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Abstract

A pushdown game is a two player perfect information infinite game
on a transition graph of a pushdown automaton. A winning condi-
tion in such a game is defined in terms of states appearing infinitely
often in the play. It is shown that if there is a winning strategy in a
pushdown game then there is a winning strategy realized by a push-
down automaton. An EXPTIME procedure for finding a winner in a
pushdown game is presented. The procedure is then used to solve the
model-checking problem for the pushdown processes and the proposi-
tional µ-calculus. The problem is shown to be DEXPTIME-complete.

1 Introduction

Pushdown processes are, at least in this paper, just another name for a
pushdown automata. The different name is used to underline the fact that
we are interested in the graph of configurations of a pushdown process and
not in the language it recognizes. On such a graph of configurations we can
define a two player infinite game. A move in the game consists of prolonging
a path constructed so far. The result of the game is an infinite path. Winning

1This work was done at Basic Research in Computer Science,
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conditions are defined in terms of states appearing infinitely often in the play.
We call such games pushdown games.

A graph of a pushdown game may be an infinite graph that is not an
unwinding of any finite graph (see [4] for interesting examples). In this way
pushdown games generalize finite games. On the other hand, pushdown
games can be presented in a finite way so it makes sense to ask what is the
complexity of deciding who has a winning strategy in such a game. It is also
interesting to know whether a winning strategy can be presented in a finite
way. These are the questions we answer in this paper.

A motivation for studying the complexity question comes from the model-
checking problem. The µ-calculus model-checking problem is: given a tran-
sition system and a formula of the µ-calculus decide if the formula holds in
the initial state of the transition system. If the transition system is finite
and given explicitly then the problem is in co-NP∩NP [9] but its exact com-
plexity is unknown. We show that in the case of transition systems given
by pushdown processes the model-checking problem is EXPTIME-complete
and it is so even for some fixed formula.

A motivation for studying the question of finite representations of winning
strategies comes from program synthesis. It was suggested by Wolfgang
Thomas [25]. One may consider a nonterminating reactive program as a
player in a two person infinite game, the other player being the environment.
The program is correct if it wins the game no matter what the environment
does. Hence a correct program is a winning strategy in the game (see [19] for
background and references). In the case of finite graphs, whenever a winning
condition in a game is given by a property of the set of states visited infinitely
often (i.e., by a Muller condition) then the winning strategy for each of the
players is finite [13]. On the other hand, Wolfgang Thomas [25] shows an
example of a game defined by a Turing machine in which the first player has
a strategy but no hyperarithmetical one. In the same paper he asks what
happens in the “intermediate case” when a game is given by a pushdown
automaton. We show that in this case the strategy can be also given by a
pushdown automaton but the size of this automaton may be in generally
exponentially bigger than the size of the automaton defining the game.

The decidability of the model-checking problem for pushdown processes
and the propositional µ-calculus follows from [18]. This decidability result
as well as extensions of it (for example [7]) deal with monadic second order
logic and reduce the problem to the decidability of S2S, hence give nonele-
mentary algorithms. An elementary model-checking procedure for pushdown
processes and alternation free fragment of the calculus was given in [3]. In-
dependently from the present work, Sebastian Seibert [22] has shown that
in every pushdown game there exist (for the player who wins) a winning
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strategy realizable by a pushdown automaton and that this strategy can be
computed effectively.

Pushdown processes are a strict generalization of processes from so called
basic process algebra BPA (see [6] for a short survey). The processes from
BPA can be considered as pushdown processes with only one state. If lan-
guage recognition is concerned pushdown automata with one state can rec-
ognize the same languages as the general pushdown automata. This is not
the case when configuration graphs are considered. It was shown in [4] that
there exists a pushdown automaton whose transition graph is not bisimilar
to the transition graph of any BPA process. BPA is a subclass of process al-
gebra PA [1]. For the other interesting subclass of PA, namely, basic parallel
processes, the model-checking is undecidable [12].

The plan of the paper is as follows. We start with a preliminary section
where we recall definitions of pushdown automata and the propositional µ-
calculus. In the following section we present some facts about games with
parity conditions. Throughout the paper we will work only with parity con-
ditions. The results are almost the same for other winning conditions. We
mention the differences next to the results. In the next section we prove that
if there is a winning strategy on a pushdown tree then there is one realized by
a pushdown automaton. In the last section we consider the model-checking
problem.

2 Preliminaries

2.1 Pushdown processes

The set of finite sequences over Σ is denoted Σ∗ and the set of finite nonempty
sequences over Σ is denoted Σ+. The empty sequence is denoted by ε. For
s, s′ ∈ Σ∗ we let ss′ denote the concatenation of the two sequences.

For a given finite set Σs, let Com(Σs) = {skip, pop} ∪ {push(z) : z ∈ Σs}
be the set of stack commands over Σs. The command skip does nothing, pop
deletes the top element of the stack, push(z) puts z on the top of the stack.

A pushdown process (or a pushdown automaton over one letter alphabet)
is a tuple:

A = 〈Q,Σs, q0 ∈ Q,⊥ ∈ Σs, δ : Q× Σs → P(Q× Com(Σs))〉 (1)

where Q is a finite set of states and Σs a finite stack alphabet. State q0
is the initial state of the automaton and ⊥ is the initial stack symbol. A
configuration of an automaton is a pair (s, q) with s ∈ Σ+

s and q ∈ Q. The
initial configuration is (⊥, q0). We assume that ⊥ can be neither put nor
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removed from the stack. We will sometimes write (s, q) → (s′, q′) if the
automaton in one step can go from the configuration (s, q) to (s′, q′). Let
→+, →∗ denote respectively the transitive closure of → and the reflexive and
transitive closure of →.

We will use q to range over states and z to range over letters of the stack
alphabet.

As we can see, pushdown processes are syntactically just pushdown au-
tomata. A different name is used to stress the difference in the semantics.
We will not be interested in the language accepted by a pushdown process
but in the graph of configurations it generates. It will be more convenient to
consider unwindings of this graph to a tree.

Definition 1 (Pushdown tree) Let A be a pushdown automaton as in (1).
The pushdown tree determined by A is the smallest tree TA ⊆ (Σ+

s × Q)+

such that:

• the root of the tree is (⊥, q0),

• for every node (s0, q0) · · · (si, qi), if (si, qi) → (s, q) then the node has a
son (s0, q0) · · · (si, qi)(s, q).

We call (si, qi) the label of the node (s0, q0) · · · (si, qi).

Remark: In our definition of a pushdown automaton we have assumed that
the automaton can put at most one symbol on the stack in one move. This is
done only for convenience of the presentation. The main results also hold for
the more general form of automata that can push many symbols on the stack
in one move. Please note that we can simulate pushing more symbols on the
stack by extending the alphabet and the set of states but the simulating
automaton will be in general much bigger. Our case is different than the
case when we are interested in the languages accepted by automata; in the
later case the blowup is only polynomial.

2.2 Propositional µ-calculus

Let Prop = {p1, p2, . . .} be a set of propositional constants and let Var =
{X, Y, . . .} be a set of variables. Formulas of the µ-calculus over these sets
can be defined by the following grammar:

F := Prop | ¬Prop | Var | F ∨ F | F ∧ F | 〈 〉F | [ ]F | µVar .F |νVar .F

Note that we allow negations only before propositional constants. As we will
be interested in closed formulas this is not a restriction. In the following,
α, β, . . . will denote formulas.
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Formulas are interpreted in transition systems of the form M = 〈S,R, ρ〉,
where: S is a nonempty set of states, R ⊆ S × S is a binary relation on S
and ρ : Prop → P(S) is a function assigning to each propositional constant
a set of states where this constant holds.

For a given model M and an assignment V : Var → P(S), the set of
states in which a formula ϕ is true, denoted ‖ ϕ ‖MV , is defined inductively
as follows:

‖ p ‖MV = ρ(p) ‖ ¬p ‖MV = S − ρ(p)

‖ X ‖MV =V (X)

‖ α ∨ β ‖MV =‖ α ‖MV ∪ ‖ β ‖MV

‖ α ∧ β ‖MV =‖ α ‖MV ∩ ‖ β ‖MV

‖ 〈 〉α ‖MV ={s : ∃s′.R(s, s′) ∧ s′ ∈ ‖ α ‖MV }

‖ [ ]α ‖MV ={s : ∀s′.R(s, s′) ⇒ s′ ∈ ‖ α ‖MV }

‖ µX.α(X) ‖MV =
⋂

{S ′ ⊆ S : ‖ α ‖MV [S′/X] ⊆ S ′}

‖ νX.α(X) ‖MV =
⋃

{S ′ ⊆ S : S ′ ⊆ ‖ α ‖MV [S′/X]}

here V [S ′/X] is the valuation such that, V [S ′/X](X) = S ′ and V [S ′/X](Y ) =
V (Y ) for Y 6= X. We shall write M, s, V � ϕ when s ∈ ‖ ϕ ‖MV and M, s � ϕ
if M, s, V � ϕ for arbitrary V .

We will use the following well known equivalences. They define the nega-
tion of an arbitrary closed formula.

¬〈 〉α = [ ]¬α ¬[ ]α = 〈 〉¬α

¬µX.α(X) = νX.¬α(¬X) ¬νX.α(X) = µX.¬α(¬X) (2)

A µ-calculus formula α is alternation free if it has no subformula of the
form µX.β(νY.γ(X, Y ), X) (or with µ and ν interchanged) with the occur-
rence of X in γ being free in β(µY.γ(X, Y ), X)). In other words α should
have no true nestings of different fixpoints. An alternation depth of a for-
mula is the longest chain of true nestings in the formula. We refer the reader
to [20] for the full definition of this notion as well as for the background and
intuitions behind it. Here we will use alternation depth only when quoting
results from the literature.

A model-checking problem is to decide whether for a given model M,
state s, and formula α without free variables, the relation M, s � α holds.
Here we will be interested in the case when M is a pushdown tree and s is
the root of it.
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3 Parity games and canonical strategies

In this section we recall the notion of parity games and we give an explicit
description of winning strategies in parity games. We describe the set of
winning positions by a fixpoint expression and derive a winning strategy
from this expression using the concept of signatures. It turns out that this
strategy is canonical in some sense.

