Pushdown processes:
games and model checking

Igor Walukiewicz
BRICS!'?
Department of Computer Science
University of Aarhus
Ny Munkegade
DK-8000 Aarhus C, Denmark

e-mail: igw@mimuw.edu.pl

(Extended abstract)

Abstract

Games given by transition graphs of pushdown processes are consid-
ered. It is shown that if there is a winning strategy in such a game then
there is a winning strategy which is realized by a pushdown process. This
fact turns out to be connected with the model checking problem for push-
down automata and the propositional g-calculus. It is show that this

model checking problem is DEXPTIME—-complete.

1 Introduction

Pushdown processes are, at least in this paper, just another name for pushdown
automata. The different name is used to underline the fact that we are mainly
interested in the graph of configurations of a pushdown process and not in the
language it recognises. This graph can be considered as a transition system.
In general such a transition system may not be regular, i.e., may not be an
unwinding of a finite transition system. Given a priority function mapping states
of the automaton to natural numbers, such a transition system defines a two
player parity game. In the game moves of the players alternate. In a move a
player picks a configuration reachable from the current one. The result of a
game 1s a finite or an infinite path. The path is finite if one of the players cannot
make a move; in this case the other player wins. If the path is infinite we find
the smallest priority such that a state of this priority appears infinitely often on
the path. Player I wins if this priority is even.

1Basic Research in Computer Science,Centre of the Danish National Research Foundation.

20n leave from: Institute of Informatics, Warsaw University,

Banacha 2, 02-097 Warsaw, POLAND

Pushdown processes are a generalisation of regular process which correspond
to finite automata or regular transition systems. Tt is stated in [6] that the extra
expressive power of pushdown processes may be of use for describing hierar-
chically structured systems, such as multi-level cashes, or wide area networks.
Considering pushdown games is interesting at least for two reasons. First, as
we will show here, there is a connection with model checking. The second rea-
son is the problem of synthesis of correct programs (see for example [11]). The
conditions of a game may be seen as a specification, and the two players as a
program and environment respectively. In this approach a winning strategy is
identified with a reactive program satisfying the specification. Hence it is impor-
tant to know whether a strategy can be implemented as, for example, a regular
or pushdown process.

Pushdown processes are a strict generalisation of processes from so called
basic process algebra BPA (see [5] for a short survey). The decidability of the
model checking for pushdown processes and the propositional p-calculus follows
from [14]. An elementary model checking procedure for the alternation free
fragment of the p-calculus was given in [3]. We are not aware of any such
elementary decision procedure for the whole p-calculus. BPA is a subclass of
process algebra (PA) [1]. For the other interesting subclass of PA, namely, basic
parallel processes, the model checking problem is undecidable [9]. The question
whether pushdown games have pushdown strategies was posed in [16].

The main results of this paper are the following.

1. We show that if there is a winning strategy in a pushdown game G then
there is a pushdown winning strategy in G.

2. We give a model checking algorithm for pushdown processes and the whole
. . . 3 . .
p-calculus which runs in time O(2°* ™) where m is the size of a pushdown
process, n the size of a formula and ¢ is some constant.

3. We show that there exists a formula a such that the model checking prob-
lem for pushdown processes and this particular formula « is DEXPTIME—-
hard.

Let us mention that the restriction to parity games is not essential for the result 1
to hold. One can use standard methods of translating Muller, Rabin or Streett
conditions into parity conditions to obtain appropriate result for these kind of
conditions.

The plan of the paper is as follows. We start with a preliminary section where
we recall definitions of pushdown automata and the propositional u-calculus. In
the following section we present some facts about games with parity conditions.
Next we prove that if there is a winning strategy on a pushdown tree then there
is one realized by a pushdown automaton. In the last section we consider the
model checking problem. The proofs are omitted in this abstract.

Acknowledgement: 1 would like to thank Damian Niwinski for his helpful
comments.

