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In verification, an automata theoretic approach is by now a standard. In order to extend this approach to
higher-order programs we need a good understanding of higher-order control flow, and for this semantics
has the right tools. We present some results and methods of this subject between automata theory and
semantics.

1. INTRODUCTION
As a relatively young science, Computer Science progresses in many different direc-
tions. It is particularly pleasant then when two such directions meet. Higher-order
verification is becoming a meeting ground for semantics, and automata theory com-
munities. This note intends to present some of the reasons for this common interest.

Rabin’s theorem states that monadic-second order theory of the full binary tree is
decidable. What about other trees? A behavior of a program is a sequence of actions it
performs, so the set of behaviors can be arranged into a potentially infinite tree. Such
a tree faithfully represents the semantics of the program: it is an infinite term that
when evaluated gives the denotational value of the program. What will be of particular
interest for us here is that this tree makes it also possible to talk about behavioral
properties of the program. For example, we may be interested to know if every behavior
can be prolonged to reach a finite state. Such a property can be expressed in monadic
second-order logic over trees.

Fig. 1. A finite automaton and its behavior tree.

To start with a simple example of this setting consider deterministic finite automata
as programs. Behaviors of an automaton are prefixes of words over which it has a run.
These can be arranged in a behavior tree as in the example in Figure 1. One can then
consider properties of this tree that are properties of the behaviors of the automaton.
For example: is it the case that every path can be prolonged to a path ending in a leaf?
In passing let us remark that for a human it is easier to see that this property holds
by looking at the automaton rather than at the behavior tree since it suffices to notice
that from every state there is a path to a state without outgoing edges.

Trees like BT (A) have appeared very early in the history of computer science. Ianov
in late 50-ties [Ianov 1960] has considered recursive schemes whose semantics were
such behavior trees; this is about the same time when Rabin and Scott have introduced
finite automata. In the beginning of 70-ties, Elgot and Scott [Elgot 1971; Scott 1971]
proposed to use free interpretation of programs as an intermediate step in program
semantics. In the free interpretation, the control structure of a program is executed but
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atomic operations are left non-interpreted. The result for a program P is a potentially
infinite tree BT (P ). This tree, considered as an infinite term, can be then evaluated
in a particular domain of interest. An example of the free interpretation is given in
Figure 2. Observe that even for this very simple example the behavior tree is not
regular: it has infinitely many different subtrees since the length of the branches going
to the left increases as −1 operations accumulate.

Fct(x) ≡ if x = 0 then 1 else x · Fct(x− 1)

BT (Fct(x)) if

= 0

x

1 ·

x if

= 0

−

x 1

1 ·

x ...

Fig. 2. Factorial program and its behavior tree.

In λ-calculus, behavior trees are known as Böhm trees. These are a sort of normal
forms of terms. The difference is that normal forms exist only for terms representing
terminating programs while every term has a Böhm tree. In this note we are actually
mostly interested in programs that do have nonterminating computations since we see
them as representations of reactive programs that interact with their environment ad
infinitum. As we will see, the Böhm tree of a closed term of the base type is simply
a ranked tree, so we can talk about monadic second-order properties of such trees.
In the context of automata theory, Courcelle proposed the metaphor of machines and
their behaviors [Courcelle 1995] that we have employed in our example from Figure 1.

We will consider programs written in the λY -calculus, the simply typed λ-calculus
with the fixpoint combinator. This is an abstraction of a strongly typed programming
language with recursive definitions and higher-order procedures/functions. Higher-
order permits to implement continuations in the λY -calculus, and these in turn al-
low to express a vast variety of control-flow operators. According to our methodology,
the constants in the λY -calculus are not interpreted. Yet, using control operators it is
possible to simulate finite domains and conditionals over them. Let us also mention
that PCF [Plotkin 1977], probably the most studied language in the field, is the λY -
calculus extended with integers and basic operations over integers. Under a different
syntax the λY -calculus has also been intensively studied by language theoretic com-
munity. One can cite the work of Engelfriet and Schmidt on IO and OI [Engelfriet and
Schmidt 1977; Engelfriet and Schmidt 1978], or the work of Damm on (safe) recursive
schemes [Damm 1982]. At present, the λY -calculus is the most expressive formalism
for which the results we report below hold.