The notion of signature was proposed by Streett and Emerson [24]. The
proof of the existence of memoryless strategies in parity games was given
independently by Mostowski [17] and by Emerson and Jutla [10] (the case of
finite graphs follows already from [8]). Klarlund [14] proves a more general
fact that a player has a memoryless winning strategy in a game if he has a
winning strategy and his winning conditions are given as a Rabin condition.

The proof below is a variation of the proof by Emerson and Jutla. The
difference is that we use the notion of signature to a bigger extent. This
approach allows us to show Proposition 11 which is essential to the argument
in the next section.

A game G = 〈V, VI , VII , E ⊆ V × V,Ω : V → {1, . . . , n}〉 is a bipartite
labelled graph with the partition VI , VII ⊆ V and the labelling Ω. The labels
1, . . . , n are called priorities. We say that a vertex v ′ is a successor of a
vertex v if E(v, v′) holds.

A play from some vertex v1 ∈ VI proceeds as follows: first player I
chooses a successor v2 of v1, then player II chooses a successor v3 of v2,
and so on ad infinitum unless one of the players cannot make a move. If a
player cannot make a move he looses. The result of an infinite play is an
infinite path v1, v2, v3, . . . This path is winning for player I if in the sequence
Ω(v1),Ω(v2),Ω(v3), . . . the smallest number appearing infinitely often is even.
The play from vertices of VII is defined similarly but this time player II starts.

A strategy ξ for player I is a function assigning to every sequence of
vertices ~v ending in a vertex v from VI a vertex ξ(~v) ∈ VII such that E(v, ξ(~v))
holds. A strategy is memoryless iff ξ(~v) = ξ(~w) whenever ~v and ~w end in
the same vertex. A strategy is winning iff it guarantees a win for player I
whenever he follows the strategy. Similarly we define a strategy for player
II .

We will often consider strategies which are partial functions. To fit our
definition one can assume that these are total functions whose values for
some elements don’t matter.

Our main goal is the following theorem:

Theorem 2 (Memoryless determinacy)
Let G be a parity game. From every node of G one of the players has a
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memoryless winning strategy.

The idea of the proof is the following. First we define a set WI of nodes
of G by a special fixpoint formula. Using this formula, to every vertex in
WI we associate a signature which intuitively says how far is the vertex
from “something good”. We use signatures to define a winning memoryless
strategy for player I from vertices in WI . Finally it turns out that the
complement of WI is defined by a formula of exactly the same shape as the
one defining WI . This gives us a memoryless winning strategy for player II
from the vertices not in WI .

For the rest of this section let us fix a game graph:

G = 〈V, VI , VII , E,Ω : V → {1, . . . , n}〉

In particular we assume that the range of Ω is {1, . . . , n} and that n is even.
Clearly we can do so without a loss of generality. The graph G can be
represented as a transition system G = 〈V,E, {I G, 1G, . . . , nG}〉, where: V
is now considered to be a set of states; E defines an edge relation between
states and {I , 1, . . . , n} are propositions. Proposition I G denotes the set of
vertices of player I , i.e., the set VI . Each proposition iG ∈ {1G, . . . , nG}
denotes the set of nodes with priority i, i.e., the set {v : Ω(v) = i}.

Consider the formula:

ϕI (Z1, . . . , Zn) =
(

I ⇒
∧

i=1,...,n

(i⇒ 〈 〉Ni)
)

∧
(

¬I ⇒
∧

i=1,...,n

(i⇒ [ ]Ni)
)

where

Ni =

{

∨

{Zj : j ≤ i, j odd} if i is odd
∧

{Zj : j ≤ i, j even} if i is even

We will be interested in the set:

WI = ‖ µZ1.νZ2. . . . µZn−1.νZn.ϕI (Z1, . . . , Zn) ‖
G

(in this formula µ is used to close variables with odd indices and ν is used
for even indices; n is even by our assumption).

To understand some intuitions behind this formula consider the formula:
µZn.ϕI (Z1, . . . , Zn). This formula holds in a node of the structure G if from
this node player I can force the play in a finite number of steps into a node
of a priority i < n from which it is possible/necessary (depending on whose
node it is) to reach a node in Zj, for some odd j < n or for all even j <
n, respectively. Similarly the greatest fixpoint formula νZn.ϕI (Z1, . . . , Zn)
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describes that player I can either stay forever in nodes of priority n or he
can reach a node of a priority i < n and, as before, form this node it is
possible/necessary to reach a node in Zj, for some odd j < n or for all
even j < n, respectively. Hence choosing appropriate fixpoint we can decide
whether we should force a play to reach some smaller priority or whether it
is enough to meet a given priority infinitely often.

Definition 3 When applied to n-tuples of ordinals symbols =, <, ≤ stand
for the corresponding relations in the lexicographical ordering. For every
i ∈ {1, . . . , n} we use =i to mean that both arguments are defined and when
truncated to first i positions the two vectors are equal; similarly for <i and
≤i.

Definition 4 (Consistent signature assignment) A signature is an n-
tuple of ordinals. An assignment S of signatures to nodes from some set
U ⊆ V is called consistent if for every u ∈ U either: (i) u ∈ VI and there is
a successor vertex w ∈ U such that:

S(w) ≤Ω(u) S(u) and the inequality is strict if Ω(u) is odd. (3)

or (ii) u ∈ VII and for all successor vertices w we have w ∈ U and the
condition (3) holds.

We extend the syntax of the formulas by allowing constructions of the
form µτZ.α(Z), where τ is an ordinal and α(Z) is a formula from the extended
syntax. The semantics is defined as follows:

‖ µ0Z.α(Z) ‖
M

V = ∅ ‖ µτ+1Z.α(Z) ‖
M

V = ‖ α(Z) ‖MV [‖µτ Z.α(Z)‖MV /Z]

‖ µτZ.α(Z) ‖MV =
⋃

ρ<τ

‖ µρZ.α(Z) ‖MV (τ a limit ordinal)

By Knaster-Tarski Theorem ‖ µZ.α(Z) ‖MV =
⋃

τ ‖ µ
τZ.α(Z) ‖MV .

Definition 5 (Canonical signatures) A canonical signature, Sig(v), of a
vertex v ∈ V is the smallest in the lexicographical ordering sequence of
ordinals (τ1, . . . , τn) such that:

v ∈ ‖ ϕI(P
~τ
1 , . . . , P

~τ
n ) ‖

G

where P ~τ
1 , . . . , P

~τ
n are defined inductively by:

P ~τ
i =µτiZi.νZi+1 . . . νZn.ϕI (P

~τ
1 , . . . , P

~τ
i−1, Zi, . . . , Zn) for i odd

P ~τ
i =νZi.µZi+1 . . . νZn.ϕI (P

~τ
1 , . . . , P

~τ
i−1, Zi, . . . , Zn) for i even
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As for an even i the ordinal τi is not used, the definition implies that τi = 0
for every even i. We prefer to have this redundancy rather than to calculate
right indices each time.

Fact 6 A vertex v belongs to WI iff the canonical signature, Sig(v), is de-
fined.

Proof
Suppose v ∈ WI . Let τ be an ordinal of a cardinality bigger than the
cardinality of G. By Knaster-Tarski theorem we have:

WI = ‖ µτZ1.νZ2 . . . µ
τZn−1.νZn.ϕI (Z1, . . . , Zn) ‖G

Hence (τ, . . . , τ) is an upper bound on the canonical signature for v. So the
signature is defined.

Conversely, suppose Sig(v) is defined. For every ordinal ρ and every
formula α(X) we have ‖ µρX.α(X) ‖G ⊆ ‖ µX.α(X) ‖G. Thus v ∈ WI by
monotonicity. �

Fact 7 The assignment v 7→ Sig(v) is a consistent signature assignment.

Proof
We will consider only the case when v ∈ VI ; the other case is analogous.

Let (τ1, . . . , τn) be the canonical signature of v. By the definition of the

signature Sig(v) we have v ∈ ‖ ϕI (P
~τ
1 , . . . , P

~τ
n ) ‖

G
with P ~τ

1 , . . . , P
~τ
n as in that

definition. Expanding the definition of ϕI we obtain: v ∈ ‖ 〈 〉NΩ(v) ‖
G.

Hence there is a successor w of v with w ∈ NΩ(v).
First, let us check the case when Ω(v) is odd. Expanding the definition

of NΩ(v) we get:

w ∈ ‖
∨

{P ~τ
j : j ≤ Ω(v), j odd} ‖

G

So w ∈ ‖ P ~τ
j ‖

G
for some odd j ≤ Ω(v). Recall that

P ~τ
j = µτjZj.

−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
j−1, Zj,

−→
Z )

(where
−→
σZ abbreviates the sequence of fixpoint operators). It may happen

that τj is not a successor ordinal but, by the definition of µτ , there is a
successor ordinal ρ ≤ τj such that:

w ∈ ‖ µρZj.
−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
j−1, Zj,

−→
Z ) ‖

G
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Once again referring to the definition of µτ we have:

w ∈ ‖
−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
j−1, P

′
j,
−→
Z ‖

G

where P ′
j = µρ−1Zj.

−→
σZ. ϕI (P

~τ
1 , . . . , P

~τ
j−1, Zj,

−→
Z ). This shows that the canon-

ical signature of w is not bigger than (τ1, . . . , ρ − 1), on the first j po-
sitions, for some successor ordinal ρ ≤ τj. Hence, as j ≤ Ω(v), we get
Sig(w) <Ω(v) Sig(v).

Now consider the case when Ω(v) is even. In this case expanding the
definition of NΩ(v) we obtain:

w ∈ ‖
∧

{P ~τ
j : j ≤ Ω(v), j even} ‖

G

In particular w ∈ ‖ PΩ(v) ‖
G. Recall that:

P ~τ
Ω(v) = νZΩ(v).