2 Preliminaries

2.1 Pushdown processes

The set of finite sequences over ¥ will be denoted ¥* and the set of finite
nonempty sequences over ¥ will be denoted ©t. The empty sequence is de-
noted by ¢.

For a given finite set X, let Com(X;) = {pop} U {push(z) : z € £} be the
set of stack commands over X;.

A pushdown automaton (over one letter alphabet) is a tuple:

A=(Q,Z:,00€Q,LEX;,§:3, x Q@ — P(Com(Zs) x Q)) (1)

where () is a finite set of states and X, is a finite stack alphabet. State qq is the
initial state of the automaton and L is the initial stack symbol. A configuration
of an automaton is a pair (s, ¢) with s € £} and ¢ € Q. The initial configuration
is (L, q0). We assume that L can be neither put nor removed from the stack.
We will sometimes write (z,q) — (2/,¢') if (2/,¢') € é(z,q). Let —*, —* denote
respectively the transitive closure of — and the reflexive and transitive closure
of —. We will use ¢ to range over states and z to range over letters of the stack
alphabet.

Definition 1 (Pushdown tree) A pushdown automaton .4 as in (1) defines a
tree Ty C (EF x Q)T as follows:

e the root of the tree is (L, q0),

o for every node (sg,qo),- .., (s, 4:), if (si,q;) — (s,q) then the node has a
son (507€I0)1 ey (Sia q2)1 (51 q)

We call (s;,q;) the label of the node (so, q0), - -, (si, ¢:)-

Remark: In our definition of a pushdown automaton we have assumed that
the automaton can put at most one symbol on the stack in one move. This is
done only for convenience of the presentation. The main results also hold for
the more general form of automata which can push many symbols on the stack
in one move. Of course we can simulate pushing more symbols on the stack by
extending the alphabet and the set of states but the simulating automaton will
be in general much bigger. (We are not interested in the language equivalence
but in isomorphism of induced pushdown trees.)

Remark: The assumption that automata do not have an input alphabet is
not essential as in the problems we will consider we will allow states to have
“properties” which can be used to simulate behaviour of an automaton with
input alphabet.

2.2 Propositional p-calculus

Let Prop = {p1,p2,...} be a set of propositional constants and let Var =
{X,Y,...} be a set of variables. Formulas of the p-calculus over these sets can

be defined by the following grammar:
F:=Prop | =Prop | Var | FVF | FAF | {()F|[]F | pVar.F |vVar.F

Note that we allow negations only before propositional constants. As we will be
interested in closed formulas this is not a restriction. In the following, «, 3, . ..
will denote formulas.

Formulas are interpreted in transition systems of the form M = (S, R, p},
where: S is a nonempty set of states, R C .S x S is a binary relation on S and
p: Prop — P(S) is a function assigning to each propositional constant a set of
states where this constant holds.

For a given model M and an assignment V : Var — P(S5), the set of states
in which a formula ¢ is true, denoted || ¢ ||(>A, is defined inductively as follows:

M M M
el =p) -2l =S—pp) X[y =V(X)

M M M M M M

lavgM=alMuls| laAgM=lalMn)s|

(el ={s:35"R(s,s) A5 € || o [}

e (17 ={s :¥s'.R(s,s") = &' € [a [}
| X a(X) [=S € S : [l a [[7fs/x) € 5}
[vXa(X) |y =U{s'CS: S Ca

M
V[S’/X]}

here V[S’/X] is the assignment such that, V[S'/X](X) = S and V[S'/X]|(Y) =
V(Y) for Y # X. We will write M, s,V F ¢ when s € || ¢ ||<>A We will write
M, s E ¢ if for every assignment V we have M, s, V E .

A model checking problem is to decide whether for a given model M, state s
and formula o without free variables, the relation M, s F « holds. Here we will
be interested in the case when M 1s a pushdown tree and s is the root of it.

