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Abstract: A pushdown system is a graph G(P ) of configurations of a
pushdown automaton P . The model checking problem for a logic L is:
given a pushdown automaton P and a formula α ∈ L decide if α holds in
the vertex of G(P ) which is the initial configuration of P . Computation
Tree Logic (CTL) and its fragment EF are considered. The model check-
ing problems for CTL and EF are shown to be EXPTIME-complete and
PSPACE-complete, respectively.

1 Introduction

A pushdown system is a graph G(P ) of configurations of a pushdown automaton
P . The edges in this graph correspond to single steps of computation of the
automaton. The pushdown model checking problem (PMC problem) for a logic
L is: given a pushdown automaton P and a formula α ∈ L decide if α holds
in the vertex of G(P ) which is the initial configuration of P . This problem is
a strict generalization of a more standard model checking problem where only
finite graphs are considered.

In this paper we consider PMC problem for two logics: CTL and EF. CTL is
the standard Computation Tree Logic [4, 5]. EF is a fragment of CTL containing
only operators: exists a successor (∃◦α), and exists a reachable state (∃Fα).
Moreover, EF is closed under conjunction and negation. We prove the following:

– The PMC problem for EF logic is PSPACE-complete.
– The PMC problem for CTL is EXPTIME-complete.

The research on the PMC problem continues for some time. The decidability
of this problem for monadic second order logic (MSOL) follows from [8] (for
a simpler argument see [2]). This implies decidability of the problem for all
those logics which have effective translations to MSOL. Among them are the µ-
calculus, CTL∗ as well as the logics considered here. This general result however
gives only nonelementary upper bound on the complexity of PMC. In [9] an
EXPTIME-completeness of PMC for the µ-calculus was proved. This result was
slightly encouraging because the complexity is not that much bigger than the
complexities of known algorithms for the model checking problem over finite
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graphs. In [1] it was shown that the PMC problems for LTL and linear time
µ-calculus are EXPTIME-complete.

The PMC problem for EF was considered already in [1]. It was shown there
that the problem is PSPACE-hard. Moreover it was argued the the general
method of the paper gives a PSPACE algorithm for the problem. Later, a closer
analysis showed that there is no obvious way of implementing the method in
polynomially bounded space [6]. The algorithm presented here follows the idea
used in [9] for the µ-calculus.

The EXPTIME hardness results for the alternation free µ-calculus and LTL
show two different reasons for the hardness of the PMC problem. One is un-
bounded alternation, the other is the ability to compare two consecutive blocks
of states on a path. The reachability problem for pushdown systems is of course
solvable in polynomial time (see [7] for a recent paper on this problem). Over
finite graphs the model checking problem for CTL reduces to a sequence of
reachability tests. This suggested that PMC problem for CTL may be PSPACE-
complete. In this light EXPTIME-hardness result is slightly surprising. The ar-
gument combines ideas from the hardness results for the µ-calculus and LTL. It
essentially shows that ∃Gα operator (there is a path on which α always holds)
is enough to obtain EXPTIME-hardness. This result makes EF logic more in-
teresting as it is a fragment of CTL that disallows ∃Gα but still allows ∀Gα (for
all paths α always holds).

Next section gives definitions concerning logics and pushdown systems. Sec-
tion 3 presents an assumption semantics of EF. This semantics allows to for-
mulate the induction argument in the correctness proof of the model check-
ing algorithm. The proof is described in Section 4. The final section presents
EXPTIME-hardness result of the PMC problem for CTL.

2 Preliminaries

In this section we present CTL and EF logics. We define pushdown systems and
the model checking problem.

CTL and EF logics Let Prop be a set of propositional letters; let p, p′, . . . range
over Prop.

The set of formulas of EF logic, Form(EF ), is given by the grammar: α ::=
p | ¬α | α∧β | ∃◦α | ∃Fα. For CTL the grammar is extended with the clauses:
∃(α1Uα2) | ∃¬(α1Uα2).

The models for the logic are labelled graphs 〈V, E, ρ〉; where V is the set of
vertices, E is the edge relation and ρ : Prop → P(V ) is a labelling function
assigning to each vertex a set of propositional letters. Such labelled graphs are
called transition systems here. In this context vertices are also called states.