−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
Ω(v)−1, ZΩ(v),

−→
Z )

Hence the canonical signature of w is not bigger than (τ1, . . . , τΩ(v)) on the
first Ω(v) positions. �

Definition 8 (Minimizing strategy) A minimizing strategy is a strategy
taking for each node v ∈ WI ∩ VI a successor having the smallest canonical
signature.

Remark: Minimizing strategies may not be uniquely determined because a
node may have many successors with the same signature.

The memoryless determinacy theorem follows from the two following lem-
mas.

Lemma 9 A minimizing strategy is a winning memoryless strategy for player
I from every node in WI .

Proof
A minimizing strategy is memoryless as it is defined only using properties of
a node in question. We show that it is winning.

Suppose v0 ∈ WI . Let P = v0, v1, . . . be a history of a play when player
I uses the minimizing strategy. To arrive at a contradiction assume that P
is winning for player II . In other words, that the smallest priority appearing
infinitely often on P is some odd number p.

Take an infinite sequence of positions j1 < j2 < . . . such that: no vertex
after vj1 has priority smaller than p, and Ω(vjk

) = p for k = 1, . . . From
Fact 7 we obtain that Sig(vjk+1

) <p Sig(vjk
). This is a contradiction because

10



the lexicographical ordering on sequences of ordinals of bounded length is a
well ordering. �

Lemma 10 From every node not in WI player II has a memoryless winning
strategy.

Proof
To show the statement we first use some propositional logic. From equiva-
lences (2), the complement of WI is the set:

‖ νZ1.µZ2. . . . νZn−1.µZn.¬ϕI (¬Z1, . . . ,¬Zn) ‖G

Using the propositional tautology

¬
(

(p⇒ q) ∧ (¬p⇒ r)
)

≡
(

(p⇒ ¬q) ∧ (¬p⇒ ¬r)
)

we obtain

¬ϕI (¬Z1, . . . ,¬Zn) =
(

I ⇒
∨

i=1,...,n

(i ∧ [ ]¬N ′
i)

)

∧
(

¬I ⇒
∨

i=1,...,n

(i ∧ 〈 〉¬N ′
i)

)

Where N ′
i is obtained from Ni by replacing each Zj by ¬Zj. Using the fact

that in each vertex of G exactly one of the propositions 1, . . . , n holds, the
formula above is equivalent to:

(

I ⇒
∧

i=1,...,n

(i⇒ [ ]¬N ′
i)

)

∧
(

¬I ⇒
∧

i=1,...,n

(i⇒ 〈 〉¬N ′
i)

)

Consider the game G′ = 〈V, VII , VI , E,Ω
′〉 obtained from G by interchang-

ing the vertices of player I and player II and letting Ω′(v) = Ω(v) + 1. It is
easy to see that a winning strategy for player I in G′ translates to a strategy
for player II in G and vice versa. In G′ the complement of WI is described
by

νZ1.µZ2. . . . νZn−1.µZn.
(

¬I ⇒
∧

i=1,...,n

((i+ 1) ⇒ [ ]¬N ′
i)

)

∧
(

I ⇒
∧

i=1,...,n

((i+ 1) ⇒ 〈 〉¬N ′
i)

)

(4)

The change is that I is replaced by ¬I and each i is replaced by i+ 1.
Please observe that ¬N ′

i =
∧

{Zi : j < i, j odd} for i odd and ¬N ′
i =

∨

{Zi : j < i, j even} for i even. Denote by N ′′
i the formula ¬N ′

i with
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indices of the variables increased by one. With this notation we can rewrite
formula (4) to:

Φ = νZ2.µZ2. . . . νZn−1.µZn.
(

¬I ⇒
∧

i=1,...,n

((i+ 1) ⇒ [ ]N ′′
i )

)

∧
(

I ⇒
∧

i=1,...,n

((i+ 1) ⇒ 〈 〉N ′′
i )

)

(5)

We want to show that the formula (5) is equivalent over G′ to the formula:

µZ1.νZ2. . . . µZn+1.νZn+2.ϕI (Z1, . . . , Zn+2) (6)

First, as there are no vertices of priority 1 or n+ 2 in G′, we can remove
from ϕI(Z1, . . . , Zn+2) implications starting with 1 and n + 2. So (6) above
is equivalent to

Ψ = µZ1.νZ2. . . . µZn+1.ϕ
′
I
(Z1, . . . , Zn+1)

where ϕ′
I

does not have the above mentioned conjuncts and does not have
νZn+2 fixpoint because Zn+2 does not appear in the formula ϕ′

I
.

From the definition of N ′′
i we get that N ′′

i = Ni+1 for odd i and N ′′
i ∨Z1 =

Ni+1 for even i. We have that

‖ Φ ‖G′

= ‖ νZ2. . . . µZn+1.ϕ
′
I
(⊥, Z2, . . . , Zn+1) ‖

G′

Hence ‖ Φ ‖G′

⊆ ‖ Ψ ‖G′

.
Summarizing the proof of the lemma. If we take a vertex v 6∈ WI then

v ∈ ‖ Φ ‖G′

. Using ‖ Φ ‖G′

⊆ ‖ Ψ ‖G′

and Lemma 10 we know that player I
has a winning strategy from v in G′. By the definition of G′ it means that
player II has a winning strategy from v in G. �

Let us finish with a fact pointing out an interesting property of canonical
signatures. One can show that every strategy induces a consistent signature
assignment and vice versa. Hence we can compare strategies by comparing
signature assignments. The next fact implies that a minimizing strategy is
in some sense an optimal strategy.

Proposition 11 The canonical signature assignment (v 7→ Sig(v)) is the
least consistent signature assignment. In other words, for every consistent
signature assignment S whenever for some node v, S(v) is defined then Sig(v)
is defined and Sig(v) ≤ S(v).

Before proving the proposition we need to show one more property stating
the monotonicity of the formula ϕI with respect to signatures. In the lemma
below we use the notation from Definition 5.
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Lemma 12 Let ~τ = (τ1, . . . , τn) and ~ρ = (ρ1, . . . , ρn) be two tuples of ordi-
nals such that ~τ <k ~ρ for some odd k. We have

� ϕI (P
~τ
1 , . . . , P

~τ
n ) ⇒ ϕI (P

~ρ
1 , . . . , P

~ρ
n)

Proof
Let ~τ , ~ρ and k be as in the assumption of the lemma. We want to show that
� N~τ

i ⇒ N ~ρ
i for all i = 1, . . . , n where

N~τ
i =

{

∨

{P ~τ
j : j ≤ i, j odd} if i is odd

∧

{P ~τ
j : j ≤ i, j even} if i is even

and similarly for N ~ρ
i . Clearly this would imply the thesis of the lemma.

By definition of P ~τ
i we get that P ~τ

i = P ~ρ
i for i < k. So N~τ

i = N ~ρ
i for i < k.

For i = k we have:

P ~τ
k =µτkZk.

−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
k−1, Zk,

−→
Z )

P ~ρ
k =µρkZk.

−→
σZ.ϕI (P

~ρ
1 , . . . , P

~ρ
k−1, Zk,

−→
Z )

As τk < ρk we get � P ~τ
k ⇒ P ~ρ

k and � N~τ
k ⇒ N ~ρ

k .

To show that � N~τ
i ⇒ N ~ρ

i for all odd i > k it is enough to show that
� P ~τ

i ⇒ P ~ρ
k for all odd i > k. For this later fact it is even enough to show

� P ~τ
k+1 ⇒ P ~ρ

k . From the definition we have:

P ~τ
k+1 =νZk+1.

−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
k , Zk+1, ~Z)

P ~ρ
k =µρ

kZk.νZk+1.
−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
k−1, Zk, Zk+1, ~Z)

in the above we use P ~τ
i instead of P ~ρ

i because the two are the same for i < k.
We know that τk < ρk, so in particular τk + 1 ≤ ρk. Let

P ′′ = µτk+1Zk.νZk+1.
−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
k−1, Zk, Zk+1, ~Z)

We have � P ′′ ⇒ P ~ρ
k and P ′′ = P ~τ

k+1 as

P ′′ = νZk+1.
−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
k−1, P

~τ
k , Zk+1, ~Z)

Finally we want to show that � P ~τ
i ⇒ P ~ρ

i for all even i = 1, . . . , n. As
P ~τ

i = P ~ρ
i for i < k it is enough to consider the induction step for i > k.

Consider

P ~τ
i =νZi.

−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
i−1, Zi, ~Z)

P ~ρ
i =νZi.

−→
σZ.ϕI (P

~ρ
1 , . . . , P

~ρ
i−1, Zi, ~Z)

13



Recall that

ϕI (P
~τ
1 , . . . , P

~τ
i−1, Zi, ~Z) =

(I ⇒
∧

j=1,...,n

(j ⇒ 〈 〉N
~τ

j )) ∧ (¬I ⇒
∧

j=1,...,n

(j ⇒ [ ]N
~τ

j ))

where

N
~τ

j =

{

∨

{P ~τ
l : l < i, l ≤ j, l odd} ∪ {Zl : i ≤ l ≤ j, l odd} j odd

∧

{P ~τ
l : l < i, l ≤ j, l even} ∪ {Zl : i ≤ l ≤ j, l even} j even

Similarly for ρ with P ~ρ
l instead of P ~τ

l (l = 1, . . . , i− 1).

By the induction hypothesis we have � P ~τ
l ⇒ P ~ρ

l for all even l < i.

By remarks made before we know that � P ~τ
l ⇒ P ~ρ

l for all odd l. Hence

� N
~τ

j ⇒ N
~ρ

j for all j and we are done. �

Proof (of Proposition 11)
Assume conversely that there is a consistent signature assignment S for which
the set of vertices {w : S(w) < Sig(w)} is not empty. Consider vertices from
this set for which the difference is at the least position. Let v be one of such
vertices for which S(v) is as small as possible. More precisely v is a vertex
such that for some i we have:

• S(v) <i Sig(v),

• for every w, S(w) ≥i−1 Sig(w),

• for every w, if S(w) <i Sig(w) then S(v) ≤i S(w).

