Monadic Second-Order Logic, Graph Coverings and
Unfoldings of Transition Systems

Bruno Courcelle Igor Walukiewicz!
LaBRI Institute of Informatics
Université Bordeaux I Warsaw University
351, Cours de la Libération, Banacha 2,
F-33405 Talence Cedex, France 02-097 Warsaw, Poland
courcell@labri.u-bordeaux.fr igw@mimuw.edu.pl
Abstract

We prove that every monadic second-order property of the unfold-
ing of a transition system is a monadic second-order property of the
system itself. An unfolding is an instance of the general notion of
graph covering. We consider two more instances of this notion. A
similar result is possible for one of them but not for the other.

1 Introduction

A transition system is a directed graph (satisfying some conditions); the
edges of the graph are called transitions and its vertices are called states.
A transition system can be seen as an abstract form of a program, and the
infinite tree obtained by unfolding (or unravelling) of it can be seen as its
behaviour. Since transition systems and their behaviours can be represented
by logical structures, one can express their properties by logical formulas.
We consider here monadic second-order logic (MSOL) as an appropriate
logical language because it subsumes many other formalisms, like the u-
calculus or temporal logics (see Emerson and Jutla [6], Niwinski [9]), and
it is decidable on many structures and in particular on infinite binary trees
(by Rabin’s Theorem, see Thomas [14]).

!Partially supported by Polish KBN grant No. 2 P301 009 06
Part of this work was done at Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

We consider the following conjecture from Courcelle [4]. Suppose Q is a
class of transition systems defined by a MSOL formula. Define the class P
of transition systems R by:

P={R:Un(R) € Q}

where Un(R) denotes the unfolding of R. The conjecture is that the class P is
definable by a MSOL formula and this formula can be effectively constructed
from the one defining Q.

This conjecture was proved in [4] for deterministic transition systems
(possibly with infinitely many states) and we prove it here for the class of
all systems with at most countable out degrees.

This new proof is independent of that in [4] and uses a different tech-
nique, based on a notion of covering. A covering of a transition system (or
more generally of a graph) G is a surjective homomorphism h : G' — G
(where G’ is another transition system or graph) the restriction of which to
the “neighbourhood” of every state or vertex of G’ is an isomorphism. We
say that h is a k-covering if h~1(x) has a cardinality < k for each state or
vertex x of G. For a transition system if we take as the “neighbourhood” of
a state the set of transitions outgoing from it, then there exists a universal
covering which is precisely the unfolding. The main lemma (Lemma 14)
roughly says that for every MSOL formula 3X.¢(X) there is an integer k,
s.t., for every transition system R: if Un(R) = 3X.p(X) then there exists
a k-covering R’ of R and a subset S of R' with Un(R') | ¢(Un(S)). In
other words, one can find a sufficiently regular witness S for the existential
quantification.

The notion of “neighbourhood” is a “parameter” of the notion of cov-
ering. In the case of graphs, we examine two more possibilities for defining
coverings. The first possibility is to take the set of edges incident to a vertex
as its neighbourhood. Then the results concerning transition systems extend
for this notion of covering but only when we allow quantification over edges:
every monadic second-order property of the universal covering of a (finite or
infinite) graph (relative to this notion of neighbourhood) can be expressed
as a monadic second-order property of the graph provided we can quantify
over edges of the graph.

A second possibility is to take as neighbourhood of a vertex the subgraph
induced by the vertices at distance at most 1. There exists a corresponding
notion of universal covering. However, we exhibit a finite graph G, the uni-
versal covering of which is the infinite grid. This shows that the result does

4

not hold here because the monadic theory of the infinite grid is undecidable
whereas that of G is decidable (because G is finite).

Finally we relate unfoldings of transition systems with a construction by
Shelah [12] and Stupp [13], extended by Muchnik (reported in [11]), about
which we raise some questions that indicate possible developments of the
present work.

This paper is organised as follows.

Section 1 deals with transition systems, their coverings and automata,
Section 2 deals with monadic second-order logic,

Sections 3 and 4 present some technical lemmas,

Section 5 gives the main proof,

Section 6 discusses the Shelah-Stupp-Muchnik construction,

Section 7 concerns coverings of graphs,

Section 8 reviews some open questions.

2 Transition systems

We consider directed graphs G, defined by means of sets: Vg (vertices), Eg
(edges) and the source and target mappings respectively srcg : Eq — Vg,
tgtg : Eg — Vg. We will consider only graphs with finite or countable de-
grees of vertices. Transition systems are special (labelled) graphs as defined
below.

Let n,m be natural numbers and m > 1. A transition system of type
(n,m) is a tuple R = (G,z, Pigr, ..., Pur, Q1R - - -, QmR), where G is a di-
rected graph, x is a vertex called the root of R from which all other ver-
tices are accessible by a directed path, PR, ..., P,gr are sets of vertices and
Q1R,- - -, Qmr 18 a partition of the set of edges. As in case of graphs we will
restrict to transition systems of with vertices of at most countable degree.
We call such transition systems countably branching.

A vertex of G is called a state of R and an edge is called a transition. A
transition in @);g is said to be of type i. In order to have uniform notation,
we let:

Sk be the set of states of R,

Tr be its set of transitions,

root g be its root,

P;r be the i-th set of states,

Q;r be the set of transitions of type 1,

srcg = {(t,s) : t € Tg, s € Sg, s is the origin (or source) of ¢}
tgtp = {(¢,8) : t € Tr,s € Sg, s is the target of t}

For convenience we shall also write in some cases s = srcg(t) (or s = tgtg(t))
if (¢,s) € srcg (or (¢, s) € tgty respectively).

Let R and R’ be two transition systems of type (n,m). We write R C R’
iff:

Sg C Sg
T C Tw
rootr = rootp
Pir = Pr NSk
Qir = Qir NTr
srcg = srcg N (TR x Sg)
tgtr = tgtr N (Tr X Sgr)

A homomorphism h : R — R’ is a mapping Sg UTg — Sg U Tx such
that:

h(Sr) C Sg
hTr) C Tr
h(srcr(t)) = srcg(h(t)) forallteTg
h(tgtr(t)) = tgtp(h(t)) forallt e Tg
h(rootRg) T00t !

s€Ppr iff h(s) € Pp, foralls€ Sgpandi=1,...,n
te Qi;r iff h(t) € Q;r, forallteTgandi=1,...,m
A homomorphism h : R — R’ is a covering (we shall also say that R is a

covering of R') if it is surjective and for every state s € Sg, h is a bijection
of outr(s) onto outgr/(h(s)). (We denote by outgr(s) the set of transitions

t of R such that srcr(t) = s.) We say that h is a k-covering if for every
s € Sp the set h~1(s) has at most k elements.

A path in R is a finite or infinite sequence of transitions (¢1,t2,...) such
that rootp = srcg(t1) and for each i, tgtg(t;) = srcg(ti+1). If this sequence
is finite, the target of the last transition is called the end of the path.

Fact 1 If h is a homomorphism R — R' then the image of every path of R
is a path of R'. If furthermore, h is a covering, then every path in R' is the
image by h of a unique path in R.

We now define the unfolding Un(R) of a transition system R; this is a
tree, and we shall consider it as the behaviour of R.

We let Ngi be the set of finite paths in R. We have in particular the
empty path linking the root to itself. Ng is the set of nodes of Un(R).

If p and p' € Ng, we define an edge p — p' (equivalently a transition) of
type ¢ iff p’ extends p by exactly one transition of R of type i. We let QF
denote the set of such transitions.

We let hg : Ng — Sg associate with every finite path its end. We let
also Py denote the set h'(Pir). We obtain a transition system Un(R) of
type (n,m) by defining:

SUn(R) = Nr

Tyniry = QiU...UQy,
TOOtUn(R) = ¢

Punw = B

QiUn(R) = @

Fact 2 The map hgr extends in a unique way to a homomorphism Un(R) —
R which is a covering.

Fact 3 If m: R — R' is a covering then there exists a unique isomorphism
m: Un(R) — Un(R') such that hgr o = mo hg.

Because of these properties, Un(R) will be called the universal covering
of R. The terminology is borrowed from algebraic topology where the notion
of universal covering of a topological space is a basic notion.