We can now come to questions that will interest us in this overview. Given a term M
of the λY -calculus we will be interested in properties of the Böhm tree BT (M). These
properties will be expressed by a monadic second-order formula ϕ. We require that M
is closed and of the ground type so that BT (M) is just a ranked tree.

The basic question is that of decidability

Decidability. Given a closed term M of the ground type and a formula ϕ, decide if ϕ
holds in BT (M).
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Its particular instance is the question we have started with: the term M can encode a
finite automaton, and ϕ can express the property that every path can be prolonged to
a path reaching a leaf.

A more refined version of the decidability question is the transfer property. Its for-
mulation uses the fact that a term M itself can be seen as a graph, so MSOL can be
used to define sets of terms.

Transfer. Given ϕ, construct an MSOL formula ϕ̂ such that for every closed term M
of the ground type: ϕ̂ holds in M iff ϕ holds in BT (M).

The transfer property implies decidability since the graph representation of M is fi-
nite, so it is decidable if ϕ̂ holds in M . The formulation of the transfer property comes
from a long tradition of studying MSO-compatible operations that we will outline in
Section 2 [Blumensath et al. 2008]. The main strength of this formulation comes from
the fact that the formula ϕ̂ is constructed uniquely from ϕ, and is supposed to work for
all terms M . We will actually see later that the transfer property holds only when we
fix a finite set of variables that can occur in a term.

Another refinement of the decidability question makes an explicit connection be-
tween semantics and automata theory.

Recognizability. Given ϕ, construct a finitary model D of the λY -calculus and a set
F ⊆ D such that for every closed term M of the base type: ϕ holds in BT (M) iff
[[M ]]

D ∈ F .

Here [[M ]]
D stands for the value of termM in modelD; we will define models formally in

Section 3. A model is finitary if for every type it has finitely many functions of this type.
We cannot simply require that the model is finite since functions of different types, like
o→ o or o→ (o→ o), should be interpreted by different elements. The recognizability
property implies decidability: since D is finitary, one can calculate [[M ]]

D and check if it
belongs to F . We will see that recognizability implies the transfer property. The most
striking fact about the recognizability property is that while being a purely semantic
question, it is a generalization of recognizability of languages by finite semi-groups; a
standard notion in language theory.

Finally, we would like to mention another question since it has been there from the
beginning of the subject.

Equality. Given two closed λY -terms of the base type, M and N , decide if BT (M) =
BT (N).

Unfortunately, we do not have a lot to say about this question. It is of a somehow
different nature since it does not mention a formula, but rather asks if two terms
evaluate to the same result. Program equivalence has been, almost by definition, a
central subject in semantics. Decidability of the equality problem for the λY -calculus
is still open.
Broader context

The study of recursion on higher types as a control structure for programming lan-
guages was started by Milner [Milner 1973] and Plotkin [Plotkin 1977]. Program
schemes for higher-order recursion were introduced by Indermark [Indermark 1976].
The λY -calculus we consider here is a different presentation of higher-order recursive
schemes.

Research on higher-order schemes has spanned many decades. Recursive schemes
appear as an intermediate step in semantics of programming languages [Scott 1972;
Nivat 1975]. It has been discovered that schemes have many links with language the-
ory, in particular with context-free and context-sensitive languages [Engelfriet and
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Schmidt 1977; Courcelle 1978; Damm 1982]. More recently, it has been understood
that recursive schemes give important classes of trees with decidable MSOL theory
which makes them interesting from the point of view of automatic verification [Knapik
et al. 2002; Ong 2006].

The equality of two schemes implies that the two programs they represent have the
same meanings in every model. Equality problem for first-order schemes is equivalent
to the equality problem for deterministic pushdown automata [Courcelle 1978]. Thus
the fundamental result of Sénizergues [Sénizergues 2001] and subsequent revisits of
the proof by Stirling [Stirling 2002], Sénizergues [Sénizergues 2002], and Jancar [Jan-
car 2012] give an algorithm to test equivalence of schemes of order 1.

