes (Y -variables in our setting) are not taken

into account. Indeed let us consider a safe scheme where the non-terminal S is of type 0

and the non-terminal F is of type 0→ 0:

S ≡ F a

F ≡ λx.F (b S x)

This scheme would be translated into the term Y S.Ma where M = Y F. λx. F (b S x). But

Y S.Ma is safe only because the unique free variable in M , namely S, is a Y -variable. If S

were a λ-variable, then, as S is of order 1 and M of order 2, M would not be superficially

safe and thus Y S.Ma would not be safe.

Now, it is easy to see that the translation of a safe scheme into a λY -term results in

a safe term and that conversely the translation of a safe λY -term (not necessarily in the

canonical form) results in a safe scheme (cf. Section 3.1).

As in the previous section, we are going to work with terms in canonical form. This

will allow us not to store recursive variables when we will evaluate safe terms. We now

extend the notion of safety to configurations of stackless Krivine machines.

33

Definition 29. An environment ρ is safe when for every x in its domain ρ(x) = (N, ρ′)

is a safe closure, that is N is a safe term and ρ′ is a safe environment.

A configuration of a stackless Krivine machine (M,ρ, k) is safe when M is almost safe,

and ρ is a safe environment, and for every i in [1, k], ρ(γi) is a safe closure.

As expected, safe configurations are closed under reduction (when we take the rule

of Section 4.3 for the execution of the recursion on Y -binders). The proof of the lemma

follows by a direct case inspection.

Lemma 30. If (M,ρ, k) is safe and (M,ρ, k)→ (M ′, ρ′, k′), then (M ′, ρ′, k′) is also safe.

Let us examine the behavior of a CPDA obtained from the translation of a safe term

(Definition 23). Recall that every letter on a higher-order stack has a superscript of the

form (i, k) determining the collapse link. The component i designates the type of the link,

that is the level of the pop operation to be performed. The component k is the depth

of the link, that is how many pop operations should be performed. Clearly, a collapse

operation on a link of depth 1 can be just replaced by a single pop operation. We will

show that the CPDA obtained from the translation of a safe scheme performs the collapse

operation only on links of depth 1 (this does not mean that the stack may not contain

links of greater depth; this means that when the collapse operation is applied, the link

has depth 1).

We will say that a link in a stack S is active from a term N if either: (i) it is collapsed

by the val(x, S) operation for some x ∈ nFV (N), or (ii) it is active in S′ from N ′, where

(N ′, S′) = val(x, S) for some x ∈ nFV (N). Similarly a link in a stack S is active from

a stack variable γi if it is traversed by find(γi, S), or if it is active in S′ from N ′, where

(N ′, S′) = find(γi, S). Finally, we say that a link is active in S from a state (N, k) if it

is active from N or from γi for some i = 1, . . . , k.

It should be clear that a CPDA obtained from our translation traverses only active

links. We show that if we start from a safe λY -term in the canonical form then all

the active links have depth 1. This is a consequence of the following specialization of

Lemma 25 to the safe case.

Lemma 31. Let (M,ρ, k) → (M ′, ρ′, k′) be two successive safe configurations of the

stackless Krivine machine. Let S be a higher order stack such that ρ[S] = ρ, all active

links from (M,k) are of depth 1, and the condition (Inv) is satisfied. From the state

(M,k) and the stack S the CPDA A(M0) reaches the state (M ′, k′) and a stack S′ with

all links in S′ active from (M ′, k′) having depth 1.

Proof. As for Lemma 25, the only nontrivial case is that of variable access. If order(z) =

0 then S′ is obtained by the val operation so the lemma is immediate. Suppose that

order(z) > 0. Let us recall the operations of the CPDA that are performed in this case.

It goes into the configuration ((N, k), S′′) where:

(N,S′) = val(z, copy ll(z)(S)), and S′′ = pushsporder(z),ll(z)(S′).

By Lemma 24 the links traversed by the operation val(z, copy ll(z)(S)) are all of order

strictly smaller than ll(z). Therefore, all the operations performed during the operation

34

val(z, copy ll(z)(S)) are local to the topmost stack of order ll(z). We thus have that

popll(z)(val(z, copy ll(z)(S))) = S and therefore, collapse(S′′) = S.

We are ready to show that all active links are of depth 1. We first consider links from γi
for i in [1, k]. The computation of find(γi, S

′′) starts with the collapse operation, because

the topmost symbol of S′′ is sporder(z). As a consequence, a link that is active in S′′ from

γi is either the link of the topmost symbol sporder(z) which has depth one, or a link that

is active from γi in S which, by hypothesis, has depth one.

Consider now links active from N . Take a variable y ∈ nFV (N). Since N is a safe

term order(y) ≥ order(N) = order(z). By a repeated use of Lemma 24 we show that all

active links in S′′ from y are of order strictly smaller than ll(z). But then, all those links

are in the topmost stack of order ll(z) of S′′ that is created, before the push operation,

by the operation copy ll(z) applied to S. So, since they were already active from z in S,

the depth of those links is one in the topmost stack of order ll(z) of S. They also have

depth one in S′′ since their order is strictly smaller than ll(z) and since the operation

copy ll(z) only increases the depth of links of order ll(z).

