
Verifying higher-order concurrency
with data automata

Alex Dixon˚, Ranko Lazić˚, Andrzej S. Murawski: and Igor Walukiewicz;

˚Department of Computer Science, University of Warwick
:Department of Computer Science, University of Oxford

;CNRS, Université de Bordeaux

Abstract—Using a combination of automata-theoretic and
game-semantic techniques, we propose a method for analysing
higher-order concurrent programs. Our language of choice is
Finitary Idealised Concurrent Algol (FICA) due to its relatively
simple fully abstract game model.

Our first contribution is an automata model over a tree-
structured infinite data alphabet, called split automata, whose
distinctive feature is the separation of control and memory. We
show that every FICA term can be translated into such an
automaton. Thanks to the structure of split automata, we are
able to observe subtle aspects of the underlying game semantics.

This enables us to identify a fragment of FICA with iteration
and limited synchronisation (but without recursion), for which,
in contrast to the whole FICA, a variety of verification problems
turn out to be decidable.

I. INTRODUCTION

We investigate how to use game semantics for verification

of concurrent higher-order programs. Game semantics makes

it possible to investigate properties such as “two programs

are equivalent in all contexts”, or “there is a context where a

program behaves in a particular way”. The quantification over

contexts offered by game semantics is particularly interesting

for concurrent programs when we want to understand the

possible behaviours of a program in an environment we do

not control. Our research objective is to find effective ways

of using game semantics to analyse programming languages

with concurrency.

The use of game semantics comes with a price. It uses

sequences with pointers, which is a major obstacle to applying

standard automata-theoretic techniques. In some cases, point-

ers can be ignored or encoded in the structure of sequences. In

the concurrent setting, where closure under shuffle is hardly

avoidable, such approaches do not seem promising.

We use data to encode pointers: roughly, two positions with

related data are linked by a pointer. This approach requires

using data automata to describe the semantics of programs.

The challenge is to find a sufficiently expressive class of data

automata with good algorithmic properties.

We propose a model of data automata, called split automata,

expressive enough to encode the game semantics of Finitary

Idealised Concurrent Algol (FICA). We identify a subclass of

these automata for which the emptiness problem is decidable.

We show that this subclass corresponds to restricting the use

of semaphores in FICA.

Finitary Idealised Concurrent Algol is a prototypical pro-

gramming language combining functional, imperative, and

concurrent computation. It is a call-by-name language with

higher-order features, side-effects, and concurrency imple-

mented by a parallel composition operator and semaphores. It

is finitary since, as is common in this context, base types are

restricted to finite domains. The fully abstract game semantics

of FICA is relatively simple [1], making it an appealing

candidate for our study.

Split automata work with data values organised in an infinite

tree. The data values represent occurrences of moves and the

tree structure helps to capture nesting dependencies implied

by pointers. The automata accept data words, which we use to

represent plays in game semantics. We show how to translate

a FICA term to a split automaton accepting precisely the

representations of plays in the semantics of the term. Due to

this close connection, the emptiness problem is undecidable

for split automata, as the corresponding problem for FICA is

undecidable [2].

Nevertheless, the structure of split automata leads us to un-

cover a decidable fragment of FICA. The name, split automata,

emphasises their structure, where the control and memory used

to store values of the program are separated. This separation al-

lows us to discover a restriction on the use of semaphores that

makes automatic verification possible. In restricted-semaphore

FICA (rsFICA), subterms of the form fM1 . . .Ml cannot

contain free semaphore variables. Intuitively, this means that

semaphore variables cannot be passed to unspecified functions.

On the other hand, we put no restrictions on the scope of

memory variables, and we allow the iteration construct.

At the level of split automata, the decidable restriction takes

the form of an idempotency requirement on transitions. It

captures in a succinct way the difference between read/write

operations and grab/release operations. We prove that the

emptiness problem for idempotent automata is decidable.

Technically, the argument makes an interesting link with

parametric verification.

Several verification problems become decidable thanks to

the decidability result and the reduction from rsFICA to

idempotent automata. Unlike standard program analysis, we

do not address the problem of verifying if a property holds978-1-6654-4895-6/21/$31.00 ©2021 IEEE



for all executions, but rather whether the property holds for

all executions in all possible contexts. It is game semantics

that permits us to handle the additional quantification over

all possible contexts. For example, we can decide if there

is a context where a given variable in a given program is

assigned value 13, or dually, it is never assigned value 13. The

two questions are different because one uses existential and

the other universal quantification on contexts and executions.

Since the method uses finite automata to express properties,

we can also express standard questions from program analysis,

such as “is a given variable live at a given program point?”

or “is a given variable invariant in some loop?”.

Related work: Concurrency, even with only first-order re-

cursion, leads to undecidability [3]. The first decidable frag-

ment of FICA is Syntactic Control of Concurrency (SCC) [2].

It imposes bounds on the number of threads in which ar-

guments can be used. This restriction makes it possible to

represent the game semantics of programs by finite automata.

Another very recent fragment is local FICA [4] (LFICA). It

forbids while, and requires the binding between declaration

and use of any variable or semaphore to “cross” at most one

free identifier. The decidability argument for LFICA starts from

an automata model related to split automata. However, the

latter are more refined, allowing for a more direct translation of

FICA into automata. Moreover, the decidability arguments are

completely different in the two cases. The one from [4] uses a

reduction to reachability in Petri Nets. Our fragment, rsFICA,

does not encompass LFICA, because the latter allows the use

of semaphores at (applicative) depth 2. In rsFICA we have

unbounded computations thanks to while, and unrestricted

use of state, making it a more natural fragment than LFICA.

Our decidability argument relies on the observation that,

with limited use of semaphores, a program cannot tell how

many copies of code it interacts with. This situation is well

known in parametric verification [5], [6], [7], [8], [9], [10]. For

example, the above-cited undecidability argument [3] is based

on the fact that two communicating pushdown automata can

simulate a Turing machine. When one of the two pushdown

automata is duplicated an indeterminate number of times, and

communication uses reads and writes to shared variables, the

model becomes decidable [6]. In our model, parameterisation

is not postulated in order to get decidability but it occurs

naturally in the associated game semantics; intuitively, it

comes from the quantification over all contexts.

Split automata are a model of computation over an infinite

alphabet. Models of this kind have been researched intensively

in recent years, not least due to connections with database

theory, notably XML [11]. Nested data were first considered

in [12], where the authors discuss shuffle expressions. After

that, data automata [13] and class memory automata [14] have

been adapted to nested data in [15], [16]. For most models over

nested data, the emptiness problem is undecidable. To achieve

decidability, the authors in [15], [16] relax the acceptance

conditions so that the emptiness problem can eventually be

recast as a coverability problem for a well-structured transition

system. In [17], this result was used to show decidability of

equivalence for a first-order (sequential) fragment of Reduced

ML. On the other hand, in [12] the authors relax the order

of letters in words, which leads to an analysis based on

semi-linear sets. Both of these restrictions are too strong to

represent the semantics of FICA, because of the game-semantic

WAIT condition, which corresponds to waiting until all sub-

processes terminate. In split automata, this is reflected by

making answers conditional on the success of zero tests.

Yet another related strand of work on concurrent

higher-order programs is based on higher-order recursion

schemes [18], [19]. Unlike FICA, they feature recursion but the

computation is purely functional over a single atomic type o.

Structure of the paper: We start with a presentation of FICA

and its game semantics. Next, we introduce split automata.

In section V we describe how plays are represented by data

words, and how to translate FICA terms to split automata. In

Section VI we introduce rsFICA, and show that split automata

obtained from rsFICA terms are idempotent. In the following

section we present the decidability of the emptiness problem

for idempotent automata. In section VIII we describe how

some verification problems for rsFICA can be effectively

reduced to the emptiness problem for idempotent automata.

II. FINITARY IDEALISED CONCURRENT ALGOL (FICA)

Idealised Concurrent Algol [1] is a paradigmatic language

combining higher-order with imperative computation in the

style of Reynolds [20], extended to concurrency with parallel

composition (||) and binary semaphores. We consider its fini-

tary variant, FICA, where the datatype is finite t0, . . . ,maxu
(max ě 0), there is no recursion, but there is iteration instead.

Its types θ are generated by the grammar

θ ::“ β | θ Ñ θ β ::“ com | exp | var | sem

where com is the type of commands; exp that of

t0, . . . ,maxu-valued expressions; var that of assignable vari-

ables; and sem that of semaphores. The typing judgments

are displayed in Figure 1. Here, skip and divθ are constants

representing termination and divergence respectively, i ranges

over t0, . . . ,maxu, and op represents unary arithmetic oper-

ations, such as successor or predecessor (since we work over

a finite datatype, operations of bigger arity can be defined

using conditionals). Variables and semaphores can be declared

locally via newvar and newsem. Variables are dereferenced

using !M , and semaphores are manipulated using two (block-

ing) primitives, grabpsq and releasepsq, which grab and

release the semaphore respectively. A term $ M : com is

said to terminate, written M ó, if there exists a terminating

evaluation sequence from M to skip.

