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1 Université de la Nouvelle Calédonie
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Abstract. We show that the problem of checking if an infinite tree gen-
erated by a higher-order grammar of level 2 (hyperalgebraic) satisfies
a given µ-calculus formula (or, equivalently, if it is accepted by an al-
ternating parity automaton) is decidable, actually 2-Exptime-complete.
Consequently, the monadic second-order theory of any hyperalgebraic
tree is decidable, so that the safety restriction can be removed from
our previous decidability result. The last result has been independently
obtained by Aehlig, de Miranda and Ong. Our proof goes via a char-
acterization of possibly unsafe second-order grammars by a new variant
of higher-order pushdown automata, which we call panic automata. In
addition to the standard pop1 and pop2 operations, these automata have
an option of a destructive move called panic. The model-checking prob-
lem is then reduced to the problem of deciding the winner in a parity
game over a suitable 2nd order pushdown system.

Introduction

Context-free tree grammars constitute the basic level in an infinite hierarchy of
higher-order grammars introduced by W. Damm [9] (built on the earlier ideas
of [12]). Courcelle [7] proved decidability of the monadic second-order (MSO)
theory of any tree generated by an algebraic (context-free) tree grammar. Later
Knapik et al [14, 15] attempted to extend this decidability result to all levels of
the Damm hierarchy. This has been achieved partially, namely with an additional
syntactic restriction imposed on the grammars, called safety : the MSO theory
of any tree generated by a safe grammar of level n is decidable.

Higher-order grammars can be seen as program schemes, where functions
can take higher-order arguments. The tree generated by such a grammar de-
scribes completely the semantics of the program scheme. Thus decidability of
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the MSO theory of such a tree implies decidability for a large class of properties
of behaviours of higher-order program schemes.

The safety requirement, roughly speaking, prevents the use of individual
parameters in the functional arguments of higher-order functions. The concept
of safe (tree) grammars has been further justified by a characterization in terms
of higher-order pushdown automata originally introduced by Maslov [17]: the
trees generated by safe higher-order grammars of level n coincide with the trees
recognized (in suitable sense) by pushdown automata of level n [15]. See [6, 8]
for another characterization of this hierarchy.

Monadic second-order logic is extremely succinct, which yields the non-
elementary complexity of the MSO theories, even for regular trees. However,
over trees, the MSO logic has the same expressive power as the µ-calculus,
which is much better tractable algorithmically. Cachat [4] showed that the model-
checking problem for the µ-calculus and the trees recognized by the pushdown
automata of level n is in n-Exptime, actually n-Exptime-complete [?, 5].

In this paper we show that for the level 2 (hyperalgebraic), the model checking
problem remains decidable, actually 2-Exptime-complete, also for grammars
without safety restriction.

To this end, we first find an automata-theoretic counterpart of unsafe hyper-
algebraic grammars, which is an extension of second-order pushdown automata
by a new destructive operation that we call panic. This operation allows us
to simulate the change of environment needed to evaluate parameters of un-
safe productions. We further introduce 2nd order pushdown systems with panic
(equipped with alternation and ranks), which can be viewed as a generalization
of pushdown systems studied in [21, 4]. The model-checking problem then re-
duces to the problem of deciding the winner in a parity game over such a system.
The key step is a reduction of this game to a game over a 2nd order pushdown
system without panic, for which a 2-Exptime procedure is already known [4].

An immediate consequence of our result is that the model checking problem
for the hyperalgebraic grammars is decidable also for the monadic second-order
logic, consequently the MSO theory of any hyperalgebraic tree is decidable.
This result has been recently independently obtained by Aehlig, de Miranda
and Ong [2]4, by a different proof, based on transformations of infinite lambda
terms. Compared to [2], the present paper has two new elements: (1) it gives
a characterization of unsafe grammars by panic automata, (2) the actual proof
yields an optimal decision procedure for the µ-calculus model checking.