Combining this lemma with Theorem 27 we obtain.

Theorem 32. Consider terms and automata over a tree signature Σ. For every safe term

M of type 0 there is a higher-order pushdown automaton without collapse A such that

BT (M) = CTree(A). The order of A is vcomp(M). In particular, if M is obtained by

the translation (cf. Theorem 19) of a safe recursive scheme of order m then A is also of

order m.

5. Another translation

We now present another translation from λY -calculus to CPDAs. This translation is

different in the way it handles the stack of the Krivine machine: by using tuples of terms

the stack will contain at most one element. The translation also differs in the way closures

are represented on the higher-order stack, and the way the values of the variables are

retrieved by the CPDA. This translation is a bit more technical to define but then it is

slightly easier to prove its correctness.

In the first subsection we will use some standard transformations of terms to put them

into a convenient form. In particular, we will introduce product types and use them to

uncurry terms. This will permit to have stacks of size at most 1 in the configurations of

Krivine machine. The second subsection will give a translation working on so prepared

terms, and using the specialized version of the Krivine machine.

5.1. Uncurrying of λ-terms and Krivine machines with product

For this translation, we need to start with a term in η-long form and in canonical form

(see Section 2.1 and Definition 15). We assume that variables are partitioned between

λ-variables and Y -variables and, as we did before, we shall write the latter in a bold-

face font. We then apply a syntactic transformation to terms called uncurrying. With

35

this transformation, we group every sequence of arguments of a term into a tuple. A

consequence is that every term has at most one argument. To do this, we enrich simple

types with a finitary product : given types α1, . . . , αn, we write α1 × · · · × αn for their

product. The counter-part of product types in the syntax of the λ-calculus is given by

the possibility of constructing tuples of terms and to apply projections to terms. For-

mally, given terms M1, . . . , Mn respectively of type α1, . . . , αn, the term 〈M1, . . . ,Mn〉
is of type α1 × · · · × αn. Moreover, given a term M of type α1 × · · · × αn and given

i in [1, n], the term πi(M) is of type αi. Finally, we extend β-reduction with the rule:

πi(〈M1, . . . ,Mn〉)→β Mi. As a shorthand we may write
−→
Np instead of 〈N1, . . . , Np〉. To

reduce the number of cases in definitions and proofs, we also consider terms of type α as

one-dimensional tuples when α is not a type of the form α1 × · · · × αn. Thus for a term

N that has such a type α, the notations π1(N), 〈N〉 and π1(〈N〉) simply denote N .

The notion of order of a type is adapted to types with products as follows: order(0) = 0,

order(γ → α) = max(order(γ) + 1, α) and order(α1 × · · · × αn) = maxi∈[1;n](order(αi)).

The order of a term is the order of its type.

We now define an operation unc that transforms types into uncurried types and η-long

terms in canonical form into uncurried terms:

1 unc(0) = 0,
2 unc(α1 → · · · → αn → 0) = (unc(α1)× · · · × unc(αn))→ 0,
3 unc((Y xα.P)N1 . . . Nm) = (Y xunc(α).unc(P [xunc(α)/xα]))〈unc(N1), . . . , unc(Nm)〉,
4 unc(λxα1

1 . . . xαnn .P) = λzγ .unc(P [π1(zγ)/xα1
1 , . . . πn(zγ)/xαnn]) where P has type 0

and γ = unc(α1)× · · · × unc(αn),
5 unc(πi(z

γ)N1 . . . Nm) = πi(z
γ)〈unc(N1), . . . , unc(Nm)〉,

6 unc(xαN1 . . . Nm) = xα〈unc(N1), . . . , unc(Nm)〉,
7 unc(bN1 . . . Nm) = b unc(N1) . . . unc(Nm).

As the transformation is applied to terms in η-long form, rule 4 is sufficient to deal

with all λ-abstractions. Let us note also that the operation unc produces intermediate

results that are not well-typed; for example, in rules 3 and 4 it substitutes variables

with uncurried types for original variables, leading to a term that is not well-typed. Of

course, in the end, the transformation unc produces a well-typed term; so as to avoid

this drawback, we could have used explicit substitutions in a manner akin to the Krivine

machine, but we have preferred a more direct presentation of the transformation.

Notice that for an uncurried type, γ → 0, we have order(γ → 0) = order(γ) + 1. As

we have already mentioned, the role of uncurrying is to make the stack of the Krivine

machine simple. Indeed with an uncurried term, the stack contains at most one element.

In the translation into CPDA, this makes it easier for the CPDA to retrieve the closure

bound to a variable. In a certain sense the role played by the stack variables γi in the

previous translation is now fulfilled by the projections πi. Observe that we have not

uncurried the type of constants, so that, for a closed term M of type 0, the Böhm tree

of unc(M) is the same as the Böhm tree of M .

Observe that as we have started with an η-long term in canonical form, the term M we

have obtained after uncurrying has the property that every subterm of the form Y x.P

has as free variables only Y -variables. Recall that we use term(x) to denote the subterm

starting with the binder of x.