FICA terms can be compared using a notion of contextual

(may-)equivalence denoted Γ $ M1 – M2. Two terms of

the same type are equivalent if they cannot be distinguished

with respect to termination by any context: for all contexts C

such that $ CrM1s : com we have, CrM1s ó if and only

if CrM2s ó. Due to quantification over all contexts, even

very simple instances of equivalence, like equivalence with

divθ, are undecidable. Intuitively, to show inequivalence of

2



Γ $ skip : com Γ $ divθ : θ Γ $ i : exp

Γ $ M : exp

Γ $ oppMq : exp

Γ $ M : com Γ $ N : β

Γ $ M ;N : β

Γ $ M : com Γ $ N : com

Γ $ M ||N : com

Γ $ M : exp Γ $ N1, N2 : β

Γ $ if M thenN1 elseN2 : β

Γ $ M : exp Γ $ N : com

Γ $ whileM doN : com

Γ, x : θ $ x : θ

Γ, x : θ $ M : θ1

Γ $ λx.M : θ Ñ θ1

Γ $ M : θ Ñ θ1 Γ $ N : θ

Γ $ MN : θ1

Γ $ M : var Γ $ N : exp

Γ $ M :“N : com

Γ $ M : var

Γ $ !M : exp

Γ, x : var $ M : com, exp

Γ $ newvarx inM : com, exp

Γ $ M : sem

Γ $ releasepMq : com

Γ $ M : sem

Γ $ grabpMq : com

Γ, s : sem $ M : com, exp

Γ $ newsem s inM : com, exp

Fig. 1. FICA typing rules

a term Γ $ M : θ with divθ, we need to find a terminating

interaction of M with a context. Using game semantics, this

can be reduced to the existence of a so-called complete play. If

one can then find a class of automata to represent such plays,

this can be further reduced to an emptiness problem.

Example 1. In Figure 2, we give two examples of problematic

shapes of FICA terms, where s, x stands for a code fragment

that uses the variable x and semaphore s. Using the method-

ology of [2], it is possible to construct terms of this form to

represent two-counter machines. The terms then represent such

machines in the sense that inequivalence with div coincides

with the halting problem. The expressive power comes from

the use of the free identifier f : com Ñ com, corresponding

to an unspecified procedure, which can investigate its argument

in an unbounded number of concurrent threads. We write M1`
M2 for non-deterministic choice, which can be coded in FICA

as newvarx in ppx :“ 0||x :“ 1q; if !x thenM1 elseM2q, so

the loop corresponds to an arbitrary number of iterations.

In this paper, we will identify a class of terms, called

restricted-semaphore FICA (rsFICA), for which equivalence

with divθ will turn out to be decidable. We will also show how

to use the decidability procedure to verify properties of poten-

tial interactions of rsFICA terms with contexts. rsFICA will

allow for iteration (while) and unrestricted use of assignable

variables, but forbid use of semaphores in subterms of the form

fM1 ¨ ¨ ¨Mk. Consequently, the overlined uses of semaphores

in Figure 2 will be illegal in rsFICA.

On the other hand, in local FICA [4], which is another

recently established decidable fragment of FICA, while is

completely forbidden, and the use of both semaphores and

variables is restricted in such a way that the underlined parts

are banned.

III. GAME SEMANTICS

In this section, we briefly present the fully abstract game

model for FICA from [1], which we rely on in the paper. Game

semantics for FICA involves two players, called Opponent (O)

and Proponent (P), and the sequences of moves made by them

can be viewed as interactions between a program (P) and

a surrounding context (O). The games are defined using an

auxiliary concept of an arena.

Definition 2. An arena A is a triple xMA, λA,$Ay where:

‚ MA is a set of moves;

‚ λA : MA Ñ tO,P u ˆ tQ,Au is a function determining

for each m P MA whether it is an Opponent or a

Proponent move, and a question or an answer; we write

λOP
A , λ

QA
A for the composite of λA with respectively the

first and second projections;

‚ $A is a binary relation on MA, called enabling, satis-

fying: if m $A n for no m then λApnq “ pO,Qq, if

m $A n then λOP
A pmq ‰ λOP

A pnq, and if m $A n then

λ
QA
A pmq “ Q.

We shall write IA for the set of all moves of A which have

no enabler; such moves are called initial. Note that an initial

move must be an O-question (OQ). In arenas used to interpret

base types all questions are initial - the possible P-answers

(PA) are listed below (0 ď i ď max ).

Arena OQ PA
JcomK run done
JvarK read i

writepiq ok

Arena OQ PA
JexpK q i
JsemK grb ok

rls ok

More complicated types are interpreted inductively using the

product (A ˆ B) and arrow (A ñ B) constructions, given in

Figure 3. We write JθK for the arena corresponding to type

θ. In Figure 4, we give (the enabling relations of) A1 “
Jcom Ñ com Ñ comK and A2 “ Jpvar Ñ comq Ñ comK
respectively, using superscripts to distinguish copies of the

same move (the use of superscripts is consistent with our

future use of tags in Definition 10).

Given an arena A, we specify next what it means to be a

legal play in A. For a start, the moves that players exchange

will have to form a justified sequence, which is a finite

sequence of moves of A equipped with pointers. Its first move

is always initial and has no pointer, but each subsequent move

n must have a unique pointer to an earlier occurrence of a

move m such that m $A n. We say that n is (explicitly)

justified by m or, when n is an answer, that n answers m. If a

3



f : com Ñ com $ newvarx innewsem s in

while p0 ` 1qdo p fp s, x q; s, x q || while p0 ` 1qdo p fp s, x q; s, x q

f : com Ñ com $ newvarx innewsem s, s1, s2 in

fpgrabps1q; fp s, x q; s, x; releaseps1q q || fpgrabps2q; fp s, x q; s, x; releaseps2qq

Fig. 2. Problematic FICA terms

MAˆB “ MA ` MB MAñB “ MA ` MB

λAˆB “ rλA, λBs λAñB “ rxλPO
A , λ

QA
A y, λBs pλPO

A pmq “ O iff λOP
A pmq “ P q

$AˆB “ $A ` $B $AñB “ $A ` $B `t pb, aq | b P IB and a P IAu

Fig. 3. Arena constructions. We write ` and r¨ ¨ ¨ s for the disjoint union of sets and functions respectively; x¨ ¨ ¨y denotes pairing.

A1 “ Jcom Ñ com Ñ comK A2 “ Jpvar Ñ comq Ñ comK

O run
♣♣
♣

❣❣
❣❣
❣❣
❣❣
❣

P run2 run1 done

O done2 done1

O run
♣♣
♣

P run1
♠♠
♠

❢❢
❢❢
❢❢
❢❢
❢❢
❢❢

done

O read11 writepiq11 done1

P i11 ok11

run run1 run2 done1 done2 done run run1 read11 011 writep1q11 ok11 read11 111

Fig. 4. Arenas and justified sequences

question does not have an answer in a justified sequence, we

say that it is pending in that sequence. In Figure 4 we give

two justified sequences from A1 and A2 respectively.

Not all justified sequences are valid. In order to constitute a

legal play, a justified sequence must satisfy a well-formedness

condition that reflects the “static” style of concurrency of our

programming language: any started sub-processes must end

before the parent process terminates. This is formalised as

follows, where the letters q and a to refer to question- and

answer-moves respectively, while m denotes arbitrary moves.

Definition 3. The set PA of plays over A consists of the

justified sequences s over A that satisfy the two conditions

below.

FORK : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨m of s, the question q

must be pending when m is played.

WAIT : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨ a of s, all questions

justified by q must be answered.

It is easy to check that the justified sequences given above

are plays. A subset σ of PA is O-complete if s P σ and so P PA

imply so P σ, when o is an O-move.

Definition 4. A strategy on A, written σ : A, is a prefix-closed

O-complete subset of PA.

Suppose Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu and Γ $ M : θ is a

FICA-term. Let us write JΓ $ θK for the arena Jθ1K ˆ ¨ ¨ ¨ ˆ
JθlK ñ JθK. In [1] it is shown how to assign a strategy on

JΓ $ θK to any FICA-term Γ $ M : θ. We write JΓ $ MK

to refer to that strategy. For example, JΓ $ divK “ tǫ, runu
and JΓ $ skipK “ tǫ, run, run doneu. Given a strategy σ, we

denote by comppσq the set of non-empty complete plays of

σ, i.e. those in which all questions have been answered. The

game-semantic interpretation J¨ ¨ ¨K can be viewed as a faithful

record of all possible interactions between the term and its

contexts. It provides a fully abstract model in the sense that

contextual equivalence is characterized by the sets of non-

empty complete plays.

Theorem 5 ([1]). We have Γ $ M1 – M2 if and only if

comppJΓ $ M1Kq “ comppJΓ $ M2Kq.

In particular, since comppJΓ $ divθKq “ H, we have that

Γ $ M : θ is contextually equivalent to divθ if and only if

comppJΓ $ MKq “ H.

IV. SPLIT AUTOMATA

We propose a class of automata recognising sequences of

tags with data values. Every letter in a sequence is a pair from

ΣˆD, where Σ is a finite set of tags, and D is an infinite set

of data values. Tags will represent moves in game semantics,

and data values will encode pointers. We shall show that the

automata are expressive enough to express the game semantics

of FICA. Namely, for every term we shall be able to construct

an automaton accepting a representation of the set of plays

corresponding to the term.

Because the automata separate control states from memory,

we call them split automata. This structure will allow us to

4



understand how a term accesses the memory cells. This will

enable us to identify a decidable fragment of FICA.

Our dataset D has the structure of a countably infinite

forest. This structure will be instrumental for representing

game semantics, specifically to encode justification pointers

and to enforce the WAIT condition.

Definition 6 (Dataset). D is a countably infinite set equipped

with a function pred : D Ñ D Y tKu (the parent function)

such that the following conditions hold.

‚ Infinite branching: pred´1ptdKuq is infinite for any dK P
D Y tKu.

‚ Well-foundedness: for any d P D, there exists i P N,

called the level of d, such that pred i`1pdq “ K. Level-0

data values are called roots.

