
Automata for the modal µ-calculus and related
results

David Janin Igor Walukiewicz
LaBRI1 BRICS2,3

U.E.R. de Mathématiques et d’Informatique
Université de Bordeaux I

351, Cours de la Libération,
FR-33405 Talence Cedex, France
e-mail: janin@labri.u-bordeaux.fr

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

e-mail: igw@daimi.aau.dk

Abstract. The propositional µ-calculus as introduced by Kozen in [4] is
considered. The notion of disjunctive formula is defined and it is shown
that every formula is semantically equivalent to a disjunctive formula.
For these formulas many difficulties encountered in the general case may
be avoided. For instance, satisfiability checking is linear for disjunctive
formulas. This kind of formula gives rise to a new notion of finite au-
tomaton which characterizes the expressive power of the µ-calculus over
all transition systems.

1 Introduction

We consider the propositional µ-calculus as introduced by Kozen [4]. Subsequent
research showed that the µ-calculus is an interesting logic when specification
and verification is concerned. It is an expressive logic; on binary trees it is as
expressive as the monadic second order logic of two successors [8, 3]. On the other
hand, if computational complexity is concerned, the propositional µ-calculus
is not much more difficult than classical propositional logic as its decidability
problem is EXPTIME complete. Because of these and other features the logic is
considered to be one of the most interesting logics of programs.

The two main results we present here are:

• Definition of the class of disjunctive formulas and the proof that every for-
mula is equivalent to a disjunctive formula.
• Characterization of the µ-calculus by means of a new kind of automata on

transition systems.

The methods developed here allow us also to obtain other know results as corol-
laries. In particular we show that our results subsume the results of Niwinski
and Emerson and Jutla [8, 3]. We obtain yet another proof of Rabin’s comple-
mentation lemma.

It was already discovered by Kozen in [4] that the interplay of all the connec-
tives of the µ-calculus raises some challenging difficulties. Here we try to analyze
these difficulties. Our first step is to give alternative “operational” semantics
of the µ-calculus formulas. We look at a formula as an automaton-like device
checking a property of the unwinding of a model from a given state.
1 Laboratoire Bordelais de Recherche en Informatique
2 Basic Research in Computer Science,

Centre of the Danish National Research Foundation.
3 On leave from: Institute of Informatics, Warsaw University, Banacha 2,

02-097 Warsaw, POLAND

If we are to check that 〈a〉α holds, we choose an edge from this state labeled
by a leading to a state where α holds. If we are to check that α∨β holds, we choose
(nondeterministically) one of the disjuncts. If we are to check σX.α(X), when σ is
µ or ν, we try the equivalent formula α(σX.α(X)). The distinction between least
(µ) or greatest (ν) fixed points is achieved using suitable infinitary acceptance
conditions. When we check α∧ β we must check that this state satisfies both α
and β.

While disjunctions act like nondeterministic choices, conjunctions act rather
like universal branching of alternating automata. Such an alternating behavior
of conjunctions is the source of many difficulties.

From automata theory we know that alternating automata are equivalent to
nondeterministic ones [7]. This suggests that every formula should be equivalent
to a formula which does not have universal branching behaviors represented by
conjunctions. Of course we cannot discard conjunctions completely from positive
formulas as shown by the formula (〈a〉p)∧ [a](p ∨ q). Note that the conjunction
in this formula does not act as a universal branching. It is rather like an implicit
conjunction from (usual, not alternating) automata on trees where transition
relation forces the right son to be labeled by one state and the left son by
another one. Such a kind of implicit conjunction is the only form of conjunction
that appears in the fixpoint notation for sets of trees defined by Niwiński [8].
It was proved that this fixpoint language has the same expressive power as the
monadic second order logic of n successors. Hence adding explicit conjunction
to this language will not increase its expressive power.

These considerations lead to the notion of disjunctive formulas which are
formulas where the role of conjunction is restricted so that it never acts as an
universal branching. We show that every formula is equivalent to a disjunc-
tive formula. It turns out that the satisfiability problem is linear for disjunc-
tive formulas. There is also a straightforward method of model construction for
such formulas. In comparison, the satisfiability problem for arbitrary formulas is
EXPTIME-complete and the only known method of model construction involves
nontrivial reduction to Rabin automata on infinite trees.