36

We now adapt the Krivine machine to computing the Böhm tree of terms of the form

unc(M). For this, we slightly change the notion of environments. In the definition of the

Krivine machine in Section 2.2, we considered that environments were functions from

variables to closures. Here, so as to emphasize the way we make CPDA retrieve the

closures associated with variables, we structure the environment of the Krivine machine

as an association list realizing the mapping of a variable to its closure. The Krivine

machine finds the closure associated to a variable by scanning the list representing the

environment. The mutually recursive definition of closures and environments is thus now:

C ::= (M,ρ) ρ ::= ∅ | [x 7→ C] :: ρ .

where :: denotes the operation of appending an element as the head of a list. As a

shorthand, we may write ρ(x) to denote the first closure bound by x in the environment

ρ. The rules of the Krivine machine are now:

(M
−→
Np, ρ, ε) → (M,ρ, (

−→
Np, ρ)) when M is not a constant

(λx.M, σ, (
−→
Np, ρ

′)) → (M, [x 7→ (
−→
Np, ρ

′)] :: ρ, ε)

(πi(x), [x 7→ (
−→
Np, ρ

′)] :: ρ, σ) → (Ni, ρ
′, σ)

(πi(x), [y 7→ (
−→
Np, ρ

′)] :: ρ, σ) → (πi(x), ρ, σ) when x 6= y

(x, ρ, σ) → (term(x), ρ, σ)

((Y x.P), ρ, σ) → (P, ρ, σ)

So as to make precise the relationship between this version of the Krivine machine com-

puting the Böhm tree of uncurried terms, and the Krivine machine we have defined in Sec-

tion 2.2, we define the notion of KPTree(M,ρ, σ) of the Böhm tree computed by the Kriv-

ine machine on uncurried terms from the configuration (M,ρ, σ). If from the configuration

(M,ρ, σ) the machine reaches a configuration (bN1 . . . Nl, ρ, ε) then KPTree(M,ρ, σ) is

the tree whose root is labeled b, and whose subtrees are (in that order) KPTree(N1, ρ, ε),

. . . , KPTree(Nl, ρ, ε). Otherwise KPTree(M,ρ, σ) is ω. Given a closed η-long term M of

type 0 in canonical form, we write KPTree(M) for KPTree(unc(M), ∅, ε). The following

lemma gives the expected equivalence result. We omit the proof which relies on the usual

isomorphism between curried and uncurried terms.

Lemma 33. Given a closed η-long term M of type 0 in canonical form, we have that

KTree(M) = KPTree(M).

5.2. Simulation

We fix for this section a term M0 in η-long and canonical form and we let m0 =

vcomp(M0). We are going to construct an m0-CPDA B(M0) = (Σ,Γ, Q, F, δ) gener-

ating KPTree(M0) (hence, BT (M0) thanks to Lemmas 10 and 33). The main part of the

construction of B(M0) consist in representing the environment of the Krivine machine

directly in the higher-order stack. The topmost 1-stack represents the sequence of vari-

ables that the environment is binding and the closure associated to those variables can be

accessed using the collapse operation. In turn, a closure is represented by a higher-order

stack whose top-element is the term of the closure while the environment of the closure

37

is represented by the stack simply obtained by poping this top-element. The λ-variables

with the highest type order (of order m0 − 1 by Lemma 16) have a special treatment:

the closure they are bound to is represented in the same 1-stack, and this closure can be

retrieved simply using the pop1 operation (or equivalently using a collapse on a link of

order 1).

The stack alphabet Γ of B(M0) is the set of λ-variables of M0 together with tuples

of terms that are arguments of some subterm of M0. The set Q of states of B(M0) is

the set of subterms of M0. Before we give the transition rules of B(M0), we explain the

way the environment of the Krivine machine is represented as a higher-order stack. We

are going to define the function val [to make a parallel with the function val of the first

translation. Here, instead of being applied to a variable and a higher-order stack it is

applied to a variable being projected and a higher-order stack:

val [(πi(z), S) =


(Ni, pop1(S′)) if top(S) = z, S′ = collapse(S)

and top(S′) =
−→
Nl

val [(πi(z), pop1(S)) if top(S) = y 6= z and order(y) < m0 − 1

val [(πi(z), pop1(pop1(S))) if top(S) = y 6= z and order(y) = m0 − 1

Therefore to find the value associated to πi(z), it suffices do the following steps:

1 search in the topmost first-order stack the first occurrence of z with the pop1 opera-

tion,

2 use the collapse operation to access the closure assigned to z,

3 use the index of the projection to select the appropriate term in the tuple on the top

of the stack obtained after collapse,

4 and finally erase that tuple from the stack using the pop1 operation to get the envi-

ronment from the closure.

Notice that when we scan the topmost first order stack and we encounter a variable

of order m0 − 1 that we need to skip, then, this skipping requires one to use the pop1

operation twice instead of just once as in the other cases. This is due to the fact that the

closures associated to variables of order m0 − 1 are represented in the same stack as the

environment.