Let M = 〈V, E, ρ〉 be a transition system. The meaning of a formula α in a
state v is defined by induction. Tha clauses for propositional letters, negation
and conjunction are standard. For the other constructs we have:

– M, v � ∃◦α if there is a successor v′ of v such that M, v′
� α.



– M, v � ∃Fα if there is a path from v to v′, s.t. M, v′ � α.
– M, v � ∃(αUβ) if there is a path from v to v′, s.t. M, v′ � β and for all the

verticies v′′ on the path other than v′ we have M, v′′
� α.

– M, v � ∃¬(αUβ) if there is a maximal (i.e., infinte or finite ending in a vertex
without successors) path π from v s.t. for every vertex v′ on π with M, v′

� β

there is an earlier vertex v′′ on π with not M, v′′
� α.

We will freelly use abbreviations:

α ∨ β = ¬(¬α ∧ ¬β) ∀◦α = ¬∃◦¬α ∀Gα = ¬∃F¬α

Using these one can convert every formula of EF logic to an equivalent positive
formula where all the negations occur only before propositional letters.

Pushdown systems A pushdown system is a tuple P = 〈Q, Γ, ∆, q0,⊥〉 where Q

is a finite set of states, Γ is a finite stack alphabet and ∆ ⊆ (Q× Γ )× (Q× Γ ∗)
is the set of transition rules. State q0 ∈ Q is the initial state and symbol ⊥ ∈ Γ

is the initial stack symbol.
We will use q, z, w to range over Q, Γ and Γ ∗ respectively. We will write

qz �∆ q′w instead of ((q, z), (q′, w)) ∈ ∆. We will omit subscript ∆ if it is clear
from the context.

In this paper we will restrict ourselves to pushdown systems with transition
rules of the form qz � q′ and qz � qz′z. Operations pushing more elements
on the stack can be simulated with only polynomial increase of the size of a
pushdown system. We will also assume that ⊥ is never taken from the stack,
i.e., that there is no rule of the form q⊥ � q′ for some q, q′.

Let us now give the semantics of a pushdown system P = 〈Q, Γ, ∆, q0,⊥〉.
A configuration of P is a word qw ∈ Q × Γ ∗. The configuration q0⊥ is the
initial configuration. A pushdown system P defines an infinite graph G(P ) which
nodes are configurations and which edges are: (qzw, q′w) ∈ E if qz �∆ q′, and
(qzw, q′z′zw) ∈ E if qz �∆ q′z′z; for arbitrary w ∈ Γ ∗.

Given a valuation ρ : Q → P(Prop) we can extend it to Q × Γ ∗ by putting
ρ(qw) = ρ(q). This way a pushdown system P and a finite valuation ρ define a,
potentially infinite, transition system M(P, ρ) which graph is G(P ) and which
valuation is given by ρ as described above.

The model checking problem is:

given P , ρ and ϕ decide if M(P, ρ), q0⊥ � ϕ

Please observe that the meaning of ϕ in the initial configuration q0⊥ depends
only on the part of M(P, ρ) that is reachable from q0⊥.

3 Assumption semantics

For this section let us fix a pushdown system P and a valuation ρ. Let us ab-
breviate M(P, ρ) by M .



We are going to present a modification of the semantics of EF-logic. This
modified semantics is used as an induction assumption in the algorithm we are
going to present later. From the definition of a transition system M it follows
that there are no edges from vertices q, i.e., configurations with the empty stack.
We will look at such vertices not as dead ends but as places where some parts of
the structure where cut out. We will take a function S : Q → P(Form(EF )) and
interpret S(q) as an assumption that in the vertex q formulas S(q) hold. This
view leads to the following definition.

Definition 1. Let S : Q → P(Form(EF )) be a function. For a vertex v of G(P )
and a formula α we define the relation M, v �S α as the least relation satisfying
the following conditions:

– M, q �S α for every α ∈ S(q).
– M, v �S p if p ∈ ρ(v).
– M, v �S α ∧ β if M, v �S α and M, v �S β.
– M, v �S α ∨ β if M, v �S α or M, v �s β.
– M, v �S ∃◦α for v 6∈ Q if there is a successor v′ of v such that M, v′

�S α.
– M, v �S ∀◦α for v 6∈ Q if for every successor v′ of v we have that M, v′

�S α.
– M, v �S ∃Fα if there is a path from v to v′, s.t. M, v′ �S α or v′ = q for

some state q ∈ Q and ∃Fα ∈ S(q).
– M, v �S ∀Gα iff for every path π from v which is either infinite or finite

ending in a vertex from Q we have that M, v′
�S α for every vertex v′ of π

and moreover if π is finite and ends in a vertex q ∈ Q then ∀Gα ∈ S(q).