At present we do not know if the safety requirement really restricts the
generating power of the tree grammars. Recently, Aehlig, de Miranda and Ong
have studied the safety restriction [1]. They have shown that it is inessential for
the word grammars of level 2, where a grammar, as usual, can generate a set of
words. To simulate a non-safe grammar by a safe one, they use nondeterminism
in an essential way, hence their result is not directly applicable here.

Due to space limitations, many arguments are omitted or sketchy; they will
appear in the full paper (see [16] for a preliminary version).

4 C.f. the joint message of the authors to the TYPES Forum [3].
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1 Trees

Types, terms, and trees. We fix the set of simple types τ constructed from
a unique basic type 0, by the rules τ ::= 0 | (τ1 → τ2). The level of a type is
defined by `(0) = 0, and `(τ1 → τ2) = max(1 + `(τ1), `(τ2)). Thus 0 is the only
type of level 0 and each type of level 1 is of the form 0n → 0 for some n > 0
(which abbreviates (0 → (0 → (· · · (0 → 0) . . .))), with n+ 1 occurrences of 0).

A typed alphabet is a set Γ of symbols, each γ in Γ given with its type, γ : τ .
We inductively extend Γ to the set T (Γ ) of (applicative) terms over Γ ; if t :
τ1 → τ2 and s : τ1 then (ts) : τ2. As usual we abbreviate (· · · ((t0t1)t2) · · · )tn by
t0t1 . . . tn. For terms t, t1, . . . , tm, and symbols z1, . . . , zm, of appropriate types,
term t[z1:=t1, . . . , zk:=tk] results from simultaneous replacement in t of zi by ti.

The set of natural numbers is denoted by ω. A tree (over a set X) is any
nonempty prefix-closed subset T of the free monoid X∗, with ε as the root. If
u ∈ T , x ∈ X, and ux ∈ T then ux is a successor of u in T .

Now let Σ be a signature, i.e., a typed alphabet of symbols of level ≤ 1. A
Σ-tree is a mapping t : dom t→ Σ, where dom t ⊆ ω∗ is a tree, and if t(w) is a
symbol of type 0k → 0 then w has exactly k successors, w1, . . . , wk (hence w is
a leaf if t(w) : 0). The set of Σ-trees is written T

∞
(Σ).

A limit of a sequence t0, t1, . . . of Σ-trees is defined, provided that for any
k, there is m = m(k), such that tn�k and tn′�k coincide, for all n, n′ ≥ m(k)
(where, in general, t�k is restriction of t to the set {w ∈ dom t : |w| ≤ k}). Then
lim tn ∈ T

∞
(Σ) is just the set-theoretical union of the functions tn�m(n).

Grammars. We fix an infinite typed alphabet of variables (or parameters), X .
A grammar is a tuple G = (Σ,N,S, E), where Σ is a signature, N is a finite
typed alphabet set of nonterminals5, S ∈ N is a start symbol of type 0, and E
is a set of productions of the form

Fz1 . . . zm ⇒ w

where F : τ1 → τ2 · · · → τm → 0 is a nonterminal, zi a variable of type τi, and w
an applicative term in T (Σ ∪N ∪{z1 . . . zm}) of type 0. The level of a grammar
is the highest level of its nonterminals. Since we are interested in grammars as
generators of (single) Σ-trees, we assume that for each F , there is exactly one
production with F on the left hand side.

The single-step reduction relation →G between terms over Σ ∪N is defined
inductively by the following clauses.

1. Ft1 . . . tk →G t[z1:=t1, . . . , zk:=tk] if there is a production Fz1 . . . zk ⇒ t
(with zi : ρi, i = 1, . . . , k), and ti ∈ T (Σ ∪N)ρi

, for i = 1, . . . , k.
2. If t →G t

′ then (st) →G (st′) and (tq) →G (t′q), whenever the expressions
in question are applicative terms.