Disjunctive formulas also hint the possibility of giving automata-like char-
acterization of the µ-calculus. In [8, 3] it was shown that over binary trees the
µ-calculus is as expressive as the monadic second order logic (MS-logic for short).
Nevertheless it is not true that over arbitrary transition systems the µ-calculus is
as expressive as MS-logic. It is not even true when we restrict the class of models
to trees with nodes of finite but unbounded degrees. In both cases µ-calculus is
strictly weaker than MS-logic.

Notice that these general trees can be encoded into binary trees. For a given
µ-calculus formula we can construct, say, a Rabin automaton which recognizes
codings of the models of the formula. But this is only a one way mapping. It is
not true that for every Rabin automaton there is a µ-calculus formula having
as models exactly the transition systems of which codings are accepted by the
automaton.

We propose a notion of automaton of which expressive power is exactly the

2

same as the µ-calculus. Restricted to binary trees these automata are just alter-
nating automata with so-called parity conditions [6, 3]. They are more general
because they admit runs over arbitrary transition systems. We show that there
are direct translations between disjunctive formulas and this kind of automa-
ta. This proves that the set of recognizable languages induced by our notion of
automata is closed under all boolean operators hence also complementation. If
we consider µ-calculus restricted to binary trees then our constructions give us
ordinary (non alternating) parity automata on trees. This way we obtain a proof
of Rabin’s complementation lemma and the results from [8, 3].

The paper is organized as follows. We start by giving basic definitions in-
cluding a new formula constructor and the notion of binding functions. In the
second section we describe operational semantics of formulas. In the third we
present the notion of disjunctive formulas and prove properties of such formulas.
Next section is devoted to the new kind of automata which we call µ-automata.

2 Preliminary definitions

Let Prop = {p, q, . . .}∪{⊥,>} be a set of propositional letters, Var = {X,Y, . . .}
a set of variables and Act = {a, b, . . .} a set of actions. Formulas of the µ-calculus
over these sets can be defined by the following grammar:

F := Prop | ¬Prop | Var | F ∨ F | F ∧F | 〈Act〉F | [Act]F | µVar .F |νVar.F

Note that we allow negations only before propositional constants. As we will
be interested mostly in closed formulas this is not a restriction. All the results
presented here extend to the general case when negation before variables is also
allowed, restricting as usual to positive occurrences of bound variables.

In the following, α, β, γ, . . . will denote formulas, and A,B,C . . . will denote
finite sets of formulas. We shall use σ to denote either µ or ν. Variables, propo-
sitional constants and their negations will be called literals.

Formulas are interpreted in transition systems of the form M = 〈S,R, ρ〉,
where:

• S is a nonempty set of states,
• R : Act → P(S × S) is a function assigning a binary relation on S to each

action in Act .
• ρ : Prop → P(S) is a function assigning a set of states to every propositional

constant.

For a given modelM and an assignment Val : Var → P(S), the set of states
in which a formula α is true, denoted ||α||MVal , is defined inductively as follows

3

(we will omit superscript M when it causes no ambiguity):

||p||Val = ρ(p) ||⊥||Val = ∅ ||>||Val = S
||¬p||Val = S − ρ(p)
||X||Val = Val(X)

||α∨ β||Val = ||α||Val ∪ ||β||Val
||α∧β||Val = ||α||Val ∩ ||β||Val
||〈a〉α||Val = {s : ∃s′.(s, s′) ∈ R(a)∧ s′ ∈ ||α||Val}
||[a]α||Val = {s : ∀s′.(s, s′) ∈ R(a) ⇒ s′ ∈ ||α||Val}

||µX.α(X)||Val =
⋂ {S′⊆S : ||α||V al[S′/X]⊆S′}

||νX.α(X)||Val =
⋃ {S′⊆S : S′⊆||α||V al[S′/X]}

here Val [S′/X] is the valuation such that, Val [S ′/X](X) = S′ and Val [S′/X](Y) =
Val(Y) for Y 6= X. We shall write M, s,Val|=α when s ∈ ||α||MVal .