Of course taking arbitrary S in the above semantics makes little sense. We
need some consistency conditions as defined below.

Definition 2. A set of formulas B is saturated if

– for every formula α either α ∈ B or ¬α ∈ B but not both;
– if α ∈ B and β ∈ B then α ∧ β ∈ B;
– if α ∈ B then α ∨ β ∈ B and β ∨ α ∈ B for arbitrary β;
– if α ∈ B then ∃Fα ∈ B.

Definition 3 (Assumption function). A function S : Q → P(Form(EF )) is
saturated if S(q) is saturated for every q ∈ Q. A function S is consistent with
ρ if S(q) ∩ Prop = ρ(q) for all q ∈ Q. We will not mention ρ if it is clear from
the context. We say that S is an assumption function (for ρ) if it is saturated
and consistent.

Lemma 1. For every assumption function S and every vertex v of M : M, v �S

α iff not M, v �S ¬α.

The next lemma says that the truth of α depends only on assumptions about
subformulas of α.

Definition 4. For a formula α, let cl(α) be the set of subformulas of α and
their negations.



Lemma 2. Let α be a formula. Let S, S ′ be two assumption functions such that
S(q) ∩ cl(α) = S′(q) ∩ cl(α) for all q ∈ Q. For every v we have that: M, v �S α

iff M, v �S′ α.

We have asumed that the initial stack symbol ⊥ cannot be taken from the
stack. Hence no state q is reachable from configuration q0⊥. In this case our
semantics is equivalent to the usual one:

Lemma 3. For arbitrary S and α we have M, q0⊥ �S α iff M, q0⊥ � α.

We finish this section with a composition lemma which is the main property
of our semantics. We will use it in induction arguments.

Definition 5. For a stack symbol z and an assumption function S we define
the function S ↑z by: S ↑z (q′) = {β : M, q′z �S β}, for all q′ ∈ Q.

Lemma 4 (Composition Lemma). Let α be a formula, z a stack symbol and
S an assumption function. Then S ↑z is an assumption function and for every
configuration qwz′ reachable from qz′ we have:

M, qwz′z �S α iff M, qwz′
�S↑z

α

4 Model checking EF

As in the previous section let us fix a pushdown system P and a valuation ρ.
Let us write M instead of M(P, ρ) for the transition system defined by P and ρ.

Instead of the model checking problem we will solve a more general problem
of deciding if M, qz �S β holds for given q, z, S and β. A small difficulty here
is that S is an infinite object. Fortunately, by Lemma 2 to decide if M, qz �S β

holds it is enough to work with S restricted to subformulas of β, namely with
S|β defined by S|β(q′) = S(q′)∩ cl(β) for all q′ ∈ Q. In this case we will also say
that S is extending S|β.

Definition 6. Let α be a formula, q a state, z a stack symbol, and S : Q →
P(Form(EF )) a function assigning to each state a subset of cl(α). We will say
that a tuple (α, q, z, S) is good if there is an assumption function S such that
S|α = S and M, qz �S α.

Below we describe a procedure which checks if a tuple (α, q, z, S) is good. It
uses an auxiliary procedure Search(q, z, q′) which checks whether there is a path
from the configuration qz to the configuration q′.

– Check(p, q, z, S) = 1 if p ∈ ρ(q);
– Check(α ∧ β, q, z, S) = 1 if Check(α, q, z, S) = 1 and Check(β, q, z, S) = 1;
– Check(¬α, q, z, S) = 1 if Check(α, q, z, S) = 0;
– Check(∃◦α, q, z, S) = 1 if either

• there is qz � q′ and α ∈ S(q′); or



• there is qz � q′z′z and Check(α, q′, z′, S
′
) = 1, where S

′
is defined by:

S
′
(q′′) = {β ∈ cl(α) : Check(β, q′′, z, S) = 1}, for all q′′ ∈ Q.