3 Parity games and canonical strategies

In this section we recall the notion of parity games and give an explicit descrip-
tion of winning strategies in such games. It turns out that a strategy in such
a game induces an assignment of tuples of ordinals to nodes of the game. We
call these tuples of ordinals signatures. In this way we have means to compare
different strategies by comparing signatures they induce. It turns out that there
exists canonical, or the least possible, signature assignment.

Most of the material presented here comes from [17]. The notion of signature
was proposed by Streett and Emerson [15]. The proof of the existence of mem-
oryless strategies in parity games was given independently by Mostowski [13]
and by Emerson and Jutla [7]. Klarlund [10] proves a more general fact that a
player has a memoryless strategy in a game if the has a strategy and his winning
conditions are given as a Rabin condition.

Let G=(V=V; UV, E,Q:V — Ind) be a bipartite graph with vertices
labeled by priorities from Ind which is a finite subset of natural numbers. A
game from some vertex vy € V; is played as follows: first player I chooses a
vertex vy € Vir, s.t. E(vi,ve) then player IT chooses a vertex vz € Vi, s.t.
FE(vs,v3) and so on ad infinitum unless one of the players cannot make a move.
If a player cannot make a move he looses. The result of an infinite play is an
infinite path vy, vs,v3,... This path 1s winning for player I if in the sequence
Q(v1), Q(v2),Q2(v3), ... the smallest priority appearing infinitely often is even.
The play from vertices of Vi; is defined similarly but this time player IT starts.

Strategy o for player I is a function assigning to every sequence of vertices ¢
ending in a vertex from V7 a vertex o(¥) € Vi1 such that E(v,o(¥)). A strategy
is called memoryless iff o(¥) = o(¥") whenever # and @ end in the same vertex.
A strategy is winning iff it guarantees a win for player I whenever he follows
the strategy. Similarly we define a strategy for player I7.

Suppose we have a propositional constant I which holds in the vertices from
which player I is to move, i.e., in vertices from V;. Let us assume that the
range of Q is {1,...,n} and suppose that for every i € {1,...,n} we have the
propositional constant ¢ which holds in the vertices of priority i. Consider the
formula:

or(Z1,....Zn)=(I= N\ (=>0Z)ACI)=> N (=[1%)
i€{1,...,n} i€{1,...,n}
We will be interested in the set:

Wi = uZavZs. . pZn 10 Zn01(Z1, ..., Zn) ||

(1t 1s used to close variables with odd indices and v is used for even indices).

Definition 2 When applied to n-tuples of ordinals symbols =, <, < stand for
corresponding relations in the lexicographical ordering. For every i € {1,...,n}
we use =; to mean that both arguments are defined and when truncated to first
1 positions the two vectors are equal; similarly for <; and <;.

Definition 3 (Signature) A signature is a n-tuple of ordinals. An assignment
S of signatures to nodes in some set S C T" will be called consistent if for every
v € SNV there is a son w € S such that:

S(w) <q(v) S(v) and it is strictly smaller if Q(v) is odd. (2)
similarly if v € SN Vyr then for all w such that EF(v, w) we have w € S and the
condition (2) holds.

Definition 4 (Canonical signatures) We extend the syntax of the formulas
by allowing constructions of the form p” Z.«(7), where 7 is an ordinal and «a(7)
i1s a formula from the extended syntax. The semantics is defined as follows:

V=0 T 22 I = ()

[| 4" 7. ||V U | 4* 7. ||V (7 a limit ordinal)
p<r

| 1°Z.0(2)

M
Vil Z.o(2)|3/ 2]

By Knaster-Tarski theorem || u7.a(7) ||(>A =U, |0 Z.a(2) ||(>A

We define a notion of the canonical signature, Sig(v), of a vertex v € Sy (we
will write Sig(v) if the game is not clear from the context). This is the smallest
in the lexicographical ordering sequence of ordinals (71,...,7,) such that:

G
veEler(Po,..., Pl
where:

P=vZipuZiv1 .. vVin.pr(Po,...,Pic1,Zi, ..., Zn) forieven
Po=p"Z; w71 .. . vZn.o1(Po, ..., Pic1, Zsy ..., Zpn) for i odd

As for an even i the ordinal 7; is not used, the definition implies that , = 0 for
every even ¢. We prefer to have this redundancy rather than to calculate right
indices each time.

