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Abstract—The lambdaY-calculus with priorities is a variant
of the simply-typed lambda calculus designed for higher-order
model-checking. The higher-order model-checking problem asks
if a given parity tree automaton accepts the Bohm tree of a given
term of the simply-typed lambda calculus with recursion. We
show that this problem can be reduced to the same question but
for terms of lambdaY-calculus with priorities and visibly parity
automata; a subclass of parity automata. The latter question can
be answered by evaluating terms in a simple powerset model with
least and greatest fixpoints. We prove that the recognizing power
of powerset models and visibly parity automata are the same.
So, up to conversion to the lambdaY-calculus with priorities,
powerset models with least and greatest fixpoints are indeed
the right semantic framework for the model-checking problem.
The reduction to lambdaY-calculus with priorities is also efficient
algorithmically: it gives an algorithm of the same complexity as
direct approaches to the higher-order model-checking problem.
This indicates that the task of calculating the value of a term in a
powerset model is a central algorithmic problem for higher-order
model-checking.

I. INTRODUCTION

Higher-order model-checking has become a successful foun-
dation for verification of higher-order programs. At first re-
stricted to call-by-name purely functional programs, in recent
years its scope has been substantially enlarged [1]-[5].

Technically, the model-checking problem can be stated as
follows: given a term of a simply typed A-calculus with
fixpoints, and a parity tree automaton, decide if the Bohm
tree of the term is accepted by the automaton. The Bohm
tree of the term is a generalization of the notion of the result
of a computation to potentially non-terminating computations.
Decidability of the higher-order model-checking problem was
proved by Ong [6]. Since then it has been has been reproved
using several different methods [7]-[12]. Among them, a
model-based approach is the most relevant for this paper.

The idea of the model-based approach is to construct a
finite model recognizing a given property [13]. A model
recognizes a property if the value of a term in the model
determines if the Bohm tree of the term satisfies the property.
This is analogous to a fundamental concept of recognizability
by semigroups in formal language theory. The model-based
approach allows to deduce in an elegant way many results
about higher-order model checking [14], [15]. Unfortunately,
the model constructions we know of are quite complicated.
More seriously, it is not clear what is a suitable class of models
that plays the same role as semigroups in the case of languages
of finite words. It is even not known what kinds of fixpoints
are need to construct models recognizing properties given by
parity automata.

In this paper we show that the simplest possible class of
models, namely that of models based on a finite powerset lat-
tice and monotone functions with least and greatest fixpoints,
corresponds exactly to, a certain refinement of, the higher-
order model-checking problem. The refinement consist of a
finer typing system that we call AY -calculus with priorities,
and a restriction of parity automata to what we call visibly
parity automata.

Our result extends the one for automata with trivial ac-
ceptance conditions'. Aehlig [16] has shown that properties
defined by such automata can be recognized by powerset
models with recursion interpreted as the greatest fixpoint.
Such models are also called Scott models in the literature,
although most often they are considered over arbitrary directed
complete partial-orders, and not necessarily finite distributive
lattices. Actually, recognizing power of automata with trivial
acceptance conditions, and finitary powerset models with
greatest fixpoint interpretation is the same [15]. Thus to go
beyond automata with trivial acceptance conditions we need
to enlarge the class of interpretations.

Since complete lattices have both least and greatest fix-
points, it is tempting to use both in the semantics. As we
have only one recursion operator in the calculus, it is not
clear which fixpoint to use where. Observe that using just
least fixpoints would give dual models, and would not give
more recognizing power than using just greatest fixpoints.

In this paper we propose the \Y -calculus with priorities, a
calculus where every recursion operator, and every constant
is indexed with a priority. Recursion operators with even
priorities are interpreted as the greatest fix points, and those
with odd priorities as the least fix points. The main point is
to relate this semantics to acceptance by automata. Having
constants indexed by priorities leads to a notion of visibly
parity automata where the priorities are not associated to
states but to letters read by the automaton. Our main result,
Theorem 14, states that there is a perfect match between
models and automata: recognizing power of powerset models
under such interpretation is equivalent to that of visibly parity
automata.

Extending the comonadic translation of Mellies [17], we
show that for every assignment of priorities to constants:
every term of the AY'-calculus can be translated to a term
of the AY-calculus with priorities such that the two terms
have the same Bohm trees. This allows to reduce the higher-
order model-checking problem to the model-checking problem

All automata in this paper are L -blind; called Q-blind in [15]. We discuss
this restriction in the main text and in the conclusions.



for AY -calculus with priorities and visibly parity automata.
In consequence, the higher-order model-checking problem
can be solved by evaluation in simple power-set models.
Moreover, this reduction can be done in polynomial time,
and the resulting algorithm has the same complexity as other
known approaches [9], [18] . This confirms the central position
of the algorithmic problem of evaluating terms with least and
greatest fix points in the powerset model.

To sum up, the main technical contributions of the paper
are the following:

o Definition of the \Y -calculus with priorities.

o Characterization of its semantics in powerset models in
terms of acceptance by visibly parity automata.

« Extension of the co-monadic translation of Mellies to
terms with fixpoints.

In this paper we propose a framework for higher-order
model-checking with a very simple semantic interpretation.
We hope that this is a step towards Eilenberg-like variety
theory for AY-calculus. The model-based approach puts a
focus on computing fixpoints in finite lattices. The model-
checking of the propositional mu-calculus is the most known
instance of this problem, but the higher-order version is no
less intriguing.

Related work: This work relies on some important insights
to higher-order model-checking. An idea of tracking priorities
in a type system was introduced in a seminal paper of
Kobayashi and Ong [8]. The comonadic nature of priorities
and the translation on terms proposed by Mellies [17] is
another cornerstone of this work. The paper of Kobayashi,
Lozes and Bruse [19] was the starting inspiration for this
work; it implies that Mellies’ translation leads to a reduction of
higher-order model-checking to evaluation in powerset models.
The present paper belongs to the line of research on models for
higher-order model-checking. Apart from the work of Aehlig
mentioned above, we can mention approaches of Tsukada
and Ong [10], as well as Grellois and Mellies [11], [20].
In both works the fixpoint operator is defined via a parity
game and is somehow external to a model. Even closer are
the works of Salvati and Walukiewicz culminating in a model
construction for all w-regular properties [12]. All these works
use models enriched with priorities, inspired by intersection
types of Kobayashi and Ong. In the present paper, priorities are
in the syntax, and not in the model. This changes many things,
but there are also many techniques that can be reused. Bruse
[21] considers Krivine machine interpretation for higher-order
fixpoint logic, so he needs to deal with both higher-order
and both types of fixpoints. The acceptance condition for his
machines reduces to the parity condition for terms typable in
our system. A recent paper of Mellies [22] introduces a notion
of higher-order parity automata. Their behavior is somehow
similar to our semantic games (game PSG on page 11). The
objectives of op. cit. are quite different from ours, and so are
techniques except of Mellies’ translation. In a broader context,
this paper is a part of continuing effort to understand better
the higher-order model-checking problem [23]-[25].

Structure of the paper: In the next section we recall basic
notions behind the higher-order model-checking problem. We
describe the correspondence between automata with trivial
acceptance conditions, and powerset models with greatest
fixpoint interpretation. Section III introduces A\Y -calculus with
priorities, and visibly parity automata. It explains how to
reduce the model-checking problem to that for visibly parity
automata. Section IV presents main results of the paper. It also
states the main technical theorem whose proof is outlined in
Section V. Section VI shows how to translate AY-terms to
AY -terms with priorities. Section VII discusses applicability
of the results to algorithmics of higher-order model-checking.
All missing proofs are included in the full version of the
paper [26].