We are representing the environment of the Krivine machine as a sequence of variables

bound to closures. Let us see how to retrieve this sequence from a higher-order stack. So

given a higher-order stack S the environment associated to S, ρ[S] is:

1 if top(S) = xα then ρ[S] = [xα 7→ (
−→
Nl, ρ2)] :: ρ1 where:

(a) ρ1 =

{
ρ[pop1(pop1(S))] when order(α) = m0 − 1

ρ[pop1(S)] otherwise

(b)
−→
Nl = top(collapse(S))

(c) ρ2 = ρ[pop1(collapse(S))].

2 ρ = ∅ otherwise.

Notice that, unsurprisingly, the way closures are constructed in ρ[S] is similar to the

definition of val [(πi(x), S). The only difference is that the function val [could be used to

compute the environment as a mapping from variables to closures while ρ[S] computes

38

the environment as an association list of variables and closures. Notice also that, similarly

to the definition of val [(πi(x), S), λ-variables of maximal order, that is of order m0 − 1,

receive a particular treatment. We shall comment on this with more details later on.

As in the previous translation, it is worth noticing that the operation ρ[S] is insensitive

to the operation copyd when d > 1, so we have ρ[S] = ρ[copyd(S)].

Definition 34. Let M0 be a closed term of type 0. We suppose that M0 is in the

canonical and uncurried forms, and we let m0 = vcomp(M0). We define an m0-CPDA

B(M0) whose states are subterms of M0 which are not tuples and whose stack alphabet

are the variables of M0 and the tuples that are in an argument position in M0. The initial

state of B(M0) is M0. We now describe the transitions of B(M0) from a configuration

(q, S):

1 When q = πi(z), there are two possibilities:

(a) in the case top(S) = z, the automaton goes to the configuration (Ni, S
′′) where

S′′ = pop1(S′), S′ = collapse(S),
−→
Nl = top(S′) and Ni = πi(

−→
Nl).

(b) in the case top(S) = y with y 6= z, the automaton goes to the configuration

(πi(z), S
′), where S′ = pop1(S) when order(y) < m0 − 1 and S′ = pop1(pop1(S))

when order(y) = m0 − 1.

2 When q = λx.M , the automaton goes to the configuration (M,S′) where S′ =

pushx,p(S) and p = m0 − order(x).

3 When q = M
−→
Nl (M not being a constant), the automaton goes to the configuration

(M,S′′′) where S′′′ = pop1(S′′), S′′ = copyp(S
′) and S′ = push

−→
Nl,1(S) (where p =

m0 − order(
−→
Nl)).

4 When q = x, x being a Y -variable, the automaton goes to the configuration (term(x), S).

5 When q = Y x.P , the automaton goes to the configuration (P, S).

6 When q = bN1 . . . Nl where b is a constant of arity l from the tree signature, the

automaton goes to (b,N1, . . . , Nl). This move implements outputting the constant

and going to its arguments.

Let us briefly explain these rules.

The first rule looks up the value of the variable: it implements the operation val [. If

the variable is on the top of the stack we just recover the value by performing a collapse

operation, as we have explained when describing the encoding of the environment in the

stack. If the variable is not on the top of S then we must go deeper into the stack. The

difference in treatment depending on the order of y comes from the fact that when y has

order m0 − 1, then the term of the closure y is bound to is the next stack symbol on the

stack; and so as to advance to the next variable the automaton needs to get rid of the

variable y and of the term y is bound to by using two consecutive pop1 operations.

In a state λx.M the automaton implements the binding of a closure to the variable x.

The fact that we use the operation pushx,p requires that the closure has been prepared

beforehand and is represented in the stack popp(S) with p = m0 − order(x).

In a state M
−→
Nl (M not being a constant), we need to prepare the closure containing

−→
Nl

with the current environment that is going to be bound to the variable abstracted in the

39

term to which M is going to be evaluated. For this, it suffices to push
−→
Nl on top of S, and,

so as to be consistent with the rule of the automaton dealing with λ-abstraction, use the

operation copyp where p = m0−order(
−→
Nl) and remove with pop1 the topmost occurrence

of
−→
Nl created by the copy. Notice that when order(

−→
Nl) = m0 − 1, this operation simply

results in pushing
−→
Nl on top of the topmost order 1 stack.

We can now say what it means for a configuration of the CPDA to represent a config-

uration of a Krivine machine:

Definition 35. We say that a configuration (P, S) of the CPDA represents a configura-

tion (P, ρ, σ) of the Krivine machine if the following three conditions hold:

1 ρ =

{
ρ[S] when order(P) < m0

ρ[pop1(S)] when order(P) = m0

2 When σ is nonempty then σ = (
−→
Nl, ρ[S′′]) where S′′ = pop1(S′),

−→
Nl = top(S′) and:

S′ =

{
popm0−order(P)+1(S) when order(P) < m0

S when order(P) = m0

3 For every variable x in S, the collapse pointer at x is of order m0 − order(x).

Let’s now comment a bit on this definition that relates configurations of CPDA to

configurations of the Krivine machine. When P has order one, then, because of typing,

the stack of the Krivine machine needs to be empty. In case P has higher-order, because

the machine is used only to evaluate terms of type 0, the stack of the Krivine machine has

to contain a closure. We have seen in the rules of the CPDA that, when P is of higher-

order type α → 0, we have prepared the closure so that we can bind some variable xα

by applying a pushx
α,p operation with p = m0 − order(α). But order(α) = order(P)− 1

so that p = m0 − order(P) + 1. Thus we shall be able to retrieve the closure, simply by

applying a popm0−order(P)+1 operation. Nevertheless, this only works when order(P) <

m0; indeed if order(P) = m0 then p = 1 and the binding is made with a pushx
α,1

operation, meaning that the closure is on top of the topmost 1-stack of the automaton.