– Check(∃Fα, q, z, S) = 1 if either
• Check(α, q, z, S) = 1; or
• there is qz � q′ and ∃Fα ∈ S(q′); or
• there is qz � q′z′z and q′′ ∈ Q for which Search(q′, z′, q′′) = 1 and

Check(∃Fα, q′′, z, S) = 1; or

• there is qz � q′z′z with Check(∃Fα, q′, z′, S
′
) = 1 for S

′
defined by:

S
′
(q′′) = {∃Fα : Check(α, q′′, z, S) = 1} ∪ {¬∃Fα : Check(α, q′′, z, S) =

0} ∪ {β ∈ cl(α) : Check(β, q′′, z, S) = 1}, for all q′′ ∈ Q.
– In other cases Check(α, q, z, S) = 0.
– Search(q1, z, q2) = 1 if either

• there is q1z � q2; or
• there is q1z � q′1z

′z and q′2 ∈ Q for which Search(q′1, z
′, q′2) = 1 and

Search(q′2, z, q2) = 1.

Lemma 5. We have Search(q1, z, q2) = 1 iff there is a path from the configura-
tion q1z to the configuration q2. The procedure can be implemented on a Turing
machine working in O(|Q|2|Γ |) time and space.

Proof
The proof of the correctness of the procedure is easy. The procedure can be
implemented using dynamic programming. The implementation can construct a
table of all good values (q1, z, q2). �

Lemma 6. Procedure Check(α, q, z, S) can be implemented on a Turing ma-
chine working in Sp(|α|) = O((|α| log(|Q|)|Q||Γ |)2) space.

Proof
The proof is by induction on the size of α. All the cases except for α = ∃Fβ are
straightforward.

For α = ∃Fβ consider the graph of exponential size which nodes are of the
form Check(∃Fβ, q, z, S) for arbitrary q, z, S. The edges are given by the rules:

– Check(∃Fβ, q1, z, S) → Check(∃Fβ, q2, z, S) whenever q1z � q′1z
′z and

Search(q′1, z
′, q2) = 1;

– Check(∃Fβ, q1, z1, S1) → Check(∃Fβ, q2, z2, S2) if q1z1 � q2z2z1 and S2

is defined by S2(q
′′) = {β ∈ cl(α) : Check(β, q′′, z1, S1) = 1} ∪ {¬∃Fα :

Check(α, q′′, z1, S1) = 0} ∪ {∃Fα : Check(α, q′′, z1, S1) = 1}

Observe that by induction assumption we can calculate whether there is an edge
between two nodes using space Sp(|β|). A node Check(∃Fβ, q, z, S) is successful
if either Check(β, q, z, S) = 1 or there is qz � q′ with ∃Fβ ∈ S(q′).

It is easy to see that Check(∃Fβ, q, z, S) = 1 iff in the graph described above
there is a path from the node Check(∃Fβ, q, z, S) to a successful node.

We need O(log(|Q|)|Γ ||Q||β|) space to store a node of the graph. So we
need O((log(|Q|)|Γ ||Q||β|)2) space to implement Savitch algorithm performing



deterministic reachability test in this graph. We also need S(|β|) space for an
oracle to calculate edges and O(|Q|2|Γ |) space for Search procedure. All this fits
into Sp(|∃Fβ|) space. �

Remark: It does not seem that this lemma follows from the fact that alter-
nating machines with bounded alternation can be simulated by deterministic
ones with small space overhead (c.f. the theorem attributed in [3] to a personal
communication from A. Borodin).

Lemma 7. A tuple (α, q, z, S) is good iff Check(α, q, z, S) = 1

Proof
The proof is by induction on the size of α. The case when α is a propositional
letter is obvious. The case when α = ¬β follows from Lemma 1. The case for
conjunction is easy using Lemma 2. We omit the case for α = ∃◦β because the
arguments is simpler than in the case of F operator.

Case α = ∃Fβ. Suppose that (α, q, z, S) is good. This means that there is
an assumption function S such that S|α = S and M, qz �S α. By the definition
of the semantic, there is a vertex v reachable from qz such that M, v �S β or
v = q′ and ∃Fβ ∈ S(q′). Suppose that v is such a vertex at the smallest distance
from qz. We show that Check(α, q, z, S) = 1 by induction on the distance to v.