A transition system of type (n,m) is deterministic if no two transitions
with the same source belong to the same set Q);. It is complete deterministic
if in addition each state has exactly m outgoing transitions.

Fact 4 Let R and R' be complete deterministic transition systems of the
same type. There is at most one homomorphism R — R' and such a homo-
morphism is a covering. It exists iff there exists a mapping h : S — Sg
such that: (a) h(rootgr) = rootg:, (b) for every transition x — z' of R there
is in R a transition h(z) — h(z') of the same type, (c) for every © € Sg
and every i, x € Pip iff h(z) € Pip:.

2.1 Parity automata and transition systems

In this section we introduce parity automata and prove a lemma about the
runs of such automata. This lemma will be used to prove the regularisation
lemma (Lemma 14).

We denote by 7 the infinite complete binary tree. Its nodes are (as
usual) identified with words from {1,2}*. It is a complete deterministic
transition system of type (0,2). We denote by 7, the set of tuples of the
form (7, Py,...,P,), where Py,..., P, are sets of nodes of 7. These tuples
can be considered as infinite complete binary trees the nodes of which are
labelled by subsets of {1,...,n}; they are complete deterministic transition
systems of type (n,2).

A parity-automaton is a tuple A = (S, %, 1, 4,) where:

e S is a finite nonempty set of states,

Y. is a finite set called the alphabet, we will assume that it is the set of
subsets of {1,...,n} for some natural number n.

I C S is the the set of initial states,
e § C S x X xS xS isthe transition relation,

e Q:S — N is a function defining the acceptance condition. (We use
N to denote the set of natural numbers.)

A run of A on a tree B € 7T, is a function r : 7 — S, such that,
r(rootg) € I and for every node x of T (i.e. z € {1,2}*):

(r(z),{i: Pg(x)},r(zl),r(z2)) € 6

here 1 and z2 denote nodes obtained from x by appending 1 and 2 re-
spectively at the end of z, i.e., are the left and right successors of the node
x.

To define when a run is accepting let us introduce a notation. For an
infinite sequence of natural numbers mq,mo,... let Inf(my, mo,...) be the
set of numbers appearing infinitely often in the sequence. We say that a
run 7 is accepting if for every sequence of nodes ng, n1, ... forming a path in
T, the smallest number in Inf(Q(r(ng)), Q(r(n1)),...) is even. We say that
A accepts a tree B if there is an accepting run of A4 on B. The language
recognized by A is the set of trees accepted by A.

We are interested in parity automata because they capture the power of
monadic second-order logic on binary trees while having a useful “regularity”
property (see Lemma 6). (Monadic second-order logic is formally introduced
in the next section.)

Theorem 5 (Mostowski [7]) A subset of T, is the language recognised by
a Rabin automaton iff it is the language recognised by a parity automaton.
Hence, by Rabin’s theorem [10], for every formula a(X1,...,X,) of monadic
second-order logic there is a parity automaton A such that for every B € Ty:

Bl a(P,...,P) iff BeL(A)

Parity automata are easier to work with than Muller or Rabin tree au-
tomata because they admit regular runs, a notion we will define now. For a
tree B € T, and a node = € B let B/z denote a subtree issued from B. We
will say that r is regular run on B if for every two nodes z,y of B:

if r(z) = r(y) and B/zx is isomorphic to B/y then r(h(u)) = r(u)
for every node u of B/x, where h is the isomorphism: B/z —

B/y.

Intuitively a run is regular if it behaves identically on isomorphic subtrees
provided the states assigned to the roots of these trees are the same.

Lemma 6 For every parity automaton A and every tree B: if A accepts B
then there is a regular accepting run of A on B.

Proof
The lemma follows from the results about games with parity conditions
considered in [8, 6]. It was shown there that such games have memoryless
strategies. We will briefly recall this result here and show how it applies in
our case.

A game is a bipartite graph G = (V = ViUV, ECV xV,Q:V —
{1,...,n}) with vertices labelled by priorities from {1,...,n}.

A play from some vertex v1 € Vi is played as follows: first player I
chooses a vertex ve € Vi with E(v1,v2), then player IT chooses a vertex
vy € Vi with E(vg,v3), and so on ad infinitum unless one of the players
cannot make a move. If a player cannot make a move he looses. The result
of an infinite play is an infinite path v, v9,vs,... This path is winning
for player I if in the sequence Q(v1), Q(v2),Q(v3),... the smallest number
appearing infinitely often is even. The play from a vertex of Vi is defined
similarly but this time player II starts.

A strategy o for player I is a function assigning to every sequence of ver-
tices ¥ ending in a vertex from V; a vertex o (v) € Vpr, such that, E(v,o(?)).
A strategy is memoryless iff o(¥) = o(w) whenever ¢ and @ end in the same
vertex. A strategy is winning iff it guarantees a win for player I whenever
he follows the strategy. Similarly we define a strategy for player II.

Theorem 7 (Emerson & Jutla [6], Mostowski [8]) In every parity game
as described above one of the players has a winning strategy. If a player has
a winning strategy in the game then he has a memoryless strategy.

Now we will show how to use this theorem in our case. We first construct
a game that is a “product” of the automaton A and the graph obtained from
B by identifying isomorphic subtrees. Define the relation =~ on nodes of B
by: m = n if the subtrees issued from m and n are isomorphic. Let C be a
transition system obtained by quotienting B by = relation. Let V7 = 5S4 x S¢,
i.e., the set of pairs consisting of a state of the automaton and a node of
C. Let Viy = 04 X Sg, i.e., the set of pairs consisting of a transition of the
automaton (an element of §4) and a node of C. There is an edge from a
vertex (s, [n]) € Vi to a vertex ((s,a,s1,s2),[n]) € Vir ifa = {i : Pip(n)}
(we use [n] to denote the equivalence class of n with respect to ~ relation).
There are edges from a vertex ((s,a,s1,s2),[n]) € Vi to vertices (s1,[n1])
and (s, [n2]); as before nl denotes the node obtained by concatenating 1
at the end of n. Observe that from vertices in V7 there may be many edges
or there may be no edges at all. On the other hand every vertex in Vi has
exactly two edges going form it. Finally we define the priority function €2 by
letting Q((s, [n])) = Q(s), i.e., we use the priority function of the automaton
A.

Theorem 7 applies to the game just defined. From the assumption that
there is an accepting run of A on B it follows that there is a winning strategy
for player I from the vertex (s, [ng]), i.e., the pair consisting of the initial
state of A and the equivalence class of the root of B. This strategy is to

take a transition suggested by the run. Hence by Theorem 7 there exists a

memoryless strategy in the game. This forgetful strategy induces a regular
run of A on B.
O

3 Monadic second-order logic

Let U be a finite set of relational symbols. We denote by ST R(U) structures
of type U. Any two isomorphic structures are considered as equal. Typically
U will contain unary symbol rt and binary symbols src, tgt, Q1, .- ., Qm.

We let Lo(n, m) be the set of MS formulas written with the relation sym-
bols rt, src, tgt, @1, - .., Qm (and of course C and €) and with free variables
in {Xy,..., X}

In order to express properties of transition systems by monadic second-
order (MS in short) formulas, we represent a transition system R of type
(n,m) by the relational structure:

|R|2 = <SR u TR7 rtr, srcg, tgtR7 PlR, s 7PTLR7 Q1R7 L) QmR)

where rtg = {rootgp}. We say that such a transition system has the type

(n,m).
We define |R|y = «a, where o € Lo(n,m), by taking Pig,...,Pyr as
respective values of Xi,...,X,. It will be convenient to restrict to the

fragment of the logic without first order variables. First order variables can
be represented by set variables together with a formula restricting them
to range over singletons. For this to work we extend the meanings of the
relations rt,src, tgt, Q1,...,Q, to hold for appropriate singleton sets. We
omit the standard details (see Courcelle [5]).

The properties of the behaviour Un(R) of a system R as above can be
expressed in a similar way by formulas of L2(n,m) (since Un(R) is a tran-
sition system of type (n,m)). However, we shall use the following simpler
representation: For a transition system R of type (n,m) we let

|R|1 = (SR, rtp,Sucig,... ,SUCmR,PlR, ... 7PnR>

where (z,y) € suc;g iff there is in Q;r a transition from z to y.