Fact 5 Canonical signature assignment is the least consistent signature assign-
ment. That is, for every consistent signature assignment &, whenever for some

node v, 8(v) is defined then Sig(v) is defined and Sig(v) < S(v).

Definition 6 (Canonical strategy) A canonical strategy is a strategy taking
for each node v € W; N V7 a son which has the smallest possible canonical
signature.

Remark: Despite the name, canonical strategies may not be uniquely deter-
mined because a node may have many sons with the same signature.

Fact 7 Suppose w is a node reached from v when player I uses a canonical
strategy and let p be the minimum of priorities of states appearing in the labels
between v and w (not including w). We have that Sig(w) <, Sig(v) and it is
strictly smaller if p is odd.

Theorem 8
The set Wy is the set of nodes from which player I has a winning strategy. A
canonical strateqy i1s winning and memoryless.

4 Pushdown strategies in pushdown games

Let A be a pushdown automaton as in (1). For simplicity of the presentation
let us assume that the set @) of states of A is partitioned into two sets @; and
Q. We also assume that transitions from states in @ lead only to states in
Q17 and vice versa. More formally we require that for every ¢, ¢’, z, z’: whenever
(push(2'),q") or (pop,q’) is in 8(z, q) then: ¢ € Q1 iff ¢ € Q1.

The automaton .A defines a pushdown tree T4 which we will take as a graph of
the game. To have a game we will also need a priority function. It is an important
point to decide which priority functions to allow. If we allowed arbitrary such

functions then the whole advantage of the fact that the graph is generated by
a pushdown automaton would be gone. It seems that a reasonable choice is
to allow only functions associated with states of the automaton. That is, we
start by giving a priority function © : — N and then for every vertex v of T
we consider the state ¢ appearing in the label of v and let Q(v) = Q(q). This
choice of the method of assigning priorities is motivated by the fact that we are
interested in the winning conditions definable in S1S.

Next we should clarify what we mean by a pushdown strategy. We would like
to say that a pushdown strategy is a strategy realised by a pushdown automaton
in a sense that this automaton reads moves of player IT and outputs moves of
player 7. Such an automaton must have the property that while reading a
(possibly infinite) sequence of moves of player IT it outputs a sequence of moves
of player I such that the path of T}y designated by these moves is winning for
player I. We will not formalise this notion of pushdown strategy here as it would
require several definitions for which we have no space. We will content ourselves
with a weaker definition given in the theorem below. Let us just remark that
the strategy automaton given in the proof can be used to construct a strategy
automaton as defined above.

Theorem 9

If there s a winning strategy for player I in T 4 then there is a winning pushdown
strategy, i.e., there 1s a pushdown automaton B such that Ty is isomorphic to a
winning strategy in T4

Let us try to explain an idea of the construction of the pushdown strategy
for player 7. In some sense one may consider a pushdown strategy as a strategy
operating with a stack of strategies for regular graphs. Whenever a new element
is pushed on a stack, player I is suspended and a new player I 1s started which
has only partial information about the history of the play up to this point.
Suppose we are in some position (s, ¢q) and player I decides that the best move
for him would be to push z’ on the stack and change the state to ¢’. At this
moment this player 7 is suspended and a new player [starts to play. He will play
until 2z’ is taken out from the stack. The main question is what the new player
I should know about the current position of the play. Because the canonical
strategy is memoryless it would be enough for him to know only how the arena
of the game looks from his current position. In turn this is determined by the
label of the node, which is (sz’,¢'). Unfortunately we cannot afford to let the
player know so much because the size of the stack is potentially unbounded. On
the other hand the new payer I will play only until 2z’ is popped and the stack
becomes s again. Hence the part of the tree where the new player I is playing
does not depend on s but only on the letter 2z’ on the top of the stack and the
current state ¢’. What depends on s is the rest of the play when the new player
is finished. Hence it should be enough for the new player I if the old player 7
told him which states are safe. In other words what are the states such that if
the new player I finishes in one of them then the old player I is able to carry on
and win. This set of states should depend on the lowest priority of a state met