Acknowledgments: The author sincerely thanks the review-
ers for their careful reading of the paper and their useful
comments.

II. THE AY-CALCULUS AND PARITY AUTOMATA

In this section we recall definitions of the A\Y -calculus, and
of parity automata. We also recall the characterization of the
recognizing power of parity automata with trivial acceptance
conditions in terms of simple models of the A\Y -calculus where
fixpoint operators are interpreted as greatest fixpoints.

AY -calculus: The MY -calculus is simply-typed lambda
calculus with a fixpoint operator. The set of simple types is
constructed from a unique base type o using a binary operation
—. As usual we shall write 4, — --- — A, — B for
(41 = (...(Ax = B)...)). We use Types for the set of
all simple types.

An alphabet is a set X of typed constants. Every constant
b € ¥ has an arity ar(b) that is a strictly positive natural
number. A constant b of arity ar(b) has a type

b:o—---—0—o,

where there are ar(b) arrows. We only allow this shape of
types for constants. This is a standard restriction in the context
of higher-order model-checking, except maybe for allowing
constants of the base type o. We disallow constants of type o
for notational convenience.

Terms of the AY-calculus are built from variables and
constants in 3 with the help of abstraction, application, and
fixpoint operations. We use z,y,... and F' with subscripts
for variables. We assume that variables are typed but we will
seldom write their type explicitly. Construction of terms is
subject to the standard type discipline. If M is a term of type
B and x a variable of type A, then Az.M is a term of type
A — B.If M is a term of type A — B and N is a term of
type A then M - N is a term of type B. We will often write
M N instead of M - N. Finally, if M is a term of type A, and
F is a variable of type A then YF.M is a term of type A.
So we adopt a syntax where Y is a binder, and not a fixpoint
combinator.

The usual operational semantics of the calculus is given
by B and d-reductions (we omit the standard definition of
a substitution): (Az.M) - N —g M[N/z], and YF.M —;



M[(YF.M)/F]. We write —7;s for reflexive and transitive
closure of the union of the two relations.

Bohm trees of terms: Bohm tress are a kind of normal forms
for \Y -terms. They may be infinite, since the calculus does
not have a strong normalization property.

Let us fix an alphabet X as above. Let L be a special symbol
not in 3. We write ¥, for (X U {L}). A, potentially infinite,
Y| -tree is a partial function ¢ : (Nso)* — ¥, . Foranode v €
(N5o)* and a direction ¢ € N5 we call vi the i-th successor
of v. This successor may not exist if ¢(vi) is not defined.
We require that for every node v € (Nsg)*, if the constant
b = t(v) has an arity K = ar(b) then v has k successors
vl,...,vk, and has no other successors. If ¢(v) = L then v
should have no successors.

Definition 1 (Bohm tree) A Bohm tree of a closed term M
of type o, denoted BT(M), is a ¥ -tree defined recursively:
o if M —j5 bNy ... Ny ) for some constant b € X then
BT (M) has the root labeled b with subtrees of the root
being BT'(N1),..., BT(Nar@))s
o otherwise BT (M) = L.

Thanks to subject reduction and confluence of —7;, every
term has a unique Bohm tree [27]. Because of our assumption
on the shape of type of constants in 3, all terms N; in the
first clause of the definition must be closed and of type o.
For the same reason, all leaves in BT (M) must be labeled
with L. In what follows it is possible to add constants of
type o without problems. Constants of higher-order types, like
(0 = 0) — o, would introduce variables and bindings in B6hm
trees. In consequence, it would not be clear how to run a tree
automaton on such Bohm trees.

Alternating  parity automata: We use alternating
(max)parity automata to express properties of Bohm
trees. The definition is standard except for the case when an
automaton reaches a leaf labeled _L: it accepts no matter what
state it is in. We will discuss this phenomenon below.

A parity automaton is a tuple

.A: <Q727{5b}b€EaQ : Q — {Oaap}> )

where () is a finite set of states, X is an alphabet,
0 Q — {(Sl, .. .,Sar(b)) 0 S; € P(Q),Z =1,..., ar(b)}

is a transition function, and €2 is an assignment of priorities to
states. Priorities are integers between 0 and p. As before, we
assume that every b € ¥ has its arity ar(b). For readability,
we will write d(q, b) for §,(q).

Parity automata run on X -trees. An acceptance game for
A from g € Q on a ¥ -tree ¢ : (N5g)* — X involves two
players called Adam and Eve. Eve starts in (¢, €) namely in the
state ¢ and in the root node of ¢. She looks at the letter b = ¢(¢)
in the root. If b = 1 then Eve wins, otherwise Eve needs to
choose some (S1, ..., S.1)) € 6(¢,b). Next, Adam chooses
i1 and ¢;, € S;,. The game proceeds to position (g;,,%1), and
a new turn starts. If a player cannot make a move, she looses;
for example Eve looses if §(q,b) = ), and Adam looses if Eve

can choose ((, ..., 0). The winner of an infinite play is decided
by looking at the sequence of states g;, , gi,4,,- .. encountered
during the play. Eve wins if the maximal priority of a state
seen infinitely often is even.

Automaton A accepts a tree t from ¢ if Eve has a winning
strategy in the game described above from (g,e) on ¢. Over
infinite trees without | the power of our parity automata is
the same as that of monadic second-order logic. Our automata
are | -blind, meaning that they accept when they reach a leaf
labeled 1. (In [15] this property is called €2-blind, but here
we use L to denote divergence). For example, the language
“there is a leaf labeled 1" is not recognized by our automata.
This strange behavior is quite common in the literature on
higher-order model checking [1]. As we will see in the next
subsection, it is a consequence of the way divergence is
handled in models of the simply typed lambda-calculus.

We finish this subsection with a upper closure operation on
automata.

Definition 2 (up(.A)) For a transition function d;, its upper
closure up(dp) is defined by: (S1,...,Sk) € up(dp)(q) if
there is (S7,...,5%) € dp(g) with S, C S;, fori =1,... k.
Automaton up(.A) is A with transition functions changed from
{0b}vex to {up(dp) }rex-

From the definition of acceptance it should be clear that a tree
is accepted from a state ¢ by up(A) iff it is accepted from ¢
by A.

GFP-semantics and automata with trivial acceptance con-
ditions: In this last part of the introductory section we recall
a close relation between automata with trivial acceptance
conditions, and simple models of \Y -calculus where fixpoint
operators are interpreted as greatest fixpoints (GFP).

Definition 3 (Finitary powerset model) A finitary
powerset model of a signature X is a tuple
D = <{DA}A€T,ypes,{[[b]]D}beg>, where D, is the lattice
P(Q) for some set @, and for every type A — B, lattice
Da_,p is the set of monotone functions from D4 to Dpg
ordered coordinate-wise. An interpretation [[b]]D of a constant
b € X of a type B is an element of Dp.

We need a lattice structure in the model to interpret fixpoint
operators. Later, when we will consider complexity of some
decision problems, it will be important that the lattice is
distributive. As every finite distributive lattice is isomorphic
to a lattice of sets, we prefer for simplicity to start with a
powerset lattice immediately.

The GFP-semantics of terms in such a model is standard,
but for the fact that all fixpoints are interpreted as the greatest
fixpoints. Since every D4 is a finite lattice, every monotone
function in D4, 4 has the least and the greatest fixpoint,
denoted LFP, and GFP respectively. For now we will use only
the greatest fixpoints. We will use both types of fixpoints to
interpret A\Y -calculus with priorities.