We let £1(n,m) denote the set of MS formulas written with the symbols
rt,sucy, ..., sucy, (in addition to C and €) and having their free variables
in {Xi,...,Xn}. Again, we define |R|; = « for @ € L1(n,m) by taking

Pig,...,Pyr as values of Xi,..., X, respectively. By the results of Cour-
celle [3], the same properties of trees can be represented by formulas of Lo
and L.

Our objective is to prove the following theorem.

Theorem 8 Letn,m € N, m > 1. For every formula ¢ € L1(n,m) one can
construct a formula ¥ € La(n,m) such that, for every countably branching
transition system R of type (n,m):

Rz F 9 & [Un(R)[1 E ¢

We shall need the notion of an MS-definable transduction of relational
structures that we now recall from [2]. This is nothing more than the notion
of first-order interpretation, modified so as to work for MS-logic.

Let U and U’ be two finite ranked sets of relation symbols. Let W be a
finite set of set variables, called here the set of parameters. (It is not a loss
of generality to assume that all parameters are set variables.) A (U,U’)-
definition scheme is a tuple of formulas of the form :

A= (g1, Yk, (Ow)wew) k)
where
k > 0, [k] denotes the set {1,..., k).
Uk ={(¢,D] g €U, T€ [K]PD, p(q) is the arity of g},
o€ MS(U,W),
Vi € MS(UWU{x1}) fori=1,--- k,
O € MS(UW U {z1,- -, 759 }), for w=(q,]) € (U"*E.

These formulas are intended to define a structure R’ in STR(U’) from a
structure R in STR(U) and will be used in the following way. The for-
mula ¢ defines the domain of the corresponding transduction; namely, R’
is defined only if ¢ is true in R. Assuming this condition fulfilled, the for-
mulas 91, ..., define the domain of R’ as the disjoint union of the sets
Dy, ..., Dy; where D; is the set of elements in the domain of R that satisfy ;.
Finally, the relation qg is defined by the formulas 6,, for w = (q,]) € (U’')*k.
Here are the formal definitions.

Let R € STR(U), let 1 be a W-assignment in R. If (R, 1) = ¢ then A
defines in (R, p) a U'-structure R’ as follows:

10

(i) Sr = {(d,l) | d € Sg,i € [k]’ (Rv:u’d) IZ wz} C Sgr % [k]
(ii) for each ¢ in U’ :

qr = {((dl,il),...,(dt,it)) € St, ‘ (S,,u,dl,--- ,dt) IZ G(qi)},
where 7= (i1,...,4;) and t = p(q).

By (R, p,dy,---,dt) |F Ogp, we mean (R,u') = 0y, where i’ is the
assignment extending p, such that p'(x;) = d; for all 4 = 1,---,¢; a similar
convention is used for (R, u,d) = 1;.)

Since R’ is associated in a unique way with R,y and A whenever it
is defined, i.e., whenever (R,u) = ¢, we can use the functional notation
defa(R,u) for R'.

The transduction defined by A is the relation defa := {(R,R') | R' =
defa (R,) for some W-assignment p in R} C STR(U)xSTR(U'). A trans-
duction f C STR(U)xSTR(U') is MS-definable if it is equal to defa for
some (U, U')-definition scheme A. In the case when W = (), we say that f is
MS-definable without parameters (note that it is functional). We shall refer
to the integer k by saying that defa is k-copying; if kK = 1 we say that it
is non-copying and we can write more simply A as (¢, %, (04)qcv)- In this
case:

Spr = {de Sk : (R’/j‘ad) IZ 7/)}

and for each ¢ in U':
qr' = {(dladt) € Dt’ : (R,,U,,dl,"'dt) IZ eq}a where t = p(q)

We give an example concerning automata on words: the product of a
finite-state automaton A by a fized finite-state automaton F. A finite-state
automaton is defined as a 5-tuple A = (S,3,1,0, F) where: S is a finite
set of states; ¥ is a finite input alphabet (here we shall take ¥ = {a,b});
I C S is a set of initial states; § is a transition relation which is here a
subset of § x ¥ x S (we consider nondeterministic automata without e-
transitions); F' C S is the set of of final states. The language recognized by
A is denoted by L(A). The automaton A is represented by the relational
structure: |A| = (S, I, F, trans,, transy) where trans, and transy are binary
relations and:

transy(p, q) holds if and only if (p,a,q) € 4,

transy(p, q) holds if and only if (p,b,q) € ¢.

11

Let F = (5,3, I',4', F") be a similar automaton, and AXF = (Sx 8" % I x
I' §" F x F') be the product automaton intended to recognise the language
L(A)NL(F). We assume that S" is {1,---,k} (let us recall that F is fixed).
We let A be the k-copying definition scheme (p, %1, - .., Pk, (Ow)wew) k),
where U’ = {trans,,transy, I, F'} and :

¢ is the constant true (because every structure in ST R(U') represents an
automaton which may have inaccessible states and useless transitions);

1, -+, are the constant true;

O (transa,i,j) (T1, T2) is the formula trans,(z1,22) if (i, a,j) is a transition of
F, and is the constant false otherwise;

O transs,i,j) 15 defined similarly;

0(1,5)(z1) is the formula I(z1) if 7 is an initial state of F, and is false
otherwise;

8(r,iy(z1) is defined similarly.

It is not hard to check that | A x F |=defa(| A |). Note that the language
recognised by an automaton is nonempty if and only if there is a path in
its graph from some initial state to some final state. This later property
is expressible in monadic second-order logic. Hence it follows from Propo-
sition 10 below that, for a fixed rational language K, the set of structures
representing automata A such that L(A)NK is nonempty is definable. This
construction is used systematically in Courcelle [4].

Fact 9 The domain of an MS-definable transduction is MS-definable.

Proof: Let A be a definition scheme as in the general definition with W =
{X1,--+,Xn}. We recall that W is the set of parameters. The image of a
structure R under defa is defined for the values of parameters that satisfy
¢. Hence, the domain of defa is {R: R =3X1,---,Xn.@}. O

The following proposition says that if R = defa(R,p), ie., if R' is
defined in (R,) by A, then the monadic second-order properties of R’ can
be expressed as monadic second-order properties of (R, x). The usefulness
of MS-definable transductions is based on this proposition.

Let A = (p,%1, Pk, (Ow)wewn+k) be a (U,U’)-definition scheme,
written with a set of parameters WW. Let V be a set of set variables dis-
joint from W. For every variable X in V, for every ¢ = 1,---,k, we let X;

12

be a new variable. We let V' := {X; : X € V,i = 1,---,k}. For every
mapping 7 : V' — P(Sg), we let n 1k : V — P(Sgr x [k]) be defined by
(n1tk)(X) =n(X1) x {1} U---Un(Xg) x {k}. Note that, even if R’ is well-
defined, the mapping 7 1k is not necessarily a V-assignment in R’, because
(n Tk)(X) is not necessarily a subset of the domain of R’ which is a possibly
proper subset of R x [k]. With these notations we can state :

Proposition 10 (Courcelle [2]) Let A be a (U, U’)-definition scheme with
the set of parameters W. For every formula B in MS(U',V) one can con-
struct a formula vy in MS(U,V' UW) such that, for every R in STR(U), for
every assignment p : W— R and for every assignment n : V' — R, we have:

defa(R,) is defined (if it is, we denote it by R'), n 1Tk is a V-
assignment in R', and (R',n 1Tk) =3

if and only if
(R,nUp) .

From this proposition, we get easily [2]:

Proposition 11 1. The inverse image of an MS-definable class of struc-
tures under an MS-definable transduction is MS-definable.

2. The composition of two MS-definable transductions is MS-definable.

Definition 12 Let K and K' be two classes of structures with K C STR(U)
and K' C STR(U"), and let f be a transduction from K to K'. We say that f
is MS-compatible if there exists an algorithm that associates with every MS-
formula ¢ over U’ an MS-formula @ over U such that, for every structure
ReK:

RE ¢ iff R & ¢ for some R € f(R)

It follows from Proposition 10 that every MS-definable transduction is
MS-compatible.