A configuration of a split automaton is a finite subtree of

D labelled with states (consisting of a control state with zero

or more memory cells). We say that T Ď D is a subtree of D

if and only if T is closed (@x P T : predpxq P T Y tKu) and

rooted (D!x P T : predpxq “ K). The automaton can add or

remove leaves from its configuration. When doing so, it can

only refer to the control state at the parent level. Moreover, it

has transitions that do not modify the shape of its configuration

but manipulate the control state of a node and the memory

content of one of its ancestors at the same time.

A split automaton has two parameters pk,Nq. The parame-

ter k is the maximal depth of the data used by the automaton,

while N is the maximal number of memory cells at each node.

The set of control states of the automaton is partitioned into

sets Cpiq, for 0 ď i ď k.

Data at odd levels will be labelled only with control states,

which will not change during runs. Data at even levels will be

labelled with control states (which may change during runs),

as well as with memory stores consisting of N cells, each

storing an element from V “ t0, . . . ,maxu. Accordingly, in

configurations, even-level data will be labelled with elements

of Cpiq ˆ V N .

Definition 7. A split automaton (SA) is a tuple A “
xΣ, k,N,C, δy, where:

‚ Σ “ ΣQ ` ΣA is a finite alphabet, partitioned into

questions and answers;

‚ k ě 0 is the depth parameter;

‚ N ě 0 is the local memory capacity;

‚ C “
Ť

tCpiq : i “ 0, . . . , ku is a finite set of control

states, partitioned into sets Cpiq of level-i control states;

‚ transitions in δ are partitioned according to their type and

level on which they operate (below cpiq, dpiq P Cpiq):

– ADDpiq transitions are cpi´1q q
ÝÝÑpdpi´1q, dpiqq, and

:
q

ÝÝÑcp0q for the special case of i “ 0, with q P ΣQ,

– DELpiq transitions are pcpi´1q, cpiqq
a

ÝÝÑdpi´1q, and

cp0q a
ÝÝÑ: for the special case of i “ 0, with a P ΣA,

– EPSp2j, 2iq transitions read v P V from mem-

ory cell h P t1, . . . , Nu at level 2j ď 2i and

update it to v1 P V , but do not read the input:

p2j, h, v, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq.

Transitions cannot modify control states at odd layers: if

cp2i´1q q
ÝÝÑpdp2i´1q, dp2iqq P δ or pcp2i´1q, cp2iqq

a
ÝÝÑdp2i´1q P δ

then cp2i´1q “ dp2i´1q.

A configuration of a split automaton is a tuple pD,E, f,mq,

where D is a finite subset of D (consisting of data values that

have been encountered so far), E is a finite subtree of D (the

shape of the configuration), f : E Ñ C is a level-preserving

function, i.e. if d is a level-i data value then fpdq P Cpiq,

and m : E á V N is a partial function whose domain is the

even-level nodes of E.

A split automaton A starts from the empty configuration

κ0 “ pH,H,H,Hq and proceeds according to its transitions

δ as explained below. Let the current configuration be κ “
pD,E, f,mq.

An ADD transition from κ is possible on a letter pt, dq
when t “ q P ΣQ and d R D is a fresh level-i datum such

that predpdq P E (the parent of d is in the configuration). In

this case, the automaton adds a new leaf d to the configuration

and updates the control state. The new leaf gets the control

state determined by the transition, moreover if it is on an even

level its memory is initialised. Formally, A goes from κ to

κ1 “ pDYtdu, EYtdu, f 1,m1q provided one of the following

conditions holds:

‚ On transition cpi´1q q
ÝÝÑpdpi´1q, dpiqq when fppredpdqq “

cpi´1q, f 1 “ f rpredpdq ÞÑ dpi´1q, d ÞÑ dpiqs, and m1 “ m

(if i is odd) or m1 “ mrd ÞÑ 0N s (if i is even).

‚ On transition :
q

ÝÝÑdp0q when D “ H, f 1 “ rd ÞÑ dp0qs,
and m1 “ rd ÞÑ 0N s.

We write f r¨ ¨ ¨ s to extend or update f .

On reading a letter pt, dq with t “ a P ΣA and d P E

a level-i datum, a transition is possible only if d is a leaf

in E. A DEL transition deletes d and updates the neighbouring

control state without modifying the associated memory (if

any). Formally, the automaton changes its configuration to

κ1 “ pD,Eztdu, f 1ztdu,mztdu) provided one of the following

conditions holds:

‚ On transition pcpi´1q, cpiqq
a

ÝÝÑdpiq when fppredpdqq “
cpi´1q, fpdq “ cpiq, and f 1 “ f rpredpdq ÞÑ cpi´1qs.

‚ On transition cp0q a
ÝÝÑ: when f 1 “ f .

Observe that the last transition is possible only when d is a

leaf of E and at level 0 at the same time, the result of the

transition is the empty tree E.

Transitions from EPS are silent. They apply at even

levels only and do not modify the shape of configura-

tions. However, they may change the associated control

state and read/write one memory location situated at the

same level or another even level above. Formally, the

automaton can go to κ1 “ pD,E, f 1,m1q on transition

p2j, h, v, cp2iqq
ε

ÝÝÑpv1, dp2iqq if there is a level-2i datum d P E

such that mppred2i´2jpdqqphq “ v, fpdq “ cp2iq, f 1 “ f rd ÞÑ
dp2iqs and m1ppred2i´2jpdqqqphq “ v1, and m1 is the same as

m otherwise.

Definition 8. A trace of a split automaton A is a word

w P pΣ ˆ Dq˚ such that κ0

l1ÝÝÑκ1 . . . κh´1

lhÝÝÑκh, where

5



κ0 “ pH,H,H,Hq, li P tǫu Y pΣ ˆ Dq (1 ď i ď h) and

w “ l1 ¨ ¨ ¨ lh. A configuration κ “ pD,E, f,mq is accepting

if E is empty. A trace w is accepted by A if there is a non-

empty sequence of transitions as above with κh accepting. The

set of traces (resp. accepted traces) of A is denoted by TrpAq
(resp. LpAq).

Remark 9. A related model, called leafy automata, was

recently proposed in [4]. Leafy automata can modify all states

along the relevant branch in a single step. Split automata are

more constrained in that regard. Their odd levels never change,

and transitions have more restricted access to information on

the branch: control states can be modified only up to one level

up and, at memory access, control states lying strictly above

cannot be accessed at all. This more refined structure is crucial

to identifying a decidable family within split automata.

Although split automata appear more restrictive, we will

next show that they can still express the game semantics of

FICA. Indeed, all the restrictions are motivated by a good fit

with the translation. Thus, split automata are also able to ac-

commodate the semantics of the undecidable terms discussed

in Section II. Consequently, the associated emptiness problem

must be undecidable.

V. FROM FICA TO SPLIT AUTOMATA

We present a translation from FICA to split automata. For

this, we first describe how we encode pointers in plays using

both a special indexing scheme and data. Then we present the

translation that proceeds by induction on term structure.

Recall from Section III that, to interpret base types, game

semantics uses moves from the set

M “ MJcomK Y MJexpK Y MJvarK Y MJsemK

“ t run, done, q, read, grb, rls, ok u
Yt i, writepiq | 0 ď i ď max u.

The game semantic interpretation of a term-in-context Γ $
M : θ is a strategy over the arena JΓ $ θK, which is obtained

through product and arrow constructions, starting from arenas

corresponding to base types. As both constructions rely on

the disjoint sum, the moves from JΓ $ θK are derived from

the base types present in types inside Γ and θ. To indicate

the exact occurrence of a base type from which each move

originates, we will annotate elements of M with a specially

crafted scheme of superscripts. Suppose Γ “ tx1 : θ1, ¨ ¨ ¨ , xl :

θlu. The superscripts will have one of the two forms, where
~i P N

˚ and ρ P N:

‚ p~i, ρq will represent moves from θ;

‚ pxv
~i, ρq will represent moves from θv (1 ď v ď l).

The annotated moves will be written as mp~i,ρq or mpxv
~i,ρq,

where m P M. We will sometimes omit ρ on the understand-

ing that this represents ρ “ 0. Similarly, when ~i is omitted,

the intended value is ǫ, e.g. m stands for mpǫ,0q and mx for

mpx,0q. The next definition explains how the~i superscripts are

linked to moves from JθK. Given X Ď tmp~i,ρq |~i P N
˚, ρ P Nu

and y P NYtx1, ¨ ¨ ¨ , xlu, we let yX “ tmpy~i,ρq |mp~i,ρq P Xu.

Definition 10. Given a type θ, the corresponding alphabet Tθ
is defined as follows

Tβ “ tmpǫ,ρq |m P MJβK, ρ P N u β “ com, exp,var, sem

TθlÑ...Ñθ1Ñβ “
Ťl

u“1
puTθuq Y Tβ

For Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu, the alphabet TΓ$θ is defined

to be TΓ$θ “
Ťl

v“1
pxvTθv q Y Tθ.

For example, Tf :comÑcom,x:com$com is t runpf1,ρq,

donepf1,ρq, runpf,ρq, donepf,ρq, runpx,ρq, donepx,ρq, runpǫ,ρq,

donepǫ,ρq | ρ P N u.

To represent the game semantics of terms-in-context Γ $
M : θ, we shall use finite subsets of TΓ$θ as alphabets. They

will be finite because ρ will be bounded. Note that TΓ$θ admits

a natural partitioning into questions and answers, depending

on whether the underlying move is a question or an answer.