from the moment the old player I was suspended. So we will not have just one
set of states but a vector A = {AP},eq1,...n} Of sets of states. Each AP is a set
of states in which the new player I can finish provided p is the smallest priority
of a state from the moment when the old player I was suspended. Apart from A
the new player should also know the current state ¢’ and the current symbol 2z’
on the top of the stack. We will also use a variable 8 to store the lowest priority
of a state we came across. This amount of information 1s bounded so we have a
basis for construction of a pushdown automaton realizing the strategy.

Let us now start with the formal definitions. As in the previous section we
assume that {1,...,n} is the range of Q. We will use Ato range over n element
vectors of sets of states and f to range over {1,...,n}. We also use z to range
over stack symbols and ¢ to range over states.

Definition 10 (Sub-game) For every A‘, z, 8, q we define the game G(f_f, z,0,q)
as follows. The arena of the game is a subtree of T4 starting from a node with a
configuration (Lz,¢). Every node labeled with a configuration (L, ¢’), for some
¢, is marked winning or loosing. We mark the node winning if ¢/ € A™n®.8)
where p is the lowest priority of a state appearing on the path to the node
(counting ¢ but not ¢’). Otherwise we mark the node loosing. Whenever a play
reaches a marked node, player I wins if this node is marked winning otherwise
player IT is the winner. If a play is infinite, player I wins iff the obtained path

is winning (as defined at the beginning of Section 3).

Remark: In our definition of the game we did not have the concept of marking
but we allowed vertices with no sons, and had the rule that a player looses if he
cannot make a move. Hence we can simulate marking of vertices with cutting
the paths. We find the metaphor of markings more useful here.

Definition 11 (Signature, Hint) Suppose that player I has a winning strat-
egy in a game G(g, z,0,q). Define Sz’g(/f,z,ﬁ, q) to be the canonical signature
of the root of the game.

If ¢ € @7 then let v be a son of the root which has the smallest canonical
signature (if there is more than one such son then fix one arbitrary). If v is
labeled by (L,q") then let Hint(ff, z,0,q9) = (pop,q') otherwise v is labeled by
(Lzz',q') and let Hint(ff, z,0,q) = (push(z'),q").

Definition 12 (Update function) Define Up(/f, z,4,0) to be the sequence of
sets Ay = {AV},eq1,. .}, where each A is the set of states ¢’ such that:

Slg(ga z, mln(Q(Q): D, 6): ql) Smin(ﬂ(g),p) Sig(g, Z, 67 Q)
in case min(Q(q), p) is even and

Slg(ga z, HllIl(Q(q), D, 9)1 f]/) <min(ﬂ(q),p) 519(14‘: Z, 61 Q)

otherwise.

Definition 13 (Strategy automaton) Let
B=(Q,P(Q)" xXs x{l,...,n},q0,(0,...,0, L,n),é3)

Before defining the transition relation let us introduce an abbreviation. We
introduce new automata operation repmin(#') which means: if on the top of
the stack there is some triple /Yzﬁ, replace it with Az0; where 0; = min(f,6").
We also introduce a semicolon operation, so ég (szQ, q,a) = (pop,q"); repmin(6")
means that first Az6 is removed from the stack and the state is changed to ¢';
then, possibly, the third component of the triple currently at the top of the
stack is changed. Hence if we had a configuration (sfflzlﬂlgzﬂ,q) then after

this operation we obtain the configuration (sffl zy min(f1,6"),q").
Let us now proceed with the definition of é5:

o If ¢ € Q7 then:
— 63(1{2‘9,(1) = {(pop,¢); repmin(min(f, Q(q)))} if Hz‘m‘(/f,z,q,ﬁ) =
(pop,).
- 63(1&29,(]) = {reprnin(ﬂ(q));push(ff’z’n,q’)} if A" = Up(/f,z,ﬁ,q)