2.1. Definition (Binding). We call a formula well named iff every variable is
bound at most once in the formula and free variables are distinct from bound
variables. For a variableX bound in a well named formula α there exists a unique
subterm of α of the form σX.β(X), from now on called the binding definition
of X in α and denoted Dα(X). We will omit subscript α when it causes no
ambiguity. We call X a µ-variable when σ = µ, otherwise we call X a ν-variable.

The function Dα assigning to every bound variable its binding definition in
α will be called the binding function associated with α.

2.2. Definition (Dependency order). Given a formula α we define the de-
pendency order over the bound variables of α, denoted ≤α, as the least partial
order relation such that if X occurs free in Dα(Y) then X ≤α Y . We will say
that a bound variable Y depends on a bound variable X in α when X ≤α Y .

2.3. Definition. Variable X in µX.α(X) is guarded iff every occurrence of X in
α(X) is in the scope of some modality operator 〈 〉 or []. We say that a formula
is guarded iff every bound variable in the formula is guarded.

2.4. Proposition (Kozen). Every formula is equivalent to some guarded for-
mula.

This proposition allows us to restrict ourselves to guarded, well-named for-
mulas. From now on, we shall only consider formulas of this kind. This restriction
is not essential to what follows but simplifies definitions substantially.

In construction of our tableaux we shall distinguish some occurrences of
conjunction which should not be reduced by ordinary (and) rule.

2.5. Definition. We extend the syntax of the µ-calculus by allowing new con-
struction of the form a→ A, where a is an action and A is a finite set of formu-
las. Such a formula will be semantically equivalent to

∧{〈a〉α|α ∈ A}∧ [a]
∨
A.

Namely state q satisfies formula a→ A when any formula of A is satisfied by at
least one a-successor of state q, and any a-successor of state q satisfies at least
one formula of A. We adopt the convention that the conjunction of the empty
set of formulas is the formula > and disjunction of the empty set is ⊥.

4

2.6. Remark. A formula 〈a〉α is equivalent to a→ {α,>} and a formula [a]α
is equivalent to a→ {α} ∨ a→ ∅. It follows that any formula can be written
with this new construction in place of modalities. All the notions defined in this
section like bound variable definitions, guardedness, etc. extend to formulas with
this new construction.

3 “Operational semantics”

Here we will describe alternative “operational” semantics for the formulas of the
µ-calculus. We will show that a formula is satisfied in a state s of a structure M
with a valuation Val iff there is a consistent marking of a tableau for the formula.
This characterization gives us a tool for proving equivalence of formulas.

Let γ be a well-named, guarded formula where construction a→ A is used
instead of 〈a〉α and [a]α constructions.

3.1. Definition. We define the system of tableau rules Sγ parameterized by a
formula γ, or rather its binding function:

(and) {α, β, C}
{α∧ β,C} (or) {α,C} {β,C}{α ∨ β,C}

(µ) {α(X), C}
{µX.α(X), C} (ν) {α(X), C}

{νX.α(X), C}

(reg) {α(X), C}
{X,C}

whenever X is a bound variable of γ
and Dγ (X) = σX.α(X)

(mod) {α} ∪ {∨B : a→ B ∈ {C}, B 6= A} for every a→ A ∈ {C}, α ∈ A
{C}

with
∨ ∅ interpreted as ⊥.

3.2. Remark. The rule (mod) has as many premises as there are formulas in
the sets A such that a→ A ∈ C. For instance

{α1, α3} {α2, α3} {α1 ∨ α2, α3} {β1} {β2}
{a→ {α1, α2}, a→ {α3}, b→ {β1, β2}}

is an instance of the rule.

3.3. Remark. We see applications of the rules as a process of reduction. Given
a finite set of formulas C we want to derive, we look for the rule the conclusion
of which matches our set. Then we apply the rule and obtain the assumptions
of the instance of the rule whose conclusion is C.

3.4. Definition. A tableau for γ is a pair 〈T, L〉, where T is a tree and L is a
labeling function such that:

1. the root of T is labeled by {γ},

5

2. the sons of any node n are created and labeled according to the rules of
system Sγ , with rule (mod) applied only when no other rule is applicable.