Observe that, the definition implies that i is odd.
Given a sequence of sets of vertices ~Q = (Q1, . . . , Qi) we consider the

formula:

νZi+1 . . . µZn−1.νZn.ϕI(Q1, Q2, . . . , Qi, Zi+1, . . . , Zn)

(this is the formula used to define canonical signatures with variables Z1, . . . , Zi

replaced by sets Q1, . . . , Qi.) We abbreviate this formula by
−→
σZ.ψ( ~Q, ~Z).

Claim 12.1 Let u be a vertex and ~Q a sequence of sets of vertices with S(u)

defined and u 6∈ ‖
−→
σZ.ψ( ~Q, ~Z) ‖

G
. Suppose player I always chooses a vertex

with the minimal value of S signature. We claim that player II can force the

play into a vertex from {w : Ω(w) ≤ i∧ S(w) ≤i S(u)} ∩ ‖ ¬
−→
σZ.ψ( ~Q, ~Z) ‖

G
.

14



Proof: If u ∈ ‖ ¬
−→
σZ.ψ( ~Q, ~Z) ‖

G
then:

u ∈ ‖ µZi+1.νZi+2 . . . νZn−1.µZn.ϕI(¬Q1, . . . ,¬Qi, Zi+1, . . . , Zn) ‖G (7)

where

ϕ
I
(Z1, . . . , Zn) =

(

I ⇒
∧

i=1,...,n

(i ⇒ [ ]N i)
)

∧
(

¬I ⇒
∧

i=1,...,n

(i ⇒ 〈 〉N i)
)

and

N i =

{

∨

{Zj : j ≤ i, j even} if i is even
∧

{Zj : j ≤ i, j odd} if i is odd

Let Sig(u) denote the signature of the formula (7) in the node u.
Suppose Ω(u) > i. If u ∈ VI then it is the turn of player I . He chooses

a successor u′ of u with the smallest possible value of S. If u ∈ VII then we
let player II to choose a successor u′ of u with the smallest possible value
of Sig. By consistency of S, in both cases we know that S(u′) ≤Ω(u) S(u)
and that S(u′) is strictly smaller if Ω(u) is odd. It is also easy to check that
Sig(u′) ≤Ω(u) Sig(u) and that Sig(u′) is strictly smaller if Ω(u) is even.

We claim that after a finite number of steps as the one above, we must
arrive to a vertex of priority not bigger than i. Suppose it is not the case
then the above play is infinite. Let p > i be the smallest priority such
that states with this priority appeared infinitely often during the play. This
priority cannot be odd because, by consistency of S, it would mean that the
prefix of length p of signatures given by S was decreased infinitely often and
increased only finitely often. Similarly it cannot be even because then the
prefix of length p of signatures given by Sig would be decreased infinitely
often and increased only finitely many times. A contradiction.

Hence the play eventually must reach a node w with Ω(w) ≤ i. From
the way the play was constructed it follows that S(w) ≤i S(u) and w ∈

‖ ¬
−→
σZ.ψ( ~Q, ~Z) ‖

G
�

We proceed with the proof of the proposition. Recall that the vertex v was
fixed at the beginning of the proof. It is a vertex from {u : S(u) <i Sig(u)}
that has the smallest S-signature.

Let S(v) = (τ1, . . . , τn). Because S(v) <i Sig(v) we know from Lemma 12
that:

v 6∈ ‖ νZi+1.µZi+2 . . . νZn.ϕI(P
~τ
1 , . . . , P

~τ
i , Zi+1, . . . , Zn) ‖

G
(8)

where P ~τ
1 , . . . , P

~τ
i are as in Definition 5. Let us abbreviate the formula in (8)

by θ.
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By Claim 12.1 we can find a node w 6∈ ‖ θ ‖G with S(w) ≤ S(v) and
Ω(w) ≤ i.

Suppose Ω(w) is even. Using w 6∈ ‖ θ ‖G we can find a successor w′ of
w with S(w′) ≤Ω(w) S(w) and w′ 6∈

∧

{P ~τ
j : 1 ≤ j ≤ Ω(w), j even}. Hence

w′ 6∈ P ~τ
j for some even j ≤ Ω(w). This means that

w′ 6∈ νZj.
−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
j−1, Zj, ~Z)

By Lemma 12, we know that Sig(w′) > (τ1, . . . , τj, 0, . . . , 0). So Sig(w′) >j

S(v) ≥Ω(w) S(w′). A contradiction with the choice of v because j < i.

Now suppose Ω(w) is odd. From w 6∈ ‖ θ ‖G we obtain that there is
a successor w′ of w with S(w′) <Ω(w) S(w) and w′ 6∈

∨

{P ~τ
j : 1 ≤ j ≤

Ω(w), j odd}. Let k be the maximal odd position not greater than Ω(w)
with τk > 0. Such a position must exist because S(w′) <Ω(w) S(w) ≤i S(v)
and this implies that there should be a nonzero value on one of the first i
positions of S(v). We get w′ 6∈ P ~τ

k and expanding the definition of P ~τ
k we

have:
w′ 6∈ µτkZk.

−→
σZ.ϕI (P

~τ
1 , . . . , P

~τ
k−1, Zk, ~Z)

Hence, by Lemma 12, we know that Sig(w′) ≥ (τ1, . . . , τk, 0, . . . , 0). So
Sig(w′) ≥k S(v). By our choice of k we have τk+1, . . . , τΩ(w) = 0, hence
S(v) >k S(w′). This gives Sig(w′) ≥Ω(w) S(v) >k S(w′). A contradiction
with the choice of v. �

4 Existence of pushdown strategies

Let A be a pushdown automaton as in (1). For simplicity of the presentation
let us assume that the set Q of states of A is partitioned into two sets
(QI , QII ) and that transitions from states in QI lead only to states in QII

and vice versa. More formally we require that for every q, q ′, z, z′: whenever
(q′, pop), (q′, skip) or (q′, push(z′)) is in δ(z, q) then: q ∈ QI iff q′ ∈ QII .

The automaton A defines a pushdown tree TA. Together with a priority
function Ω : Q→ N this defines a parity game.

Definition 13 (Pushdown game) An automaton A together with a par-
tition of states QI , QII and a priority function Ω define the pushdown game
GA = 〈V, VI , VII , E,Ω : V → {0, . . . , n}〉 where 〈V,E〉 is a pushdown tree
TA (see Definition 1) and Ω(v) = Ω(q) for q the state in the label of v. A
partition of V into VI and VII is defined by the partition of Q: v ∈ VI iff the
state occurring in the label of v belongs to QI .
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Remark: Assuming that the initial state belongs to QII , from our postulate
about partition of the states of A we have that in the game GA player II
moves from the vertices on the even levels of TA and player I moves from
the vertices on odd levels. Observe that, as the game is played on a tree, a
strategy can be identified with the subset of the game tree. An important
point is what priority assignment functions we allow. We have chosen to
allow only functions which are defined in terms of states of the automaton.
We have made this choice because we are interested in the winning conditions
definable in S1S or in the µ-calculus.

Next let us try to make it precise what we mean by a pushdown strategy.
Such a strategy should be given by an automaton reading moves of player
II and outputting moves for player I . In the infinity, if player II moved
according to the rules then the obtained sequence of moves should determine
a path of TA which is winning for player I .

A move is an element ofQ×Com(Σs), i.e., a pair consisting of a state of A
and a stack command. A path of TA determines a sequence of moves that the
automaton made on this path. Other way around, a sequence of moves may
determine a sequence of configurations, i.e., a path of TA. Some sequences
of moves do not determine paths because they contain invalid moves. Let us
call valid, the sequences determining paths of TA.

A strategy automaton is a deterministic automaton with input and output:

B = 〈QB,Σi,Σo,Σs,B, q0,⊥,

δB : QB × Σs,B × (Σi ∪ {τ}) → QB × Com(Σs,B) × (Σo ∪ {τ})〉 (9)

where QB is a finite set of states; Σi,Σo,Σs,B are finite input, output and
stack alphabets respectively. State q0 is the initial state and ⊥ is the initial
stack symbol. If δB(q, z, a) = (q′, com, b) then in the state q with z on the
top of the stack and a on the input tape, the automaton changes the state
to q′, performs the stack command com, and outputs the symbol b. If a = τ
then the automaton does not read the input (and does not move the input
head). If b = τ , the automaton outputs nothing.

To be a strategy automaton, B should have the property that it should
output one move of player I after reading one move of player II . Moreover
it should output valid moves, i.e.: whenever m1, n1, . . . , mk−1, nk−1, mk is a
valid sequence of moves with m1, . . . , mk being the moves read by B and
n1, . . . , nk−1 being the moves written by B then B should output some move
nk such that m1, n1, . . . , mk, nk is a valid sequence. Finally, in the infinity, if
the obtained sequence of moves is valid then it should determine a path of
TA that is winning for player I (see the definition on page 6).
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We say that there is a winning pushdown strategy in GA if there is a
strategy automaton for A. Our goal in this section is the following theorem.

Theorem 14
If there is a winning strategy for player I in GA then there is a winning
pushdown strategy.

Of course the result holds also for other winning conditions as far as they
are defined in terms of the set of states of A appearing infinitely often in the
play. To see this it is enough to use a translation of, the most general, Muller
conditions into parity conditions [16].

Let us now try to explain the idea of the construction of the strategy.
First, we know that if there is a strategy for player I then there is a min-
imizing strategy. This strategy depends only on the current configuration
and consists of picking a configuration with the smallest possible signature.
Unfortunately, a strategy automaton cannot know the current configuration
as there are potentially infinitely many of them. Our strategy automaton,
looking at its state and the top of its stack, will be able to tell what is cur-
rently on the top of the stack of A and what is the current state of A. It will
also have some finite information about the rest of the stack of A.