This explains why the case where order(P) = m0 is treated differently.

Along with this observation we can make a further remark on the case where the

state is πi(z) and top(S) = z. In this case, the automaton uses a collapse operation.

As the variable z must have been pushed on the stack with a pushz,p operation where

p = m0 − order(z), the collapse operation is a sequence of popp operations. We must

ensure that these popp operations do not destroy the closure that is on the stack of the

Krivine machine. The closure has an order d strictly smaller than order(z) as the closure

is supposed to be bound by a λ-abstraction in the term πi(z). So the closure is accessible

with popm0−d operation. Since m0 − d > p = m0 − order(z), we are guaranteed that,

after the popp operations used to search the value of z, all the order m0 − d stacks that

are contained in the original stack are also in the new stack.

We can now prove that B(M0) simulates the Krivine machine in a similar manner as

it was done in the previous translation.

Lemma 36. Given a configuration (P, S) of B(M0) representing (P, ρ, σ). If (P, ρ, σ)→
(P1, ρ1, σ1) then from (P, S), A reaches a configuration (P1, S1) representing (P1, ρ1, σ1).

40

Proof. The lemma is proved by case analysis on the shape of P . The proof proceeds

by examining the definition. The only interesting case is the one where P = πi(z) and

top(S) = z. Since (P, S) represents (P, ρ, σ), we need to have ρ = (z,
−→
Nl, ρ2) :: ρ1 so that:

1 ρ1 =

{
ρ[pop1(pop1(S))] when order(z) = m0 − 1

ρ[pop1(S)] otherwise

2
−→
Nl = top(collapse(S))

3 ρ2 = ρ[pop1(collapse(S))].

We thus have (P1, S1) = (Ni, pop1(collapse(S))) and (P, ρ, σ)→ (Ni, ρ2, σ). In case σ = ε

(i.e. z has type of order 0), then (P1, S1) obviously represents (Ni, ρ2, σ). In case σ 6= ε,

as the order of z is at most m0 − 1, order(P) is also at most m0 − 1 and we have that

σ = (
−→
Qk, ρ[S′′]) where S′′ = pop1(S′),

−→
Qk = top(S′) and S′ = popm0−order(P)+1(S). But

since the collapse operation on S is a sequence of popm0−order(z) operations, and, since

order(P) ≤ order(z), we have that S′ = popm−order(P)+1(S) = popm−order(P)+1(S1).

Thus, because order(Ni) = order(P), we get

popm−order(Ni)+1(S1) = popm−order(P)+1(S1) = S′.

So (P1, S1) represents (Ni, ρ2, σ).

Theorem 37. Let M be a term of type 0 in the canonical form, let unc(M) be the

uncurried form of M . If m = vcomp(M) then B(unc(M)) is an m-CPDA such that

BT (M) = CTree(B(unc(M)).

Proof. Using Lemmas 10 and 33 we consider KPTree(M) instead of BT (M). The

tree KPTree(M) starts with the execution of a Krivine machine from (unc(M), ∅, ε).
On the other side CTree(B(unc(M))) starts from the configuration consisting of the

state unc(M) and the stack ⊥. It is clear that (unc(M),⊥) represents (unc(M), ∅, ε).
Repeated applications of Lemma 36 give us that either both trees consist of the root

labeled with ω, or that the Krivine machine reaches a configuration (bN1 . . . Nl, ρ, ε)

while the CPDA reaches the configuration (bN1 . . . Nl, S) representing (bN1 . . . Nl, ρ, ε).

Therefore KPTree(M) and CTree(B(unc(M)) have root b and their respective subtrees

are KPTree(N1, ρ, ε), . . . , KPTree(Nl, ρ, ε) and are CTree(N1, S), . . . , CTree(Nl, S). But

since (bN1 . . . Nl, S) is representing (bN1 . . . Nl, ρ, ε), we get that for every i in [1, l],

(Ni, S) represents (Ni, ρ, ε). Repeating this argument ad infinitum we obtain that the

trees KPTree(M) and CTree(B(unc(M))) are identical.

Example 9. We now illustrate this translation on the λY -term

M =
(
Y f . λg. g (f(λxy. gyx)) (f(λxy. gyx))

)
(λxy.x)

which is uncurried into

S =
(
Y f . λg. π1(g) 〈f(λx. π1(g)〈π2(x), π1(x)〉), f(λx. π1(g)〈π2(x), π1(x)〉)〉

)
(λx. π1(x))

So as to obtain the shorter representations of the machines we use the following short-

41

hands:

P1 =λx. π1(x), Q =λx. π1(g)〈π2(x), π1(x)〉, T =fQ,

G =λg. π1(g)〈T, T 〉, F =Y f . G, S =FP1 .