Leaves and nodes where (mod) rule was applied will be called modal nodes. The
root of T and sons of modal nodes will be called choice nodes. We will say that
m is near n iff there is a path from n to m in the tableau without an application
of modal rule.

3.5. Remark. Returning to our example of an instance of the rule (mod) from
Remark 3.2. If a node n is labeled by the conclusion of this instance then it has
five sons labeled by corresponding assumptions. We will call a son obtained by
reducing an action a an a-son. In our example n has three a-sons and two b-sons.
Node n is a modal node, its sons are choice nodes.

3.6. Definition (Marking). For a tableau T = 〈T, L〉 we define its marking
with respect to a structure M = 〈S,R, ρ〉 and state s0 to be a relation M⊆S×T
satisfying the following conditions:

1. (s0, r) ∈M , where r is a root of T .
2. If some pair (s,m) belongs to M and a rule other than (mod) was applied

in m, then for some son n of m, (s, n) ∈M .
3. If (s,m) ∈M and rule (mod) was applied in a node m then for every action
a for which exists a formula of the form a→ A in L(n):
(a) for every a-son n of m there exists a state t such that (s, t) ∈ R(a) and

(t, n) ∈M .
(b) for every state t such that (s, t) ∈ R(a) there exists an a-son n of m such

that (t, n) ∈M .

3.7. Definition (Trace). Given a path P of a tableau T = 〈T, L〉, a trace on
P will be a function F assigning a formula to every node in some initial segment
of P (possibly to the whole P), satisfying the following conditions:

• If F (n) is defined then F (n) ∈ L(n).
• Let m be a node with F (m) defined and let n ∈ P be a son of m. If a rule

applied in m does not reduce the formula F (m) then F (n) = F (m). If F (m)
is reduced in m then F (n) is one of the results of the reduction. This should
be clear for all the rules except (mod). In case m is a modal node and n
is labeled by {δ} ∪ {∨B : a→ B ∈ C,B 6= A} for some a→ A ∈ L(m) and
δ ∈ A, then F (n) = δ if F (m) = a→ A and F (n) =

∨
B if F (m) = a→ B

for some a→ B ∈ C, B 6= A. Traces from other formulas end in node m.

3.8. Definition (µ-trace). We say that there is a regeneration of a variable
X on a trace F on some path iff for some node m and its son n on the path
F (m) = X and F (n) = α(X) with Dγ (X) = σX.a(X), i.e. rule (reg) was applied
to variable X.

We call a trace µ-trace iff it is an infinite trace (defined for the whole path)
on which the smallest variable, with respect to ≤α ordering, regenerated i.o. is
a µ-variable. Similarly a trace will be called a ν-trace iff it is an infinite trace

6

where the the smallest variable, with respect to ≤α ordering, regenerated i.o. is
a ν-variable.

3.9. Remark. Every infinite trace is either a µ-trace or a ν-trace because all
the rules except regenerations decrease the size of formulas and formulas are
guarded hence every formula is eventually reduced. Observe that even though
≤α is a partial ordering there is always the least variable required in the above
definition.

3.10. Definition (Consistent marking). Using notation from the Definition 3.6,
a markingM of T with respect toM and s is consistent with respect toM, s,Val
iff it satisfies the following conditions:

local consistency for every modal node m and state t, if (t,m) ∈ M then
M, t,Val|=A′, where A′ is the set of all the literals occurring in L(m),

global consistency for every path P = n0, n1, . . . of T such that for every
i = 0, 1, . . . there exist si with (si, ni) ∈M there is no µ-trace on P.

The following theorem gives a characterization of satisfiability by means of
consistent markings.

3.11. Theorem. A positive guarded formula γ is satisfied in a structure M, s-
tate s and valuation Val iff there exists a marking M of a tableau for γ consistent
with M, s,Val.

Proof. The proof uses transfinite approximations of fixed point expressions and
signatures in the style of those defined in [9].

4 A disjunctive normal form theorem

In this section we define a notion of disjunctive formula and show that every
formula is equivalent to a disjunctive formula.