We spell out the definition of the semantics of a \Y -term
M in a valuation ¥ and a model D, in symbols [M, 9] grp. We



keep the subscript GFP to remind that we use only greatest
fixpoints. On the other hand, we will often omit the superscript
D for readability. As usual, a valuation is a function assigning
to every variable of type A a value from D 4. The definition
of [M, 19]]ng is by induction on the size of M.

o [z, 9lgep = V(z),

o [b, g = [[b]]p’

o [Az.M, 0] gep = Ah.[M, I[h/x]] gep,

o [MN,9]gep = [M, ] ep([N, Il grp)s

o [YF.N,9]¢ep = GFPAA.[N,V[h/F]]¢ep-
It is well-known that the interpretation of a term is always a
monotone function, and that this interpretation is sound with
respect to 5 and § reductions [27].

Models can be constructed from automata as follows.

Definition 4 (Model D) For an automaton A =
(Q,%,{6p}rex, ) the model DA has P(Q) as the
interpretation of the base type; a constant b is interpreted as

[[b]]GFP(S17 ey Sar(b)) = {q : (Sl, ey Sar(b)) S up(éb(q))} .

Automata can be constructed from models.

Definition 5 (Automaton A%) For a finitary powerset model
D over the base set P(Q) we define a parity automaton A%, =

(Q,%, {0 }pex, 2 : Q — {0}) where
51;((]) = {(Sl’ T S‘“"(b)) HURS IIb]]GFP(Sh LR Sar(b))}

There is no way to read an assignment of priorities 2 from
the model. So in the above definition we just take the trivial
one. This choice is justified by Proposition 7 below.

The class of automata we obtain by this construction is
important enough to give it a name. We say that an automaton
has a trivial acceptance condition if all the states have priority
0, i.e., Q(q) = 0 for all states q. We will write A® when we
want to stress that 4 has a trivial acceptance condition.

Fact 6 Fix an alphabet . For every parity automaton with
trivial acceptance condition A° over ¥, and every finitary
powerset model D over X:

.A%AU is up(A°), and DA% is D.

This fact is one of the reasons why we have restricted
to powerset models. The constructions can be quite easily
extended to arbitrary finite lattice models, but the equivalence
from the above fact becomes less direct.

A model D can recognize a set of closed terms of type o:
the set of terms recognized by a set F' C D, is

{M : [[M]]EFP € F, M closed term of type o} .

An automaton A also can recognize a set of closed terms
of type o: we can choose a state ¢ and consider those terms
whose Bohm trees are accepted by A from gq.

The main point of the correspondence from Fact 6 is that
an automaton and its corresponding model recognize the same
sets of terms. (Recall that A and up(.A) recognize the same

sets of terms.) The proposition below is a reformulation of
results form [15], [16].

Proposition 7 Fix an alphabet ¥. Let A° be an automaton
with a trivial acceptance condition over the alphabet X, and let
DA” be the corresponding powerset model. For every closed
AY-term M of type o over the signature >::

0
[[M}]g,;:D = {q: A" accepts BT(M) from ¢} .

Due to Fact 6, the same equality holds when we start with
a model D and consider the automaton A%:

[[M}]EFP = {q: A% accepts BT (M) from q} .

This shows that the recognizing power of finitary powerset
models with GFP-interpretation is the same as that of automata
with a trivial acceptance condition.

III. THE AY -CALCULUS WITH PRIORITIES

Proposition 7 puts a limit on what can be recognized with
finitary powerset models using only greatest fixpoints. But we
have also least fixpoints available in powerset models, so one
may ask what is the recognizing power of finitary powerset
models when we use both types of fixpoints. To give an answer
to this question, we propose a syntax allowing to indicate when
Y should be interpreted as the least and when as the greatest
fixpoint. The challenge is to do it in a way that still preserves
a relation to acceptance by automata.

The \Y -calculus with priorities results by adding priorities
to the syntax. Priorities appear as superscripts over applica-
tions and over fixpoint binders. The simple type discipline of
the \Y -calculus is also refined to priority types.

Priority types are simple types annotated with priorities:

f=o|T—06 where T=(r0) reN

There is only one base type o. Only types to the left of
an arrow have a priority annotation, while the base type is
not annotated. To every priority type 6 naturally corresponds
a simple type Ay obtained by hereditary erasing priority
annotations.

Priority types are Kobayashi and Ong types [8] without
conjunction. As we will see later, we avoid the conjunction
thanks to an extended Mellies translation from Section VI and
two kinds of typing assertions, (=,7) and (<, 7), in typing
environments.

Terms are built from variables and constants, using ab-
straction, priority application, and priority fixpoint operator.
In particular, N -, K is a term when [N and K are terms, and
r is a priority. Similarly, Y F.N is a term when 7 is a priority,
F'is a variable, and N is a term. The rest of the constructs are
standard: a variable, x or I/, is a term; a constant b is a term;
and an abstraction A\x.N is a term, if /N is a term. We use
two kinds of symbols for variables, x,y,... for those bound
by A, and F' for those bound by Y. There are no priorities on
A-abstractions.



As for \Y -calculus, constants are typed. We write X" for
a set of constants with priorities: constant b € XP" has not
only its arity, ar(b), but also its priority pr(b). The type of a
constant b of arity k = ar(b) and priority r = pr(b) is

b:(r,0) = - —(r,0) = o,

where there are k£ arrows. The fact that all arguments have the
same priority is not important, it is done only for notational
convenience.

Terms are subject to a typing discipline presented in Fig-
ure 1. It is a refinement of simple types, in a sense that
every typable term is typable in simple types obtained by
erasing the priority annotation. We still write judgments as
I' v M : 6, hoping that types and terms indicate when
we mean typing with priority types, and when typing with
simple types. Environments appearing to the left of typing
judgments are functions from variables to assumptions of the
form (=, 7) or (<, 7), where 7 is a pair (r, ) with r a priority
and 6 a priority type. We will write environments as lists,
for example: x = (2,0),y < (1,(3,0) — o). Observe that
z = (2,0),z < (3,0) is not an environment, as x has two
priority types. The operation I'[,. used in the application rule

T'Eb:0 0 is the type of b

Fz=(0,0)Fx:0 < (rd)k-xz:0

F7I: (r,@l) M : 92
' A .M : (’I‘, 91) — 92

FFM:(T‘791)*>92 I‘[,«FNzal
'EM-.N:6

LF=(r)FN:0
FAFY"F.N:6

all assumptions in I
have priorities > r

Fig. 1. Typing rules of A-calculus with priorities.

is defined by: for all z and 6,
e change z = (r,6) in T to « < (r,0); and
o remove z = (4,0) and = < (4,0), for all i < r.
Example: Consider a constant b of arity 2 and priority 3.
Let T be the environment z < (6,0),y = (3,0). We have a
typing
I'Eb:(3,0) > (3,0) =0 Ilskxz:0
F'Ebsz: (3,00 —=o0
TH(3z)3y:0
where I'[3 is < (6,0),y < (3,0). Observe that we do not
get a typing for IV of the form = < (6,0),y = (2,0). This
is because I']3 does not have an assumption on y. Similarly,
if we took T with y = (5, 0) instead then T""'|3 would have
y = (5,0) and derivation T3+ y : 0 would be impossible.

Observation: If every constant has priority 0, namely its
type is of the form (0,0) — --- — (0,0) — o then all typing

T'lsFy:o

rules can use only applications and fixpoints of priority O:
N 9K and YOF.N. In this case the typing rules become just
the typing rules of the A\Y -calculus as all typing environments
will use only priority 0. The picture is more complicated if
every constant has priority 1. Indeed, to type the term Ax.x
we need priority 0, as its types have the form (0,6) — 6.
The computation rules of the AY -calculus with priorities are
[ and §-reductions. As expected they preserve priority typing.