The representations of configurations of CPDA and of Krivine machines are as before,

but since now the stack can have at most one element, this element is represented by a

box marked arg. The execution shows most of the cases related to the simulation of the

Krivine machine by the CPDA: the first step is the replacement of the Y -variable f by

its definition, next step eliminates Y binder, etc.

The safety condition in the context of η-long terms in canonical forms that are uncur-

ried becomes rather simple: indeed, a term N which is not a tuple is safe when all its

free λ-variables have order greater or equal to the order of N ; a tuple
−→
Nl is safe when for

every 1 ≤ i ≤ l, Ni is safe. The reason of this simplification comes from the fact that in

this context we do not need to account for partially applied functions which is the only

motivation for the notion of almost safe terms. Moreover, as mentioned in (Blum and

L. Ong 2009), safety is preserved by η-expansion and it can easily be seen that it is also

preserved by uncurrying.

As for the previous translation (cf. Theorem 32), it can be shown that when one starts

with a safe term M the CPDA from the above theorem only performs collapse operations

that can be replaced by a single pop operation of an appropriate order. For this it suffices

to define a notion of active links of a configuration and show similarly to in Lemma 31

that the transition rules of the CPDA preserve the fact that active links all have depth

one when the terms used are safe. Because the collapse pointers are directly represented

as the level of λ-variables, the proof is here very simple and can be omitted.

6. Comparison of various evaluations of higher-order programs with CPDA

The two translations we have proposed for evaluating λY -terms with CPDA differ in at

least three ways:

1 The first translation uses stack variables to access arguments stored on the stack.

The second one uses a different technique that consists in having at most one tu-

ple of arguments, and annotating λ-variables with projections. This annotation tells

which term in a tuple has to be evaluated. The first approach could be phrased as

autonomous arguments while the second as composite arguments.

2 The first translation simply pushes on the stack all arguments, and duplicates the

stack only when searching the value of a λ-variable. The second, duplicates the stack

as soon as an argument is pushed on the stack so as to be closer to the Krivine

machine representation of closures. The first approach could be described as lazy

copying, while the second could be described as eager copying.

3 To find the value of a variable the first translation may perform an a priori unbounded

number of collapse operations. In the second approach, one collapse is sufficient.

42

P1 =λx. π1(x), Q =λx. π1(g)〈π2(x), π1(x)〉, T =fQ,

G =λg. π1(g)〈T, T 〉, F =Y f . G, S =FP1 .

Fig. 7. Simulation of the Krivine machine with a CPDA

43

The two approaches we have presented differ by three parameters that can all take

two values. By choosing independently the value for those parameters, there might be

six more CPDA evaluations of λY -terms. From this point of view the translation of

Carayol and Serre (Carayol and Serre 2012) can be seen as another approach using

composite arguments. When evaluating at term M = PN1 . . . Nk, where P is not an

application (so in that context it is either a nonterminal or a λ-variable), they push M

on the stack and evaluate P . Pushing M on the stack is done to store the tuple of the

arguments of P . When P is a variable, say x, to evaluate P they systematically start

with a copym0−order(x)+1 operation where m0 is the order of the scheme. So they use a

lazy copying approach. As for the third parameter of our classification, in order to get

the value associated to a parameter, their method may require the use of several collapse

operations, but this number is bounded by the maximal arity of types occurring in the

scheme. When compared to the second translation, which uses the collapse operation

exactly once to retrieve an argument, it seems that the difference stems from the fact

that the second translation uses terms in η-long form. It may thus be the case that the

existence of a bound on the number of collapse operations needed to retrieve a variable

depends on whether the encoding uses composite or autonomous arguments.

In the problems of model checking the trees generated by CPDAs, the number of states

of the CPDA plays an important role when analyzing the fixed-parameter tractability of

the problem (Kobayashi 2011; C. H. Broadbent et al. 2012). In the translations we have

provided the number of states is about the size of the λY -term the CPDA is simulating.

This number can be reduced by discriminating two phases in the behaviors of the CPDAs

obtained with the translations we have proposed. The first phase consists in decomposing

terms into subterms while the second consists in searching for a variable value. While the

states necessary can be made independent of the λY -term for the first phase by using

some usual techniques to encode the state as stack symbols, it is not the case for the

second phase where the names of the λ-variables (and the number of the stack variable

for the first translation) need to be present in states. A method to reduce this number

consists in finding an element of the α-equivalence class of the λY -terms that requires as

few λ-variable names as possible. When this is done, the number of states of the CPDA

obtained in our translations is linear in the maximal arity of the types occurring in the

scheme that would represent the λY -term via the translation given in Section 3.2.

7. Conclusions

We have argued that the λY -calculus is a valuable framework for the analysis of recursive

schemes. One could expect, that the translation theorems studied in this paper could

be potentially much easier to prove for the restricted syntax of schemes. Yet, we show

that the richer setting of λY -calculus offers many advantages thanks to well-understood

transformations on λ-terms like η-long normal form, or product types. The usefulness of

clean evaluation mechanism in the form of the Krivine machine is hard to overestimate.