Our main result (Theorem 8) says that the transduction |R|s — |Un(R)|1
is MS-compatible for R ranging over countably branching transition systems
of type (n,m).

Among others we will use MS-definable transductions for constructing
k-coverings of graphs. The following proposition will be used in Section 5
in the proof of Theorem 8

Proposition 13 Let k,m > 1, let n > 0. There exists an MS-definable
transduction associating with every transition system R of type (n,m) the
set of its k-coverings (where a system R is represented by a structure |R|2).

13

Proof
Let R be a transition system of type (n,m) and h : R' — R be a k-covering.
By choosing an arbitrary linear ordering of each set h™1(z),z € Sg,
we can assume that Spr C Sg x [k] and h(z,i) = = for every i such that
(z,7) € Sgr. We can assume that root g = (rootg, 1).
For each i € [k], we let Y; = {z € Sg : (z,i) € Sg'}. For 4, € [k], we let

Zij={t€Tr: h(t') =t for some t' € Tr with source (srcg(t),?)
and target (tgtp(t),7)}

Since h is a bijection of outg (z) onto outg(h(x)) for every z € Sg
it follows that for every t € Z; ;, there is a unique ¢ € Tx, with source
(srcr(t),7) and target (tgtg(t),7) such that h(t') = t. We shall identify ¢’
with the triple (¢,1, 7).

Hence

S = JVix{i}:1<i<k} (1)
Tr = (% x{(5)} 26,5 € [k]} (2)
This gives a description of |R'|2 as the output of a definable transduction

taking as input |R|2 and the parameters Y1,...,Ys, Z11,..., Zg -
Specifically we have

rtr = {(z,1)} where z is the unique state in rtg (3)
srce = {((¢,4,7), (x,9)) 14,5 € [k],t € Z;j,(t,x) € srcr} (4)
tgtp = {((t,4,4),(z,7)) < 4,5 € [K];t € Zi;, (t,2) € tgtp} (5)
P = {)ie€PanYije) =1 n (6)
Qir = {(t.j.j"):t€QirNZjy,5,j €[k}, i=1,....m (7)

In this construction, we have assumed that the parameters Y7, ..., Yy, Z7 1,

., Zy 1 are defined from a k-covering R’ of R. In order to ensure that the
constructed transduction only defines k-coverings of the input transduction
systems we must find a formula ¢(Y1,...,Ys, Z11,..., 2) that verifies
that the structure defined by (1)-(7) is actually of the form |R'|y for some
k-covering R’ of R.

We consider the following conditions:

Srpo= Uvis1<i<k) (8)
Tr = (NZ:i.5 €k} 9)

14

For every i € [k], every z € Y;, every transition ¢ €

outr(x) there is one and only one j € [k] such that t € Z; ; (10)

Every state of R is accessible by a path from root gr. (11)

Conditions (8)—(11) can be written as an MS-formula ¢ in parameters
Yi,..., Yk, Z11,. .., Zk i, to be evaluated in |R|y. Let us review them: (8)—(9)
state that the mapping h : Sgr U Tgr — Sr U TR defined by

h((z,i)) =z if (z,4) € Sk and
h((t, (i,5))) =t if (¢, (2,5)) € Tr

is surjective. From its definition it is a homomorphism. Condition 10 states
that it is a covering. Condition 11 states that R’ is indeed a transition
system.

Hence o(Y1,...,Ys,Z11,...,Zy) is the desired formula which com-
pletes the proof. U

4 A regularisation lemma

If R is a transition system of type (n,m) and Y C Sg, we denote by R* Y
the system of type (n + 1,m) consisting of R augmented with Y as the
(n + 1)-th set of states.

The following lemma is a crucial step for the main theorem.

Lemma 14 Letn >0 and a € L1(n+1,2). One can find an integer k such
that, for every (possibly infinite) complete deterministic transition system R
of type (n,2), if |lUn(R)|1 | IXn41.a, then there exists a k-covering R' of
R and a subset Y of Sg such that |Un(R' *xY)|1 | a.

Proof

The idea of the proof is the following. If ' = |Un(R)|; | 3Xp+1- @
then an appropriate meaning of X, ;1 can be represented as a run of an
automaton on 7T'. Then one can also find a suitable meaning for X, that
can be represented as a regular run on 7. For every subtree, a regular run
on this subtree is determined by the state assigned to the root of the subtree
and the isomorphism class of the subtree. As there are finitely many, say
k, states, the corresponding regular run can be defined in the unfolding of
a k-covering R’ of R. Hence the set X,1 C Un(R) satisfying « can be
replaced by the set resulting from the unfolding of a subset of R'.

15

Let R € T, be as in the assumption of the lemma. Denote by hg :
Un(R) — R the canonical homomorphism sending a path to its endpoint.

By Theorem 5 there exists a parity automaton A4 = (S,P({1,...,n +
1}),1,4,9Q) recognising the set of trees: L(A) = {U € Tp41 : U1 E a}.
Define the automaton A’ = (S',P({1,...,n}),I',§', Q") where:

S ={(s,i):s€8,i=0,1}
I'={(s,1) : s €1,i=0,1}

((s,0),a,(s1,i1), (s2,02)) € &' if (s,a,s1,82) € 0 and i1,i2 € {0,1}

((s,1),a,(s1,i1), (s2,i2)) € &' if (s,aU{n + 1}, s1,s2) € 0 and
i1,12 € {0,1}

O (s,7) = Q(s) for 7 € {0,1}

It is easy to see that L(A") = {U € T, : U} = 3Xpn+41- @}. Hence
Un(R) € L(A'). So, by Lemma 6, A" has a regular run r : Un(R) — S’ on
R.

We are going to define the system R’ required in the lemma. Intuitively
R' is a folding of Un(R) respecting the run r, i.e., if two nodes of Un(R) are
assigned different states then they are not identified in the folding.

Let R' = <SRI,TRI, rtg, SI’CRI,tg‘tR/,PlRI, ey Port, QiR Q2R’> where:

e Sp is the set of elements (n, (s,7)) € Sg x S’ such that there exists
xz € Un(R) with hg(z) =n and r(x) = (s,).

e We have a transition from (n, (s,7)) to (n', (s',4')) if there exists = €
Un(R) such that hg(x) = n, r(x) = (s,i), and, in Un(R), there is a
transition from x to some z’ with hg(z') = n’ and r(z') = (s,4'). The
type of the transition is the same as the type of the transition from z
to z'.

o rtp is (rtg,r(rtg)).
° le(n, (8, Z)) iff P]R(’I’L)
Claim 15 R’ is a complete deterministic transition system of type (n,2).

Proof
It is easy to see that all states of R’ are accessible. We are left to show that
from every state there is exactly one transition of each type.

Let (n,(s,i)) € Sgr. We will show that it has exactly one transition of
type 1. By definition of Sg there is € Un(R) such that hg(x) = n and

16

r(x) = (s,7). Because R is complete deterministic there exists exactly one
node z' € Un(R) to which there is a type 1 transition from z. We have that
(hr(2'),r(z")) € Sg and there is a transition of type 1 from (n,(s,7)) to
(hr(z),r(z")).

To see that there is only one transition of type 1 from (n, (s,)) consider
some node y € Un(R) such that hg(y) = hr(z) = n. In particular subtrees
Un(R)/z and Un(R)/y are isomorphic. Let y’ be the target of the type 1
transition from y. We have hr(y') = hg(z'). By the definition of the regular
run we have r(y') = r(z').

O

Claim 16 R’ is a k-covering of R, where k is the number of states of the
automaton A’.

Proof

Define the mapping ' : R' — R by h'(n,(s,i)) = n. It is easy to check
that it extends to a homomorphism of transition systems. By Fact 4 it is a
covering. By the definition of 4/, the inverse image of a state of R can have
at most k elements.]

To finish the proof of Lemma 14 we must find a set Y such that |Un(R'
Y)i E a. Define Y = {(n,(s,i)) € Sg : i = 1}. We define a run ' of A
on Un(R'*xY) by: r'(u) = s if u is a path ending in a node (n, (s,i)) € Sgr,
for some n and 7. It is easy to check that this is an accepting run. Hence
Un(R'*Y) € L(.A) and we get |Un(R'*Y)|; E a.