We will represent plays using data words in which the

underlying sequence of tags comes from (a finite subset of)

the alphabet defined above. Next we explain how superscripts

and data are used to represent justification pointers. Because

no data value can be used twice with a question, occurrences

of questions correspond to unique data values. A justification

pointer from an answer to a question can then be represented

simply by pairing up the same data value with the answer.

Pointers from question-moves will be represented with the

help of the index ρ. Initial question-moves do not have a

pointer and to represent such questions we simply use ρ “ 0.

To represent moves with justification pointers we will rely on

ρ on the understanding that pmy,ρ, dq represents a pointer to

the unique question-move that introduced predρ`1pdq.

Example 11. Suppose that d0 “ predpd1q, d1 “ predpd2q “
predpd1

2
q, d2 “ predpd3q, d1

2
“ predpd1

3
q. Then the data

word prunpǫ,0q, d0q prunpf,0q, d1q prunpf1,0q, d2q prunpf1,0q, d1
2
q

prunpx,2q, d3q prunpx,2q, d1
3
q pdonepx,0q, d3q represents the play

run runf runf1 runf1 runx runx donex.

O P O O P P O

Note that a play may have several different representations;

the last three moves of the above play could also be rep-

resented by prunpx,0q, d1
1
q prunpx,0q, d2

1
q pdonepx,0q, d1

1
q, with

predpd1
1
q “ predpd2

1
q “ d0.

Example 12. Consider the SA A “ xQ, 3, 0,Σ, δy, where

Qp0q “ t0, 1, 2u, Qp1q “ t3u, Qp2q “ t4, 5, 6u, Qp3q “
t7u, ΣQ “ trunpǫ,0q, runpf,0q, runpf1,0q, runpx,2qu, ΣA “
tdonepǫ,0q, donepf,0q, donepf1,0q, donepx,0qu, and δ is given by

:
runpǫ,0q

ÝÝÝÝÝÑ0 0
runpf,0q

ÝÝÝÝÝÑp1, 3q p1, 3q
donepf,0q

ÝÝÝÝÝÑ2

2
donepǫ,0q

ÝÝÝÝÝÑ: 3
runpf1,0q

ÝÝÝÝÝÑp3, 4q 4
runpx,2q

ÝÝÝÝÝÑp5, 7q

p5, 7q
donepx,0q

ÝÝÝÝÝÝÑ6 p3, 6q
donepf1,0q

ÝÝÝÝÝÝÑ3

Then traces from TrpAq represent all plays from σ “ Jf :

com Ñ com, x : com $ fx : comK, including the play

from Example 11, and LpAq represents comppσq.

6



One may wonder why we did not choose to use the parent

structure of D to represent justification pointers (this would

correspond to ρ “ 0 in all cases). Unfortunately, this simplified

scheme would not work with split automata: in the above

example, the number of runpx,2q moves has to be the same

as the number of runpf1,0q moves. If we used level-1 data

values for runx, we would not be able to use the automaton

to enforce this property.

Below we state the main result linking FICA with split

automata. Question-moves in this translation are handled with

ADD transitions (at even levels for O and odd levels for P).

Answer-moves are handled by DEL transitions (at odd levels

for O and even levels for P). The structure of split automata

makes it possible to decouple the interpretation of memory-

related operations from the rest.

Theorem 13. For any FICA term Γ $ M : θ, there ex-

ists a split automaton AM over a finite subset of TΓ$θ

such that the set of plays represented by data words from

TrpAM q is exactly JΓ $ M : θK. Moreover, LpAM q represents

comppJΓ $ M : θKq.

Proof sketch. It is well known that any FICA term can be

reduced to an equivalent term in β-normal η-long form. The

argument proceeds by induction on the structure of such forms.

When referring to the inductive hypothesis for a subterm Mi,

we use the subscript i to refer to the automata components,

e.g. Q
pjq
i ,

m
ÝÝÑi etc. In contrast, Qpjq,

m
ÝÝÑ will refer to the

automaton that is being constructed. Inference lines

indicate that the transitions listed under the line should be

added to the new automaton provided the transitions listed

above the line are present in the automaton obtained via the

inductive hypothesis. Below we discuss the most interesting

cases, giving several representative steps in each case.

pM “ M1||M2q To model interleaving, we will use pairs

of level-0 control states from both automata with memory

big enough to accommodate both automata. We take k “

maxpk1, k2q, N “ N1 ` N2, Cp0q “ C
p0q
1

ˆ C
p0q
2

and

Cpiq “ C
piq
1

` C
piq
2

(i ą 0). All it takes then is to embed

transitions from AM1
and AM2

suitably.

ADD and DEL transitions that can assess level-0 con-

trol need to preserve the control state of the other

component, e.g.
c

p0q
1

ℓÝÝÑ1pd
p0q
1

,d
p1q
1

q cPC
p0q
2

pc
p0q
1

,cq
ℓÝÝÑppd

p0q
1

,cq,d
p1q
1

q
. EPS transi-

tions from M2 need to be adjusted (by adding N1)

so that their refer to the memory dedicated to M2,

e.g.
cPC

p0q
1

p0,h,v,cp0qq
ǫÝÝÑ2pv1,dp0qq

p0,N1`h,v,pc,cp0qqq
ǫÝÝÑpv1,pc,dp0qqq

. Finally, at the start

and at the end the automata need to be synchronised:
:

runÝÝÑ1c
p0q
1

:
runÝÝÑ2c

p0q
2

:
runÝÝÑpc

p0q
1

,c
p0q
2

q
,

c
p0q
1

doneÝÝÝÑ1: c
p0q
2

doneÝÝÝÑ2:

pc
p0q
1

,c
p0q
2

q
doneÝÝÝÑ:

.

pM “ newvarx inM1q According to [1], it suffices to

consider plays from M1 in which readpx,ρq and writepjqpx,ρq

moves are immediately followed by answers, and the se-

quences obey the “good variable” discipline (a value that

is read corresponds to the most recently written value). To

implement this recipe in an automaton, we will add a memory

cell at level 0 to keep track of the current value of x. To this

end, we take k “ k1, N “ N1 ` 1, Cpiq “ C
piq
1

(0 ď i ď k).

Transitions that do not use the moves discussed above

can be copied into the new automaton without changes. The

remaining transitions are added according to the following

rules. Note that in the case for writing we add transitions for

every old value v.

cp2iq writepjqpx,ρq

ÝÝÝÝÝÝÝÑ1pdp2iq,dp2i`1qq
okpx,0q

ÝÝÝÝÑ1e
p2iq

p0,N,v,cp2iqq
ǫÝÝÑpj,ep2iqq p0ďvďmaxq

cp2iq readpx,ρq

ÝÝÝÝÝÑ1pdp2iq,dp2i`1qq
jpx,0q

ÝÝÝÝÑ1e
p2iq

p0,N,j,cp2iqq
ǫÝÝÑpj,ep2iqq

Altogether the transitions use the N th memory cell to store

the value of x.

pM “ newsems inM1q This case is very similar to the

previous one: we need to restrict plays from M1 to those in

which grbpx,ρq and rlspx,ρq moves are immediately followed

by answers, and the sequence of such moves obeys the “good

semaphore” discipline (grabs follow releases and vice versa).

To implement this behaviour in an automaton, we will add a

memory cell at level 0 to keep track of the current value of x.

Thus, we take k “ k1, N “ N1 ` 1, Cpiq “ C
piq
1

(0 ď i ď k).

Transitions that do not use these special moves are copied

over without changes and the remaining transitions are added

by following the rules above, which keep track of the current

state of the semaphore.

cp2iq grbps,ρq

ÝÝÝÝÝÑ1pdp2iq,dp2i`1qq
okps,0q

ÝÝÝÝÑ1e
p2iq

p0,N,0,cp2iqq
ǫÝÝÑp1,ep2iqq

cp2iq rlsps,ρq

ÝÝÝÝÑ1pdp2iq,dp2i`1qq
okps,0q

ÝÝÝÝÑ1e
p2iq

p0,N,1,cp2iqq
ǫÝÝÑp0,ep2iqq

pM “ fpM1qq Here we only discuss the simplest case of

f : com Ñ com. We take k “ 2 ` k1, N “ N1, Qp0q “
t0, 1, 2u, Qp1q “ t3u, Qpj`2q “ Qpjq (0 ď j ď k1). First we

add transitions corresponding to calling and returning from f :

:
runpǫ,0q

ÝÝÝÝÝÑ0, 0
runpf,0q

ÝÝÝÝÝÑp1, 3q, p1, 3q
donepf,0q

ÝÝÝÝÝÑ2, 2
donepǫ,0q

ÝÝÝÝÝÑ:.

In control state 3 we want to allow the environment to

spawn an unbounded number of copies of the strategy for

Γ $ M1 : com: :
runpǫ,0q

ÝÝÝÝÝÑ1c
p0q

3
runpf1,0q

ÝÝÝÝÝÑp3,cp0qq

, cp0q donepǫ,0q

ÝÝÝÝÝÑ1:

p3,cp0qq
donepf1,0q

ÝÝÝÝÝÝÑ3

. Note

that 3 is immutable.

Other moves related to M1 originate from Γ, and have

the form mpxv
~i,ρq, where pxv P θvq P Γ. The associated

transitions are copied over but question-moves of the form

mpxv,ρq (i.e. initial moves of JθvK) need to have their pointer

adjusted so that they point at the move tagged with runpǫ,0q

(leaving ρ unchanged in this case would mean pointing at

runpf1,0q). To achieve this, it suffices to add 2 to ρ in this

case. Otherwise ρ can remain unchanged, because the pointer

structure is preserved. Below we use ˝L and ˝R to refer to

arbitrary left- and right-hand sides of transition rules.