Let us try to describe what kind of information about the stack we need.
Consider a run of A. Suppose that in a configuration (s, q) one of the players
performs (q′, push(z)). Because the game is given by a pushdown automaton,
the part of the game from the obtained configuration (sz, q ′) up to the nearest
configurations where z is taken from the stack does not depend on s. What
depends on s is the rest of the play when z is taken out from the stack and
the current configuration becomes (s, q′′) for some q′′. Hence it should be
enough if player I , instead of knowing the whole s, just knew what states he
can reach when taking z from the stack. In general he will need a sequence
of sets of states ~A = {Ap}p=1,...,n, each set Ap containing the states that can
be reached provided the smallest priority met between pushing and popping
z is p.

The definition below formalizes this intuition in the notion of sub-game,
G( ~A, z, θ, q). The additional parameter θ is used to remember the smallest
priority seen since we have put the current top symbol on the stack.
Notation: We assume that {1, . . . , n} is the range of Ω. We use ~A to range
over n element vectors of sets of states and θ to range over {1, . . . , n}. We
also use z to range over stack symbols and q to range over states.

Definition 15 (Sub-game) For every quadruple ~A, z, θ, q we define the

sub-game G( ~A, z, θ, q) as follows. The graph of the game is a tree of config-
urations of A started in the configuration (⊥z, q). Every node of this tree
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labelled with a configuration (⊥, q′), for some q′, is marked winning or loos-
ing. We mark the node winning if q′ ∈ Amin(p,θ), where p is the lowest priority
of a state appearing on the path to the node (not counting q ′). Otherwise we
mark the node loosing. Whenever a play reaches a marked node then player
I wins if this node is marked winning otherwise player II is the winner. If a
play is infinite then player I wins iff the obtained path is winning (cf. page 6)

Remark: In our definition of the game we did not have the concept of
marking but we allowed vertices with no sons, and had the rule that the
player looses if he cannot make a move. Hence we can simulate marking
of vertices with cutting the paths. We find the metaphor of markings more
useful here.

Summarizing, player I will have only partial information about the cur-
rent configuration, namely: the current state, the current symbol on the top
of the stack, the sets of states he is allowed to reach when popping the current
top symbol, and the lowest priority met from the time when this symbol was
pushed on the stack. The size of this information is bounded. To accomplish
his task of winning the sub-game he can try to use the canonical signatures.

Definition 16 (Signature, Hint) Suppose that player I has a winning

strategy in a sub-game G( ~A, z, θ, q). Define Sig( ~A, z, θ, q) to be the canonical
signature of the root of this game.

If q ∈ QI then let v be a son of the root having the smallest signature (if
there is more than one such son then fix one arbitrary). If the label of v is

(⊥, q′) then let Hint( ~A, z, θ, q) = (q′, pop). If the label of v is (⊥z, q′) then

let Hint( ~A, z, θ, q) = (q′, skip). Otherwise the label of v is (⊥zz′, q′) and let

Hint( ~A, z, θ, q) = (q′, push(z′)).

Finally, when a new push operation is performed, player I should calcu-
late new sets of goal states just using the information he has at hand.

Definition 17 (Update function) Define Up( ~A, z, θ, q) to be the sequence

of sets ~B = {Bp}p=1,...,n, where each Bp is the set of states q′ such that:

Sig( ~A, z,min(Ω(q), p, θ), q′) ≤min(Ω(q),p) Sig( ~A, z, θ, q)

in the case min(Ω(q), p) is even and

Sig( ~A, z,min(Ω(q), p, θ), q′) <min(Ω(q),p) Sig( ~A, z, θ, q)

otherwise.

Now we have all the components needed to define the strategy automaton.
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Definition 18 (Strategy automaton) The strategy automaton B for GA

has the same set Q of states as A. Its input and output alphabets are
the moves of A, i.e., Σi = Σo = Q × Com(Σs). Its stack alphabet Σs,B is
P(Q)n × Σs × {1, . . . , n}. Before defining the transition relation δB let us
introduce an abbreviation. We introduce a new stack command repmin(θ′)

that means: if on the top of the stack there is some triple ~Azθ, replace it
with ~Azθ1, where θ1 = min(θ, θ′). We also introduce a semicolon operation,

so δB(q, ~Azθ, a) = (q′, pop; repmin(θ′)) means that first ~Azθ is removed from
the stack, then possibly the third component of the triple currently at the
top of the stack is changed, and the new state becomes q ′. Hence, if we
had a configuration (s ~A1z1θ1 ~Azθ, q) then after this operation we obtain the

configuration (s ~A1z1 min(θ1, θ
′), q′). Let us proceed with the definition of δB:

If q ∈ QI then:

δB(q, ~Azθ, τ) =(q′, repmin(Ω(q)), “(q′, skip)”)

if Hint( ~A, z, θ, q) = (q′, skip)

δB(q, ~Azθ, τ) =(q′, pop; repmin(min(θ,Ω(q))), “(q′, pop)”)

if Hint( ~A, z, θ, q) = (q′, pop)

δB( ~Azθ, q, τ) =(q′, repmin(Ω(q)); push( ~A′z′n), “(q′, push(z′))”)

if Hint( ~A, z, θ, q) = (q′, push(z′)) and ~A′ = Up( ~A, z, θ, q)

If q ∈ QII then:

δB(q, ~Azθ, “(q′, skip)”) =(q′, repmin(Ω(q)), τ)

if (q′, skip) ∈ δA(q, z)

δB(q, ~Azθ, “(q′, pop)”) =(q′, pop; repmin(min(θ,Ω(q))), τ)

if (q′, pop) ∈ δA(q, z)

δB(q, ~Azθ, “(q′, push(z′))”) =(q′, repmin(Ω(q)); push( ~A′z′n), τ)

if (q′, push(z′)) ∈ δA(q, z) and ~A′ = Up( ~A, z, θ, q)

The first lemma shows that the definition of Up( ~A, z, θ, q) has good prop-
erties.

Lemma 19 Suppose that player I can win in G( ~A, z, θ, q). If

δB(q, ~Azθ, τ) = (q1, repmin(Ω(q)); push( ~A1z1n), “(q, push(z1))”)

or

δB(q, ~Azθ, “(q1, push(z1))”) = (q1, repmin(Ω(q)); push( ~A1z1n), τ)
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then Sig( ~A1, z1, n, q1) ≤Ω(q) Sig( ~A, z, θ, q) and it is strictly smaller if Ω(q) is
odd.

Proof
Consider the games G = G( ~A, z, θ, q) and G1 = G( ~A1, z1, n, q1). Define a
function F : G1 → G by F((⊥s′, q′) · · · (⊥s′′, q′′)) = (⊥zs′, q′) · · · (⊥zs′′, q′′),
i.e., to every configuration of the path we add z just after ⊥. It is an injec-
tive function respecting descendancy relation and priorities of nodes. This
function assigns to the root of G1 the node (⊥zz1, q1). This node is a son of
the root of G.

Let σ denote a minimizing strategy in G. Because (⊥zz1, q1) ∈ σ we can
use the function F to obtain the strategy σ1 = F−1(σ) in G1. We will show
that this strategy is winning.

Let P be a result of a play in the game G1 when player I uses σ1. If P is
infinite then F(P) is a result of a play in G when player I uses σ. Hence P
is winning for I . Suppose P is finite ending in some node w. The label of w
is (⊥, q′) for some state q′. We will show that this node is marked winning.
Let p be the minimum of priorities of states appearing on the path from
(⊥zz1, q1) to F(w). The whole situation is presented in Figure 1

p
′′

(⊥z, q
′)

(⊥z, q)

(⊥zz1, q1)

(⊥, q
′′)u

p

F(w)

v

Figure 1: Proof of Lemma 19

According to Definition 15 the node w is marked winning if q ′ ∈ Ap
1. By

the definition of the automaton B we know that ~A1 = Up( ~A, z, θ, q). Hence
we have to show that:

Sig( ~A, z,min(Ω(q), p, θ), q′) ≤min(Ω(q),p) Sig( ~A, z, θ, q)

and that the inequality is strict if min(Ω(q), p) is odd.
Let us denote (⊥zz1, q1) by v and use the subscript G in SigG(x) to stress

that this is the canonical signature of x in the game G.

Claim 19.1 SigG(F(w)) ≤min(Ω(q),p) Sig( ~A, z, θ, q) and it is strictly smaller
if min(Ω(q), p) is odd.
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Proof: As v is a son of the root of G on the path to F(w), by consistency

of canonical signatures (Fact 7) we have SigG(v) ≤Ω(q) Sig( ~A, z, θ, q) and is
strictly smaller if Ω(q) is odd. By the same fact SigG(F(w)) ≤p SigG(v) and
it is strictly smaller if p is odd. �

Claim 19.2 SigG(F(w)) = SigG( ~A, z,min(Ω(q), p, θ), q′)

Proof: We show that the game G( ~A, z,min(Ω(q), p, θ), q′) is isomorphic to
the part of G issued from F(w). To see this, we have to check that a node

is marked winning in G( ~A, z,min(Ω(q), p, θ), q′) iff it is marked winning in
G. Let q′′ be a state and u a node labelled by (⊥, q′′). Let also p′′ be the
minimum of priorities of states that appeared between F(w) and u. The
node u is marked winning in G iff q′′ ∈ Amin(min(Ω(q),p,p′′),θ). It is marked
winning in G( ~A, z,min(Ω(q), p, θ), q′) iff q′′ ∈ Amin(p′′,min(Ω(q),p,θ)). �

Knowing that σ1 is winning in G1 we can define a signature assignment
by S(x) = Sig(F(x)) for every x reachable in a play of G1 when player I
uses σ1. This is a consistent signature assignment, hence by Proposition 11
we have that Sig( ~A1, z1, θ1, q1) ≤ S(F−1(v)). By consistency of S we have

that S(F−1(v)) ≤Ω(q) SigG( ~A, z, θ, q) and it is strictly smaller if Ω(q) is odd.
�

With a help of Lemma 19, by induction on the length of the derivation
we obtain:

Lemma 20 If a configuration (s ~Azθ, q) of B is reachable from the initial

configuration then Sig( ~A, z, θ, q) is defined.