2. TRANSFER THEOREMS
Rice theorem tells us that no non-trivial property of the behaviour of a Turing machine
can be decided by examining the machine itself. But what about simpler machines? For
example, reaching an accepting state is a property of the behavior, and it is decidable
for numerous computation models. In this section we will be interested in deciding all
monadic second-order properties of behaviors. Transfer theorems are powerful tools to
obtain such decidability results because they compose. We will sketch a sequence of
results culminating in the transfer property for the λY -calculus.

At this point it would be useful to say what is a behavior of a machine. We suppose
that an execution of a machine produces a sequence of, non-interpreted, atomic actions.
The behavior then is a tree constructed from all such sequences. More abstractly, one
can think of a machine as a graph (graph of a finite automaton for example), and
behavior as an operation on this graph. Unfolding from a given initial node, is an
important example of such an operation on graphs. In Figure 3 we see a two node
graph and its unfolding that is the full binary tree.

Fig. 3. A two node graph and its unfolding from the initial node marked with a circle.

Monadic second-order logic (MSOL) is an extension of first-order logic with quantifi-
cation over sets; or said differently, over monadic predicates. We use x, y, . . . to range
over individual elements and X,Y, . . . to range over sets. We will interpret MSOL in
trees or graphs. The full Σ-tree has as Σ∗ as the set of nodes, with the empty word ε
being the root of the tree. The successor relations give the successor of a node for every
label: Sa(w,wa) holds for all a ∈ Σ and w ∈ Σ∗. A Σ-tree for Σ = {l, r} is the full binary
tree. For example, the formula:

ψ(x, x′) ≡ ∀Z. [Z(x) ∧ (∀y, y′. Z(y) ∧ Sl(y, y′)⇒ Z(y′))]⇒ Z(x′)

says that x′ is reachable from x by a sequence of steps to the left, i.e., steps given by Sl
relation.

Rabin’s theorem says that MSOL theory of the full binary tree is decidable. In other
words, there is a procedure that given a sentence of MSOL determines whether this
formula holds in the full binary tree. It is not important that the tree is binary, the
same result holds for a tree of any fixed branching. If branching is not fixed, or if
it is unbounded, then some care is needed to adapt the signature of the logic. If the
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branching is unary then the tree is actually an infinite sequence. The decidability of
MSOL theory of a sequence was proved by Büchi [Büchi 1960]. MSOL is not decidable
over the class of all graphs. Yet the MSOL theory of a fixed finite graph is decidable.

The transfer property for a graph operation F says that for every monadic second-
order formula ϕ one can construct a monadic second-order formula ϕ̂ such that for
every graph G:

G � ϕ̂ iff F(G) � ϕ

Figure 4 gives some intuitions behind this formulation. Machine is represented as a
graph G and behavior as a, very irregular, tree F(G). For example, if F is the unfolding
operation from the initial state and ϕ is a formula saying that there is a red state, then
ϕ̂ is the formula saying that there is a path from the initial state to a red state.

Fig. 4. Transfer property: for a given ϕ describing a property of behaviors, there is a property ϕ̂ of machines
with such behaviors.

Logical interpretation provides the first class of important examples of operations
having the transfer property. From an edge colored graph G = 〈V, {Ra}a∈Σ〉 we can
define another graph G′ = 〈V ′, {R′b}b∈Σ′〉 by means of MSOL formulas. We take one
formula θdom(x) for the domain, and a formula θb(x, y) for every relationR′b, with b ∈ Σ′.
This determines:

V ′ = {v ∈ V : G � θdom(v)} and R′b = {(v1, v2) ∈ V 2 : G � θb(v1, v2)}

Now, given an MSOL formula ϕ we can construct ϕ̂ by relativizing quantifiers to V ′
and substituting θ′b for R′b:

̂∃x.ψ(x) 7→ ∃x.θdom(x) ∧ ψ̂ R̂′b(x, y) 7→ θb(x, y)