˝L
mpxv,ρq

ÝÝÝÝÝÑ1 ˝R m is a question

˝L
mpxv,ρ`2q

ÝÝÝÝÝÝÝÑ˝R

7



˝L
mpxv~i,ρq

ÝÝÝÝÝÑ1 ˝R
~i ‰ ǫ or (~i “ ǫ and m is an answer)

˝L
mpxv~i,ρq

ÝÝÝÝÝÑ˝R

Memory-related transitions are also copied, while adjusting

the depth of the level that is being accessed by adding 2:
p2j,h,v,cp2iqq

ǫÝÝÑ1pv1,dp2iqq

p2j`2,h,v,cp2iqq
ǫÝÝÑpv1,dp2iqq

.

VI. RESTRICTED-SEMAPHORE FICA

We introduce rsFICA, a fragment of FICA with a restricted

use of semaphores. The translation of FICA to split automata

allows us to observe structural properties of the automata

generated in this case. We discover that they satisfy an idem-

potency property. In the next section we prove that emptiness

is decidable for idempotent automata. This gives a decision

procedure for verifying a range of properties of rsFICA terms.

Definition 14. Restricted-semaphore FICA (rsFICA) consists

of FICA terms Γ $ M : θ, whose β-normal η-long form is

such that subterms of the form fM1 ¨ ¨ ¨Ml (l ą 0) do not

contain free variables of type sem.

Note that rsFICA retains all sequential features of FICA,

such as unrestricted types, state and loops. On top of this,

it allows for a “shallow” use of semaphores, i.e., not in

subterms of the form fpNq. For example, the usage in

newsem s in grabpsq; fpskipq; releasepsq would be shal-

low, while the usage in newsem s in fpgrabpsqq is not.

In our automata translation, shallow uses occur at the same

level as the semaphore declaration and, consequently, can be

interpreted using control states alone.

We now explain how the restriction is reflected in the

structure of automata obtained by the translation. We identify

two properties that will be important for us in the decidability

argument of the next section.

The first property, called local boundedness, is actually a

general property of FICA. It concerns the branching degree of

trees in configurations of split automata at even levels only.

Definition 15. A split automaton is locally bounded if there

exists B such that in all reachable configurations pD,E, f,mq
every even-level node in E has at most B children.

By inspecting our constructions one can confirm that the

generated automata are locally bounded, e.g. the bounds add

up for the || construct, and in all other constructions it suffices

to take the maximum of the bounds for subterms.

Remark 16. In Algol, local boundedness is related to the

lack of recursion, which leads to undecidability even without

semaphores. If we wanted to extend our translation to FICA

with recursion, local boundedness would have to be violated.

A strictly stronger restriction, called (global) boundedness,

was considered in [4]. It put a bound on a total number of

children that can be created below an even-level node during

a run. The difference is that in local boundedness we are

interested in the number of children present at any given time.

This allows us to accommodate iteration.

The second property, called restricted-semaphore, is specific

to the rsFICA fragment. It talks about ways the memory

is manipulated by an automaton. Recall that the memory is

manipulated by EPS transitions that check for a value of

some memory cell and modify it in an atomic transition.

This enables us to check if a semaphore is free and grab it,

if possible. In contrast, read and write operations either just

check the value without modifying it, or just modify the value

without checking it.
Let us now explain this at the level of split automata. EPS

transitions have the form p2j, h, v, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq. Such a

transition finds a data value d labelled with control state cp2iq,

checks if for the ancestor of d at level 2j the h-th cell of

memory has value v, and if so, changes this value to v1, and

changes the control state at d to dp2iq. Consequently, if the

use of semaphores is restricted then we only have transitions

that either check for v and do not modify it, or update the cell

to v1 without checking the previous value of the cell. This is

formalised in the following definition.

Definition 17. In a restricted-semaphore split automa-

ton, if there exists a transition p2j, h, v, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq
for some v ‰ v1, then there also exist transitions

p2j, h, v2, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq for all v2 P V .

Some instances of semaphore use can still be translated to

restricted-semaphore split automata. This is exactly the origin

of the rsFICA fragment. A shallow use of a semaphore is

translated into p0, N, j, cp0qq
ǫ

ÝÝÑp1 ´ j, ep0qq for j “ 0, 1,

i.e. only level-0 states are involved. Such transitions can be

simulated by using the level-0 control state as memory. This

can be done by taking Cp0q “ C
p0q
1

ˆ t0, 1u, Cpiq “ C
piq
1

(i ą 0), N “ N1 ` 1, initializing the second component

of the control state to 0 in ADD(0), and propagating it in

other transitions that have access to it, i.e. ADD(1), DEL(1)

and EPS(0,0). The transition above can then be replaced by

p0, N, 0, pcp0q, jqq
ǫ

ÝÝÑp0, pep0q, 1 ´ jqq for j “ 0, 1. Note that

here the memory component is used in a dummy way: 0 is

read and not modified.

Corollary 18. Split automata corresponding to rsFICA terms

are locally bounded and restricted-semaphore.

In the next section we show how to decide emptiness

for split automata with these two properties. To simplify

the decidability proof we formulate the restricted-semaphore

property in a more abstract way as a kind of idempotence of

transitions of the automaton.
Recall that even-level data are labelled both by a control

state of the automaton and memory contents. We call the pair

xmp2iq, cp2iqy a combined state. In terms of combined states,

a transition p2j, h, v, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq can be written as

pxmp2jqrh ÞÑ vs, cp2jqy, xmp2iq, cp2iqyq
ǫ

ÝÝÑ
pxmp2jqrh ÞÑ v1s, cp2jqy, xmp2iq, dp2iqyq

If the automaton is restricted-semaphore, we also have

pxmp2jqrh ÞÑ v1s, cp2jqy, xmp2iq, cp2iqyq
ǫ

ÝÝÑ
pxmp2jqrh ÞÑ v1s, cp2jqy, xmp2iq, dp2iqyq.

8



because of p2j, h, v1, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq. Thus, using

qp2iq, rp2iq to range over combined states, we have discovered

that the restricted-semaphore condition implies the following

idempotence property:

if pqp2jq, qp2iqq
ǫ

ÝÝÑprp2jq, rp2iqq

then prp2jq, qp2iqq
ǫ

ÝÝÑprp2jq, rp2iqq.

If we interpret the first transition as putting constraints on

when qp2iq can be changed to rp2iq, the idempotence property

says that if this change can be done in one node of the

configuration tree, it can be done in an arbitrary number of

nodes. This property is crucial for the decidability argument

in the next section.

VII. IDEMPOTENT AUTOMATA

The aim of the section is to show that emptiness of locally

bounded and restricted-semaphore split automata is decidable.

This will allow us to answer certain verification questions

about rsFICA, since it compiles to this type of automata.

We prove the decidability result using a more abstract kind

of automata called idempotent. Separating memory from con-

trol was instrumental to express properties of the translation

from FICA to automata. For the decidability proof, all we

need is local boundedness and idempotency discussed in the

previous section. For this reason, we will work with abstract

states that represent combined states of split automata, i.e.,

pairs xmpiq, cpiqy (where, for odd i, the absence of memory is

encoded by mpiq having zero cells). We will use qpiq and rpiq to

range over combined states. For convenience, we reformulate

the definition of split automata in this new notation, including

the local boundedness and idempotency properties.

Definition 19. An idempotent automaton is a tuple

xQ, k,Σ, δy where k is the depth parameter, Q “
Ť

tQpiq :

i “ 0, . . . , ku is a finite set of states, Σ “ ΣQ ` ΣA is the

alphabet, and δ contains transitions of the shape given below,

where i ą 0, q P ΣQ, a P ΣA and qpiq, rpiq P Qpiq.

ADDp0q :
q

ÝÝÑrp0q

DELp0q qp0q a
ÝÝÑ:

ADDp2iq qp2i´1q q
ÝÝÑpqp2i´1q, rp2iqq

DELp2iq pqp2i´1q, qp2iqq
a

ÝÝÑqp2i´1q

ADDp2i ` 1q qp2iq q
ÝÝÑprp2iq, rp2i`1qq

DELp2i ` 1q pqp2iq, qp2i`1qq
a

ÝÝÑrp2iq

EPSp2j, 2iq pqp2jq, qp2iqq
ǫ

ÝÝÑprp2jq, rp2iqq j ď i

We require two conditions:

‚ idempotence: if pqp2jq, qp2iqq
ǫ

ÝÝÑprp2jq, rp2iqq then

prp2jq, qp2iqq
ǫ

ÝÝÑprp2jq, rp2iqq;

‚ local boundedness: there is a bound B such that in every

reachable configuration every even-level node has at most

B children.

The definitions of a run and acceptance are as for split

automata. It should be clear that restricted-semaphore locally-

bounded split automata can be simulated by idempotent

automata by using their states to represent control states

combined with memory. As discussed in the previous section,

the bound B in the local boundedness condition can be derived

from the syntax of the program. Observe that, due to the shape

of transitions, the states at odd levels never change.

We are interested in the emptiness problem: does a given

idempotent automaton accept a word? We show its decidability

via a level reduction lemma. The lemma gives an effective

elimination of two levels of data values for an idempotent

automaton. Its repeated application reduces the problem to the

emptiness problem for standard finite automata.

Lemma 20. For every idempotent automaton A with 2i ` 2

levels, one can construct an idempotent automaton AÒ with

2i levels such that the language of A is non-empty if and only

if the language of AÒ is nonempty.