The next lemma describes the main property of B with respect to signa-
tures.

Lemma 21 Suppose that player I can win the game GA. Let (s ~Azθ, q) be a
configuration of B reachable from the initial one. Suppose also that on some
finite input sequence w the automaton B goes from a configuration (s ~Azθ, q)

to a configuration (s ~Azθ′, q′) and s ~Az is always on the stack during this
derivation. Let p be the minimum of the priorities of the states appearing in
the derivation (not counting q′). We have:

1. θ′ = min(p, θ)

2. Sig( ~A, z, θ′, q′) ≤p Sig( ~A, z, θ, q) and the inequality is strict if p is odd
(in particular both signatures are defined).
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Proof
The proof proceeds by induction on the length of derivation. We will use
c → c′ to mean that the configuration c′ can be obtained from c in one
step of the computation of B (we do not indicate what inputs and outputs
occurred in the move).

The case (s ~Azθ, q) → (s ~Azθ′, q′) follows directly from the construction of
the automaton.

Suppose that a derivation has the form:

(s ~Azθ, q) → (s ~Azθ′ ~A1z1n, q1) → · · · → (s ~Azθ′ ~A1z1θ1, q
′
1) → (s ~Azθ′′, q′′)

and ~A1z1 was not popped in between. By induction assumption, θ1 is the
minimum of priorities of states that appeared in the part of the derivation
when there was s ~Azθ′ ~A1z1 on the stack. Let p1 = min(θ1,Ω(q′1)). From

Lemma 20 we know that the signature Sig( ~A1, z1, θ1, q
′
1) is defined. Hence

q′′ ∈ Ap1

1 . This, by definition, means:

Sig( ~A, z,min(Ω(q), p1, θ), q
′′) ≤min(Ω(q),p1) Sig( ~A, z, θ, q)

and the inequality is strict if min(Ω(q), p1) is odd. It is easy to see that
θ′′ = min(Ω(q), p1, θ).

The remaining case is when the derivation can be divided into two se-
quences:

(s ~Azθ, q) → · · · → (s ~Azθ′, q′) → · · · → (sAzθ′′, q′′)

This case follows directly from two applications of the induction assumption.
�

Lemma 22 B is a strategy automaton.

Proof
The automaton B is constructed in such a way that from a current configu-
ration of B it is easy to extract the current configuration of A; it is enough
to throw away ~A and θ components from the stack. The construction of B
also guarantees that B outputs only valid moves. By this we mean that if B
has read m1, . . . , mi, has written n1, . . . , ni and m1, n1, . . . , mi determines a
path in TA then m1, n1, . . . , mi, ni also determines a path in TA. Moreover
this path ends in a configuration of A which is extracted from the current
configuration of B.

Now, assume conversely that B is not a strategy automaton. Let wi =
m1, m2, . . . be an input word on which B outputs wo = n1, n2, . . . and suppose
that the sequence m1, n1, . . . determines a loosing (for player I ) path P in
TA.
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Suppose that P is finite, i.e., B cannot make a move from some configu-
ration. Say it is (sz ~Aθ, q). If q ∈ QII then, by the definition of B, it means
that the next move in the input sequence is invalid, a contradiction with our
assumption. Hence q ∈ QI . From Lemma 20 it follows that Sig( ~A, z, θ, q)

is defined. Hence Hint( ~A, z, θ, q) is defined and B can make a move. A
contradiction.

Suppose that P is infinite. This means that the smallest priority of a state
appearing i.o. on the path determined by m1, n1, . . . is odd. Call it p. From
what was said in the first paragraph, this means that p is the smallest priority
of a state appearing i.o. in the run of B on wi. Using these observations we
will construct an infinite sequence of strictly decreasing signatures. This will
be a contradiction with the fact that the signatures are well ordered.

Let x0 be a position in the run such that: (i) after x0 no state with
a priority smaller than p appears on the run, (ii) the configuration at the

position x0 is (sz ~Aθ, q) and for every position after x0 we have sz ~A on the
stack.

Suppose there is a position x1 after x0 with a configuration (sz ~Aθ1, q1)
and a state of the priority p occurs in a configuration between x0 and x1.
By Lemma 21 we have that Sig( ~A, z, θ1, q1) <p Sig( ~A, z, θ, q). Next from x1

we can look for a position x2 with a configuration (sz ~Aθ2, q2) such that a
state of the priority p appears between x1 and x2. This way we construct
a sequence of positions x0, x1, . . . , xi. Because the signatures decrease, this
sequence must be finite. Hence form some position, say xi, we will not be
able to find a bigger position with the required properties. As a state of
priority p appears infinitely often on the run, there must be a position xi+1

after xi with a configuration (sz ~Aθiz
′ ~A′n, qi+1) such that (sz ~Aθiz

′ ~A′) is on
the stack of every configuration after xi+1. By Lemmas 19 and 21 we have
Sig( ~A′, z′, n, qi+1) ≤p Sig( ~A, z, θi, qi) and the inequality is strict if a state of
priority p appeared between xi and xi+1. From xi+1 we can repeat exactly
the same construction as from x0. Repeating this reasoning ad infinitum we
obtain an infinite sequence of strictly decreasing signatures. A contradiction.
�

Remark: The automaton B is exponentially larger than A. One can show
that in general the strategy automaton must be exponentially larger, al-
though it is not clear that the exponent must be O(n|Q|) as it is in the case
of B. This situation is different from the situation for parity games on finite
transition systems where, as the memoryless determinacy theorem shows, no
memory is need.

An example of a game that has only big strategy automata is the follow-
ing. Player II starts by choosing a sequence of n symbols: 0 or 1. Then
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player II chooses a position i ∈ {1, . . . , n} and asks what symbol stands on
this position. Player I has to answer correctly. Then Player II asks about
another position and Player I wins if he answers correctly also this time.
The graph of such a game can be defined by a pushdown automaton of size
O(n2). Every strategy automaton must have the size O(2n).

5 Model-checking for pushdown trees

We consider a problem of checking whether a given pushdown tree TA satisfies
a given formula ϕ of the propositional µ-calculus. First, we will construct a
pushdown game such that player I has a winning strategy in this game iff TA

satisfies ϕ. Next we will show how to reduce the problem of finding a winner
in a pushdown game to a problem of finding a winner in a finite game. This
will give an EXPTIME algorithm for the model-checking problem. Finally,
we will show the EXPTIME lower bound on the complexity of the model-
checking problem

5.1 Reduction to games

Take a pushdown automaton A and a µ-calculus formula ϕ. In this subsection
we will construct a pushdown automaton C (depending on A and ϕ) together
with a partition of its states QI , QII ⊆ QC and a function Ω : QC → N.
These will define a pushdown game in which player I can win iff formula ϕ
is satisfied in the root of TA.

Let us start with some technical definitions concerning µ-calculus formu-
las. These will facilitate the description of the reduction.

Definition 23 (Binding) We call a formula well named if every variable
is bound at most once in the formula and free variables are distinct from
bound variables. For a variable X bound in a well named formula ϕ there
exists a unique subterm of ϕ of the form µX.β(X) or νX.β(X), called the
binding definition of X in ϕ and denoted Dϕ(X). We call X a µ-variable
when Dϕ(X) = µX.β(X) for some β, otherwise we call X a ν-variable.

The function Dϕ assigning to every bound variable its binding definition
in ϕ is called the binding function associated with ϕ.

Definition 24 (Dependency order) Given a formula ϕ we define the de-
pendency order over the bound variables of ϕ, denoted ≤ϕ, as the least partial
order relation such that if X occurs free in Dϕ(Y ) then X ≤ϕ Y . We say
that a bound variable Y depends on a bound variable X in ϕ when X ≤ϕ Y .
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Definition 25 (Fisher-Ladner closure) For a given formula α we denote
by FL(α) (Fisher-Ladner closure) the set of subformulas of α (including α
itself).

Let ϕ be a closed µ-calculus formula. Without a loss of generality we may
assume that it is well named. Let X1, . . . , Xn be some linearisation of the
dependency order ≤ϕ, i.e., if Xi ≤ϕ Xj then i ≤ j. We will assume that the
variables with even indices are ν-variables and the variables with odd indices
are µ-variables. If it is not the case, we can add dummy variables to the list.
This assumption is not essential but simplifies the presentation as the index
immediately determines whether it is a µ or a ν-variable.

Let:

A = 〈Q,Σs, q0 ∈ Q,⊥ ∈ Σs, δ : Σs ×Q→ P(Q× Com(Σs))〉

be a pushdown automaton as in (1). This automaton defines a pushdown
tree TA (see Definition 1). We want to check if the root of this tree satisfies
a given µ-calculus formula ϕ. To make it easier to talk about the properties
of such tree we will have in the µ-calculus a proposition Pq for every state
q ∈ Q. This proposition holds in a node of TA iff q is in the label of the node.

In the previous section we have assumed that the states of the automaton
defining a game are partitioned into QI and QII and transitions from states
in one set lead to states in the other set. Here we will still assume the that
the set of states is partitioned but it may now happen that a transition leads
to a state from the same set. We can avoid this by adding some dummy
states. The number of added states will be at most linear in the size of the
automaton.

Now we define our target pushdown game. Consider the automaton:

C = 〈Q× FL(ϕ),Σs, q0,⊥, δC〉
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where δC is defined as follows:

δC((q, α ∨ β), z) ={((q, α), skip), ((q, β), skip)}

δC((q, α ∧ β), z) ={((q, α), skip), ((q, β), skip)}

δC((q, µX.α(X)), z) =δC((q, νX.α(X)), z) = {((q,X), skip)}

δC((q,X), z) ={((q, α(X)), skip)}

if Dϕ(X) = µX.α(X) or Dϕ(X) = νX.α(X)

((q′, α), skip) ∈δC((q, 〈 〉α), z) if δ(q, z) = (q′, skip)

((q′, α), pop)) ∈δC((q, 〈 〉α), z) if δ(q, z) = (q′, pop)

((q′, α), push(z′)) ∈δC((q, 〈 〉α), z) if δ(q, z) = (q′, push(z′))

δC((q, [ ]α), z) =δC((q, 〈 〉α), z)

To define the game GC it remains to define in which nodes player I is to
move and what is the priority of each state. Player I moves when the game is
in a node with the label containing a state: (q, Pq′), (q, α∨β), (q, µX.α(X)),
(q, νX.α(X)), (q,X), or (q, 〈 〉α); for some formulas α, β and some q, q ′ ∈ Q
with q 6= q′. In the remaining nodes player II is to move. Priority function
Ω is defined by: Ω((q,Xi)) = i and Ω((q, α)) = n + 1, for α not a variable
and q ∈ Q.