5 Without loss of generality, we assume that the types of nonterminals are homo-
geneous, i.e., 0 or τ1 → · · · → τn → 0, where if each τi is homogeneous and
`(τ1) ≥ `(τ2) ≥ . . . ≥ `(τn).
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That is, t→G t
′ whenever t′ is obtained from t by replacing some occurrence

of a nonterminal F by the right-hand side of the appropriate production in which
all parameters are in turn replaced by the actual arguments of F .

In order to define the result of an infinite derivation, we extend Σ to Σ⊥ =
Σ ∪ {⊥}, with ⊥ : 0. With any term t over Σ ∪ N , we inductively associate
a term t⊥ over Σ⊥, by setting f⊥ = f (for f ∈ Σ), X⊥ = ⊥ (for X ∈ N),
and (st)⊥ = (s⊥r⊥) whenever s⊥ 6= ⊥, otherwise (st)⊥ = ⊥. Then, we define
relation t �∞

G t′, where t is a term in T (Σ ∪N) and t′ a tree in T
∞

(Σ⊥), by

– t′ is finite, and there is reduction sequence t = t0 →G . . .→G tn = t′, or
– t′ is infinite, and there is an infinite reduction sequence t = t0 →G t1 →G . . .

such that t′ = lim t⊥n .

To define a unique tree produced by the grammar, we recall a standard approxi-
mation ordering on T

∞
(Σ⊥): t′ v t if dom t′ ⊆ dom t and, for each w ∈ dom t′,

t′(w) = t(w) or t′(w) = ⊥. Then the tree generated by G is defined by

[[G]] = sup{t ∈ T
∞

(Σ⊥) : S �∞
G t}

It is easy to see that, by the Church-Rosser property of our grammar, the above
set is directed, and hence [[G]] is well defined since T

∞
(Σ⊥) with the approxima-

tion ordering is a cpo.
In this paper we only study grammars of level 2, which we call hyperalgebraic,

as they constitute the next level above the algebraic (context-free) grammars.

Parity games. A parity game is a perfect information game of possibly infinite
duration played by two players, say Eve and Adam. We present it as a tuple
(V∃, V∀, E, p1, Ω), where V∃ and V∀ are (disjoint) sets of positions of Eve and
Adam, respectively, E ⊆ V × V is the relation of possible moves, with V =
V∃ ∪ V∀, p1 ∈ V is a designated initial position, and Ω : V → ω is the ranking
function.

The players start a play in the position p1 and then move the token according
to relation E (always to a successor of the current position), thus forming a path
in the graph (V,E). The move is selected by Eve or Adam, depending on who
is the owner of the current position. If a player cannot move, she/he looses.
Otherwise, the result of the play is an infinite path in the graph, v0, v1, v2, . . ..
Eve wins the play if lim supn→∞Ω(vn), is even, otherwise Adam wins.

Parity games, introduced by Emerson and Jutla [10, 18], have been recognized
as a combinatorial essence of many model checking problems. A crucial property
is the positional determinacy : any position is winning for one of the players, and
moreover a winning strategy of player θ can be made positional , i.e., represented
by a (partial) function σ : Vθ → V .6 We say simply that Eve wins the game G if
she has a winning strategy, the similar for Adam. We refer the reader to [20, 13]
for an introduction to parity games.
6 Positional strategy σ is winning for θ if every play p1 = q1, q2, . . . is won by θ,

provided that q` ∈ V∃ follows q`+1 = σ(q`).
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Model checking. The model checking problem in our consideration is to verify
if the tree generated by a given grammar G satisfies a property ϕ expressed in
some logical language, in symbols [[G]] |= ϕ. The most expressive logics consid-
ered in literature are the monadic second-order logic (MSO) or the µ-calculus;
both have the same expressive power over Σ-trees [19]. In this paper we avoid
a logical machinery by using an equivalent formalism of alternating parity au-
tomata (defined below). A polynomial-time translation from the µ-calculus to
alternating automata, ϕ 7→ Aϕ, is known [10], such that, for any tree t, t |= ϕ iff
t is recognized by Aϕ.