4.1. Definition. The set of disjunctive formulas, Fd is the smallest set defined
by the following clauses:

1. every variable is a disjunctive formula,
2. if α, β ∈ Fd then α ∨ β ∈ Fd; if moreover X occurs only positively in α and

not in the context X ∧ γ for some γ, then µX.α, νX.α ∈ Fd,
3. formula α1∧ . . .∧αn is a disjunctive formula provided that every αi is either

a literal or a formula of a form a→ A with A⊆Fd. Moreover we require that
for any action a there can be at most one conjunct of the form a→ A among
α1, . . . , αn.

4.2. Remark. Many properties can be “naturally” expressed by disjunctive for-
mulas. For example the properties q holds almost always and q holds infinitely
often can be written as the following disjunctive formulas:

µX.((a→ {X}) ∨ νY.(q∧a→ {Y })) νX.µY.((q∧ a→ {X}) ∨ a→ {Y })

7

4.3. Remark. Modulo the order of application of (and) rules, disjunctive for-
mulas have unique tableaux. Moreover on any infinite path there is one and only
one infinite trace.

4.4. Theorem. For every formula there exists an equivalent disjunctive formula.

Proof. Let T be a regular tableau for a formula γ. A graph obtained from a tree
by adding edges from some leaves to their ancestors will be called a tree with
back edges. Added edges will be called back edges. First one needs to prove:

4.5. Lemma. It is possible to construct a finite tree with back edges Tl = 〈Tl, Ll〉,
satisfying the following conditions:

1. Tl unwinds to T .
2. Every node to which a back edge points can be assigned color magenta or

navy in such a way that for any infinite path from the unwinding of Tl we
have: there is a µ-trace on the path iff the highest node of Tl through which
the path goes i.o. is colored magenta.

To prove the lemma one takes a deterministic parity automaton A [6, 3]
which recognizes paths of T having µ-trace on them. Then one can run A on
every path of T . This gives an assignment of states of A to nodes of T . Obtained
tree is still regular and we can use parity condition to present it in the desired
form.

Next one constructs from Tl a disjunctive formula γ̂ which has a tableau
equivalent to T . The construction starts in the leaves of the tree and proceeds
to the root. All back edges leading to a node n are assigned the same variable
Xn and the color of the node is used to decide which fixpoint operator should
be used to close this variable when we reach n in our construction.

In [9] the general technique of model construction for the µ-calculus formulas
was described. Till now it remains essentially the only known technique for
model construction (see [5] for different approach). It turns out that in case of
disjunctive formulas model construction is much easier. This is described in the
following theorem.

4.6. Theorem. A closed disjunctive formula α is satisfiable iff the formula β ob-
tained from α by replacing all occurrences of µ-variables by ⊥ and all ν-variables
by > is satisfiable.

Proof. Let Tα and Tβ be tableaux for α and β respectively. There exists a func-
tion h which for any node of Tα gives us the corresponding node of Tβ, mapping
variables to corresponding constants. This situation is schematically represented
in Figure 1. It is quite easy to show that if α is satisfiable then β is satisfiable.
This can be done by induction on the structure of α.

Conversely, assume β is satisfiable and let M be a minimal (w.r.t. inclusion)
marking of Tβ consistent w.r.t. some arbitrary model M for β. It is quite easy,
using h−1 and the modal nodes occurring in M , to build a regular model of
β together with a marking M ′ of Tα consistent with that model such that no
µ-variable is ever regenerated on any path of that marking.

8

· · ·
a(X) a(X) a(X) a(X) a(>)

h

Tα Tβ

νX.a(X) νX.a(>)

Fig. 1. Relation between Tα and Tβ

Because β in the above theorem is a disjunctive formula without fixpoint
operators we have:

4.7. Corollary. Satisfiability checking for disjunctive formulas can be done in
linear time.

5 Automata for the µ-calculus

The question we ask here is what concept of automaton characterizes the ex-
pressive power of the µ-calculus over transition systems.

The idea of constructing automata able to deal with arbitrary branching was
already considered in [1] but the construction proposed there would give us to
big expressive power.

5.1. Definition. A µ-automaton is a tuple A = 〈Q,Σp, Σa, q0, δ, Ω〉 where: Q
is a finite set of states, Σp, Σa are finite alphabets called proposition and action
alphabets respectively, q0 ∈ Q is the initial state, δ : Q→ P(Σp×(Σa

.→ P(Q)))
is a transition function andΩ : Q→N is a indexing function defining acceptance
conditions. Here, Σa

.→ P(Q) denotes the set of partial functions from Σa to
P(Q).