Proof. Suppose B is the bound on the number of children a

node at an even level can have. The bound comes from the

local boundedness property of A. The states of AÒ are the

states of A, except for at level 2i:

QÒp2iq “Qp2iq ˆ pt1, . . . , Bu á pQp2i`1q ˆ PpQp2i`2qqqq

where the second argument is the set of partial functions as

displayed. We write H for the empty function, and gpiq “ K
when g is not defined at i.

The intention is to suplement the state at level 2i with a

second component, describing subtrees at level 2i ` 1 that

are eliminated by the construction. A node of level 2i can

have at most B children, hence the second component is a

partial function with domain t1, . . . , Bu. The values of this

function are representations of subtrees rooted at the children

of the node: the label of a node at level 2i ` 1, and the set

of labels of children of this node. The representation loses

information about the precise number of children with each

label. Consequently, there are fintely many representations of

subtrees at level 2i ` 1.

For a configuration pD,E, fq and a datum d P E, we write

fE pdq for the labelled subtree rooted at d. A pair pqp2i`1q, Sq P
Qp2i`1q ˆPpQp2i`2qq represents a subtree rooted at a node of

level 2i`1: the root is labelled by qp2i`1q, and the set of labels

of the children of the root is S. We write setreppfE pdp2i`1qqq
for this representation of the subtree rooted at dp2i`1q.

A state pqp2iq, gq P QÒp2iq represents a subtree rooted at

a node of level 2i with qp2iq the label of the node, and g

representing, at most B, subtrees rooted at the children of the

node as described above.

The transitions of AÒ reflect this representation of subtrees

by states. The way to modify the transitions is presented in

Figure 5. It gives a set of rules saying that if a transition above

the line is present in A then it is replaced by the transition

below the line in AÒ. Observe that only transitions involving

levels 2i, 2i ` 1, 2i ` 2 are modified.

The intuition behind these rules follows the intuition behind

the definition of QÒp2iq we have seen earlier. For example,

the first rule, ADDp2iq of A, creates a new node at level 2i

labelled by rp2iq. The rule is changed to an ADDp2iq rule that

9



ADDp2iq
qp2i´1q q

ÝÝÑpqp2i´1q, rp2iqq

qp2i´1q q
ÝÝÑpqp2i´1q, prp2iq,Hqq

DELp2iq
pqp2i´1q, qp2iqq

a
ÝÝÑqp2i´1q

pqp2i´1q, pqp2iq,Hqq
a

ÝÝÑqp2i´1q

EPSp2j, 2iq
pqp2jq, qp2iqq

ǫ
ÝÝÑprp2jq, rp2iqq

pqp2jq, pqp2iq, gqq
ǫ

ÝÝÑprp2jq, prp2iq, gqq

ADDp2i ` 1q
qp2iq q

ÝÝÑprp2iq, rp2i`1qq

pqp2iq, grl ÞÑ Ksq
q

ÝÝÑprp2iq, grl ÞÑ prp2i`1q,Hqsq

DELp2i ` 1q
pqp2iq, qp2i`1qq

a
ÝÝÑrp2iq

pqp2iq, grl ÞÑ pqp2i`1q,Hqsq
a

ÝÝÑprp2iq, grl ÞÑ Ksqq

ADDp2i ` 2q
qp2i`1q q

ÝÝÑpqp2i`1q, rp2i`2qq

pqp2iq, grl ÞÑ pqp2i`1q, Sqsq
q

ÝÝÑpqp2iq, grl ÞÑ pqp2i`1q, S Y trp2i`2quqsq

DELp2i ` 2q
pqp2i`1q, qp2i`2qq

a
ÝÝÑqp2i`1q

pqp2iq, grl ÞÑ pqp2i`1q, S Y tqp2i`2quqsq
a

ÝÝÑpqp2iq, grl ÞÑ pqp2i`1q, Sqsq

EPSp2j, 2i ` 2q
pqp2jq, qp2i`2qq

ǫ
ÝÝÑprp2jq, rp2i`2qq 2j ă 2i

pqp2jq, pqp2iq, grl ÞÑ pqp2i`1q, S Y tqp2i`2quqsqq
ǫ

ÝÝÑprp2jq, pqp2iq, grl ÞÑ pqp2i`1q, S Y trp2i`2quqsqq

EPSp2i, 2i ` 2q
pqp2iq, qp2i`2qq

ǫ
ÝÝÑprp2iq, rp2i`2qq

pqp2iq, grl ÞÑ pqp2i`1q, S Y tqp2i`2quqsq
ǫ

ÝÝÑprp2iq, grl ÞÑ pqp2i`1q, S Y trp2i`2quqsq

EPSp2i ` 2, 2i ` 2q
qp2i`2q ǫ

ÝÝÑrp2i`2q

pqp2iq, grl ÞÑ pqp2i`1q, S Y tqp2i`2quqsq
ǫ

ÝÝÑpqp2iq, grl ÞÑ pqp2i`1q, S Y trp2i`2quqsq

Fig. 5. Translation rules

creates a new node labelled by prp2iq,Hq, where H is the

empty function representing that the newly created node has no

children. Another example is the last rule EPSp2i`2, 2i`2q.

The transition of automaton A changes the state at a node

of level 2i ` 2. This is replaced by the change of one of the

elements in the set S. The notation we use actually describes

two possible ways to instantiate the rule. In one, there may be

no qp2i`2q in S, meaning that qp2i`2q is replaced by rp2i`2q

in S. In the other, there may still be qp2i`2q remaining in S,

so the rule adds rp2i`2q to S without removing qp2i`2q. The

two ways are useful: the first corresponds to a situation when

there is only one child labelled by qp2i`2q, the second when

there is more than one.

Observe that all p2i`1q and p2i`2q transitions are translated

to EPSp2i, 2iq transitions, except for EPSp2j, 2i`2q for 2j ă
2i ` 2. The idempotence property of the resulting automaton

AÒ then follows from that of A.

We need to show that A accepts some data word if and

only if AÒ accepts some, possibly different, data word. The

two data words will be different when the one accepted by A

uses data of levels below 2i as these are not accessible for AÒ.

For the proof we introduce a concept of indexed runs of A,

namely we add a fourth component to configurations that

assigns numbers to some nodes. An indexed configuration

is pD,E, f, indq where ind : E á t1, . . . , Bu is a partial

function defined for all data of level 2i ` 1 in E. Intuitively,

ind gives unique identifiers to siblings at level 2i ` 1. When

a new node at level 2i`1 is created it gets the smallest index

different from the indices of its siblings. It keeps this index

till it is removed. Since a node at level 2i can have at most B

children we have enough indices. An indexed accepting run

has the form:

pH,H,H,Hq
b1ÝÝÑ . . . pDl, El, fl, ind lq

blÝÝÑ . . . pH,H,H,Hq

where as before every bl is either ǫ or a letter ptl, dlq consisting

of a tag tl P Σ and a datum dl P D. The indexing functions

allow us to define statepflElpd
p2iqq, ind lq P QÒp2iq for every

dp2iq P El:

statepflElpd
p2iqq, ind lq “ pflpd

p2iqq, gq

where gpind lpd
p2i`1qqq “ setreppflElpd

p2i`1qqq for every

child dp2i`1q of dp2iq in El.

From an indexed run ν of A, we construct a run of AÒ by

induction. We suppose that we have constructed a run µÒ of AÒ

corresponding to a prefix µ of the run of A. Run µÒ reaches a

configuration pDÒ, EÒ, fÒq while run µ reaches pD,E, f, indq.

We assume that the following invariant holds:

(1) When restricted to levels ď 2i, set DÒ is the same as D,

and EÒ is the same as E.

(2) For every d P EÒ of level ă 2i we have fÒpdq “ fpdq.

(3) For every dp2iq P EÒ (of level 2i), we have fÒpdp2iqq “
statepfE pdp2iqq, indq.

We consider the next transition on the run ν. If it does not

concern level 2i or below then the same transition can be

10



executed by AÒ. If it does we examine the possible cases and

show that the corresponding transition of AÒ preserves the

invariant. This way we prolong µ and µÒ while keeping the

invariant. Property (1) implies that µÒ is accepting if µ is.
For the other direction we consider an accepting run νÒ

of AÒ. Let ℓ be the length of νÒ. By induction, for every

prefix µÒ of this run we construct a run µ satisfying the same

invariant as above, and moreover:

(4) Every node of level 2i`2 in pD,E, F q has at least 2ℓ´|µÒ|

siblings with the same label.

The construction of µ is by cases depending on the type of

transitions in the run of AÒ. We need sufficiently big multi-

plicities of leaves to simulate set operations where the state on

the left hand-side does not disappear (cf. our discussion above

concerning EPSp2i ` 2, 2i ` 2q) rule). We can get arbitrary

multiplicities thanks to the idempotency of the rules.
Let us examine a representative case of the EPSp2j, 2i` 2q

rule for 2j ă 2i. Suppose AÒ applies at a node dp2iq a rule:

pqp2jq, pqp2iq, grl ÞÑ pqp2i`1q, S Y tqp2i`2quqsqq
ǫ

ÝÝÑ
prp2jq, pqp2iq, grl ÞÑ pqp2i`1q, S Y trp2i`2quqsqq

By the invariant fÒpdp2iqq “ statepfE pdp2iqq, indq, consider

dp2i`1q with indpdp2i`1qq “ l. We have that it has a

child labeled qp2i`2q. By the fourth invariant it has at least

2ℓ´|µÒ| children labeled qp2i`2q. On the side of automaton

A we can then do the corresponding EPSp2j, 2i ` 2q transi-

tion pqp2jq, qp2i`2qq
ǫ

ÝÝÑprp2jq, rp2i`2qq followed by some num-

ber of transitions prp2jq, qp2i`2qq
ǫ

ÝÝÑprp2jq, rp2i`2qq. If qp2i`2q

does not appear in SYtrp2i`2qu then the above rule is used to

change all occurrences of qp2i`2q below dp2i`1q to rp2i`2q. If it

appears then 2pℓ´|µÒ|q´1 occurrences are changed, leaving the

rest. This reestablishes the fourth invariant both for qp2i`2q and

rp2i`2q. Observe that if invariant (4) talked about pℓ ´ |µÒ|q

siblings instead of 2ℓ´|µÒ| then it would not be possible to

reestablish it at this point.