If v = qz then, as β is a subformula of α, we have by the main induction
hypothesis that Check(β, q, z, S) = 1. So Check(α, q, z, S) = 1. If qz � q′ and
∃Fβ ∈ S(q′) then we also get Check(α, q, z, S) = 1. Otherwise we have qz �

q′z′z and q′z′z is the first vertex on the shortest path to v.
Suppose that on the path to v there is a configuration of the form q′′z for

some q′′. Assume moreover that it is the first configuration of this form on the
path. We have that Search(q′, z′, q′′) = 1 and M, q′′z � ∃Fβ. As the distance
to v from q′′z is smaller than from qz, we get Check(∃Fβ, q′′, z, S) = 1 by the
induction hypothesis. Hence Check(α, q, z, S) = 1.

Otherwise, i.e., when there is no configuration of the form q′′z on the path
to v, we know that v = q′′wz′z for some q′′ ∈ Q and w ∈ Γ ∗. Moreover we
know that q′′wz′ is reachable from q′z′. By Composition Lemma we have that
M, q′′wz′ �S↑z

β. Let S1 be a function defined by S1(q1) = (S ↑z)|β(q1) ∪
{¬∃Fβ : β 6∈ S ↑z (q1)}∪{∃Fβ : β ∈ S ↑z (q1)}. It can be checked that S1 can be
extended to an assumption function S1. By Lemma 2 we have M, q′′wz′ �S1

β.
Hence M, q′z′ �S1

∃Fβ. We have Check(∃Fβ, q′, z′, S1) = 1 from induction
hypothesis. By definition of S1 and the induction hypothesis we have that
S1(q1) = {γ ∈ cl(β) : Check(γ, q1, z, S) = 1} ∪ {¬∃Fβ : Check(β, q1, z, S) =
0} ∪ {∃Fβ : Check(β, q1, z, S) = 1}. Which gives Check(α, q, z, S) = 1.

For the final case suppose that α = ∃Fβ and that Check(α, q, z, S) = 1. We
want to show that (α, q, z, S) is good using additional induction on the length
of the computation of Check(α, q, z, S). Let S be an assumption function such
that S|α = S.

Skiping a couple of easy cases suppose that there is qz � q′z′z and that

we have Check(∃Fβ, q′, z′, S
′
) = 1 for S

′
defined by S

′
(q′′) = {γ ∈ cl(β) :

Check(γ, q′′, z, S) = 1} ∪ {¬∃Fβ} or S
′
(q′′) = {γ ∈ cl(β) : Check(γ, q′′, z, S) =



1}∪{∃Fβ} depending on whether Check(β, q′′, z, S) = 0 or not. By the induction

hypothesis, M, q′z′ �S′ ∃Fβ for an assumption function S ′ such that S′|α = S
′

Consider S ↑z. We have that S ↑z |β = S′|β by the induction hypothesis.
It is also the case that for every q′′ ∈ Q, whenever ∃Fβ ∈ S′(q′′) then ∃Fβ ∈
S ↑z (q′′). Hence, by Lemma 2 and the definition of our semantics, we have that
M, q′z′ �S↑z

∃Fβ. By Composition Lemma we have M, q′z′z �S ∃Fβ. Which
gives M, qz �S ∃Fβ. So (α, q, z, S) is good. �

5 Model checking CTL

In this section we show that the model checking problem for pushdown systems
and CTL is EXPTIME hard. The problem can be solved in EXPTIME as there
is a linear translation of CTL to the µ-calculus and the model checking for the
later logic can be done in EXPTIME [9].

Let M be an alternating Turing machine using n tape cells on input of size n.
For a given configuration c we will construct a pushdown system P c

M , valuation
ρM , and a CTL formula αM such that: M(P c

M , ρM ), q0⊥ � αM iff M has an
accepting computation from c. As P c

M and αM will be polynomial in the size of
c this will show EXPTIME hardness of the model checking problem.

We will do the construction in two steps. First, we will code the acceptance
problem into the reachability problem for a pushdown system extended with
some test operations. Then, we will show how to simulate these tests in the
model checking problem.

We assume that the nondeterminism of M is limited so that from every
configuration M has at most two possible moves. A move is a pair m = (a, d)
where a is a letter to put and d is a direction for moving the head. We use c `m c′

to mean that c′ is obtained from c by doing the move m. The transition function
of M assigns to each pair (state,letter) a pair of moves of M . A computation of
M can be represented as a tree of configurations. If the machine is in a universal
state then the configuration has two sons corresponding to the two moves in the
pair given by the transition function. If the machine is in an existential state
then there is only one son for one of the moves from the pair.