We get that G � ϕ̂ iff G′ � ϕ.
MSOL transduction [Courcelle 1994] is a bit more general operation allowing first to

make a fixed number of copies of G, and then to use a logical interpretation. Copying
of a structure can be simulated in the formula ϕ̂ by the use of different variables. For
example a subformula ∀x.ψ in ϕ is replaced by ∀x1, x2.ψ̂ in ϕ̂; with x1 simulating x
over the first copy and x2 over the second copy. This idea leads to the proof that MSOL
transduction has also the transfer property. Actually, one can go even further and con-
sider MSOL transductions with parameters, this leads to a notion nondeterministic
transductions as apposed to the deterministic ones that we adopt here.

Finally, the unfolding operation has the transfer property [Semenov 1984; Courcelle
and Walukiewicz 1998; Walukiewicz 2002]. This statement implies Rabin’s theorem:
to decide if a MSOL formula ϕ holds in the full binary tree, we take ϕ̂ given by the
transfer property and check if it holds in the two node graph on the left of Figure 3.
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2.1. Transfer for pushdown automata
In order to get some feeling for how transductions and unfoldings can be put to work,
we will look at the case of pushdown automata.

A pushdown automaton is given by a set of (prefix rewriting) rules of the form:

push: qγ a−→ q′γ′γ test: qγ a−→ q′γ pop: qγ a−→ q′

where, q, q′ ∈ Q come from a finite set of states, a ∈ Σ from the input alphabet, and
γ, γ′ ∈ Γ from the stack alphabet.

The graph of configurations of a pushdown automaton has Q×Γ∗ as nodes and edges
qγw

a−→ q′vw, for qγ a−→ q′v a rule of the automaton and w ∈ Γ∗ arbitrary. For example,
consider the three rules:

qγ
a−→ qγγ qγ

b−→ q′γ q′γ
c−→ q′

The fragment of the graph of configurations reachable from the initial node qγ is pre-
sented in Figure 5(a). This graph can be defined inside of (Σ ∪ Γ)-tree as shown in
Figure 5(b). Thin edges are the edges of the tree, they are labeled with letters from
Σ ∪ Γ. Thicker edges are the edges of the pushdown graph. For example, edges labeled
b link a node that is a target of q edge to its sibling that is a target of q′ edge; clearly
this can be expressed by an MSOL formula. Generalizing this example one can see
that the configuration graph of a pushdown automaton can be defined by an MSOL
interpretation inside a (Σ ∪ Γ)-tree.

(a) (b) (c)

Fig. 5. Pushdown graph, its definition inside (Σ ∪ Γ)-tree, and its unfolding into a behavior tree.

The behavior tree of the automaton, Figure 5(c), is obtained by unfolding the con-
figuration graph from the node qγ. Observe that this is not a regular tree because the
length of branches going to the right increases. Since this tree has been obtained from a
full tree by an MSOL interpretation and unfolding, it has decidable MSOL theory. This
gives the following theorem that has been first proved by Muller and Schupp [Muller
and Schupp 1985].

THEOREM 2.1. For every pushdown automaton, the MSOL theory of its behavior
tree is decidable.

2.2. The λY -calculus
In this section we present the λY -calculus as another way to define infinite trees. In the
previous subsection we have considered trees obtained by the unfolding of the graph
of configurations of a pushdown automaton. Terms can be seen as another type of ma-
chines. The computation rules are β-reduction for application of function arguments,
and δ-reduction for fixpoint unfolding. Under these rules a term of this calculus evalu-
ates to a potentially infinite tree, called Böhm tree. It can be seen as the behavior tree
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of the term considered as a machine. In order to stick to the standard vocabulary, we
will refer to behavior trees of terms as Böhm trees.

The class of Böhm trees of λY -terms is quite rich; one of the richest we know of
having decidable MSOL theory. It contains behavior trees of pushdown automata con-
sidered in the the previous subsection.