Lemma 8 (Subject reduction for priority typing) If I'
M.M)"N:0thenT' - M[N/z] : 0. T - Y"F.M : 0
then '+ M[Y"F.M/F]: 0.

We define the Béhm tree of a priority term M, BT (M), in
the same way as we have done for A\Y -terms (Definition 1).
To a priority term M corresponds a \Y -term M obtained by
removing priorities in applications and fixpoint operators. It is
easy to verify that M is simply typable and that BT (M) =
BT(M).

Semantics: The first gain from introducing priorities in the
syntax is that we can now refine the semantics of terms.
We evaluate priority A-terms in finitary lattice models as in
Definition 3. The difference with GFP-interpretation is that
now we use both the least and the greatest-fixpoints. Recall
that to every priority type 6 corresponds a simple type Agp
obtained by hereditary removing priorities in 6. The meaning
of a term of type 0 is an element of D 4,. The definition of
the semantics is verbatim the same as for GFP-interpretation,
but for the meaning of fixpoints:

[Y"F.N,9] =LFPAL.[N, 9[h/F]]
GFP

if r is odd, and
instead of LFP if r is even.

Observe that priorities do not influence the meaning of the
application.

A. Terms with priorities are priority-homogeneous

The main point about terms with priorities is that for
every variable, all its occurrences have “the same application
priority”. This is the crucial property that is behind all the
results presented in this paper.

Figure 2 gives an example of how to think about application
priorities. Consider a tree representation of a term with Az
and Y °F' having one successor, and the application -, symbol
having two successors. The right edge of -, has priority r. The
edge from Y® has priority s. The left edge of the application,
and all other edges have label 0. In this representation, the
application priority between two positions is the maximum
priority on the edges of the path between the positions. A
formal definition is given below.

M= T
RN
Az YSF
| E
xT xT

apr(z, M) = {0,r @ s}

Fig. 2. Application rank of variable z in term M = (Az.z) -" (Y*F.x).



Definition 9 We define the set of application priorities of
variable in a term, apr(x, M), by induction on the structure
of M. Below, r @ s stands for the priority max(r, s), and r®.S
stands for the set {r ®s:s € S}.
o apr(z, M) =0 if z is not free in M;
. apr(x x) ={0};
e apr(xz,A\z.N) = apr(z, N) if © # z;
. 7"(35 YTFN)er}apr(x N) if x # F;
pr(e, N)U

K) = apr(x (r ® apr(z, K))

Definition 10 A term M is priority-homogeneous if

o for every subterm of the form Az.N, the set apr(x, N)
is a singleton or the empty set.

o for every subterm Y"F.N, we have apr(F,N) = {r} or
apr(F,N) = (.

The next lemma says that all priority typable terms are
priority-homogeneous. The opposite direction is not true be-
cause of the fixpoint rule.

Lemma 11 If ' = M : 6 then M is priority-homogeneous
and the following properties hold:
o if x = (r,0;) is in T then apr(xz, M) {r} or
apr(z, M) = @ (in the latter case, x does not appear
in M).
o if z < (r,0,

) is in T' then max(apr(xz, M)) < r, or
apr(z, M) = 0.

Since every priority typable term is priority homogeneous,
we can also put a priority next to Ax the same way as we do
with the fixpoint Y F. We could also remove r superscript
from Y. Yet we prefer the present, slightly asymmetric, syntax
since we will need priorities for Y to define the semantics, but
priorities on A will not be useful.

Example: Not all priority-homogeneous terms are priority
typable. The term Y" F.x -, F' is priority-homogeneous. This
term would be priority-typable if there were no restriction on
T" in the fixpoint rule, but it is not typable with this restriction.
The unfolding of this fixpoint term is z - (Y"F.x -. F). It is
not priority-homogeneous. In this term the application priority
of the first occurrence of x is 0 while the second occurrence
has application priority 7.

B. Visibly parity automata, and their recognizing power

In ¥P" every constant b € ¥ has its priority pr(b). It makes
sense to consider parity automata whose priority function
depends on letters and not on states.

A visibly parity automaton is

=(Q, X" {0 }peswr, pr: ZP" = {0,...,p})

where pr is the priority function coming with ¥P". The notion
of accepting a tree from a state is the same as before for parity
automata, but pr is used instead of ). This means that the
priority depends on a letter read and not on the current state.

Of course, visibly parity automata are weaker than parity
automata. For example, they cannot express a property “there

is a path on which b appears infinitely often”. Visibly parity
automata look rather trivial from the point of view of automata
theory. Yet, they are sufficient for model-checking of transition
systems, via the translation we explain below. They also offer
a potential advantage because elimination of alternation and
Boolean operations are much easier for visibly parity automata
than for parity automata.

We argue that in the context of recognizing BShm trees
of terms, visibly parity automata are sufficiently expressive.
Indeed, once a maximal priority p is fixed, there is an operation
on trees and automata such that exp,(t) is accepted by
exp,(A) iff t is accepted by A (cf. Figure 3). Moreover, this
operation is easy to implement on terms.

b or
1ty 1,0/ . -\bl‘
//\ /\

/ !
) A
Fig. 3. The tree expansion operation, exp,,(t).

For a fixed rank p, we define the expansion operation ezp,,
on alphabets, trees, terms, and automata. The symbols in
exp,(3) will be indexed by priorities, and we will add a new
symbol “or” of arity p + 1:

erp,(X) ={b":b€X,r=0,...,p} U{or} .

The priority of or is 0, and that of b" is r: so pr(or) = 0,
and pr(b") = r.

The expansion operation on trees, shown in Figure 3, re-
places every node labeled b by a subtree, copying the subtrees
of the node:

expp(b(tlv oo vtar(b))) =
O’r(bo(tllﬂ s atlm‘(b))7 cee 5bp(t/17 cee ﬂt,ar(b)))
where t; = exp,(t;), fori=1,...,ar(b).

There is the corresponding operation on terms. The term
expp(M ) is obtained from M by replacing every constant
b by Ax1,...,Zer @) or(b0zy .. Tarpy) - (OPT1 o T ar(p))-
We have that for every AY-term BT(exp,(M)) =
exp, (BT (M)).

The expansion operation on automata modifies the transition
function, and the priorities. Given A = (Q, 3, {0p }pes,
Q — {0,...,p}) we define

exp,(A) =

<Qv expp(E)v {5g}b€eacpp(2)v pr: expp(E) - {07 s ap}>

where the priority function pr is the one of exp,(¥). The
transition function is:

§'(¢,0") = d(q, b)
§(q,b") =10
&' (g, or) = {(0, ..

if Q(q) =7
it 0(g) #
{q} is on Q(q)’th position

g, 0)}



Proposition 12 Fix a maximal priority p. For every parity
automaton A over an alphabet ¥ using only priorities up
to p, the visibly parity automaton exp,,(A) over the priority
alphabet exp,,(3) is such that for every closed \Y-term M of
type o we have:

BT (M) is accepted by A from g iff
BT (exp,(M)) is accepted by exp,(A) from q.

The above fact says that modulo ezp,, translation, visibly
parity automata are equivalent to parity automata.

IV. RECOGNIZABILITY BY AUTOMATA AND MODELS

Our main result is that visibly parity automata correspond to
finitary powerset models in exactly the same way that automata
with trivial acceptance conditions correspond to models with
GFP-semantics.