Theorem 26
TA � ϕ iff there is a winning strategy for player I in the game GC described
above.

For finite transition systems a very similar theorem was shown by Emer-
son, Jutla and Sistla [9]. To prove the theorem in the left to right direction
one can use signatures of ϕ. For the right to left implication assume con-
versely and show that player II has a winning strategy. See for example [24]
or [21] for similar arguments.

5.2 Establishing existence of winning strategies

Consider a pushdown automaton:

A = 〈Q,Σs, q0 ∈ Q,⊥ ∈ Σs, δ : Q× Σs → P(Q× Com(Σs))〉

Let QI , QII ⊆ Q be a partition of Q and let Ω : Q → {1, . . . , n} be an
indexing function. These define the pushdown game GA (see Definition 13).
In this subsection we are concerned with the problem: given A, QI , QII , and
Ω establish whether there exists a winning strategy for player I in GA. We
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will reduce this problem to the problem of establishing existence of a winning
strategy in a game on some finite graph. Let A, QI , QII , and Ω be fixed for
the rest of this subsection.

We will show a method of establishing a winner in all the gamesG( ~A, z, θ, q).
Please recall that the game GA is G((∅, . . . , ∅),⊥, n, q0) in this notation. Sup-

pose we want to show that we can win in a game G( ~A, z, θ, q) for some q ∈ QI .
Immediately from the definition of the game it follows that we are done if
(q′, pop) ∈ δ(q, z) and q′ ∈ Amin(θ,Ω(q)). We are also done if (q′, skip) ∈ δ(q, z)

and we somehow know that we can win G( ~A, z,min(θ,Ω(q)), q′). We will
see later that “somehow know” will be strongly related with the signature of
G( ~A, z,min(θ,Ω(q)), q′) being smaller (or not bigger) than the signature of

G( ~A, z, θ, q).
Finally we need to deal with the most difficult case of push operation.

Suppose that the best first move of player I in G( ~A, z, θ, q) is take the tran-

sition (q′, push(z′)). The play in G( ~A, z, θ, q) looks as follows. It starts from
the root (⊥z, q) of the game. Then it proceeds to (⊥zz ′, q′). Then it either
never pops z′ from the stack or finally does so and reaches a configuration
(⊥z, q′′). In the first case we can forget about z as it will never influence the
play. The second case is more interesting. We cannot afford to keep z in stack
memory but we can use alternation instead. We will guess the set B of all
the states q′′ as above and start “in parallel” checking of what happens from
positions (⊥z, q′′). Because we have priorities around we will divide B into
B1, . . . , Bn with Bp being the set of states such that (⊥z, q′′) can be reached
in some play from (⊥z, q) with p being the smallest priority seen in this play.

We check in parallel if we can win in G( ~B, z′, n, q′) and G( ~A, z,min(θ, p), q′′)
for all p ≤ Ω(q) and q′′ ∈ Bp. This way we have reduced the task of checking

that we can win in G( ~A, z, θ, q) to checking that we can win in several other
games.

We will construct a finite game MA having a node Check( ~A, z, θ, p, q) for

all possible ~A, z, θ, q and p ∈ {1, . . . , n}. The additional parameter p is used
to tell what happened between push and pop exactly as in the above descrip-
tion. We will also have nodes Push( ~A, z, θ, q) that will have the same meaning
as Check nodes; a different name will help in the correctness proof. A node
Move(( ~A, z, θ, q), (?, z′, q′)) will be used to “implement” our handling of push

operation. From this node Player I has to guess a tuple of sets of states ~B as
in the above description. From a node Move(( ~A, z, θ, q), ( ~B, z′, q′)) player II
has the opportunity to ask player I for an evidence to arbitrary of the Check
nodes reachable from it. We describe the details in the definition below.

Definition 27 (Game MA) We define a finite game MA = 〈SM ,→,ΩM〉
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as follows. For every ~A, ~B ∈ Qn; z, z′ ∈ Σs; q, q
′ ∈ Q; and θ, p ∈ {1, . . . , n}

we have nodes:

Check( ~A, z, θ, p, q) Push( ~A, z, θ, q)

Move(( ~A, z, θ, q), (?, z′, q′)) Move(( ~A, z, θ, q), ( ~B, z′, q′))
Pop(q) Err(q)

Here ‘?’ is a special symbol. We have the following transitions between the
nodes:

Check( ~A, z, θ, p, q) → Check( ~A, z,min(θ,Ω(q)),Ω(q), q′) if (q′, skip) ∈ δ(q, z)

Check( ~A, z, θ, p, q) → Pop(q′) if (q′, pop) ∈ δ(q, z) and q′ ∈ Amin(θ,Ω(q))

Check( ~A, z, θ, p, q) → Err(q′) if (q′, pop) ∈ δ(q, z) and q′ 6∈ Amin(θ,Ω(q))

Check( ~A, z, θ, p, q) → Move(( ~A, z, θ, q), (?, z′, q′)) if (q′, push(z′)) ∈ δ(q, z)

and we have exactly the same transitions from Push( ~A, z, θ, q), moreover we
have:

Move(( ~A, z, θ, q), (?, z′, q′)) → Move(( ~A, z, θ, q), ( ~B, z′, q′)) ~B arbitrary

Move(( ~A, z, θ, q), ( ~B, z′, q′)) → Push( ~B, z′, n, q′)

Move(( ~A, z, θ, q), ( ~B, z′, q′)) → Check( ~A, z,min(θ, p), p, q′′)
if p ≤ Ω(q) and q′′ ∈ Bp

The set VI of nodes where Player I makes a move consists of nodes:

Check( ~A, z, θ, p, q), Push( ~A, z, θ, q), Move(( ~A, z, θ, q′′), (?, z′, q′))

for q ∈ QI and arbitrary ~A, z, z′, θ, p, q′, q′′.

The set VII of nodes where Player II makes a move consists of nodes:

Check( ~A, z, θ, p, q), Push( ~A, z, θ, q), Move(( ~A, z, θ, q′′), ( ~B, z′, q′))

for q ∈ QII and arbitrary ~A, ~B, z, z′, θ, p, q′, q′′.

Priority function ΩM is defined by:

ΩM (Check( ~A, z, θ, p, q)) = p ΩM (Push( ~A, z, θ, q)) = Ω(q)

ΩM(m) = n+ 1 for all other nodes m of MA

Player I wins in the game MA if either:

• After finitely many steps player II cannot make a move or a node
labelled Pop(q), for some q, is reached.
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• The game is infinite and the obtained infinite path P is winning for
player I . Recall that this means that the minimal priority of states
appearing infinitely often on P is even.

Theorem 28
Player I has a winning strategy in the game GA (from the root node) iff he has
a winning strategy in the game MA from the node Check((∅, . . . , ∅),⊥, n, n, q0).

Proof
First, let us consider the left to right implication. We define a strategy σM

for player I on MA as follows.

• If q ∈ QI , Sig( ~A, z, θ, q) is defined and Hint( ~A, z, θ, q) = (q′, skip) then:

σM (Check( ~A, z, θ, p, q)) =Check( ~A, z,min(θ,Ω(q)),Ω(q), q′)

σM (Push( ~A, z, θ, q)) =Push( ~A, z,min(θ,Ω(q)), q′)

• If q ∈ QI , Sig( ~A, z, θ, q) is defined and Hint( ~A, z, θ, q) = (q′, pop) then:

σM(Check( ~A, z, θ, p, q)) = σM(Push( ~A, z, θ, q)) = Pop(q′)

• If q ∈ QI , Sig( ~A, z, θ, q) is defined and Hint( ~A, z, θ, q) = (q′, push(z′))
then:

σM (Check( ~A, z, θ, p, q)) = σM (Push( ~A, z, θ, q)) =

Move(( ~A, z, θ, q), (?, z′, q′))

• If q ∈ QI ∪ QII , Sig( ~A, z, θ, q) is defined and ~B = Up( ~A, z, θ, q) then
let:

σM(Move(( ~A, z, θ, q), (?, z′, q′))) = Move(( ~A, z, θ, q), ( ~B, z′, q′))

Let →σM
denote the subset of the transition relation of MA defined by

the strategy σM , i.e., →σM
= {(u, v) : if u ∈ VI then σM(u) = v}∩ →. We

will show that every path along →σM
starting in Check((∅, . . . , ∅),⊥, n, n, q0)

is winning for player I .
From the assumption that player I can win in the game GA it follows that

Sig((∅, . . . , ∅),⊥, n, q0) is defined. Let us observe the following properties:

• If Check( ~A, z, θ, p, q) →σM
Check( ~A, z,min(θ,Ω(q)),Ω(q), q′) then by

Definitions 16 and 18 we have that: Sig( ~A, z,min(θ,Ω(q)), q′) ≤Ω(q)

Sig( ~A, z, θ, q) and it is strictly smaller if Ω(q) is odd. Similarly for
Push instead of Check .
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• If Move(( ~A, z, θ, q), ( ~B, z′, q′)) →σM
Push( ~B, z′, n, q′) then by Lemma 19

we have: Sig( ~B, z′, n, q′) ≤Ω(q) Sig( ~A, z, θ, q) and it is strictly smaller if
Ω(q) is odd.