Types are essential to what follows since terms in the λY -calculus are typed. The set
of types T is constructed from a unique basic type o using a binary operation → that
associates to the right. Thus o is a type; and if A, B are types, so is (A→ B). The order
of a type is defined by: order(o) = 0, and order(A → B) = max(1 + order(A), order(B)).
Types of order 1 are of the form o→ · · · → o→ o that we abbreviate oi → o when they
contain i+ 1 occurrences of o. We will consider only tree signatures that are finite sets
of typed constants of order at most 1. This is an important restriction; as we will see
later, it implies that Böhm trees of closed terms of the base type are just ranked trees
and do not have any λ-binders.

Terms of the λY -calculus are built from the constants in the signature, typed vari-
ables xA, yA, . . . , and constants Y A, ΩA for every type A. The last two stand for the
fixpoint combinator and undefined term, respectively. Bigger terms are constructed us-
ing typed application, MA→BNA, and λ-abstraction, λxA. M . For readability we will
often omit type annotations. We will also often write Y x.M instead of Y (λx.M).

For example, consider constants a, b : o → o, and c : o. Then λxo.a(bx) is a term. We
will denote it Mab as we can think of it as representing a word ab. A more complicated
example is λzo→o1 λzo→o2 λx. z1(z2(x)) which represents function composition, let us call
this term Mcomp. Its type is (o→ o)→ (o→ o)→ o→ o.

The operational semantics of the λY -calculus, is given by β-contraction, and δ-
contraction rules

(λx.M)N →β M [N/x] YM →δ M(YM)

We have for example that McompMabMab reduces to Mabab; function composition works
as concatenation on terms representing words. A subterm of the form as at the left-
hand-side of these two rules is called β-redex, or δ-redex, respectively. Let us underline
that the substitution M [N/x] in the β-reduction stands for capture avoiding substi-
tution: the variables free in N should not be captured by binders in λ. Consider for
example (λx.λy.x)y →β (λy.x)[y/x] that is just a projection on the first argument ap-
plied to y. Textual substitution would give λy.y which is wrong. The capture avoiding
substitution requires to change the name of the bound variable resulting in λz.y.

The reflexive transitive closure →∗βδ of →βδ is called βδ-reduction. This relation is
confluent and enjoys subject reduction (i.e. the type of a term does not change during
reduction). Confluent means that every two sequences of reductions can be extended
so that they end in the same term. A term is in a head normal form if it is of the form
λ~x. N0N1 . . . Nk with N0 a variable or a constant, and λ~x a possibly empty sequence of
λ-abstractions. Notice that no further reduction can modify λ~x. N0 prefix of the head
normal form. The confluence property implies that if a term reduces to a term in a
head normal form as above then λ~x and N0 do not depend on what reduction sequence
has been used.

To obtain the Böhm tree of a term M , denoted BT (M), we find its head normal form
M →∗βδ λ~x. N0N1 . . . Nk. Then BT (M) is a tree having its root labeled by λ~x.N0 and
having BT (N1), . . . , BT (Nk) as subtrees. If M does not have a head normal form then
we put BT (M) = Ωo. Observe that if M is a closed term of type o then since we work
with tree signatures, the head normal form must be necessary of the shape bN1, . . . , Nk
with b a constant, and N1, . . . , Nk terms of the base type. The confluence property of
→βδ reduction guarantees that the Böhm of a term is unique.

ACM SIGLOG News 7 Vol. 0, No. 0, 0000



The definition implies that a Böhm tree of a closed term of type o over a tree signa-
ture is a potentially infinite ranked tree: a node labeled by a constant b of type ok → o
has k successors. Constants Ω can appear only in leaves, they denote unproductive
parts of the computation. A Böhm tree is a kind of a potentially infinite normal form
of a λY -term.

As a simple example, let us take M = λx.ax. We have a reduction sequence

YM →δ (λx.ax)(YM)→β a(YM)→∗βδ a(a(YM))→ . . .