Recall the correspondence between automata and models
from Definitions 4 and 5. We can extend it to visibly parity
automata. Let us fix an alphabet XP" of constants with
priorities. From a visibly parity automaton A we construct
a model D* as before since the model does not depend on
the acceptance condition. From a model D we construct an
automaton Ap also as before, but now we take the parity
condition given by 3P". (Recall up(.A), as in Definition 2,
accepts the same trees as .A.)

Fact 13 Let XP" be an alphabet with priorities, and X the
same alphabet with priorities erased. For every visibly parity
automaton .4 over ¥P", and every finitary powerset model D
over X:

Apa is up(A), and DA? is D.

The main result of the paper states that for A\Y -calculus with
priorities the recognizing powers of finitary powerset models,
and visibly parity automata are the same. Because of the above
fact, an analogous formulation but starting from the model is
also true.

Theorem 14 Let 3P" be an alphabet with priorities. Let
A be visibly parity automaton over YP7, and let D* the
corresponding powerset model. For every closed parity typable
term M of type o:

[[M]]DA = {q: A accepts BT(M) from q} .

Remark: Recall that our parity automata are L-blind (cf.
page 3). This seems like a strange restriction, but in the light
of Theorem 14 this is a property of the semantics of terms.
One may wonder what makes it that L is always accepted, and
not always rejected. This can be traced to the axiom I',z =
(0,0) F x : 0 of priority types. This axiom makes 0 the neutral
priority. If we started priorities from 1, and adopted the same
axiom but with 1, then | would be always rejected.

To prove the theorem we need to make a link between the
semantics of the A-calculus with priorities and the acceptance
of Bohm trees by visibly parity automata. For this we need

to understand how a Bohm tree is constructed. We adapt
the method from [9] based on Krivine machines. Below we
define the a game K (M, D4, q) so that we have the following
proposition.

Proposition 15 Fix a priority alphabet 3P". Consider a vis-
ibly parity automaton .4 over XP”, and the associated model
DA, For every closed priority typable term M of type o over
YP" and every state ¢ of A, we have:

A accepts BT (M) from ¢ iff Eve wins in K (M, D?,q) .

With this proposition at hand, to prove Theorem 14 it
remains to make a link between winning in K(M, D, q) and
the semantics of M in D. This is the main technical result of
this paper.

Theorem 16 Consider an alphabet with priorities ¥P" and ¥
obtained by erasing priorities. Take a finitary powerset model
D over ¥ and the base set P(Q). For every q € Q) and every
closed priority typed term M of type o over XP":

ge [M]" i

In the remaining of this section we will describe the game
K(M,D,q). We outline the proof of Theorem 16 in the next
section.

The intuition behind K (M, DA, q) is presented in Figure 4.
A configuration of a game is of a form ¢ < (N, p, S) where
q is a state of A, and (N,p,S) is a configuration of the
Krivine machine. In the game, first a head normal-form of
a term is computed (if it exists) using the rules of the Krivine
machine; this is symbolized by a dashed line in the figure. At
that moment a player, called Eve, chooses a transition of the
automaton on b, and another player, called Adam, chooses on
state and direction in exactly the same way as in the definition
of acceptance of a tree by an automaton. This leads to a new
configuration, say ¢’ < (K3, p2, ) in Figure 4, and the process
repeats.

Eve wins in K(M,D,q) .

node v: (NTK,p,S)

q<
q< (N 0, (v,K,p)S)
v
0.60.) < 300.0) (0.44") < (0.0)
)/ )
(0.{¢,q"}) < (C1,C) [(0.{¢"}) < (C1.Cy) |

/ \ Cy = (v, K2, p2) l "

< (K, p2.¢) q" < (Ky, po,¢) q" < (K, p2,¢)

Fig. 4. Game K (M, D, qo). Eve chooses in rounded boxes, and Adam in
rectangular boxes.

N

We present the game in detail. For the rest of this section
we fix a priority typable closed term M of type o, a finitary



powerset model D over the base set P(Q), and an element
q € Q.

First, we will need some terminology and notation related
to Krivine machines. A Krivine machine works with envi-
ronments and closures. The definition of these two concepts
is mutually recursive. Environments, denoted p, are functions
from variables to closures. Closures, denoted C, are triples
(v, N, p), where N is a term, p is an environment, and v is
a node of K(M,D,qy) we will construct. Having v in the
closure is not standard; we use it to track where the closure
was created. As we will see in the rules below, a node v labeled
by ¢ < (N - K, p,S) will have a unique successor labeled
qg < (N,p,(v,K,p)-S) where the closure (v, K, p) is created.
We write pr(v) to denote r, namely the priority associated to
the application in v. A closure can be also created when v is
labeled by ¢ < (Y"F.N, p,S) and we write pr(v) to denote
r in the superscript of Y. We will use pr(v) to state the main
invariant of the tree K (M, D, qy) with respect to priorities.
We say that v is the node of the closure C' = (v, K, p) and
pr(v) is its priority. It will be handy to write v(C') for v, and
pr(C) for pr(v).

Definition 17 The game K (M, D, qp) is played on the tree
whose root is labeled by ¢o < (M,0,¢); where () is the
empty environment, and ¢ is the empty stack. The tree is
constructed according to the rules presented in Figure 5: if
I is a label of a node v and | — [’ then v has a successor
v’ labeled [’ and r is the label on the edge from v to v'. A
label can be a priority or a node; there may be also no label.
There are two players, Eve and Adam, who repeatedly choose
successors in order to construct an infinite path. Eve chooses
a successor in nodes with configurations of the form (b, ...),
Adam chooses a successor in nodes with configurations of the
form (di,...,dx) < (Ci,...,Ck). All other nodes have at
most one successor. If one of the players cannot make a move
she looses. Otherwise the result of a play is an infinite path;
Eve wins the play iff the maximal priority seen infinitely often
on the path is even.

Let us go back to Figure 4 to see on an example how the
game is constructed. In node v, the application rule is used,
then the dashed line represents the use of other rules till the
head term becomes a constant. At that point the constant rule
is used, and it is Eve who chooses a transition, and Adam who
chooses a direction and a state. In the example he can only
choose the second direction, as there were no states in the first
direction. A transition where constant rule is used, is labeled
by the priority of the constant. A transition when a closure is
used is labeled by a node (the name of the closure).

V. PROOF OF THEOREM 16, AN OUTLINE

We present an outline of the proof of Theorem 16. The
proof consists of three main steps. First, we prove that a
certain invariant holds in K (M, D, dy). This is where priority
types are essential. Next, we show a rather straightforward
characterization of the semantics of \Y -terms with priorities

e ¢ < (A&.N,p,C-S) — q < (N,p[C/x],5)

b
e g < (b,p,Cl.A.CGT(b)) M

di,. .. 7da7‘(b)) < (Cl, o 70(17‘(1}))7
such that q € [5]"(dy, ...

-

for (dl: Lood (b)

rrar

o (di,.ydyyy) < (Cro, Copy) = a5 < (K5, pine)
for g € d;, C; = (UT'7 thi),’ and i € {17 R ar(b)}A

) dar(l)))'

®q S (N r K7p75) — q S (N7p7 (U7K7P)S)
v is the node of ¢ < (N - K, p, S).

o ¢ < (Y"F.N,p,S) — q < (N,pl(v,Y"F.N,p)/F],5);
v is the node of ¢ < (Y'F.N,p, S).

e g< (T 0, S) LN q< (KU, Pus S) where p(z) = (v, Ky, po).

Fig. 5. Rules of constructing K (M, D, qo)-

in terms of a game SG(M, D). Finally, we show that the two
games are equivalent. This also follows by simple examination
of the rules, thanks to the notion of residual form [9].