An alternating parity tree automaton over signature Σ can be presented as
a tuple

B = 〈Σ,Q∃, Q∀, q1, δ, Ω〉

where Q∃ ∪Q∀ = Q is a finite set of states with the initial state q1, Ω : Q→ ω
is a ranking function, and δ is a set of transitions of the form q → f(q1, . . . , qk),
where q, q1, . . . , qk ∈ Q and f ∈ Σ with type f : 0k → 0.

The acceptance of a tree t ∈ T∞
(Σ) by the automaton B can be presented by

a suitable parity game. We first define a the computation tree, r : dom r → Q
with dom r ⊆ (ω × ω)∗, such that, for any u ∈ dom r, the projection π1(u) on
the first component is a node in dom t. We let r(ε) = q1, and whenever r(u) = q
and t(π1(u)) = f , then, for any transition of the form q → f(q1, . . . , qk), the
node u has a successor u(i, j) with r(u(i, j)) = qi, for some j, and i = 1, . . . , k.
Now consider a parity game Game(B, t) with V = dom r partitioned such that
u ∈ V∃ iff r(u) ∈ Q∃, the initial configuration ε, and Ω(u) = Ω(r(u)). We let B
accept the tree t iff Eva wins this game.

The model checking problem addressed in this paper will be the following.

Problem 1 Given a 2nd order grammar G and an alternating parity tree
automaton B. Does B accept [[G]] ?

2 Panic automata

Classically the content of a pushdown store is just a word over the pushdown
alphabet. For our purpose, it is convenient to consider pushdown symbols with
“time stamps” (sort of). We let a level 1 pushdown store (or a 1-pds or 1-stack)
over an alphabet Γ be a non-empty word a1 . . . al over Γ × ω. A level 2 pds
(2-pds, 2-stack) is a non-empty sequence s1 . . . sl of 1-pds’s, which may also be
written as [s1][s2] . . . [sl] or as s′[sl], where s′ stands for [s1][s2] . . . [sl−1]. The
1-stack si is called the i-th row of s. We assume that push-down stores grows to
the right , so that, for instance, the item (a,m) is on top of the 2-pds s′[w(a,m)].
By top(s) we denote the topmost Γ -symbol of s, i.e., top(s′[w(a,m)]) = a.
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The following operations are possible on level 2 push-down stores.

push1〈a〉([s1][s2] . . . [sl][w]) = [s1][s2] . . . [sl][w(a, l)]
pop1(α[wξ]) = α[w]
push2(α[w]) = α[w][w]

pop2(α[v][w]) = α[v]
panic([s1][s2] . . . [sm] . . . [sl][w(a,m)]) = [s1][s2] . . . [sm]

skip(s) = s

The operation pop2 (resp. pop1) is undefined on a 2-stack s if it contains only
one row (resp. the top row of s has only one element).

Let⊥ be a symbol in Γ . It is easy to see that if a 2-pds [s1] . . . [sm] is generated
from [(⊥, 0)] by the above operations, and si = (ai,1,mi,1) . . . (ai,ki ,mi,ki) then
mi,j ≤ i−1, and j ≤ j′ follows mi,j ≤ mi,j′ . Intuitively, whenever a new symbol
a ∈ Γ is placed on the top of the stack, the second component registers the
number of the stack row which is directly below the current top row. Later
the symbol can be duplicated several times by subsequent executions of push2,
but the second component keeps record of the level when it first appeared in the
stack. The panic operation returns to the 2-stack previous to the first appearance
of the actual top symbol.

Now let Σ be a signature, and let Σr ⊆ Σ be the set of symbols of type 0r →
0. A panic automaton is defined as a tuple

A = 〈Σ,Q, Γ, q1, δ,⊥〉,

where Q is a finite set of states, with an initial state q1, Γ is a stack alphabet,
with a distinguished bottom symbol ⊥, and δ : Q×Γ → I is a transition function,
where I is the set of possible instructions,

I ⊆ OpΓ ×Q ∪
⋃
r

Σr ×Qr,

where OpΓ = {push1〈a〉 : a ∈ Γ} ∪ {pop1, push2, pop2, panic, skip}.
A configuration of an automaton A as above is a pair (q, s), where q ∈ Q,

and s is a 2-stack (over Γ ). The initial configuration is (q1, [(⊥, 0)]). We define
the relation →A on configurations as follows. Let s = [s1] . . . [sl][w(a,m)].