So BT (YM) is the infinite sequence aa . . .
For a more complicated example take (Y z. N)awhereN = λg.g(b(z(λx.g(g x)))). Both

a and b have the type o→ o; while z has type (o→ o)→ o, and so does N . Observe that
we are using a more convenient notation Y z here. The Böhm tree of (Y z.N)a is

BT ((Y F.N)a) = aba2ba4b . . . a2n

b . . .

after every consecutive occurrence of b the number of occurrences of a doubles because
of the double application of g inside N .

2.3. Transfer theorem in a simple case
To get some feeling for the λY -calculus and the methods we will use, we will consider a
relatively simple case of terms whose all the variables are of type o. The method we will
use was proposed by Courcelle and Knapik [Courcelle and Knapik 2002]. We will not
consider the Y combinator in this subsection as it does not pose particular difficulties.
Anyway, all that we will say here applies to infinite terms, so Y can be replaced by an
infinite iterator, that is an infinite regular term.

tree(M) ≡

@

λx c

@

λy x

@

b y

link(tree(M)) ≡

@

λx c

@

λy x

@

b y

Fig. 6. A term M = (λx. (λy.by)x)c represented as a tree, and the same tree with links from variables to
arguments; symbol @ stands for application.

We now explain on an example how we can find the Böhm tree of a term M . Terms
can be represented as trees in an expected way, cf. Figure 6. We will construct the Böhm
tree of M from tree(M) by means of MSOL definable transductions and unfolding.
The main technical property of the case we consider in this subsection is that when
reducing a β-redex we do not create a new β-redex; this is because we subsitute only
terms of the base type. This property implies that after reducing all the redexes in
parallel we obtain the Böhm tree.

The first step is to add edges from bound variables to arguments they are applied
to. This can be done by finding the λ-binder of a variable, then finding the correspond-
ing application, and linking the variable to the right argument of this application, cf.
Figure 6. Let us call this operation link(·).

In the second step one can read out the Böhm tree of M from the unfolding of
link(tree(M)). It suffices to start in the root and to follow the leftmost path in the
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link(tree(M)) till a constant or an application node whose first argument is a con-
stant; at this point one should take this application node, the constant below, and
continue from all other successors of the application node. In our example, the appli-
cation we find is the one that is the father of b. Then we take b node, and find c by
following dashed links from y. Let us call this operation smpl(·). We have BT (M) =
smpl(link(tree(M))).

The above description gave some intuitions why smpl(link(tree(M))) can be con-
structed from link(tree(M)) by an unfolding followed by an MSOL transduction. More
careful examination would show that link(·) is an MSOL transduction if (i) we fix a
finite set of variables, so that we can find the corresponding binder; and (ii) fix the
maximal arity of types in order to find the application corresponding to a given binder.
To formalize this we introduce a set Terms(Σ, T ,X ) of terms over signature Σ, using
λ binder only on variables from a finite set X , and with all subterms having a type in
a finite set T . Actually, if we use Y x.M notation then in this definition we need not
limit the use of variables bound by Y . The link operation restricted to Terms(Σ, T ,X ),
is an MSOL transduction. To summarize, smpl(link(tree(M))) is obtained from tree(M)
by MSOL transductions and unfolding. Since smpl(link(tree(M))) is BT (M), and since
these operations have the transfer property we obtain:

THEOREM 2.2. Fix Σ, T , and X . For every MSOL formula ϕ one can effectively
construct an MSOL formula ϕ̂ such that for every closed λY -term M ∈ Terms(Σ, T ,X )
of type o with all variables of type o:

M � ϕ̂ iff BT (M) � ϕ.

2.4. Transfer for the safe λY -calculus
When computing with βδ-reduction it may be necessary to rename bound variables, cf.
example on page 7. This corresponds to the concept of static binding in programming
languages. Here we will consider safe λY -terms whose form guarantees that renaming
is not needed during a reduction. For this class one can adopt the method from the
previous subsection.