A. Priority invariant in K(M,D,dy)

The whole mechanism of priority types is set up in order
to state and guarantee an invariant on the maximal priority
between the positions where the closure was created and where
the closure was used. To formulate this property we needed
to introduce additional parameters v in closures, and on the
labels of transitions.

For a node v and its descendant v' in K(M,D,d), we
denote by pr(v,v’) the maximal priority appearing on the
path from v to v’. Recall that pr(v) stands for the priority
of the closure created at v; this is defined by the priority of
the application symbol or fixpoint symbol of the term in v.

Lemma 18 (Priority invariant) Game K (M,D,d,) satis-
fies the following priority invariant:

if the unique incoming transition to v’ is labeled by

v then pr(v,v’") = pr(v).

The priority invariant is illustrated in Figure 6. In node v a
closure is created because of an application. Then the closure
is moved to the environment, because of an abstraction. Later,
in v’, the closure v is used: a computation makes a look up for
a value of a variable x that is bound to the closure created in
v. Note that at this moment the environment, the state, and the
stack could have changed. The invariant says that the priority
of the closure determines the maximal priority seen from the
creation to a usage of the closure. Observe that a closure can
be used several times.

B. A game characterization of the semantics

Recall that we are working with finitary powerset models as
in Definition 3. Instead of taking just any lattice as a base set,



node v: ¢ < (\e.N) " K, p, S)

g < (\z.N, p, (v, K, p)S)
max \L
priority ¢ < (N,p[(v, K, p)/ﬂ,S)
is r=pr(v)

\/
q/// S (Z’p///’ S///)
I () = (0.K.p)

node o: " < (K,p,S")

Fig. 6. Priority invariant in game K (M, D, qo).

we have insisted that the base set is the powerset lattice P(Q)
for some set (). We will use this in the game characterization
of the semantics presented in this section. The characterization
is a quite direct translation of the semantic clauses into a
game. It could have worked for any lattice model, but the
distributivity property gives a smoother presentation and will
allow later for better complexity arguments.

We will use a notion of a step function that is not completely
standard. A step function of type Ay — -+ — A — o is
given by § = (¢1,...,9%x) € Da, X --- X D4, and ¢ € Q;
it is a function § — ¢ such that (§— d)(h1,...,hx) = {q}
if h; > g; foralli=1,...,k, and (§—d)(h1,...,hx) =0
otherwise. A standard notion of a step function would allow
any d € D, = P(Q) and not just ¢ € Q. In our notion we
allow only atoms of D, as values. It should be clear that every
step function in the standard sense is a supremum of our step
functions.

Positions of the game will be of the form ¢ < (N,¥,§)
where: ¢ € Q is a state, IV is a term, 9} is a valuation of free
variables in IV, and § is a sequence of elements of the model of
appropriate types: if the type of N is A; — ... A — o, then
g is a sequence of k-elements of type Ay, ..., Ay respectively.
This way [N, ] applied to g is an element of D,,. The intuitive
meaning of a node ¢ < (N, 1, g) is that ¢ € [N, ¥]g.

We define a game SG(M, D) for a closed term M of type
o0, and model D over the base set P((Q). The rules of the
game are presented in Figure 7. Eve chooses f in fixpoint and
application nodes. Next, Adam chooses a successor in nodes
of the form ¢ < (f;...). An infinite play is won by Eve iff
the smallest priority seen infinitely often on the edges of the
path is even. Actually, a short inspection of the game shows
that the size of the term in the first component never increases.
This means that SG(M,D) is actually a weak parity game,
so it would be enough to use two priorities 0 and 1.

Lemma 19 Consider the game SG(M, D). A position g <
(N, 9, g) is winning for Eve iff [N, 9] > §—gq.
C. Eguivalence of K(M,D, qp) and SG(M, D).

We prove that the same player wins in the K (M, D, qo) as
in SG(M, D).

e g < ()\:Z:,N,ﬁ,f'g)HQS (N,ﬁ[f/x],g’)

e ¢ < (Y'F.N,9,§) ¢ < (f;Y'F.N,9,7)
.

q < (N,9[f/F],q) ¢ < (Y"E.N,9,h)

for all f and h of an appropriate type, and ¢ € f(h).

o q < (N K,7) g < (f;N -+ K,9,§)

N
¢ < (N9, f-9) ¢ < (K.9,h)
for all f and h of an appropriate type, and ¢’ € f(h).

e ¢ < (b,9,9) is winning for Eve if ¢ € [6](3);
otherwise Adam wins in this node.

e ¢ < (z,9,§) is winning for Eve iff ¢ € 9(z)(g).

Fig. 7. Rules of the game SG(M, D).

Suppose Eve has a winning strategy o in K(M,D,qo). A
strategy for Eve in SG(M, D) should tell her what values f
to play in application and fixpoint rules. We show how to read
them from o.

We define a residual for every closure (v, K,, p,)) created
in K(M, D, q). It will be an element of D4 where A is the
type of K,. We denote it by R?(v). This notation makes use
of the fact that v uniquely determines all other elements of
the closure. The definition of R?(v) is on the order of the
(simple) type of the closure, namely the order of the type of
K,.

For K, of type o, we look at all the nodes reachable from v
while Eve plays the strategy o. We select all those who have
an incoming transition labeled v. Their labels are necessarily
of the form ¢’ < (K, py,¢), for some ¢’. We define R°(v)
to be the set of all such states ¢’. Observe that since K, is
of type o, the stack in the configuration (K, p,,&) must be
empty.

For K, of type Ay — --- — A — o, we also collect
collect all the nodes reachable from v when Eve plays o.
We select once again those nodes v who have incoming
edges labeled v. This time the label of v’ must have the form
q < (K, py, Sy ), for some ¢’ and S,. By typability, S, is a

sequence of closures C1, ..., Cy of types Aq,..., Ax, respec-
tively. By induction R?(v(C4)),..., R7(v(Cy)) are defined.
We consider the step function (R (v(Ch)),. .., R (v(Ck))—

q'. We define R°(v) as the supremum of all such step
functions.

Lemma 20 If Eve wins in K(M,D,q) then Eve wins in
SG(M,D) from gy < (M,(,e). Moreover she can win by
playing with residuals. Analogously for Adam.

This completes the proof of Theorem 16. If Eve wins in



K (M, D, qp) then she wins from qo < (M, 0,¢) in SG(M, D)
and so ¢ € [M,0]” by Lemma 19. Analogously for Adam.

VI. EXPRESSIVENESS OF THE A\Y -CALCULUS WITH
PRIORITIES

In this section we show that AY -calculus with priorities is
sufficiently expressive: for every assignment of priorities to
constants and for every AY-term there is an equivalent \Y -
term with priorities. By equivalent we mean that the two terms
generate the same Bohm trees. The construction of the AY -
term with priorities is effective. The presented construction
gives an exponentially bigger term, but by sharing common
subterms one can obtain a translation with only a quadratic
blowup. Anyway the blow-up in the term size is not the main
factor in our complexity considerations.

The translation presented below was proposed by
Mellies [11], [17]. Here, it is extended to a fixpoint operator.
The other translations in the higher-order model checking
literature, [15], [28], [29] or even before [30], are bit different.
They make a “product” of a term and a finite automa-
ton/model; roughly they work on a normal form without first
calculating one. For example, they can be used for so called
global model checking problem, or to produce an image under
a tree transducer [28]. Mellies’ construction handles priorities
priorities between a binding and a use of a variable.