5.2. Definition. A labeled transition system restricted to Σa and Σp is a tuple

T = 〈S, s0 ∈ S,R : Σa → P(S × S), ρ : S → Σp〉

where s0 is the initial state, ρ defines labeling of states and R defines edges
between states together with their labeling.

9

5.3. Remark. From given finite sets of actions Σa and literals Lp and given
transition system with some valuation it is straightforward to construct a labeled
transition system restricted to Σa and Σp = P(Lp). There is also an obvious
translation in the opposite direction assuming, say, that all variables not in Σp

are always false and that there are no other edges.

5.4. Definition. For a restricted transition system T and an automaton A as
the above we define a run of A on T to be an infinite labeled tree T satisfying
the following conditions:

• The root is labeled by (q0, s0).
• For any node of the tree labeled (q, s) there is a pair (p, f) ∈ δ(q) such that
p = ρ(s) and for every action a in the domain of f (assumed partial):
? for every qa ∈ f(a) there is a son labeled (qa, t) for some t with (s, t) ∈
R(a),

? for every t with (s, t) ∈ R(a) there is qa ∈ f(a) and a son labeled (qa, t)

The run is accepting iff for any path P, min {Ω(q) : q appears i.o. on P} is
even.

We would like to prove that automata of this kind have exactly the same
expressive power as the µ-calculus.

5.5. Theorem. For any disjunctive formula γ there is an equivalent µ-automaton.

Proof. Let T be a tree with back edges unwinding into a tableau for γ. We
build an automaton recognizing exactly the models of γ. Its set of states is
Q = (CN × BV) where CN is the set of choice nodes (see Definition 3.4).
Transitions are build from a state (n,X) to a state (m,Y) whenever m is near
n, with Y the smallest variables regenerated on the path from n to m or ∗ if
there is no such.

5.6. Theorem. For any µ-automaton A we can construct an equivalent disjunc-
tive formula.

Proof. Construct a tree with back edges from the automaton in the style of
Lemma 4.5. Then construct a formula from this tree.

5.7. Corollary. µ-automata are closed under all the connectives of the µ-calculus.
In particular they are closed under negation.

5.8. Remark. A transition system is called labeled binary tree iff every state
has exactly two transitions: one labeled ”l” and one labeled ”r”. Exactly the
same argument as in Theorem 4.4 shows that over labeled binary trees every
formula of the µ-calculus is equivalent to a disjunctive formula where each spe-
cial conjunction is of the form l → {αl}∧ r→ {αr}∧Γ with Γ containing only
literals. It follows that µ-automata built from such formulas correspond exactly
to usual (non alternating) automata with so called parity condition[6, 3]. This
shows that µ-calculus is equivalent to Rabin automata and that µ-automata
are closed under boolean connectives. In particular this gives a proof of Rabin’s
complementation lemma.

10

References

1. O. Bernholtz and O. Grumberg. Branching time temporal logic and amorphous
tree automata. In Proc. 4th Conference on Concurrency Theory, volume 715 of
Lecture Notes in Computer Science, pages 262–277. Springer-Verlag, 1993.

2. E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of
programs. In 29th IEEE Symp. on Foundations of Computer Science, 1988.

3. E.A. Emerson and C.S. Jutla. Tree automata, mu calculus and determinacy. In
Proc. FOCS 91, 1991.

4. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

5. D. Kozen. A finite model theorem for the propositional µ-calculus. Studa Logica,
47(3):234–241, 1988.

6. A.W. Mostowski. Regular expressions for infinite trees and a standard form of
automta. In A. Skowron, editor, Fith Symposium on Computation Theory, volume
208 of LNCS, pages 157–168, 1984.

7. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

8. D. Niwiński. Fixed points vs. infinite generation. In Proc. 3rd. IEEE LICS, pages
402–409, 1988.

9. R.S. Street and E.A. Emerson. An automata theoretic procedure for the proposi-
tional mu-calculus. Information and Computation, 81:249–264, 1989.

11