Finally, at places where the syntax of schemes influences the results, we were able to

resort to the canonical form of terms (the notion introduced in this paper).

Our motivation explains also why we have presented two translations. The first works

44

for all λY -terms and requires only the notion of Krivine machine. We subsequently show

that the translation behaves well in specialized cases: for terms in canonical form, and for

safe terms. The proof of the correctness of the translation is short but is based on a non-

obvious invariant. The second translation requires more definitions: it starts with terms

in η-long form, then it uses product types, uncurrying, and the canonical form of terms.

The gain is that the proof of correctness amounts to a rather straightforward verification.

The two translations are also different in the way they simulate the evaluation of terms.

The first translation delays all the modifications of the higher-order stack to the variable

look-up. The second puts more constraints on the form of the stack, and in consequence

requires also some stack manipulation in the case of the application rule.

The results presented here show that there is no inherent penalty when working with

λY -calculus instead of recursive schemes. In consequence, it is possible to profit from

the rich theory of the λY -calculus. An example of this approach is given in (Salvati and

Walukiewicz 2011). The paper presents the decidability of the model checking problem

for λY -calculus and monadic-second order logic, and the proof heavily relies on Kriv-

ine machines. This result, in recursive schemes formulation, has been originally proved

in (C.-H. L. Ong 2006) and then reproved in several different ways (Carayol, Hague,

et al. 2008; Kobayashi and L. Ong 2009). Recently, we have been able to solve a re-

stricted version of the model checking problem using purely semantic means: models of

λY -terms (Salvati and Walukiewicz 2013). As we show in op.cit. this model based ap-

proach allows, among others, to get powerful program transformation methods such as

reflection property (C. Broadbent et al. 2010).

References

Aehlig, K., J. G. de Miranda, and C.-H. L. Ong (2005). “The Monadic Second Order

Theory of Trees Given by Arbitrary Level-Two Recursion Schemes Is Decidable”. In:

Proceedings of the International Conference on Typed Lambda Calculi and Applications.

Vol. 3461. Lecture Notes in Computer Science. Springer Verlag, pp. 39–54.

Aho, A. (1968). “Indexed grammars – an extension of context-free grammars”. In: Journal

of the Association of Computing Machinery 15.4, pp. 647–671.

Barendregt, H. (1977). “The type free lambda calculus”. In: Handbook of Mathematical

Logic. Ed. by J. Barwise. North Holland. Chap. D.7, pp. 1091–1132.

Barendregt, H. and J. W. Klop (2009). “Applications of infinitary lambda calculus”. In:

Information and Computation 207.5, pp. 559–582.

Barendregt, H. (1985). The Lambda Calculus, Its Syntax and Semantics. Vol. 103. Studies

in Logic and the Foundations of Mathematics. Elsevier.

Blum, W. and L. Ong (2009). “The Safe Lambda Calculus”. In: Logical Methods in

Computer Science 5.1.

Broadbent, C., A. Carayol, L. Ong, and O. Serre (2010). “Recursion Schemes and Logical

Reflection”. In: Proceedings of the Ann. Symp. on Logic in Computer Science. IEEE

Computer Society, pp. 120–129.

45

Broadbent, C. H., A. Carayol, M. Hague, and O. Serre (2012). “A Saturation Method for

Collapsible Pushdown Systems”. In: Proceedings of the International Colloquium on

Automata, Languages and Programming Track B. Vol. 7392. Lecture Notes in Com-

puter Science. Springer Verlag, pp. 165–176.

Carayol, A. and S. Wöhrle (2003). “The Caucal hierarchy of infinite graphs in terms of

logic and higher-order pushdown automata”. In: Foundations of Software Technology

and Theoretical Computer Science. Vol. 2914. Lecture Notes in Computer Science.

Springer Verlag, pp. 112–124.

Carayol, A., M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre (2008). “Winning Regions

of Higher-Order Pushdown Games”. In: Proceedings of the Ann. Symp. on Logic in

Computer Science. IEEE Computer Society, pp. 193–204.

Carayol, A. and O. Serre (2012). “Collapsible Pushdown Automata and Labeled Recur-

sion Schemes Equivalence, Safety and Effective Selection”. In: Proceedings of the Ann.

Symp. on Logic in Computer Science. IEEE Computer Society, pp. 165–174.

Caucal, D. (2002). “On infinite terms having a decidable monadic theory”. In: Proceedings

of the International Symposium on Mathematical Foundations of Computer Science.

Vol. 2420. Lecture Notes in Computer Science. Springer Verlag, pp. 165–176.

Damm, W. (1982). “The IO– and OI–hierarchies”. In: Theoretical Computer Science

20.2, pp. 95–208.

Damm, W. and A. Goerdt (1986). “An Automata-Theoretical Characterization of the

OI-Hierarchy”. In: Information and Control 71.1-2, pp. 1–32.