—

and Hint(A, z,q,0) = (push(z'), q).
o If g € Q7 then:
— (pop, q'); repmin(min(f,Q(q))) € 63([&0, q) if (pop,q') € 64(z,q).
- Tepmin(Q(q));push(A"Z’n,q’) € 6,3(%126,(],&) if A" = Up(ff,z,ﬁ,q)
and (push(z'),q') € 64(z,q).

Theorem 9 follows from the following lemmas:

Lemma 14 If player I can win in G(f_f, z,0,q) and
repmin(Q(q)); push(fflzln, qn) € 65(/1‘26, q)

then Sz’g(ffl, z1,m,q1) <q(q) Sig(ff, z,0,q) and it is strictly smaller if Q(q) is odd.

Lemma 15 Let (sz/fﬁ,q) be a configuration reachable from the initial one.
Suppose (sszﬁ,q) —t (sszﬁ’,q’) and szA is always in the stack during this
derivation. Let p be the minimum of the priorities of the states appearing in
the derivation (not counting the last one). We have: (i) #/ = min(p,) and (ii)
Sig(ff, z,0',¢") <, Sz‘g(f_l‘, z,0,q) and it is strictly smaller if p is odd.

Lemma 16 The strategy defined by the automaton B is winning.

Remark: The automaton B is exponentially larger than 4. One can show
that in general the strategy automaton must be exponentially larger, although
it is not clear that the exponent must be O(n|Q|) as it is in the case of B.
This situation is different from the situation for parity games on finite transition
systems where no memory is need.

5 Model checking for pushdown trees

Here we consider a problem of checking whether the root of a given pushdown
tree satisfies a given formula of the propositional p-calculus. First we reduce
this problem to the problem of finding a winning strategy in some pushdown
game. Next we use results from the previous section to show how one can solve
this later problem. Finally we show the lower bound on the complexity of the
model checking problem.

The reduction of the model checking to establishing existence of a winning
strategy follows from a fairly standard arguments [8]. In that paper Emerson,
Jutla and Sistla show how to reduce the model checking problem over finite
transition systems to establishing existence of a winning strategy in a finite
game. In our case the argument is essentially the same but we must also observe
that in the resulting game the priority function €2 depends only on the states in
the current configuration.

Theorem 17

For a given pushdown automaton A and a p-calculus formula ¢ one can construct
a pushdown automaton C and a priority function Q, such that: T4 F ¢ ioff there
15 a winning strateqy for player I in the game Ty with the priority function Q.
The size of C is linear in sizes of both A and .

5.1 Establishing existence of winning strategies

Let A be a pushdown automaton as in (1) and let @ : @ — {1,...,n} be an
indexing function. These define the game on T4. Here we are concerned with
the problem: given A and Q establish whether there exists a winning strategy
for player I in T,4. We will reduce this problem to the problem of establishing
existence of a winning strategy in a game on some finite graph. Let .4 and Q be
fixed for the rest of this subsection.

Before we begin let us try to give some intuitions behind the construction
of a finite game M 4. For every A‘,z,ﬁ,q and p € {1,...,n} we will have in
M4 a node C'/zeck(/f, z,0,p,q). There will be strategy for player I from this
node iff there is a strategy for player I in the game G(fiz,@,q) (see Defini-
tion 10); we will explain the role of p later. If pop(q’) move is possible from
(z,q) then for it to be a good choice for player I it should be the case that
q' € AnEUDE) If (push(z1),q1) is possible then the checking is more compli-
cated as we do not have a stack. We will use universal branching instead. We
will have a node Move((ff, z,0,q),(?,z1,¢1)) with the intended meaning that the
next planed move is (push(z1),q1) and that one has to guess Ay, We will also
have nodes Move((ff, z,0,q), (/L, z1,41)) where A is already guessed and from
which it i1s necessary to check whether 1t was guessed correctly. We divide the
future play into two parts which we consider separately. We check what happens
until zq 1s popped from the stack and simultaneously we check what happens
after this event. The first task is started from the node Push(ffl, z1,m,q1) the

10

other one from nodes Check(g, z,min(f, p"), p", q") where p” intuitively repre-
sents the lowest priority which was met while z; was on the stack and ¢” is a
state from A7 .