An extended pushdown system is obtained by adding two kinds of test transi-
tions. Formally each of the kinds of transitions depends on a parameter n which is
a natural number. To make notation clearer we fix this number in advance. Tran-
sition q �

A q′ checks whether the first n letters from the top of the stack form
an accepting configuration of M . Transition q �

M q′ checks, roughly, whether
the first 2n letters from the top of the stack form two configurations such that
the first is the successor of the second. A formal definition of these transitions
is given below when we define a particular extended pushdown system.

Let us fix n as the size of input to our Turing machine. We define an extended
pushdown system EPM simulating computations of M on inputs of size n. The
set of states of the system is Q = {q, qM , qA}. The stack alphabet is Γ = ΓM ∪
QM ∪MovesM ×MovesM ∪{E, L, R}; where ΓM is the tape alphabet of M , QM



is the set of states of M ; MovesM is the set of moves of M ; and E, L, R are
new special letters which stand for arbitrary, left and right element of a pair
respectively. Before defining transitions of EPM let us formalize the definition
of �

A and �
M transitions. These transitions add the following edges in the

graph of configurations of the system:

– For a transition q �
A q′ and for an arbitrary w ∈ Γ ∗ we have the edge

qcw → q′cw if c is an accepting configuration of M .
– For a transition q �

M q′, for an arbitrary w ∈ Γ ∗ and a letter ? ∈ {E, L, R}
we have the edge qc′?(m1, m2)cw → q′c′?(m1, m2)cw if (m1, m2) is the move
form a configuration c and c `m c′ where m = m1 if ? = L; m = m2 if ? = R;
and m ∈ {m1, m2} if ? = E.

Finally, we present the transition rules of EPM . Below, a′ stands for any
letter other than E, L or R. We use c, c′ to stand for a configuration of M , i.e.,
a string of length n + 1.

q � qA qAc �
A q

qa′
� qMc′L(m1, m2)a

′ qM �
M q

qa′
� qMc′E(m)a′ qL(m1, m2) � qMc′R(m1, m2)

qR(m1, m2)c � q qE(m)c → q

It is easy to see that the transitions putting or taking a whole configuration
from the stack can be simulated by a sequence of simple transitions working
with one letter at the time. In the above, transition qAc �

A q (which removes a
configuration and at the same time checks whether it is accepting) is not exactly
in the format we allow. Still it can be simulated by two transitions in our format.
We use G(EPM ) to denote the graph of configurations of EPM , i.e., the graph
which vertices are configurations and which edges correspond to one application
of the transition rules.

The idea behind the construction of EPM is described by the following
lemma.

Lemma 8. For every configuration c of M we have that: M accepts from c iff
in the graph G(EPM ) of configurations of EPM configuration q is reachable from
configuration qc.

Proof
We present only a part of the argument for the left to right direction. The
proof proceeds by induction on the height of the tree representing an accepting
computation of M on c.

If c is an accepting configuration then we have a path qc → qAc → q in
G(EPM ).

Suppose now that the first move of M in its computation is (m1, m2) and it
is an existential move. Then we have a path:

qc → qMc′E(m1, m2)c → qc′E(m1, m2)c → · · · → qE(m1, m2)c → q



where the existence of a path qc′E(m1, m2)c → · · · → qE(m1, m2)c follows from
the induction hypothesis.

Suppose now that the first move of M in an accepting computation from c

is (m1, m2) and it is a universal move. We have a path:

qc → qM c′L(m1, m2)c → qc′L(m1, m2)c → · · · → qL(m1, m2)c →

qMc′′R(m1, m2)c → qc′′R(m1, m2)c → · · · → qR(m1, m2)c → q.

Once again the existence of dotted out parts of the path follows from the induc-
tion hypothesis.

This completes the proof from the left to right direction. The opposite direc-
tion is analogous. �

The next step in our proof is to code the above reachability problem into
the model checking problem for a normal pushdown system. First, we change
extended pushdown system EPM into a normal pushdown system PM . We add
new states qTA, qTM , qF and qa

R for every letter a of the stack alphabet. The
role of qTA and qTM is to initiate test performed originally by �

A and �
M

transitions, respectively. State qF is a terminal state signalling success. States
qa
R are used in the test. They take out all the letters from the stack and give

information about what letters are taken out. In the rules below c, c′ range over
configurations; a, b over single letters; and a′ over letters other than E, L or R.

qa′
� qAa′ qA � q, qTA

qa′
� qM c′L(m1, m2)a

′ qM � q, qTM

qa′
� qM c′E(m1, m2)a

′ qL(m1, m2) � qM c′R(m1, m2)

qR(m1, m2)c � q qE(m1, m2)c → q

qTAa � qa
R qTMa → qa

R

qa
Rb � qb

R q⊥ → qF⊥

Recall that ⊥ is the initial stack symbol of a pushdown automaton. As before
we use G(PM ) to denote the graph of configurations of PM .