Fix an alphabet with priorities, ¥?". This means that every
constant b in X" has its arity ar(b) and its priority pr(b).
The two determine a priority type 6, of b; (cf. page 5). By
forgetting priorities we get a normal alphabet ¥, where every
constant has a simple type A; obtained by erasing priorities
from 6. Let p be the largest priority of a constant in >P".
Consider an operation transforming simple types into types
with priorities:

of=0 (A-B)T"=(pA")—- - —(0,A7) = BT

We describe a matching operation on terms. It uses variables
with superscripts that correspond to priorities. So for every
variable z in the original term, we have z°,..., 2P in the
translated term.

The translation presented in Figure 8 uses some notation.
For a term N with variables with superscripts, and a rank 7 we
define NT,. to be a term obtained from N by replacing every
free variable z' in N by x*®"; recall that & denotes maximum
operation. We will also need a variant of this operation, NT",. ,
where T, is applied to all variables but F'. For example in
(az"F°) 1, p is az"FY. Observe that N I’y is just N but
sometimes we will still use I’ for consistency.

The translation for a variable just selects variable with
priority 0. The translation for a constant is a A-term that
multiplies the arity of the constant by p 4 1, and then selects
only components corresponding to the priority of the constant.
The translation for the abstraction replicates the abstraction
(p + 1)-times; intuitively x% corresponds to appearances of
with application priority ¢ (cf. Definition 9). The translation of
application duplicates the argument (p+ 1)-times, and uses an
application of a different priority for each of the arguments.
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pa(z) = 2"
pa(b) = /\1]1). .1:(1) .. /\111;7“(17) .. .1:%7,@).

(oo (boraf) ) ray,, wherer=pr(b)
pa(Az.N) = AP ... )\xo.pa(N)

pa(MN) = (- (pa(00) -y pa(N)p) ot pa(NIPpt) -+ 0 P3N

pa(YEN) = (YF.N)" where
(YEN)P =YPFP . Y'F'pa(N), p
(vEN)rt=yPtpr=t  YOFY pa(N)P ) p [(VEN)P/FP)

(YEN) = YR pa(N)y g [(VEN)YFL.. (¥ EN )P/

Fig. 8. Translation to priority typable terms.

The translation for the fixpoint is by far the most complicated.
It uses an auxiliary translation (Y F.IV))%.
Remark: It would be tempting to translate Y F* N to

YEEE (L (YIFL(YOFC pa(N))P1)P) - - P

Unfortunately, the result may be not priority typable. This
translation would be typable using the fixpoint rule without
the side condition. As we have seen in the example on
page 6, without the side condition the rule does not ensure
that terms are priority homogeneous which is crucial for our
constructions.

The correctness of the translation is stated in the next
theorem. In the proof it is very handy to use the equivalence
between models and automata with trivial acceptance condi-
tions, Proposition 7.

Theorem 21 For every closed term M of type o of \Y-
calculus, term pa(M) is priority typable, and BT (pa(M)) =
BT (M).

VII. HIGHER-ORDER MODEL-CHECKING THROUGH
POWERSET MODELS

We examine how we can use the link between automata and
models to do higher-order model-checking. Given AY -term
M and parity automaton A, we want to decide if BT'(M) is
accepted by A from gq.

We show that there is no overhead in reducing the higher-
order model-checking to evaluation in models. At the same
time, the examples we give here show that evaluation in
models should not be done naively, by just taking the semantic
clauses.

Let us first look at the case when we have a prioritized
alphabet >P", a priority typed term M of type o, and a
visibly parity automaton A, both over ¥P". In this case we
can construct a mogel DA as in Definition 4. Theorem 14
tells us that [M]”" is the set of states ¢ from which A
accepts BT'(M). So the model-checking problem reduces to
calculating the value of a term in the finitary powerset model
constructed from the automaton.



The model-checking problem for AY -calculus, can be re-
duced to that for \Y -calculus with priorities thanks to Propo-
sition 12. Suppose we are given an alphabet X of typed
constants, a AY-term M, and a parity automaton .A; both
over the alphabet . For pr the priority function of A, we
consider the maximal priority p, and construct a priority
alphabet exp,(X) (cf. page 6). Both exp,(M) and exp,(A)
are over the alphabet ezp,(3), and exp,,(A) is a visibly parity
automaton. By Proposition 12, BT (M) is accepted by A from
q, iff BT (exp,(M)) is accepted by exp,(A) from g. Finally,
we can use Theorem 21 to obtain pa(exp,(M)), a priority
typable term with the same Bohm tree as exp, (M ). So the
model checking problem reduces to checking if the Bohm tree
of pa(exp,(M)) is accepted by exp,(A). By Theorem 14, this
in turn can be done by evaluating pa(exp,(M))) in the model
constructed from ezp,,(A).

We claim that the complexity of this approach is not
worse than that of other approaches to the model checking
problem. To carry out the complexity analysis we need to
name some parameters of the problem. We have a fixed
alphabet of constants with priorities, >P". We use p for the
maximal priority in XP". We use |M]| for the size of the
term, and |Q| for the number of states in A. Let n > 0
be the maximal order of the type of a subterm of M; Let
nfz; < n be the maximal order of a fixpoint subterm of M.
We start counting the order from 0, namely: order(o) = 0, and
order(A — B) = max(order(A) + 1, order(B)). Finally, we
use K for the maximal arity of a subterm of M; where the
arity of a term is the sum of the number of its free variables
and the number of its arguments.

Before calculating the complexity, let us remark that the
translation from the AY'-calculus to the AY-calculus with
priorities does not induce an important complexity blowup.
The size of exp,(A) is the same as that of A. The size of
pa(exp,(M)) is O(|M]| -p!™1), and its arity is p- K. Actually,
by encoding common subterms one can get a translation of
size quadratic in p - | M|, but anyway the size of the term is
not a dominant factor in the complexity.

Thus the complexity of the algorithm comes from checking
q € [[M]DA. By Lemma 19, to decide ¢ € [[M]]DA we need
to find out if Eve has a winning strategy from the position
q < (M,0,¢) in the game SG (M, DA). The latter is a weak
parity game, so in order to establish the complexity of deciding
the winner we need to know its size.

We calculate the size of SG(M, D). Positions of the game
are of the form ¢ < (N,d,§) or ¢ < (f; N,9,q); where f
is an element of DA, ¥ is a valuation in D4, and gis a
sequence of elements of DA, By examining the rules of the
game SG(M,DA) we can see that the type of f has order
< max(n — 1,n4,), and hereditary arity < K. Similarly for
elements in §. The type of the element ¥(x) is determined by
the type of x. Its order is trivially bounded by n, but when
M is closed then it is bounded by max(n — 1,n4,), and it
has hereditary arity < K. Thus the orders of f, 1, and ¢ are
bounded by N, = max(n — 1,npa;) < n. The number of
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step functions in Df for a type A of order n and hereditary
arity < K is bounded by Tower, (O(K|Q|)). The number of
elements in D+, is one exponent bigger.

With these calculations we see that there are at
most | M|Tower,, . +1(O(K|Q|)) positions in the game
SG(M,DA). Since the game is a weak parity game, it can
be solved in linear time wrt. the number of transitions. So the
size of the game gives also the complexity of the algorithm.
This is in some respect better than the known algorithms since
p does not appear in the Tower term. The reason is that we
have considered the problem for priority AY -calculus. For \Y -
calculus we need to take into account the increase of arity
due to pa(exp,(M)) translation. This gives the complexity
O(IM| - p"MI Tower,, .. 1(O(Kp|Q|)) as do other methods
for the \Y -calculus [9].