Definition 18 (Game M) Let M4 be a game on a finite graph defined as
follows. For every fY, fL, z,21, 0, ¢,q1 and p € {1,...,n} we have nodes:

C’heck(ff,z,ﬁ,p, q) Push(ff,z,ﬁ,q)
MO’U@((A, Z, 91 q)1 (?1 Z1, Q1)) MOU@((A, z, 61 q)a (A11 Z1, Q1))
Pop(q) Err(q)

Here ‘?” is a special symbol. We have the following transitions between the
nodes:

Check(g, 2,0,p,q) — Pop(q') if (pop,q’) € 6(z,q) and ¢’ € A™in((a).6)
Check(A, z,0,p,q) — Err(q") if (pop,q’) € 6(z,q) and ¢’ ¢ Amin(£(q),#)
Check(A, z,0,p,q) — Move((A, z,0,q),(?,z21,q1)) if (push(z1),q1) € 6(2,q)

and exactly the same transitions from Push(ﬁ, z,0,q), moreover we have:

MOUC((J{,Z,H,Q), (7_1‘21:(]1)) - MOU(:‘((_:ZzaHJQ): (A‘laZIJQI))
MOUC((A,Z,H,Q), (Alazlaql)) - PUSh(Alazlanaql)
- - E -

Move((A,2,0,q9),(A1,21,q1)) — Check(A, z, min(0, p), p, ¢")
if p< Q(q) and ¢" € A}

The set Vi of nodes where Player I makes a move consists of nodes:

Check(ff, z,0,p,q) and Push(ff, z,0,q) forq e Q;

Move((A,2,6,9),(7,21,q1)) for arbitrary ¢ € Qr U Qs
In the remaining nodes player I makes a move. Priority function Qs 1s defined
by:

QM(Check(f_f, z,0,p,9))=p QM(Push(fT, z,0,q9)) = Q(q)
QM(MOUG((A: z, 61 q)a (?a Z1, Q1))) = QM(MOUG((Ea Z, 61 q)a (A‘la Z1, Q1))) =n + 1
Player I wins in the game M4 if either: (i) after finitely many steps player

IT cannot make a move or a node labeled Pop(q), for some ¢, is reached; or (ii)

the game is infinite and the infinite path P which is the result of the play is
winning for 7. Otherwise player IT is the winner.

Theorem 19
Player I has a winning strategy in the game T4 iff he has a winning strateqy in
the game M 4 from the node Check((0,...,0), L, n,n,q0).

Let us remark here that the theorem does not imply that there is a finite
strategy on a pushdown tree. In order to use the strategy in M4 to play in Tg
we need a stack.

11

Finally let us put Theorems 17 and 19 together and calculate the complexity
of the model checking algorithm. The size of the game M 4 is O(k2°™") where:
k is the size of the stack alphabet, m is the number of states of A, n is the
cardinality of the range of the priority function €, and ¢ is a constant. The task
of establishing existence of a winning strategy in M4 is equivalent to checking
whether the specific p-calculus formula holds. Hence any model checking algo-
rithm will solve the problem. Using currently known algorithms we obtain that
the whole problem can be solved in time O((k2°™)") (or O((k2°™n)147/2) if
using [12]). This is the estimation only for the problem of establishing existence
of a winning strategy. Putting it together with the reduction from the previous
subsection we obtain that for a given automaton with m states and & stack sym-
bols and a formula of size ny with alternation depth ns we have an algorithm
working in time O((k2°m"172)"2),