1. If δ(q, a) = (α, q′) with α ∈ OpΓ then 〈q, s〉 →A 〈q′, α(s)〉.
2. If δ(q, a) = (f, p1, . . . , pr) then 〈q, s〉 →A 〈pi, s〉, for all i = 1, . . . , r.

In the first case we write →◦
A instead of →A. The symbol →→A stands for the

reflexive and transitive closure of →A, and similarly for →→◦
A.

Let t : dom t→ Σ be a Σ-tree. A partial run of A on t is a partial function
% from an initial segment of dom t to the set of all configurations, such that if
%(w) = 〈q, s〉, for some w ∈ dom t, then δ(q, a) = (f, p1, . . . , pr), where f = t(w)
and a = top(s). In addition 〈pi, s〉 →→◦

A %(wi), for each i = 1, . . . , r when %(wi)
is defined.
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If a partial run is a total function over dom t, we call it a run. As our au-
tomaton is deterministic, there can be at most one tree over which A has a run.
This is the tree accepted by A.

3 Automata vs grammars

Theorem 3.1. For any panic automaton A, one can construct a hyperalgebraic
grammar GA, such that if the automaton recognizes a tree t in T

∞
(Σ) then t =

[[GA]]. Conversely, for a hyperalgebraic grammar G, one can construct a panic
automaton AG such that if the grammars generates a tree in T

∞
(Σ), this is the

(unique) tree recognized by AG. Both constructions can be realized in polynomial
time.

Here we only sketch the direction G 7→ AG , which is essential for the upper
bound result.

Let ◦1, ◦2, . . . be fresh identifiers of type 0, which we call holes. The push-
down alphabet Γ of AG consists of subterms of the right hand sides of the
productions of G, possibly applied to some holes, so that the result is of type 0.
More precisely, let u = Ft1 . . . td be such a subterm, where F is an operator
(variable or nonterminal) of type τ1 → · · · → τd → 0k → 0. Then u◦1 . . . ◦k ∈ Γ .
In particular, if u : 0 then simply u ∈ Γ .

The holes ◦1, . . . , ◦k represent “missing arguments” of the operator F . Since
holes are new identifiers, one can safely identify Ft1 . . . td ◦1 . . . ◦k with Ft1 . . . td
if this is convenient.

The idea of our simulation is that the top of pds (an expression u) repre-
sents a variable-free expression u′ occurring in a derivation of G. Since the pds
alphabet must be finite, the term u can only be an “approximation” of u′. This
approximation is “evaluated” to yield an approximate representation of the next
step of reduction. The contents of the pds represents an environment in which
the evaluation takes place. The environment is searched if one needs to find the
meaning of a variable, or to find a missing argument.

The bottom pds symbol is S, the initial nonterminal. This is our approxi-
mation in the first step of reduction. The automaton then works in phases, each
phase beginning and ending in the distinguished state q1. We define automa-
ton informally, by describing the possible behaviour in a phase, beginning with
a configuration (q1, s).

T1 Let top(s) = Fu1 . . . un, where F is a nonterminal, and let the correspond-
ing production be Fx1 . . . xn ⇒ u. The automaton executes the instruction
δ(q1,Fu1 . . . un) = (push1〈u 〉, q1), so that our next approximation is u.

T2 If top(s) = ft1 . . . tr where f is a terminal, then the the automaton executes
the instruction δ(q1, ft1 . . . tr) = (f, p1, . . . , pr), followed (at the i-th branch
of the run) by a pop1 and push1〈 ti 〉. Thus the next approximation at the
i-th branch is ti. (If f is a constant, there is no further step.)