Repeated applications of Lemma 20 reduce the emptiness

problem of an idempotent automaton to the emptiness problem

of a standard finite automaton. Indeed, an idempotent automa-

ton whose depth parameter is 0 is just a finite automaton.

Theorem 21. Emptiness of idempotent automata is decidable.

VIII. VERIFICATION OF STUTTERING INVARIANT

PROPERTIES

We show some examples of properties that we can verify

using our construction. As described in previous sections, we

can translate a given program fragment into an automaton

accepting the representation of complete plays in the game

semantics. The automaton works on a data tree of some depth,

which reflects the syntactic structure of the underpinning λ-

term. We fix some level 2i of the data tree, and for every 2i

node we look at the sequence of states appearing at the node

during a run. We check if some/every such sequence satisfies a

given regular property. Later we will show how some standard

program analysis properties can be expressed in this way.

We first describe automata constructions and then give some

applications. We try to give an idea of the constructions with-

out going to excessive details that are not difficult but tedious.

To fix the notation, consider an idempotent automaton A, and a

level 2i of the dataset. We assume that we are given a standard

finite automaton C defining interesting sequences of states at

level 2i. So the alphabet of C is Qp2iq, i.e. the set of states

of A at level 2i. We use qc to refer to states of C. The initial

state of C is qcinit, and the set of accepting states of C is FinC .

We want to check if there is an accepting run of A such

that every node at level 2i goes through a sequence of states

accepted by C. In other words, if there is an accepting run

such that for every datum d of level 2i appearing in the run the

sequence of states that label d is accepted by C. We then say

there is an accepting run where every 2i sub-run satisfies C.

We convert an idempotent automaton A into an idempotent

automaton A@C such that: A@C has an accepting run if and only

if A has an accepting run where every 2i sub-run satisfies C.

This reduces the question to the emptiness of idempotent

automata that, as we have seen, is decidable.

For this construction to work we require that automaton C

describes a property that is stuttering invariant: automaton C

accepts some word w1bw2 if and only if it accepts the word

w1bbw2. We assume below that C is a minimal deterministic

automaton. Observe that if C is a stuttering invariant minimal

deterministic automaton then, for every transition qc
1

b
ÝÝÑqc

2
, it

has also the transition qc
2

b
ÝÝÑqc

2
.

To construct A@C we modify states at level 2i of A, and

transitions involving this level. The new set of sates at level 2i

is Qp2iqˆQc; namely we add states of C as another component.

We modify transitions:

ADDp2iq qp2i´1q q
ÝÝÑpqp2i´1q,rp2iqq

qp2i´1q
q

ÝÝÑpqp2i´1q,prp2iq,qcqq
if qcinit

rp2iq

ÝÝÝÑqc.

DELp2iq pqp2i´1q,qp2iqq
aÝÝÑrp2i´1q

pqp2i´1q,pqp2iq,qcqq
aÝÝÑqp2i´1q

if qc P FinC

ADDp2iq transitions initialise the C component. DELp2iq tran-

sitions allow to remove a 2i node provided the C component

is in an accepting state.

We modify other transitions involving level 2i so that the C

component is updated as expected. Supposing qc
1

rp2iq

ÝÝÝÑqc
2

is a

transition of C:

EPSp2j, 2iq pqp2jq,qp2iqq
ǫÝÝÑprp2jq,rp2iqq

pqp2jq,pqp2iq,qc
1

q
ǫÝÝÑprp2jq,prp2iq,qc

2
qq

ADDp2i ` 1q qp2iq q
ÝÝÑprp2iq,rp2i`1qq

pqp2iq,qc
1

q
q

ÝÝÑpprp2iq,qc
2

q,rp2i`1qq

DELp2i ` 1q pqp2iq,qp2i`1qq
aÝÝÑrp2iq

ppqp2iq,qc
1

q,qp2i`1qq
aÝÝÑprp2iq,qc

2
q

EPSp2i, 2jq pqp2iq,qp2jqq
ǫÝÝÑprp2iq,rp2jqq

ppqp2iq,qc
1

q,qp2jqq
ǫÝÝÑpprp2iq,qc

2
q,rp2jqq

Observe that we have two types of EPS transitions to handle,

depending on whether 2i is the lower or the upper level. Note

that EPS transitions of the first kind are idempotent in A@C

if they were in A. Similarly for the second kind, but here

additionally we rely on stuttering invariance of C.

11



Lemma 22. If A is an idempotent automaton and C is a

stuttering invariant minimal deterministic automaton then A@C

is an idempotent automaton. Moreover, A has an accepting

run whose all 2i sub-runs satisfy C if and only if A@C has an

accepting run.

We can modify the above construction to answer another

question: is there an accepting run with at least one 2i sub-run

satisfying C? Automaton ADC for this question is constructed

from A@C . The idea is that once one of the sub-runs at level

2i reaches an accepting state, it puts this information in the

root state. At the same time we should ensure that this sub-run

terminates after this action. In the universal case we could use

termination detection to collect acceptance information: in an

accepting run all components at level 2i needed to disappear,

and they could disappear only when they reached an accepting

state. In the existential case we need to implement an ad hoc

notification mechanism.
In ADC , the set of states at level 0 becomes Qp0q Y ttt ,ff u;

the second component indicating if there is a 2i sub-run satis-

fying C. The modification of transitions reflects this intuition:

ADDp0q :
q

ÝÝÑrp0q

:
q

ÝÝÑprp0q,ff q
DELp0q qp0q aÝÝÑ:

pqp0q,ttq
aÝÝÑ:

The ADD transition says that we initialize the second com-

ponent to ff , the DEL transition says that an accepting run

should end with the second component set to tt .
For other transitions of ADC , we take transitions of A@C with

some modifications. Transitions involving level 0 are modified

so that they leave the second component unchanged. The

second component can be changed only by a new ǫ-transition

at level 2i that we introduce now. In ADC the set of states at

level 2i is Qp2iq Y pQp2iq ˆQcq. So a state at level 2i of ADC

is either a state of A@C or a state of A at this level. The idea

is that at the end of a computation at some node at level 2i,

the automaton can set the component at level 0 to tt if the

computation finished in an accepting state of C. We have the

following for arbitrary states and arbitrary α P ttt ,ff u.

EPSp0, 2iq ppqp0q, αq, pqp2iq, qcqq
ε

ÝÝÑppqp0q, ttq, qp2iqq if qc P F

EPSp0, 2iq ppqp0q, αq, pqp2iq, qcqq
ε

ÝÝÑppqp0q, αq, qp2iqq

It is clear that these transitions are idempotent. The other tran-

sitions are as in automaton A@C except for the transitions of

type DELp2iq that are those from A: pqp2i´1q, qp2iqq
a

ÝÝÑrp2i´1q

The idea is that DELp2iq can be performed only after one of

the above EPSp0, 2iq transitions.

Lemma 23. If A is an idempotent automaton and C is a

stuttering invariant minimal deterministic automaton then ADC

is an idempotent automaton. Moreover, A has an accepting

run whose some 2i sub-run satisfies C if and only if ADC has

an accepting run.

Proposition 24. The following questions are decidable, for

idempotent automata A, data levels 2i, and stuttering invari-

ant finite automata C:

‚ Is there an accepting run of A whose all 2i sub-runs

satisfy C?

‚ Is there an accepting run of A whose some 2i sub-run

satisfies C?

‚ Do all accepting runs of A have some 2i sub-run satis-

fying C?

‚ Do all accepting runs of A have all 2i sub-runs satisfy-

ing C?

The first two items are solved by the two lemmas above. The

remaining two are obtained by considering the dual question

for the complement automaton. Observe that the complement

of a stuttering invariant language is also stuttering invariant. In

fact, this is the only point where we need stuttering invariance

of C. In the rest of the arguments till now we need only that

C is closed under stuttering expansion.

This proposition allows the verification of rsFICA terms to

be reduced to emptiness checking of idempotent automata.

Given a term we use the translation from the proof of

Theorem 13 to obtain a split automaton. This automaton is an

idempotent automaton by Corollary 18. We can then take an

automaton C expressing a property of interest. With stuttering

invariant finite automata C we can express such properties as:

‚ Is a given variable set to a given value?

‚ Is a given variable invariant in a loop?

‚ Is a given variable read after being set?

As reads are silent, in order to check the last property, it will

be necessary to instrument the program to perform a special

write on every relevant read.

Proposition 24 gives a method to verify these properties

for all quantification combinations: every/exists accepting run

and every/exists sub-run of this run. Indeed, the proposition

effectively reduces verification of all these questions to empti-

ness checking of a suitable idempotent automaton. The latter

is decidable by Theorem 21.