To simplify matters we will use states also as names of propositions and take
valuation ρM such that in a state q′ exactly proposition q′ holds, i.e., ρM (q′) =
{q′}.

First we take two EF formulas Accept and Move such that:

– M(PM , ρM ), qTAw � Accept iff w starts with an accepting configuration of
M .

– M(PM , ρM ), qTMw � Move iff w is of the form c′?(m1, m2)cw
′, (m1, m2) is

the move of M , and c `m c′ where m = m1 if ? = L; m = m2 if ? = R; and
m ∈ {m1, m2} if ? = E.

From states qTA and qTM the behaviour of PM is deterministic. It only takes
letters from the stack one by one. The formula Accept is

∨

i=1,...,n+1
∃◦ iqF

R

where qF
R signals an accepting state of M . The formula Move is slightly more



complicated as it needs to code the behaviour of M . Still its construction is
standard.

The formula we are interested in is:

α = ∃
[

(q ∨ qA ∨ qM ) ∧ (qA ⇒ ∃◦(qTA ∧ Accept))∧

(qM ⇒ ∃◦(qTM ∧ Move))
]

U qF

It says that there is a path going only through states q, qA or qM and ending
in a state qF . Moreover, whenever there is a state qA on the path then there
is a turn to a configuration with a state qTA from which Accept formula holds.
Similarly for qM .

Lemma 9. For every word w over the stack alphabet: q is reachable from qw in
G(EPM ) iff M(PM , ρM ), qw⊥ � α.

Proof
The proof in both directions is by induction on the length of the path. We will
only present a part of the proof for the direction from left to right.

If in G(EPM ) the path is qw → qAw → q then in G(PM ) we have:
qaw⊥ q⊥

qTAw⊥

qw⊥

The edge qAw → q exists in G(EPM ) only if w is an accepting configuration.
Hence, we have that M(PM , ρM ), qTAw � Accept and consequently we have the
thesis of the lemma.

If the path is qw → qM c′?(m1, m2)w → qc′?(m1, m2)w → · · · then in G(PM )
we have:

. . .qc′?(m1, m2)w⊥qM c′?(m1, m2)w⊥qw⊥

qTM c′?(m1, m2)w⊥

The edge qM c′?(m1, m2)w → qc′?(m1, m2)w exists in G(EPM ) only when the
stack content c′?(m1, m2)w satisfies the conditions of �

M transition. This means
that M(PM , ρM ), qTM c′?(m1, m2)w⊥ � Move. From the induction assumption
we have M(PM , ρM ), qc′?(m1, m2)w � α. Hence M(PM , ρM ), qw � α. �

Theorem 1. The model checking problem for pushdown systems and CTL is
EXPTIME-complete

Proof
The problem can be solved in EXPTIME as there is a linear translation of CTL
to the µ-calculus and the model checking for the later logic can be done in
EXPTIME [9].

To show hardness part let M be an alternating Turing machine as considered
in this section. For an input word v of length n we construct in polynomial time
a pushdown system P v

M , valuation ρM and a formula αM such that: v is accepted
by M iff M(P v

M , ρM ), q0⊥ � ∃◦n+1α. Let cv
0 be the initial configuration of M on

v. It has the length n + 1.



Valuation ρM and formula αM are ρ and α as described before Lemma 9.
The system P v

M is such that started in q0⊥ it first puts the initial configuration
cv
0 on the stack and then behaves as the system PM .

By Lemma 8 we have that M has an accepting computation from cv
0 iff there

is a path from qcv
0 to q in G(EPM ). By Lemma 9 this is equivalent to the fact

that M(PM , ρM ), qcv
0⊥ � αM . By the construction of P v

M this the same as saying
that M(P v

M , ρM ), q0⊥ � ∃◦n+1αM . �
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