O

We consider Lemma 14 as a regularisation lemma because it says that if
|Un(R)|1 contains a set Z satisfying a then it contains another one having
a special “regular” form, defined from the unfolding of a k-covering of R.

5 Edge contractions and the proof of the main re-
sult

Our next aim is to extend Lemma 14 to transition systems that are not
deterministic. We first consider systems of type (n,1). If R is a transition
system of type (n, 1), then each node of the tree Un(R) has some unordered
set of successors. In case R is countably branching, Un(R) can be represented
in the binary tree in way that we now describe.

17

We define a transformation that makes a tree T' € 7,41 (which is a
system of type (n+ 1,2)) into a tree ¢(T') of type (n,1).

Let T € T,+1 be defined by an (n+ 1)-tuple of subsets of {1,2}*, namely
by (Pi7,...,Pyi17). We let ¢(T) be the tree such that:

o Sery = ({1,2}"\ Pr) U {e}

e z — yin¢(T) iff there is in T a path of the formz — 21 - 20 — -+ —
zp = y with p > 0 and 21, 2,...,2p € Pir (r — y is a shorthand for
“there is a transition from z to y”).

® I_14(T) :]DZ'TﬂSC(T) fori=2,....,n+1.

Our next aim is to define a similar operation on transition systems so
that
Un(¢(R)) = ¢(Un(R))

A special transition system is a system R of type (n + 1,2), for some n,
such that

1. R is complete deterministic,
2. rootg & PR,
3. PlR N (P2R U...u Pn—|—1R) — @,

We now define a transformation c¢ that transforms any special transition
system R of type (n+ 1,2) into one of type (n,1). We let ¢(R) be such that

® Sir) = Sr\ Pir,
® Pir)y = Piyir NSy fori=2,...,n,
® 100t (R) = rootR,

® z — y is a transition of ¢(R) iff 2,y € Syq) and we have a path
in R of the foom z — 21 = 2 — -+ = 2, = y with z,y € Pip,
21,22,--.,2p € P1r, p > 0.

Lemma 17 If R is special then we have ¢(Un(R)) = Un(c¢(R))

Proof
Easy verification U

18

Lemma 18 For every countably branching transition system R of type
(n,1) one can construct a special transition system, Bin(R) of type (n+1,2)
such that ¢(Bin(R)) = R

Proof
We let R' be the transition system of type (n + 1,2) defined as follows:

1. we add a new “sink” state | and two transitions 1 — L: one of type
1 and one of type 2,

2. for each state s € Sgp we do the following;:

(a) if outg(s) = 0, we add two transitions s — L of types 1 and 2,

(b) if outgr(s) = {t}, we add a transition s — L of type 2 (note that
the transition ¢ is necessarily of type 1).

(c) if outgr(s) consists of at least two transitions t¢1,...,%; then we
add new states us,...,ux—1. For i =2,... k — 1 we change the
source of ¢; to u;. We also change the source of t; to ux_o. We
add new transitions s — ug, u; = u;4+1, fori =2,... k—1. All
added transitions as well as the transition ¢; become transitions
of type 2. Transitions t1,...,t; 1 continue to be of type 1.

(d) if outg(s) is infinite but countable then we enumerate the transi-
tions 1, %9, ... and proceed similarly to the previous case.

3. We let Pipin(g) consist of all “new states” (the state L and the states
introduced in the steps 2c and 2d above) and we let P; 4 Bin(r) = bi
for every i =1,...,n.

O

Lemma 19 If R is a special transition system and K is a k-covering of
Bin(R) then K is also special and ¢(K) is a k-covering of R.

Proof
We let h : K — Bin(R) be a k-covering. We first check that K is a special
system. Condition 1 of the definition of a special system (saying that K is
complete deterministic) holds because every covering of a complete deter-
ministic system is complete deterministic. Conditions 2 and 3 hold easily.
It remains to prove that ¢(K) is a k-covering of R. Let us consider
h: Sery — Sr. It is the desired covering. This follows from the observations
establishing that K is a special system. U

19

Proposition 20 Letn >0 and a € L1(n+1,1). One can find an integer k,
such that, for every countably branching transition system R of type (n,1),
if lUn(R)|1 = 3Xp41.a0 then there exists a k-covering R of R and a subset
Y of Sg such that |Un(R' *Y)|; E .

Proof
We first construct a formula § € £1(n + 2,2) such that for every tree T in
Tn+2 we have

|T|1 IZ g ifft PN (PQT u...u Pn—l—lT) = () and |C(T)|1 IZ a

This is possible because the mapping from |T'|; to |¢(T')|1 is a definable
transduction of structures. We let k& be the integer associated with G by
Lemma 14.

Let R be a transition system of type (n, 1) such that |Un(R)|1 | 3Xp41.0.
For some set Z C S Un(r) We have thus

lUn(R) * Z|; E «

Because Bin(R) is a special transition system, from Lemmas 17 and 18
we have: Un(R) (Un(Bin(R))). It also follows that Z C SUn(Bin(r)) and
Z 0 P\Un(Bin(r = (). Hence

[Un(Bin(R)) * Z|1 = B

By Lemma 14 we have some k-covering K of Bin(R) and some Y C Sk such
that
[Un(K *Y)[1 =6

It holds in particular that Pixg NY = (. By Lemma 19, ¢(K) is a k-covering
of Rand Y C S, k).
Hence ¢(K) is the desired system R’ since

le(Un(K * V)1 = a

and
c(Un(K xY)) =Un(c(K *xY)) =Un(c(K) xY)

20

Proof of Theorem 8

Let us first consider the case of the systems of type (n,1). We want to show
that for every formula ¢ € £1(n, 1), one can construct a formula @ € La(n, 1)
such that, for every transition system R of type (n,1):

[Rl=¢ iff [Un(R)1 o

The proof proceeds by induction on the structure of . We assume that
@ is a closed formula. This is not a restriction as two formulas are equivalent
iff closed formulas obtained by substituting unary relational symbols for free
variables are equivalent.

If ¢ is a closed atomic formula then @ = . The cases for conjunction
and negation are obvious.

Assume ¢ = 3X.a(X). By Proposition 20 there is an integer &k such that
for every transition system of type (n,1):

[Un(R)|1 E 3X.a(X) iff there exists a k-covering R’ of R and a
subset Y of Sg/, such that, [Un(R'*xY)|;1 E a[Pnt1/X]-

By induction assumption we have a formula &[P,1/X], such that, for
every transition system K of type (n+ 1,1):

|Kl2 |= @[Ppy1/X] i [Un(K)|1 = ofPoga/X]
It remains to show that the property:
there exist a k-covering R’ of R such that R’ = 3X.a(X)

is MS-definable.

By Proposition 13 we know that the transduction associating with R the
set of its k coverings is MS-definable. (This transduction has parameters
Yi,...,Y,, Z11,. .., Zy; each admissible choice of parameters gives us a
k-covering). Proposition 10 gives us the desired formula .

We now prove the theorem for systems of the general type (n,m) with
m > 1.

We define a transformation « making a transition system R of type
(n,m) into a transition system a(R) of type (n +m,1) such that the trans-
duction |R|2 — |a(R)|2 is MS-definable, and a transformation § from tran-
sition systems of type (n + m, 1) to transition systems of type (n,m) such
that the transduction |R|; — |3(R)|1 is MS-definable and

Un(R) = S(Un(a(R))) (12)

21

for every transition system R of type (n,m). Clearly such transformations
reduce the general case of the Theorem 8 to the case of systems of type
(n,1) which we have just proved.

Definition of @ Let R be a transition system of type (n,m) with m > 2.