• If Move(( ~A, z, θ, q), ( ~B, z′, q′)) →σM
Check( ~A, z, θ′′, p, q′′) then by Def-

inition 17 we have: Sig( ~A, z, θ′′, q′′) ≤p Sig( ~A, z, θ, q) and it is strictly
smaller if p is odd.

• There is always Pop(q1) as required in the second clause of the definition
of →σM

.

• There is no →σM
transition to Err(q1), for arbitrary q1.

With these properties it is quite easy to show that σM is a winning strat-
egy. Let P be a play in M when player I uses σM . From the above observa-
tions it follows that whenever a node Check( ~A, z, θ, p, q) appears on the path

then Sig( ~A, z, θ, q) is defined. Similarly for Push nodes and Move nodes. This
means that player I can always make a move from these nodes. Hence if the
play is finite then it ends in a Pop(q) node and player I wins. Suppose the
play P is infinite and the smallest priority met infinitely often is an odd num-
ber p. Let {( ~Ai, zi, θi, qi)}i∈N be the sequence of tuples from Check or Push

nodes in P. Looking at the sequence of signatures: {Sig( ~Ai, zi, θi, qi)}i∈N we
obtain that from some moment the signatures never increase on the positions
up to p and decrease infinitely often. This is impossible as the signatures are
well order. Hence if the play is infinite then player I wins.

For the proof of the right to left implication of the theorem assume that
there is a winning strategy σM in MA. We construct a strategy automaton
C:

C = 〈QC , Q×Com(Σ), Q×Com(Σ), SM , q0,Check((∅, . . . , ∅),⊥, n, n, q0), δC〉

where SM is the set of nodes of MA and QC is some set of auxiliary states
needed to “implement” the necessary behaviour of δC that we describe below.
The automaton will work in macro steps. In each macro step it will read or
write one move of A and push or pop some nodes of MA. Each macro step
will start and finish in the state q0 ∈ QC. It will be also the case that at the
beginning and end of each macro step there will be a Check or Push node
on the top of the stack.

Suppose that m is the current symbol at the top of the stack and that it
is of the form Check( ~A, z, θ, p, q) or Push( ~A, z, θ, q).

If q ∈ QI then there is exactly one transition m →σM
u. We add the

following transitions to δ(q0, m, τ):
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• If u is Check( ~A, z, θ, p, q′) or Push( ~A, z, θ, q′) then replace m by u on
the top of the stack and output “(q′, skip)”.

• If u is Pop(q′) then q′ ∈ Amin(θ,Ω(q)). Pop elements from the stack
until a Push node is popped. At this moment the current node on the
top of the stack must be of the form Move(( ~A1, z1, θ1, q1), ( ~A, z, q2)).

Push the node Check( ~A1, z1,min(θ1, p), p, q
′) where p = min(θ,Ω(q)).

Output “(q′, pop)”.

• If u is Move(( ~A, z, θ, q), (?, z′, q′)) then there are nodes u′, u′′ such that

u →σM
u′ →σM

u′′, where u′ is Move(( ~A, z, θ, q), ( ~B, z′, q′)) and u′′ is

Push( ~B, z′, n, q′). Add to δ(q0, m, τ) operations that push u′ and u′′ on
the stack and output “(q′, push(z′))”

If q ∈ QII then for every transition m →σM
u we add the following

transitions:

• If u is Check( ~A, z, θ, p, q′) or Push( ~A, z, θ, q′) then read “(q′, skip)” and
replace m by u on the top of the stack. Do not produce any output.

• If u is Pop(q′) then q′ ∈ Amin(θ,Ω(q)). Read “(q′,Pop)′′ and then pop
elements from the stack until a Push node is popped. The current top
node of the stack must be of the form Move(( ~A1, z1, θ1, q1), ( ~A, z, q2)).

Push the node Check( ~A1, z1,min(θ1, p), p, q
′) where p = min(θ,Ω(q)).

Do not produce any output.

• If u is Move(( ~A, z, θ, q), (?, z′, q′) then there are nodes u′, u′′ such that

u →σM
u′ →σM

u′′, where u′ is Move(( ~A, z, θ, q), ( ~B, z′, q′)) and u′′ is

Push( ~B, z′, n, q′). Read “(q′,Push(z′))′′ and then push u′ and u′′ on the
stack. Do not produce any output.

After the end of a macro step we arrive back at a configuration where the
state is q0 and the node on the top of the stack is either Push or Check node.

The following observation shows that C is a strategy automaton.

Observation 28.1 If C reads a sequence of valid moves of A then it outputs
a sequence of valid moves of A. The content of the stack of C forms a path
in MA along →σM

. If C pops some elements from the stack and then pushes

a Check( ~A, z,min(θ, p), q) node then p is the smallest priority of the nodes
popped from the stack.
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The size of the transition system MA is O(k2cmn) where k is the size of
the stack alphabet, m is the number of states of A, {1, . . . , n} is the range
of the priority function Ω, and c is a constant. The task of establishing
existence of a winning strategy in MA is equivalent to checking satisfiability
of the specific µ-calculus formula. Hence any model-checking algorithm will
solve the problem. Using currently known algorithms [11, 15, 23] we obtain
that the whole problem can be solved in time O((k2cmn)n).

Corollary 29 Suppose we have a pushdown automaton A with a partition
of its states QI , QII and a function Ω defining the priorities of the states.
These define a pushdown game GA. We can establish the winner in GA in
time O((k2cmn)n) where k is the size of the stack alphabet, m the number of
states of A, and n is the size of the range of Ω.

It may be interesting to note that taking other winning conditions than parity
conditions does not essentially change the complexity of deciding the winner.
To translate, the most general, Muller conditions to parity conditions we
need to use LAR’s [16, 26]. These are of size 2m log(m). These LAR’s will take

place of priorities p in Check( ~A, z, θ, p, q) nodes of the above construction.
Hence the size of MA will increase by the factor 2m log(m).

Corollary 29 gives the estimation only for the problem of establishing
existence of a winning strategy. Putting it together with the reduction from
the previous subsection we obtain:

Corollary 30 For a given automaton A with m states and k stack symbols
and a formula ϕ of the size n1 and of the alternation depth n2 there is an
algorithm deciding in time O((k2cmn1n2)n2) whether ϕ holds in the root of
the pushdown tree TA.

5.3 The lower bound

Finally, we show a deterministic exponential time lower bound on the model-
checking problem for pushdown automata and (non alternating) µ-calculus.
It follows from a quite standard reduction obtained by simulating alternating
linear space bounded Turing machines. The simulating automaton is very
similar to the one described by Chandra, Kozen and Stockmeyer in [5].

Let M be an alternating linear space bounded Turing machine. We will
assume that M has only one tape and on the input of size n it uses at most
n − 1 tape squares along any computation path. Let Q = Q∃ ∪ Q∀ be the
set of states of M which is partitioned into existential and universal sates.
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Let Γ be a tape alphabet and let δ : Q × Γ → (Q × Γ × {left, right})2 be a
transition function. A configuration of M is a string wqw′ where w,w′ ∈ Γ∗

and q ∈ Q; moreover wqw′ is of length n.
For a given word w we construct a pushdown automaton A with the

states partitioned into QI , QII , such that player I has a strategy to reach a
leaf in the game TA iff w is accepted by M .

Let us describe the behaviour of A. Initially, being in states from QI , it
guesses n letters from Q ∪ Γ and pushes them on the stack. Among them
there should be exactly one letter q ∈ Q. The automaton remembers this
letter and the letter exactly after it. After pushing these n letters, A arrives
at a state form QI , if q is an existential state, and at a state from QII

otherwise. In this state, A consults the transition function of M and has a
choice of pushing on the stack one of the triples describing a legal move of
M . At this point the whole process repeats and A pushes new n elements on
the stack. The automaton finishes this first stage when in the last cycle of
pushing letters it pushed an accepting state. At this point A goes to a state
Check ∈ QII and on the stack we have a sequence:

c0(q1, a1, d1)c1 · · · (qk, ak, dk)ck

where c0, . . . , ck are configurations of M and {(qi, ai, di)}i=1,...,k are moves of
M .

From this position there will be a strategy for player I iff this sequence is
a valid sequence of configurations for the choices {(qi, ai, di)}i=1,...,k of M . In
the state Check player II can decide to either check that ck comes from ck−1

in the move (qk, ak, dk), or to take ck from the stack without checking and
check some configurations below. If finally player II decides to check that
some ci comes from ci−1 in the move (qi, ai, di) then it enters a state Check 1.
In this state player II can either check that the last letter of ci is correct or
it can take the letter from the stack and choose some subsequent letter. To
check that some letter of ci is correct the automaton remembers this letter
in its finite control, takes n+ 1 letters from stack (remembering (qi, ai, di on
the way). Then it remembers the next four letters from the stack and checks
the consistency of the five letters it remembers with the move (qi, ai, di). If
the test succeeds A stops, otherwise it goes into an infinite loop.

If the play reaches the configuration c0 without player II deciding to check
consistency two consecutive configurations then player II checks whether the
first configuration is an initial one. If the test succeeds A stops, otherwise it
goes into an infinite loop.

It is not difficult to construct a polynomial size automaton A defining the
game described above.
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Proposition 31 There exists a formula α (without alternations) such that
the problem “given a pushdown automaton A, is α satisfied in the root of
TA” is DEXPTIME-hard. (Formula α expresses the fact that player I can
reach a final state no matter what player II does.)

Remark:This argument does not work for BPA processes as they correspond
to pushdown automata without states and we needed states in our reduction.
Indeed looking and the complexity of our algorithm we can see that if the
automaton has only one state and k stack symbols, and the formula has the
size n1 and the alternation depth n2 then we can solve the model-checking
problem in time O((k2n1n2)n2). Hence, in polynomial time if n1, n2 are
fixed. In the case of alternation free formulas a similar complexity result was
obtained in [2].
Remark: We conjecture that model-checking is exponential also in the sec-
ond parameter. That is, there exists a fixed pushdown process A such that
the problem: “given a formula α, is α satisfied in the root of TA” is DEXP-
TIME hard.
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