IX. CONCLUSIONS

This work identifies a fragment of Finitary Idealized Con-

current Algol, called rsFICA, having good algorithmic prop-

erties with respect to verification. Thanks to the use of game

semantics we can verify properties talking about executions in

all contexts. In rsFICA we restrict the use of semaphores and

we do not permit recursion. Removing one of these restrictions

makes the verification problems we have considered here

undecidable. Observe that we admit iteration in rsFICA, so

there is a striking difference between the power of iteration

and recursion in this context.

We find it interesting that parametrisation appears in our

setting. In existing literature parametrisation was postulated

as a way to get around undecidability. Here, it arises naturally

in the game-semantic interpretation of rsFICA terms. In our

decidability proof we work in a setting similar to that of

[5], but we have a hierarchy of parameterised systems, that

moreover can test for termination. Downward closure argu-

ments are an efficient way to get decidability for parametric

systems [21], [9]. Unfortunately they are not applicable in the

context of termination [7], [22]. This is where the notion of

idempotent transitions comes very useful. It nicely captures

12



“no test-and-set” intuition, and allows for a relatively direct

inductive argument on tree levels.

As future work, we would like to investigate the equivalence

problem for idempotent automata. If decidable, this could

be used in testing contextual equivalence of rsFICA terms.

The test would give false negatives though, as our encoding

of plays via data words is not bijective: several different

encodings may represent the same play. Other related chal-

lenges include applying the concurrent games framework [23]

in verification and investigating contextual equivalence with

respect to semaphore-free contexts [24]. It would also be

interesting to look for connections with abstract machines [25],

the Geometry of Interaction [26], and the π-calculus [27].

We also do not know the complexity of emptiness checking

for idempotent automata. Our procedure has complexity of a

tower of exponentials whose height depends on the idempotent

automaton’s depth parameter.

REFERENCES

[1] D. R. Ghica and A. S. Murawski, “Angelic semantics of fine-grained
concurrency,” Ann. Pure Appl. Log., vol. 151(2-3), pp. 89–114, 2008.
doi:10.1016/j.apal.2007.10.005

[2] D. R. Ghica, A. S. Murawski, and C.-H. L. Ong, “Syntactic
control of concurrency,” Theor. Comp. Sci., pp. 234–251, 2006.
doi:10.1016/j.tcs.2005.10.032

[3] G. Ramalingam, “Context-sensitive synchronization-sensitive analysis is
undecidable,” ACM Trans. Program. Lang. Syst., vol. 22, no. 2, pp. 416–
430, 2000. doi:10.1145/349214.349241

[4] A. Dixon, R. Lazic, A. S. Murawski, and I. Walukiewicz, “Leafy
automata for higher-order concurrency,” in Proceedings of FoSSaCS,
ser. LNCS, 2021. [Online]. Available: http://arxiv.org/abs/2101.08720

[5] S. A. German and P. A. Sistla, “Reasoning about systems with
many processes,” J. ACM, vol. 39, no. 3, pp. 675–735, 1992.
doi:10.1145/146637.146681

[6] M. Hague, “Parameterised pushdown systems with non-atomic
writes,” in Proceedings of FSTTCS, ser. LIPIcs, 2011, pp. 457–468.
doi:10.4230/LIPIcs.FSTTCS.2011.457

[7] P. Ganty and R. Majumdar, “Algorithmic verification of asynchronous
programs,” ACM Trans. Program. Lang. Syst., vol. 34, no. 1, pp. 6:1–
6:48, 2012. doi:10.1145/2160910.2160915

[8] J. Esparza, P. Ganty, and R. Majumdar, “Parameterized verification of
asynchronous shared-memory systems,” J. ACM, vol. 63, no. 1, p. 10,
2016. doi:10.1145/2842603

[9] S. L. Torre, A. Muscholl, and I. Walukiewicz, “Safety of parametrized
asynchronous shared-memory systems is almost always decidable,”
in Proceedings of CONCUR, ser. LIPIcs, vol. 42, 2015, pp. 72–84.
doi:10.4230/LIPIcs.CONCUR.2015.72

[10] P. A. Abdulla, M. F. Atig, and R. Rezvan, “Parameterized verification
under TSO is pspace-complete,” Proc. ACM Program. Lang., vol. 4, no.
POPL, pp. 26:1–26:29, 2020. doi:10.1145/3371094

[11] T. Schwentick, “Automata for XML - A survey,” J. Comput. Syst. Sci.,
vol. 73, no. 3, pp. 289–315, 2007. doi:10.1016/j.jcss.2006.10.003

[12] H. Björklund and M. Bojańczyk, “Shuffle expressions and words with
nested data,” in Proceedings of MFCS, ser. LNCS, vol. 4708, 2007, pp.
750–761. doi:10.1007/978-3-540-74456-6 66

[13] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin,
“Two-variable logic on data words,” ACM Trans. Comput. Log., vol. 12,
no. 4, pp. 27:1–27:26, 2011. doi:10.1145/1970398.1970403

[14] H. Björklund and T. Schwentick, “On notions of regularity for data
languages,” Theor. Comput. Sci., vol. 411, no. 4-5, pp. 702–715, 2010.
doi:10.1016/j.tcs.2009.10.009

[15] N. Decker, P. Habermehl, M. Leucker, and D. Thoma, “Or-
dered navigation on multi-attributed data words,” in Proceed-

ings of CONCUR, ser. LNCS, vol. 8704, 2014, pp. 497–511.
doi:10.1007/978-3-662-44584-6 34

[16] C. Cotton-Barratt, A. S. Murawski, and C. L. Ong, “Weak and nested
class memory automata,” in Proceedings of LATA, ser. LNCS, vol. 8977,
2015, pp. 188–199. doi:10.1007/978-3-319-15579-1 14

[17] C. Cotton-Barratt, D. Hopkins, A. S. Murawski, and C. L. Ong,
“Fragments of ML decidable by nested data class memory automata,”
in Proceedings of FOSSACS, ser. LNCS, vol. 9034, 2015, pp. 249–263.
doi:10.1007/978-3-662-46678-0 16

[18] M. Hague, “Saturation of concurrent collapsible pushdown systems,”
in Proceedings of FSTTCS, ser. LIPIcs, vol. 24, 2013, pp. 313–325.
doi:10.4230/LIPIcs.FSTTCS.2013.313

[19] N. Kobayashi and A. Igarashi, “Model-checking higher-order programs
with recursive types,” in Proceedings of ESOP, ser. LNCS, vol. 7792,
2013, pp. 431–450. doi:10.1007/978-3-642-37036-6 24

[20] J. C. Reynolds, “The essence of Algol,” in Algorithmic Languages, J. W.
de Bakker and J. van Vliet, Eds. North Holland, 1978, pp. 345–372.
doi:10.1007/978-1-4612-4118-8 4

[21] G. Zetzsche, “An approach to computing downward closures,”
in Proceedings of ICALP, ser. LNCS, 2015, pp. 440–451.
doi:10.1007/978-3-662-47666-6 35

[22] M. Fortin, A. Muscholl, and I. Walukiewicz, “Model-checking linear-
time properties of parametrized asynchronous shared-memory pushdown
systems,” in Proceedings of CAV, ser. LNCS, vol. 10427, 2017, pp. 155–
175. doi:10.1007/978-3-319-63390-9 9

[23] S. Castellan, P. Clairambault, S. Rideau, and G. Winskel, “Games and
strategies as event structures,” Log. Meth. Comput. Sci., vol. 13, no. 3,
2017. doi:10.23638/LMCS-13(3:35)2017

[24] A. S. Murawski, “Full abstraction without synchronization primitives,”
in Proceedings of MFPS, ser. ENTCS, vol. 265, 2010, pp. 423–436.
doi:10.1016/j.entcs.2010.08.025

[25] O. Fredriksson and D. R. Ghica, “Abstract machines for game se-
mantics, revisited,” in Proceedings of LICS, 2013, pp. 560–569.
doi:10.1109/LICS.2013.63

[26] U. D. Lago, R. Tanaka, and A. Yoshimizu, “The geometry of concurrent
interaction: handling multiple ports by way of multiple tokens,” in
Proceedings of LICS, 2017, pp. 1–12. doi:10.1109/LICS.2017.8005112

[27] M. Berger, K. Honda, and N. Yoshida, “Sequentiality and the pi-
calculus,” in Proceedings of TLCA, ser. LNCS, 2001, vol. 2044, pp.
29–45. doi:10.1007/3-540-45413-6 7

13

https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.1016/j.tcs.2005.10.032
https://doi.org/10.1145/349214.349241
http://arxiv.org/abs/2101.08720
https://doi.org/10.1145/146637.146681
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.457
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/2842603
https://doi.org/10.4230/LIPIcs.CONCUR.2015.72
https://doi.org/10.1145/3371094
https://doi.org/10.1016/j.jcss.2006.10.003
https://doi.org/10.1007/978-3-540-74456-6_66
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1016/j.tcs.2009.10.009
https://doi.org/10.1007/978-3-662-44584-6_34
https://doi.org/10.1007/978-3-319-15579-1_14
https://doi.org/10.1007/978-3-662-46678-0_16
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.313
https://doi.org/10.1007/978-3-642-37036-6_24
https://doi.org/10.1007/978-1-4612-4118-8_4
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.1007/978-3-319-63390-9_9
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1016/j.entcs.2010.08.025
https://doi.org/10.1109/LICS.2013.63
https://doi.org/10.1109/LICS.2017.8005112
https://doi.org/10.1007/3-540-45413-6_7

	Introduction
	Finitary Idealised Concurrent Algol (FICA)
	Game semantics
	Split automata
	From FICA to split automata
	Restricted-semaphore FICA
	Idempotent automata
	Verification of stuttering invariant properties
	Conclusions
	References