The idea of the construction of a(R) is to replace a state x of R by m
states (r,1),...,(z,m) in R' and to replace a transition y — z of type i
by m transitions from (y,1),...,(y,m) to (z,%) all of type 1. (If there is
no transition of type i from y to z then we need not put in a(R) the state
(z,17))-

Here is the formal definition of «(R). Suppose

R = <SRa TR7 SICR, tgtR7 TOOtRa P1R7 e 7PnR7 QlR, ey QmR)

Recall that [m] denotes the set {1,...,m}. First we define the system R’
which is the 5-tuple

<SRI,TR/,SFCRI,tgtR/,TOOtRI,PlR/,...,PnR/,PllR/,...,PT’nR/>
where
SRI = SR X [m]
TR’ = TR X [m]

(s,17) srcri(t,j) iff s =srcg(t) and i = j
(s,17) tgtp (t,7) iff s =tgtp(t) and t € Qir
rootgr = (rootg,1)
Pip(s,j) & se€Sgand Pigr(s) fori=1,...,n
Plr(s,j) & s€Sgpandi=j fori=1,...,n

Then R’ is “almost” a transition system of type (n + m,1): “almost”
because some states may be unreachable. One obtains a(R) by restricting
R’ to the reachable states and transitions. It is clear from this definition
that |a(R)|2 is definable from |R|2 by a definable transduction. We omit the
details.

Definition of 8 Let R’ be a transition system of the form

! /
(Srr,Trr,Srcpe, tgtpr, root g, Pigr, . .. s Por', Pigry--- 7PmR’>

22

where Pigr,..., Pog, Plgi,- .., P @ are properties of states. Then we de-

fine a transition system G(R) iff (P[g,..., P} p/) forms a partition of Sg.
If this is the case we let B(R') = R where Sg = Sg,Tr = Tg,stcgp =
Srcpr, tgtp = tgtg, r00tp = rootp, Pip = Pipr for i = 1,...,n and Q;r =

{t € Tr|tgtr(t) € P/} for i =1,...,n. It is clear that |G(R)|; is definable
from |R|; by a definable transduction.

It is also clear from the construction that S(Un(a(R))) is well defined
for every transition system of type (n,m) and that:

B(Un(a(R))) = Un(R)
This completes the proof of Theorem 8. O

6 The Shelah-Stupp-Muchnik construction

We recall a construction and a result from Shelah and Stupp [12, 14] ex-
tended by Muchnik. The result by Muchnik is stated without a proof in
Semenov [11] and a new proof is sketched in [15]. We establish that it yields
an improvement of our main result.

We let U be a finite set of relational symbols where each symbol r has
a finite arity p(r). We recall that we denote by STR(U) the class of all
U-structures, i.e., of tuples of the form M = (D, (rar)rcv) where Dy is a
nonempty set (the domain of M) and rj; C Dﬁ/(;) for every r € U.

We let son and ¢l be two relation symbols, binary and unary respectively,
which are not in U. We let Ut = U U {son, cl}. We let D3, and (D)™
stand for the set of finite sequences over Dj; and the set of finite nonempty
sequences respectively.

With M € STR(U) we associate the U*-structure:

Mt = ((DM)+, (ras+)reu, sonpr+, cly+)
where
"M+ = {(wdl, - ,wdp(f)) Tw e D}k\/b (dl, ce vdp(r)) € T‘M}
sonyr+ = {(w,wd) :w € D}y, d € Dy}
chy+ = {wdd:w e Dy, d € Dy}
Intuitively, M is a “tree built over M”; son is the corresponding suc-
cessor relation and cl is the set of clones, i.e., of elements of M T that are

“like their fathers” (if son(x,y) we also say that z is the father of y; it is
unique).

23

Theorem 21 (Muchnik [11], Walukiewicz [15]) The mapping M — M™*
is MS-compatible. In words, for every formula ¢ in MS(U™T) one can con-
struct a formula v in M S(U), such that, for every M € STR(U):

MfEe iff MEY

It is stated (without a proof) in Shelah [12] and Thomas [14] that, if a
structure M has a decidable monadic theory then so has the structure M
with respect to the language M S(UT — {cl}). This statement weakens The-
orem 21 in two respects: the “clone” relation is omitted and the statement
only concerns decidability of theories and not translations of formulas. From
Theorem 21, one gets the following improvement of Theorem 8:

Theorem 22 For every n,m € N with m > 1, the transduction:
|R[1 — [Un(R)|1

is MS-compatible, where R ranges over simple transition systems of type
(n,m).

A transition system is simple if no two distinct transitions have the
same source, target and type.

Since some properties of simple graphs are MS-expressible with set edge
quantifications but not without them, the result of Theorem 22 is an im-
provement of Theorem 8. (The property that a simple directed graph has
a directed spanning tree of out-degree no bigger than some constant is an
example of such a property; the existence of a Hamiltonian circuit is another
example; see [3], page 125.)

Theorem 22 follows from Theorem 21 because the unwinding of R is MS-
definable in |R|{ (see Proposition 24). Before showing this we will introduce
a useful definition.

If @ is a binary relation on Djs, then we let Q" and Q™" (respectively
the translation and the rotation of @) be defined as follows:

Q" = {(wd,wd") : w € D}, (d,d') € Q}
QrOt = {(wd7 wddl) Twe D}k\la (d7 dl) € Q}

(Note that Q' is defined from Q like 7+ is from 7jy)

Claim 23 If Q is MS-definable in M then so are Q" and Q™" in M™.

24

Proof
To prove this for Q" it is enough to observe that:

Q(,y) 3z (sonars (z,2) A somags (2,9) A ¢ (2, ,9)

where ¢'(z, z,vy) is the relativization to the set of sons of z (sons in the sense
of M) of the formula ¢(z,y) defining Q in M. For Q™*, we have

Q% (z.y) I 3z (s0mars (2, 2) A somars (2,9) A ey () A Q" (2.)

which proves the claim. U

Theorem 22 is an immediate consequence of

Proposition 24 For every n,m € N, m > 1, the transduction (|R|1)T —
|Un(R)|1, where R is a simple transition system of type (n,m), is MS-
definable.

Proof
Assume M = |R|; = (Sg, rootg,sucig,--.,SUCnRr, PiR,-- ., Por). We define
a binary relation W on (Sg)™ as follows:

W=WiU...UW, where for each i, W; = (suc;g)™

We let N C (Sg)™ be defined as follows:

there exists z € (Sg)™T such that

yenN iff root pr+(x) A (Vz. =sonp+(2,2)) A (z,y) € W*

Note that the first two conjuncts of the above condition define z uniquely
since rootp consists of a unique state (z is r where rootg = {r}). We use
W* to denote the transitive closure of W. Hence N is the set of elements of
SE that are accessible from this = by a directed path with edges in W.

Claim 25 |Un(R)|y = (N, W{,..., W]} ,P,...,P)), where W/ = W;N (N x
N) andP]{ZPjRﬂNfor everyt=1,....mand j=1,...,n.

Proof: We define a bijection h of Paths(R) (the set of nodes of Un(R))
onto N. Let p be a path in Paths(R), say p = (t1,...,tx), t1,-.-,tx € Tg.
We let h(p) = (so,---,8k) € (Sr)T where s is the initial state of R and for
each ¢ = 1,...,k, s;_1 is the source of ¢; and s; is the target of ¢;.

Since R is simple, h is one-to-one. If s; — s;11 is a transition of type j
then W;((so,...,5i),(S0,---,Si+1)) holds. Hence h maps Paths(R) onto N.

25

It is then easy to verify that every y € N is the image by h of some path
p (the proof is by induction on the least integer k such that (z,y) € W*
where z is the element of (Sr)™ used in the definition of N). Finally, h is
an isomorphism. We omit the details. []

It is clear from the definition that N is a definable subset of (Sg)* (by
an MS formula on M) and that the relations Wy{,... , W, P, ..., P are
MS-definable. Hence |Un(R)|; can be obtained from (|R|;)" by an definable
transduction. U

The proof of this proposition is due to W. Thomas (private communica-
tion).

Example LetU =0, M = ({0,1}). Consider M* = ({0,1}*, sonys+, clps+)-
One can define the complete binary tree B = (N, sucy,sucs) in M7 as fol-
lows: one lets z be arbitrary element of M+ having no father; one lets N be
the set of elements y of {0,1}" such that (z,y) € (sonys+)*, one lets then

sucy(u,v) < sony+(u,v) A cly+(v)

suca(u,v) < sony+(u,v) A =cly+(v)

There are only two choices for z and the corresponding structures are
both isomorphic to B.