Dezani-Ciancaglini, M., E. Giovannetti, and U. de’Liguoro (1998). “Intersection Types,

Lambda-models and Böhm Trees”. In: MSJ-Memoir Vol. 2 “Theories of Types and

Proofs”. Vol. 2. Mathematical Society of Japan, pp. 45–97.

Hague, M., A. S. Murawski, C.-H. L. Ong, and O. Serre (2008). “Collapsible Pushdown

Automata and Recursion Schemes”. In: Proceedings of the Ann. Symp. on Logic in

Computer Science. IEEE Computer Society, pp. 452–461.

Hyland, J. M. E. and C.-H. L. Ong (2000). “On Full Abstraction for PCF: I, II, and III”.

In: Information and Computation 163.2, pp. 285–408.

Ianov, Y. (1969). “The logical schemes of algorithms”. In: Problems of Cybernetics I.

Pergamon, Oxford, pp. 82–140.

Kfoury, A. and P. Urzyczyn (1988). Finitely typed functional programs, Part II: compar-

isons to imperative languages. Tech. rep. Boston University.

Knapik, T., D. Niwinski, and P. Urzyczyn (2002). “Higher-order pushdown trees are

easy”. In: Proceedings of the International Conference on Foundations of Software

Science and Computation Structures. Vol. 2303. Lecture Notes in Computer Science.

Elsevier, pp. 205–222.

Knapik, T., D. Niwinski, P. Urzyczyn, and I. Walukiewicz (2005). “Unsafe grammars

and panic automata”. In: Proceedings of the International Colloquium on Automata,

Languages and Programming. Vol. 3580. Lecture Notes in Computer Science. Springer

Verlag, pp. 1450–1461.

Kobayashi, N. (2013). “Model Checking Higher Order Programs”. In: Journal of the

Association of Computing Machinery 60.

46

Kobayashi, N. and L. Ong (2009). “A Type System Equivalent to Modal Mu-Calculus

Model Checking of Recursion Schemes”. In: Proceedings of the Ann. Symp. on Logic

in Computer Science. IEEE Computer Society, pp. 179–188.

Kobayashi, N. (2011). “A Practical Linear Time Algorithm for Trivial Automata Model

Checking of Higher-Order Recursion Schemes”. In: Proceedings of the International

Conference on Foundations of Software Science and Computation Structures. Vol. 6604.

Lecture Notes in Computer Science. Springer Verlag.

Krivine, J.-L. (2007). “A call-by-name lambda-calculus machine”. In: Higher-Order and

Symbolic Computation 20.3, pp. 199–207.

Maslov, A. (1974). “The hierarchy of indexed languages of an arbitrary level”. In: Soviet.

Math. Doklady 15, pp. 1170–1174.

– (1976). “Multilevel stack automata”. In: Problems of Information Transmission 12,

pp. 38–42.

Milner, R. (1973). Models of LCF. Memo AIM-186. Stanford University.

Miranda, J. G. de (2006). “Structures Generated by Higher-Order Grammars and the

Safety Constraint”. PhD thesis. Oxford University.

Nivat, M. (1972a). “Langages algébriques sur le magma libre et sémantique des schémas

de programme”. In: Proceedings of the International Colloquium on Automata, Lan-

guages and Programming, pp. 293–308.

– (1972b). “On the interpretation of recursive program schemes”. In: Symposia Matem-

atica.

Ong, C.-H. L. (2006). “On Model-Checking Trees Generated by Higher-Order Recursion

Schemes”. In: Proceedings of the Ann. Symp. on Logic in Computer Science. IEEE

Computer Society, pp. 81–90.

Parys, P. (2012). “On the Significance of the Collapse Operation”. In: Proceedings of the

Ann. Symp. on Logic in Computer Science. IEEE Computer Society, pp. 521–530.

Plotkin, G. D. (1977). “LCF Considered as a Programming Language”. In: Theoretical

Computer Science 5.3, pp. 223–255.

Salvati, S. and I. Walukiewicz (2011). “Krivine Machines and Higher-Order Schemes”.

In: Proceedings of the International Colloquium on Automata, Languages and Pro-

gramming Track B. Vol. 6756. Lecture Notes in Computer Science. Springer Verlag,

pp. 162–173.

– (2012). “Recursive Schemes, Krivine Machines, and Collapsible Pushdown Automata”.

In: Proceedings of the International Workshop on Reachability Problems. Vol. 7550.

Lecture Notes in Computer Science. Springer Verlag, pp. 6–20.

– (2013). “Using models to model-check recursive schemes”. In: Proceedings of the In-

ternational Conference on Typed Lambda Calculi and Applications. Lecture Notes in

Computer Science. Springer Verlag, pp. 189–204.

47

	Introduction
	Basic notions
	Simply typed -calculus and recursive schemes
	Krivine machines
	Collapsible pushdown automata

	From recursive schemes to Y-calculus and back
	From recursive schemes to Y-calculus
	From Y-calculus to recursive schemes

	From Y-calculus to CPDA
	Stackless Krivine machines
	Simulation
	Lowering the order
	Relation to safety

	Another translation
	Uncurrying of -terms and Krivine machines with product
	Simulation

	Comparison of various evaluations of higher-order programs with CPDA
	Conclusions