Model-checking higher-order recursive schemes

To look at the complexity of model-checking schemes,
we need to look at a translation from schemes to the A\Y'-
calculus [31]. Terms obtained by translating schemes are in
a (-normal form (but, of course, not in Sd-normal form).
Moreover, all fixpoint subterms are semi-closed: the only free
variables are those that are later closed with a fixpoint operator.
The notion of arity we have used above becomes a standard
one for schemes, since the right-hand sides of equations do
not have free variables. If we use the translation from [31]
followed by the method described above we do not get the
algorithm of same complexity as [8]. The problem is that in
op. cit. the algorithm has the complexity of Tower, while
our calculation gives the complexity of Tower, 1. The
complexity is bigger when ng, = n.

This discrepancy in the complexity is actually not that
surprising. The target of our reduction is a weak parity game
while the target of the reduction in [8] is a parity game. The
problem comes from the fact that in the semantic game, in
the case of the fixpoint rule, Eve is required to play with
what she thinks approximates the semantics of the fixpoint.
One exponent can be saved by limiting her choice: we may
allow her to play only with approximations of the fixpoint
from the Knaster-Tarski theorem. Their number is bounded
by the height of the lattice, so in our case it is one exponent
smaller than the size of the lattice. Yet, even better is to handle
fixpoints through a parity condition.

We describe a game PSG(M,D) that is a variant of
SG(M, D) where fixpoints are handled through unfolding and
a parity condition. We assume that every fixpoint subterm of
M 1is semi-closed. Recall that terms obtained from translations
of schemes have this property. Without loss of generality
we may assume that every fixpoint variable in M is bound
once. So a variable F' bound in M uniquely identifies the
fixpoint subterm Y"F.N in M. We refer to this subterm as
term(F, M).

The rules of the game PSG(M,D) are the same as
SG(M, D) (cf. Figure 7) but for those handling the fixpoint.
They become:

e ¢ <(Y"F.N,9,3) — q < (N,9,9)



e ¢ < (F9,§) — q < (N,9,§) when term(F, M) =
Y"F.N
The winning condition in PSG(M, D) is the parity condition
given on the parities written on the edges. We get an analog
of Lemma 20.

Lemma 22 If Eve wins in K(M,D,qp) then Eve wins in
PSG(M,D) from qo < (M, 0, ). Moreover she can win by
playing with residuals. Analogously for Adam.

The size of the game PSG(M,D4) is of order of mag-
nitude Tower,, since unlike in SG(M,D4) the sizes of do-
mains for fixpoints do not enter into computation. Thus using
PSG(M,D*) we obtain the same worst case complexity as
algorithms working directly for schemes.

Model-checking for disjunctive automata

We show how to do model-checking for disjunctive au-
tomata in (n — 1)-EXPTIME. This result has been proved by
Kobayashi and Ong [32]. It is technically very interesting
because it is difficult to prove without going into internals
of a decision procedure for higher-order model-checking. In
our case we will use the game PSG(M, D) and the fact that
in this game Eve may play only with residuals. It is this later
fact that is difficult to capture on the level of semantics.

A disjunctive automaton is a parity automaton whose transi-
tion function has the property: for every (S1 ..., Sar 1)) € 0,
the union S1U- - -USg,.(p) is a singleton. In particular, at most
one of S1,..., S, is not empty. The dual of a disjunctive
automaton is a deterministic automaton, potentially exponen-
tially bigger. Observe that if A is disjunctive then exp,,(A) is
also disjunctive. In the light of the above discussion, to get
(n — 1)-EXPTIME algorithm it is enough to show it for \Y-
calculus with priorities and disjunctive visibly parity automata.

Let us look at K (M, D4, qy) when A is a disjunctive visibly
parity automaton. A winning strategy for Eve in this game is
a path. Indeed, branching for Adam appears only at nodes
of the form (dy,...,dsr@p)) < (C1,...,Curp)). Because of
disjunctiveness, Adam has no choice there. In consequence,
every closure of type o is used at most once when Eve is
playing her strategy. Indeed, when a v-closure is used in v’
due to the transition — (K, p,,e) then v-closure cannot
appear in p,, and the stack must be empty as K, is a term of
type o. So there cannot be any use of the v-closure below v’.

By Lemma 22, Eve can win in PSG(M, D) when playing
with residuals coming from a winning strategy o for Eve in
K(M,D,q). By the preceding paragraph, for every closure
(v, Ky, py) with K, of type o, the residual R? (v) is a singleton
or an empty set. So it is an element of D" = {{q} :€
Q} U {0}. By definition of residuals, a residual of a type

Ay — -+ — A — o is a set of step functions from
DZ’;” X oo X DZL;" to D" Hence the size of DY,

for a type A of order n, is bounded by Tower,(O(K|Q|)),
compared to Tower,1(O(K|Q|)) for D 4. So the size of the
game PSG(M,D) is of order of magnitude Tower,,_1, and it
can be solved in time exponential in the number of priorities.
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VIII. CONCLUSIONS

This work pursues a model-based approach to higher-order
model-checking. It proposes an extension of the \Y -calculus
with priorities and shows that its semantics is perfectly suited
for higher-order model-checking, in a sense that there is a
correspondence between models and visibly parity automata
(Fact 13), such that value in the model coincides with ac-
ceptance by the corresponding automaton (Theorem 14). This
gives a partial answer to the most fundamental question about
the model-based approach, namely is there a simple seman-
tically defined class of models recognizing exactly properties
expressed in monadic second-order logic.

The answer is partial since it concerns only AY -calculus
with priorities, and is restricted to _L-blind parity automata.
Yet, A\Y -calculus with priorities is sufficiently expressive, as
it generates the same Bohm trees as AY -calculus. Moreover,
Theorem 14 says that L-blindness is unavoidable if we want
to stay with the interpretation with least and greatest fixpoints.

There exist models that can recognize _L-insightful prop-
erties [12], [15], but they are substantially more complicated.
The easiest way around seems to simply assume that terms are
productive, i.e., their Bohm trees do not have L. Every term
can be transformed to a productive term [15], [33], but the
transformation is algorithmically expensive. Instead, one may
simply add a new constant in front of every fixpoint operator:
the resulting term would be productive, and in its Bohm tree
one could see the unfoldings of fixpoints. Observe that already
in the propositional mu-calculus guardedness is a technical
issue [34].

From a more general perspective, models have a rich struc-
ture, and this can guide refinement of the syntax to make this
structure explicit. Development of linear logic and differential
calculus are flagship examples of this approach. On a much
more modest scale, we have followed the same methodology
here. We have extracted priorities from models to the syntax,
capturing the interactions between computation and priorities
in a form of a type system.

Models are modular, and agnostic to syntax. One can extend
the syntax as long as it can be interpreted in the model. They
may be useful in the context of modular model-checking [35].
It would be interesting to extend the current work to linear
constructs investigated recently by Clairambault, Grellois and
Murawski [36]. Observe that the size of domains for linear
types indicates that it could be possible to recover their
complexity results through the model approach.

This work was inspired by the paper of Kobayashi et.
al. [19] studying the relation with model checking of higher-
order fixpoint logic (HFL-MC). The reduction to \Y -calculus
with priorities gives a reduction of higher-order model-
checking problem to HFL-MC. Except for fixpoints, this is the
same reduction as in [19]. It would be very interesting to find
an inverse reduction that preserves the structure of fixpoints,
depends only on the nesting of fixpoints and not the size of
the transition system. A recent paper of Kobayashi, Tsukada,
and Watanabe [37] makes a strong case for HFL-MC.
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