It follows that the monadic theory of B reduces to that of M *. The later
is decidable since the monadic theory of M is decidable (as M is finite).

7 Graph coverings

We have seen that the mapping from a transition system to its universal
covering is MS-compatible (where a system R is represented by |R|2 or |R]|;.
We ask the same question for graphs. We consider actually two different
notions of covering for which the answers are completely different.

7.1 Bidirectional coverings

We consider directed graphs G, defined by means of sets: Vg (vertices), Eg
(edges) and the source and target mappings respectively srcg : Eq — Vg,
tgtg : Eg — V. For convenience we restrict here to connected graphs. The
extension of the results to disconnected graphs is easy.

For z € Vg we denote by ing(z) the set of edges of G with target z; we
denote by outg(x) the set of edges with the source z.

26

Definition 26 (Bidirectional covering) Let G,G’ be connected graphs.
A homomorphism h : G' — G is a bidirectional covering iff it is surjective
and for every x € Vg, h is a bijection of ing(x) onto ing(h(z)) and of
outg (x) onto outg(h(z)).

For short, we shall write b-covering for bidirectional covering. Unlike
coverings, b-coverings treat incoming edges exactly as outgoing edges.

Definition 27 (Signed edges, walks) A signed edge of G is a pair (e,7),
where e € Eg and n € {+,—}. We define srcg and tgty for signed edges as
follows:

srcg(e, +) = srcg(e) srcg(e, —) = tgtg(e)
tgto(e, +) = tgte(e) tgtg(e, —) = srcg(e)

We let sucg be the binary relation on signed edges:

sucg((e,n), (¢',7)) iff tgtgle,n) =srcg(e,n)A(e=¢ =>n=r1)

A walk in G is a finite sequence of signed edges w = ((e1,m1), ..., (€x, Nk))
such that suc((e;,m;), (€i+1,Mi+1)) holds for alli=1,...,k—1. We say that
w is a walk from srcg(e1,n1) to tgta(er, k).

Intuitively, a walk is a path in G traversing edges in either direction. A
signed edge (e;, n;) represents a traversal of e; in the standard direction if
7; = + and in the reversed direction if 7; = —. A walk is not allowed to
take the same edge twice consecutively in the opposite directions.

Fact 28 If h: G' — G is a homomorphism and w = ((e1,m),- .., (ex,Nk))
is a walk from x to y in G' then the image of w defined as the sequence
((h(ex),m)s- - (hlex),) is @ walk in G from h(z) to h(y).

Fact 29 If h: G' — G is a b-covering, ' € Vg, h(z') =z and w is a walk
from x to y in G, then there is a unique walk w' in G' from z' to some ¢/
such that h(w') = w. Vertex y' satisfies h(y') = y.

We now construct a b-covering of a graph G in terms of walks. Let G
be connected, let s € V. Denote by W (s) the set of all the walks from s
to arbitrary vertices. We put in W (s) the empty walk ¢ and assume that it
goes from s to s.

27

We let H be the graph such that:
Vg = W(s) Epg = a disjoint copy of W(s) — {¢}

If w.(e,n) € Ep for some e € Eg and n € {+,—}, we let srcy(w.(e,n)) =w
and tgty(w.(e,n)) = w.(e,n) if n = + and srcy(w.(e,n)) = w.(e,n) and
tgty (w.(e,n)) = w otherwise.

We now let h : H — G be the homomorphism such that

h(e) = s
h(w) = =z such that w goes from s to z, w € Vg — {c}
h(w) = e wherew € Eg is of the form w'.(e,n)

Fact 30 h: H — G is a b-covering.

Proposition 31 For every b-covering k : K — G there is a surjective
homomorphism m : H — K such that k o m = h which is a b-covering. For
every two such homomorphisms m,m' : H — K, there is an automorphism
1 of H, such that, m' = moi

Proof: Easy consequence of Facts 28 and 29. [J
We shall call H the universal b-covering of G and denote it by UBC(G).

Theorem 32 The transduction mapping |G|z to |UBC(G)|1 for connected
graphs G is MS-compatible.

Proof

We first recall that the structure |G|z defining G is (VaUEg, r-sr¢ g, I-tgt|q|,)

where:

r-srcigl, = {(e,srcg(e)) - e € Eg}

tgt o), = {(e teta(e)) : e € Bg}
(In order to avoid confusions between functions and relations we use r-src g,
to denote the binary relation associated with the unary function srcg : Eg —
Vg, and similarly for r-tgt g ,-)

In order to handle signed edges by logical formulas, we shall consider the

structure

|Gl|3s = (Ve U Eg x {+, =}, r-src, r-tgt|G|3,dirE|3,dir|_G‘3)

28

where:
dirﬂé‘g ={(e,+) : e € Eg} dirg, = {(e,—) : e € Eg}
r-srcigl, = 1(fisrea(f)) - f € Eg x {+,—}}
r-tgtig, = {(f;tate(f)) : f € BEa x {+,—}}
It is easy to construct an MS-transduction transforming |G|z into |G|s.
Next, we show that UBC(G) is MS-definable in |G|5, hence is definable

from |G|3 by a MS-transduction. First observe that sucg is MS-definable in
|G|3, hence (sucg)™* is MS-definable in |G| by Claim 23.

The elements of the domain of |G| are nonempty sequence of elements
of |G|s. We shall select a subset N of them corresponding to the walks from
some vertex s to all the vertices of G. Such a set can be characterised by
the following conditions:

1. N is closed under (sucg)™ (i.e. if z € N and (sucg)™(z,y) holds then
y €N);
2.iff z € N and y € D g+ and son|G|+(y,w) holds then y € N and
3 3
(sucg)™(y,) holds;

3. there is a unique element sy € D|G|;, such that, r-src‘Gg(a:, sn) holds
for every z € N for which there is no y with son|G‘.3+(y,x).

A set N U{sn} will be the set of nodes of UBC(G) we are constructing.
Different choices of NV correspond to different choices of the root vertex sy
in the condition (3) and will yield the same covering up to isomorphism.

We define the edge relation Q C N x N as follows:
1. if z,y € N and son‘G@(x,y), we put an edge (z,y) € Q if dirrz;‘Jr(y)
3
and put an edge: (y,z) € Q if dirlz;‘+(y)
3

2. ify € N and sonmg(w,y) for no z € N, then we let an edge (sy,y) €
Q if dirréﬁ(y) and an edge (y,s,) € Q if dir‘*G|+(y).
3 3

It is easy to check that (N, Q) is isomorphic to UBC(G).
We obtain thus that the transduction |G|a — | UBC(G)|1 is MS-compatible
because it can be written as the following composition:

|Gl2 = [Gls = |Gl = [UBC(G)|y

where the first and the third transformations are MS-definable, whereas the
second is MS-compatible by Theorem 21. This completes the proof. U

29

Open problem: Can one change |G|z to |G|1 in the statement of Theo-
rem 32 for simple graphs G?7 (It is false for non-simple graphs as multiple
edges are identified in |G|;.)

7.2 Distance-1-coverings

For every graph G and every z € Vi, we denote by Bg(z) the subgraph of
G induced by {z} UV, where V is the set of vertices adjacent to z.

A distance-1-covering (a d1-covering for short) is a b-covering h : G' — G
such that for every y € Vg, h is an isomorphism: Bg/(y) — Bg(h(y)).
Example
G' is d1-covering of G where G and G’ are presented in Figure 1 and h maps
z' and 2" to z for z € {a,b,c,d}.

a” b?
a b d <’
G G ¢ a’
c b’ &’
G
Gy o s .

Figure 1: Example of d1-covering

The graph G2 is a b-covering of the graph G; presented in Figure 1. But
(2 is not a d1-covering. Clearly, G is isomorphic to all its d1-coverings since
G = Bg(z) for some z. O

We shall now construct a universal d1-covering of a graph G as a quotient
of its universal b-covering UBC(G).