5.2 The lower bound

Finally we show a deterministic exponential time lower bound on the model
checking problem for pushdown automata and (non alternating) p-calculus. Tt
follows from a quite standard reduction by simulating alternating linear space
bounded Turing machines. The simulating automaton is very similar to the one
described by Chandra, Kozen and Stockmeyer in [4]. Given an alternating linear
space bounded machine M and a word w we construct a pushdown automaton
which acts as follows. First it puts the initial configuration of M on the stack.
If the initial state is existential, player I chooses which possible move of M to
simulate, otherwise player I chooses the move. Simulating the move is done
by putting a new configuration by player I on the stack. Proceeding this way,
the game eventually arrives to a point when a configuration with an accepting
state is pushed on the stack. At the same moment we have also all the preceding
configurations on the stack. In this position player /I is allowed to make a guess
about correctness of this sequence of configurations. He may try to show that
player I cheated and there are two subsequent configurations on the stack such
that one is not reachable from the other in the move of M which was chosen
at that point. Player I wins if player IT is not able to do this. We have the
following:

Fact 20 There exists a formula « (without alternations) such that the prob-
lem “given a pushdown automaton A, is « satisfied in the root of T4” is

DEXPTIME-hard.

Remark: This argument does not work for BPA processes. Indeed the complex-
ity result from [2] shows that the the model checking problem for the p-calculus
without alternations is polynomial when a formula is fixed.

Remark: We conjecture that model checking is exponential also in the second
parameter. That is, there exists a fixed pushdown process A such that the
problem: “given a formula «, is « satisfied in the root of T4” is DEXPTIME-
hard.

12

References

(1]

[10]
[11]

[12]

J. Bergstra and J. Klop. Process theory based on bisimulation semantics. volume

354 of LNCS, 1988.

O. Burkart and B. Steffen. Model checking for context-free processes. In CONCUR
’92, volume 630 of LNCS, pages 123-137, 1992.

O. Burkart and B. Steffen. Pushdown processes: Parallel composition and model

checking. In CONCUR ’94, volume 836 of LNCS, 1994.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114-133, 1981.

S. Christiensen and H. Huttel. Deciding issues for infinite-state processes — a

survey. Bulletin of FATCS, 51:156-166, October 1993.

E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In A Decade of Concurrency, volume 803 of LNCS, pages 124-175.
Springer-Verlag, 1993.

E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In

Proc. FOCS 91, 1991.

E. A. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments of
p-calculus. In CAV’93, volume 697 of LNCS, pages 385-396, 1993.

J. Esparza and A. Kiehn. On the model checking problem for branching time logics
and basic parallel processes. In CAV ’95 volume 939 of LNCS, pages 353-366,
1995.

N. Klarund. Progress measures, immediate determinacy and a subset construction
for tree automata. In TEFFE LICS, pages 382-393, 1992.

H. Lescow. On polynomial—size programs winning finite—state games. In CAV ’95,
volume 939 of LNCS, pages 239-252, 1995.

D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An improved
algorithm for the evaluation of fixpoint expressions. In CAV’94, volume 818 of
LNCS, pages 338-350, 1994.

A. W. Mostowski. Games with forbidden positions. Technical Report 78, Univer-
sity of Gdansk, 1991.

D. Muller and P. Schupp. The theory of ends, pushdown automata and second-
order logic. Theoretical Computer Science, 37:51-75, 1985.

R. S. Street and E. A. Emerson. An automata theoretic procedure for the propo-
sitional mu-calculus. Information and Computation, 81:249-264, 1989.

W. Thomas. On the synthesis of strategies in infinite games. In STACS 95,
volume 900 of LNCS, pages 1-13, 1995.

1. Walukiewicz. Monadic second order logic on tree-like structures. In STACS 96,
LNCS, pages 401-414, 1996.

13