T3 Let top(s) = x, where x is an (ordinary) variable of type 0. To “evaluate”
x, the automaton restores the environment where x was defined. It executes
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pop1 and inspects the new top symbol. It should be of the form Ft1 . . . te,
where F is a nonterminal. In addition, the variable x should be one of the
formal parameters of F , say, the j-th one. The next approximation is tj ,
and it should be evaluated in the present environment (that of the caller).
Another pop1 is now executed, followed by a push1〈 tj 〉, and the machine
returns to state q1.

T4 Let top(s) = ϕu1 . . . uh where ϕ is a variable of type 0h → 0. If we now
executed a pop1 as above then the information about the actual parameters
u1, . . . , uh would be lost. Instead, a push2 is executed, followed by a pop1. As
in the previous case the top of the stack should be of the form Ft1 . . . te and
ϕ should be one of the formal parameters of F , say, the j-th one. However
now the new approximant tj is an expression of a functional type and we
actually place tj ◦1 . . . ◦h on the pds rather than tj .

T5 The last case is when top(s) is a hole, say ◦i. The automaton gets now into
a panic. After the panic move the top of the pds should be ψv1 . . . vl for
some variable ψ. The new approximation is vi. We execute in order pop1

and push1〈 vi 〉 and return to state q1.

To explain the last case let us first observe that holes (missing arguments)
are created when we attempt to evaluate a function variable (the fourth case).
Holes correspond to the arguments (actual parameters) of this function variable
that were “left behind” for a while. Later, a hole is found at top of the pds when
we need to evaluate such a missing argument of an operator. In order to do so,
we must restore the situation from the time of the call. The crucial thing is that
the “time stamp” of the topmost item points out to exactly the moment in the
past we need, namely to the stage when the hole was created.

4 Pushdown systems

By now, we have considered panic automata as tree acceptors, with the aim to
characterize hyperalgebraic grammars. For the model-checking applications, it
is convenient to use a related concept of pushdown systems which do not take
inputs, but are equipped with ranks and alternation (c.f. [4, 21]).

A 2nd order pushdown system with panic (or 2-PPDS, for short) is a tuple
C = (P, P∃, P∀, Γ, p1,∆,Ω) where P is a finite set of control locations partitioned
into P∃ and P∀, Γ is a finite store alphabet, p1 ∈ P is the initial location,
Ω : P → ω is the rank function, and ∆ ⊆ P × Γ × P × OpΓ is the finite
set of (unlabeled) transition rules (where OpΓ is as in Sect. 2). A transition
(p, a, p′, α) ∈ ∆ is often written by p, a→∆ p′, α.

A configuration of a 2-PPDS C is a pair (p, s) where p ∈ P and s is a 2-stack
over Γ . A 2-PPDS C gives rise to a parity game Game(C) = (V∃, V∀, E, (p1, [⊥, 0]), Ω),
where

– V∃ is the set of configurations of C with a location from P∃, similarly for V∀;
– (p, s)E(p′, s′) iff ∃(p, a, p′, α) ∈ ∆, top(s) = a and s′ = α(s);
– Ω(p, s) = Ω(p).
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Problem 2. Given a 2-PPDS C, decide if Eva wins the game Game(C).

Proposition 4.2. Problem 1 and Problem 2 are polynomial-time equivalent.

Proof: (Sketch) By Theorem 3.1, we reduce Problem 1 to the question if a tree
recognized by a panic automaton A is accepted by an alternating tree automaton
B. Then a suitable 2-PPDS C is obtained by a standard product construction,
such that Eve wins Game(C) if and only if she wins Game(B, tA)

The converse transformation of Problem 2 to Problem 1 is also easy, after
introduction of a suitable functional signature Σ (depending on the 2-PPDS C).

ut

Before proceeding to the proof of our main result, we show a useful trans-
formation of 2-PPDS’s, which will allow us to control the dynamics of ranks by
the topmost symbols on the pushdown store.