We let H = UBC(G) (see Fact 30 above) and h : H — G be the canonical
b-covering. We let E C (Vg x Vi) U (Eg x Ex) be the equivalence relation
defined as:

{(u,v) : h(u) = h(v) and u,v belong to a connected component of
h~Y(Bg(z)) for some z}

30

We let H' be the quotient graph H|E, we let k : H — H' be the canonical
surjective homomorphism such that h = h' o k. It is not hard to see that b’
is a dl-covering of G and that every dl-covering m : G’ — G factors into
h' om', where m' : G’ — H' is a surjective homomorphism and furthermore
a dl-covering. We shall call H' the universal-d1-covering of G and denote

it by UDC(G).

Proposition 33 The mapping |G|z — |UDC(G)|1 is not MS-compatible
even if G is restricted to finite connected graphs of degree at most 6.

Proof

We construct a finite connected graph G of degree 6, such that, UDC(G)
is the infinite grid (augmented with diagonals on each square). Since the
monadic theory of UDC(G) is undecidable (even if MS-formulas do not use
quantification over sets of edges), and since the monadic theory of |G|z is
decidable (since G is finite) it follows that MS-formulas expressing properties
of UDC(H) cannot be translated into equivalent MS-formulas on |H|z in a
uniform way, for all finite connected graphs H, even of bounded degree at
most 6.

The infinite grid with diagonals is the graph H such that:

Vg = Intx Int
EH = {((xay)a (xlvyl)) : xay,xlayl € Int,
r<a' <z+1, y<y <y+1, (z.9) # (@)}

Int denotes the set of integers. Figure 2 shows a portion of H.

For z,2" € Intwelet x ~ ' iff x—z' is a multiple of 4. For (z,y), (¢/,y') €
Vg we let (z,y) ~ (2/,y') if z ~ 2’ and y ~ /. For e,¢’ € Eg linking
respectively z1 to zo and 2] to 25, we let e ~ €' iff 21 ~ 2] and 29 ~ 25.

We let G be the quotient graph H| ~. Then G is the graph partially
shown on Figure 3. We let h be the canonical surjective homomorphism
h:H — G.

Furthermore A is a d1-covering of G. In order to prove that H = UDC(QG)
it is enough to prove that if k¥ : K — H is a dl-covering then £ is an
isomorphism.

So let k : K — H be a dl-covering of H. If k is not an isomorphism,
there exist z,y € Vi such that = # y and k(z) = k(y). Let us select such a
pair where x and y are at minimal distance, say n. Hence in K there exists
a walk from z to y of the form w = ((e1,m),-.., (en,Ms)). Its image under
k is a walk k(w) = ((k(e1),m),- .-, (k(en),nn)) from z = k(x) to itself.

31

A

A

Figure 2: A portion of H

N /o>

/.

Figure 3: Graph G

32

The intermediate vertices on this walk are pairwise distinct and distinct
with z because otherwise, n would not be the distance between z and y or
one could find a pair z',y" € Vi such that k(z') = k(y'), ' # v’ and the
distance between z’ and ¢’ is less than n.

Consider now k(w). It defines a cycle on the planar graph H (where
edges can be traversed in either direction). This cycle is simple (it does not
cross itself) and has a certain area namely, the number of triangles forming
its interior part. We shall prove that we can replace w by a walk w’ from
x to y of the same length and such that the area of k(w') is strictly smaller
than that of k(w). This will give us a contradiction and prove that k is an
isomorphism.

Let u be the unique vertex of k(w) having a maximal first component
among those that have a maximal second component. We first assume that
u # k(z) = k(y). Let u = (ug,u1). Let v and v' be the two neighbours
of u on the circular walk k(w). Up to exchanges of v and v' we have the
following possible cases (by the maximality conditions on ug and uq):

!

case 1: v = (up — 1,u1), v' = (up — 1,u1 — 1),

case 2: v = (ug,u; — 1), v' = (up — 1,u; — 1),
case 3: v = (up— 1,u1), v' = (ug,u1 — 1).

However case 1 cannot happen because w is minimal. Let us check this.
Let 4 be the vertex of w with k(%) = u. Since k is an isomorphism between
By (u) and By (u) since v,v' € By(u) and are adjacent, so are v = k~1(v)
and ' = k~1(v') in Bg(@). It follows that w can be replaced by a shorter
walk, which connects directly 7 and ¢’ and skips 4. This contradicts the
hypothesis that w has a minimal length.

Case 2 cannot happen for a similar reason.

In case 3 we cannot connect directly ¥ and ' but we can link them via the
unique vertex k71 (ug—1,u; —1) in Bg (@) (note that v, v’ and (ug—1,u; —1)
belong all to By (u)). The resulting walk w’ is such that k(w') has a smaller
area than k(w) (smaller by 2).

If u = k(z) = k(y) we use a similar argument by replacing u by the
unique vertex of k(w) having a minimal first component among those that
have a minimal second component. The argument goes through with +1
instead of —1 everywhere.]

33

8 Conclusions

We have shown the main conjecture of [4] (see Theorem 8) saying that
the unfolding operation is MS-compatible provided graphs (or transition
systems) are represented in a way making it possible to quantify over sets
of edges (or of transitions). It follows in particular that the unfolding of
a graph or a transition system having a decidable MS-theory, still has a
decidable MS-theory.

A stronger form of this result follows from Theorem 21.

We have also considered “bidirectional unfolding” of graphs. Although
it is very close to the unfolding, we could extend the main theorem only for
the logic with the power to quantify over edges of a graph. Whether one can
strengthen the theorem and get the result for the logic with quantification
limited to vertices is an open question.

These unfoldings have been defined as instances of the very general topo-
logical notion of covering (for appropriate notions of neighbourhood). The
two notions correspond to neighbourhoods of increasing strengths. For the
next step (distance 1-coverings), we loose MS-compatibility we have for the
unfolding. In particular, the transformation of a graph into its universal-d1-
covering does not preserve decidability of the MS-theory.

8.1 Acknowledgements

The authors would like to thank Wolfgang Thomas and Suzanne Zeitman
for many significant comments yielding simplifications in the proofs.

References

[1] B. Bollobas. Eztremal graph theory. Academic Press, 1978.

[2] B. Courcelle. Monadic second-order graph transductions: A survey.
Theoretical Computer Science, 126:53-75, 1994.

[3] B. Courcelle. The monadic second-order logic on graphs VI: on several
representations of graphs by relational structures. Disc. Applied Math.,
54:117-149, 1994. (Erratum in Disc. App. Math. 63 (1995) 199-200).

[4] B. Courcelle. The monadic second-order logic on graphs IX: machines
and their behaviour. Theoretical Computer Science, 149, 1995.

34

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

B. Courcelle. The expression of graph properties and graph transfor-
mations in monadic second-order logic. In G. Rozenberg, editor, Hand-
book of Graph Transformations: Foundations, volume 1, pages 165—254.
World Scientific, 1997.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and deter-
minacy. In Proc. FOCS 91, 1991.

A. W. Mostowski. Regular expressions for infinite trees and a stan-
dard form of automata. In A. Skowron, editor, Fifth Symposium on
Computation Theory, volume 208 of LNCS, pages 157-168, 1984.

A. W. Mostowski. Games with forbidden positions. Technical Re-
port 78, University of Gdansk, 1991.

D. Niwinski. Fixed points vs. infinite generation. In LICS ’88, pages
402-409, 1988.

M. Rabin. Decidability of second-order theories and automata on infi-
nite trees. Trans. Amer. Math. Soc., 141:1-35, 1969.

A. Semenov. Decidability of monadic theories. In MF(CS’8/, volume
176 of LNCS, pages 162-175. Springer-Verlag, 1984.

S. Shelah. The monadic second order theory of order. Annals of Math-
ematics, 102:379-419, 1975.

J. Stupp. The lattice-model is recursive in the original model. Institute
of Mathematics, The Hebrew University, Jerusalem, January 1975.

W. Thomas. Automata on infinite objects. In J. van Leeuven, edi-
tor, Handbook of Theoretical Computer Science Vol.B, pages 133-192.
Elsevier, 1990.

1. Walukiewicz. Monadic second order logic on tree-like structures. In
STACS 96, volume 1046 of LNCS, pages 401414, 1996.

35