Let Tr(C) be the tree obtained by unfolding the graph of Game(C). That is,
the root of Tr(C) is labeled by the initial configuration, and a node labeled by
(p, s) has a successor labeled (p′, s′), whenever (p, s)E(p′, s′). Note that a node
of the tree determines a computation up to this node.

Definition 4.3 Let a node v of Tr(C) be labeled with 〈q, s〉 such that panic(s)
is defined. Let v′ be the closest to v ancestor of v labeled with 〈q′, panic(s)〉, for
some q′. We call v′ the panic ancestor of v. The panic rank of v is the maximal
rank of a state occurring between the panic ancestor of v and v, including the
rank of v and excluding the rank of the panic ancestor of v.

A 2-PPDS C is rank-aware iff there exists a function Rank : Γ → Rg(Ω) such
that the panic rank of every node v of Tr(C) labeled (q, s) is equal to Rank(top(s)).
That is, the panic rank is determined by the top of the stack.

Lemma 4.4. For every 2-PPDS C, one can construct in polynomial time a rank-
aware 2-PPDS C′, such that Eve wins Game(C′) iff she wins in Game(C).

Proof: (Idea) The stack alphabet of C′ is defined as Γ ′ = Γ×{0, . . . , d}2, where
d is the highest rank in Rg(Ω). The construction ensures that if (a,mp,ml) is
currently on top of the stack, then mp is the panic rank of the node, and ml is
the highest rank of a state seen since the creation of the current top row.

The construction of transitions of C′ goes naturally case by case. The cor-
rectness proof is straightforward, but tedious. ut

5 Deciding the winner in Game(C)

A 2nd order pushdown system (or 2-PDS, for short) is like a 2-PPDS defined in
section 4, but without panic, that is, ∆ ⊆ P × Γ × P × (OpΓ − {panic}). Then
a level 1 pushdown store can be viewed just as a word over Γ (not Γ × ω). The
concepts of 2-pds, configuration, and Game(C) are simplified accordingly.

Games over such pushdown systems have been considered by Engelfriet [11],
Cachat [4], and others.
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Lemma 5.5 ([11, 4, 5]). It is decidable if Eve wins Game(C) for a given 2nd-
order pushdown system C = (P, P∃, P∀, Γ, p1,∆,Ω). There is an algorithm work-
ing in time7 2|Γ |2

O(|P |)
, and the problem is 2-Exptime-complete.

We now transform a rank-aware 2nd order pushdown system with panic
C = (P, P∃, P∀, Γ, p1,∆,Ω) into a 2nd order pushdown system without panic C′ =
(P ′, P ′

∃, P
′
∀, Γ

′, p′1,∆
′, Ω′), such that Eve wins Game(C) iff she wins Game(C′).

For technical convenience, we assume that a transition p, a →∆ p′, α with
α 6= skip is possible only for p ∈ P∃. Clearly, we can always achieve this property
by duplicating locations and using skip operation.

Let Rank : Γ → Rg(Ω) = {0, . . . , d} be the function of Definition 4.3. We
introduce an ordering on ranks: m 4 n iff (−1)m ·m ≤ (−1)n ·n (e.g., for d = 6,
this yields an ordering 5, 3, 1, 0, 2, 4, 6).

We define the set of returns as

Ret = P
·→{0, . . . , d},

The intention is that a partial function R ∈ Ret assigns to a location p the worst,
in 4-order, panic rank still acceptable for the panic moves ending in position p.
We let

P ′
∃ =P∃ ∪ {⊥},
P ′
∀ =P∀ ∪ {ppush , pver , prank=i : p ∈ P, i ∈ {0, . . . , d}} ∪ {>} ∪ {ver} ∪Aux
Γ ′ =Ret ∪ (Γ × Ret).

The rank function Ω′ is 0 for all the locations except for

Ω′(p) = Ω(p), Ω′(prank=i) = i; for all p ∈ P .

The transition rules ∆′ are defined by the following clauses.

– If p, a→∆ p′, skip then p, (a,R) →∆′ p′, skip, for all R ∈ Ret .
– If p, a→∆ p′, push1〈a〉 then p, (a,R) →∆′ p′ver , push1〈(a′, R′)〉, for allR,R′ ∈

Ret . Additionally we have p′ver , (a
′, R′) →∆′ ver , skip, and p′ver , (a

′, R′) →∆′

p′, skip.
– From the location ver the moves are defined in such a way that Eve wins iff
R in the top letter of the top-most 1-stack is the same as R at the top of
1-stack just below the top-most 1-stack.

– If p, a→∆ p′, push2 then p, (a,R) →∆′ p′push , push1〈R′〉, for all R,R′ ∈ Ret .
Additionally we put in ∆′ the rules8 p′push , R

′ →∆′ p′, push2; pop1, as well as
p′push , R

′ →∆′ p′′rank=R′(p′′), pop1, and p′′rank=R′(p′′), (a,R) →∆′ p′′, skip, for
all p′′ such that R′(p′′) is defined.

– If p, a→∆ p′, pop1 then p, (a,R) →∆′ p′, pop1, for all R ∈ Ret .

7 The single exponential dependence on |Γ | is not made explicit in these references,
but it follows from the analysis of level 1 pushdown systems in [21].

8 Notation like p, a →∆′ p′, α1; α2 clearly abbreviates two rules.
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– If p, a→∆ p′, pop2 then p, (a,R) →∆′ p′, pop2; pop1, for all R ∈ Ret .
– If p, a →∆ p′, panic then p, (a,R) →∆′ >, skip if Rank(a) < R(p′), and we

have p, (a,R) →∆′ ⊥, skip otherwise, i.e., when Rank(a) ≺ R(p′) or R(p′) is
undefined.

– There are no transitions from states > and ⊥. This implies that Eve wins in
> and loses in ⊥.

Proposition 5.6. Eve wins in Game(C′) iff she wins in Game(C).

Proof: (Idea) The construction guarantees that a 2-pds in a reachable configu-
ration of C′ has a form v = [w1R1] . . . [wkRk][wk+1], where wi ∈ (Γ ×Ret)∗ and
Ri ∈ Ret . We say that v represents a 2-pds s = [s1] . . . [sk+1] of C if, for all i,
si ↓1= wi ↓1, and if si ↓2= ` then wi ↓2= R`. Note that a possibly infinite domain
of “time stamps” (in C) is represented here by the finite set Ret . Both players
can ensure that the 2-stacks reachable in Game(C′) represent the 2-stacks of C.
Together with the mechanism of returns, this allows them to transfer the strate-
gies from Game(C) to Game(C′). ut

We are now ready to state our main result.

Theorem 5.7. The problem of checking if Eva wins Game(C), for a given 2nd
order pushdown system with panic C, is 2-Exptime-complete (Problem 2). Con-
sequently, so is the problem of checking if an alternating parity tree automaton
B accepts the tree [[G]] generated by an hyperalgebraic grammar G (Problem 1).

Proof: The 2-Exptime hardness result follows from Lemma 5.5, and Propo-
sition 4.2. To show the upper bound, let C be a 2-PPDS. By Lemma 4.4 we
can assume that C is rank-aware. To solve Game(C) we construct a 2-PDS C′
(without panic), as in Proposition 5.6. The system C′ has the number of stack
letters which is exponential in the size of C, but the number of locations of C′
is linear in the number of locations of C. By the first part of Lemma 5.5, the
winner in the game Game(C′) can be decided in time doubly exponential in the
number of states and singly exponential in the number of stack symbols, which
gives us the desired complexity. ut

By the relation between automata, µ-calculus, and monadic logic (c.f. sec-
tion 1), we obtain the following.

Corollary 5.8. It is 2-Exptime-complete to check if [[G]] |= ϕ, for a given 2nd
order grammar G, and a given µ-calculus formula ϕ. Consequently, the analogous
problem for the monadic second-order logic (MSO) is decidable, in particular the
MSO theory of any hyperalgebraic tree is decidable.
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