The notion of safety, implicit in the work of Damm [Damm 1982], was explicitly de-
fined by Knapik et al. [Knapik et al. 2002] in the context of recursive schemes. Blum
and Ong [Blum and Ong 2009; Blum 2009] have extended this notion to the whole
simply typed lambda-calculus and proved many properties about it. After some proper
handling of Y [Salvati and Walukiewicz 2016], this notion for the λY -calculus corre-
sponds exactly to the one defined by Knapik et al. for recursive schemes. Below we
briefly present the notion of safety, and give an idea why renaming is not necessary
when reducing safe terms. Finally, we will sketch how to apply the technique from the
previous section to get the transfer property for safe terms.

In order to simplify the definitions we will consider only homogeneous types. Every
type has the formA1 → · · · → An → o. A type is homogeneous if the orders ofA1, . . . , An
form a non-increasing sequence: order(A1) ≥ · · · ≥ order(An). Observe that every func-
tion can be converted to a function of a homogeneous type by simply reordering its
arguments.

We define safe terms of a homogeneous type A1 → · · · → An → o. For this we take
the index k such that order(A1) = · · · = order(Ak) > order(Ak+1). A term of the above
type is safe if it is either: a constant; a variable; of a form λxA1

1 . . . λxAk

k .N with N a safe
term whose all free variables have order bigger than order(A1); or of a form MN1 . . . Nk
with M,N1, . . . , Nk safe terms of respective types.

The main point about safe terms is that variables need not be renamed during a
reduction of a safe term. In a β-reduction step, (λx.M)N →β M [N/x], the definition of
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the substitution requires that free variables of N are not captured by binders in M .
So, if λy.K is a subterm of M then either: (i) y should not be a free variable of N , or
(ii) x should not appear free in K. Otherwise we need to rename y. If M is a safe term
then by definition all free variables in K have order bigger than the order of y. So if x
is free in K then order(x) > order(y). Now since N is safe, the order of a free variable
z of N is at least order(N) = order(x). So order(y) < order(x) ≤ order(z) shows that
z 6= y, hence we do not need to rename y. Thus the main point about the definition of
safety is that the order of free variables in a safe term must be at least as big as the
order of a term itself. The other conditions of the definition ensure that this property
is preserved by β-reduction.

We will not give the definition of safe terms for λY -calculus [Salvati and Walukiewicz
2016]. It is quite similar but requires to make a distinction between variables bound by
λ and those bound by Y . This is necessary to have an equivalence with safe recursive
schemes as defined by Kanpik et al.[Knapik et al. 2002].

For safe terms we can use the same tools as in the previous subsection. First, we can
reduce all the redexes of the highest order, say n. In the obtained term all redexes will
be of order at most n−1. Moreover thanks to safety no renaming would be needed. Then
we repeat reducing the redexes of the highest remaining order till none is left. So the
complete transduction is now something like smpl1(link1(. . . (smpln(linkn(tree(M) . . . )
with link i, smpl i working with variables of order i. This procedure works only because
no step introduces new variable names. So if we start with a term from Terms(Σ, T , X)
then after every smpl i(link i(·)) we get again a term from Terms(Σ, T , X).

This way we obtain the transfer theorem for evaluation of safe terms. The exact
formulation is as that of Theorem 2.2 but instead of restricting to terms with variables
of type o, it requires that terms are safe.

2.5. Transfer for the full λY -calculus
For pushdown automata, as well as for terms with variables of type o, transductions
and unfolding gave intuitively convincing ways to obtain the Böhm tree of a term. For
safe terms the same approach worked when applied inductively on the order of redexes
appearing in a term. For the full λY -calculus this does not work. The question what is
the Böhm tree of a term is central to higher-order verification. Unlike for safe terms,
we do not know simple basic operations with which we can construct Böhm trees of all
terms of the λY -calculus. All the approaches mentioned below construct such a tree in
one go.

Before we start, let us outline the tree automata approach to model-checking. Cou-
pled with a good description of Böhm trees, it will give us decidability of higher-order
model checking. The first step is to translate a property to be verified to a tree automa-
ton. For our purposes let us take automata working on Σ-trees:

A = 〈Q,Σ, qinit ∈ Q, δ,Ω : Q→ N〉
where Q is a finite set of states, Σ is a tree signature, Ω is a parity acceptance condi-
tion, and δ is a transition function such that δ(q, b) ∈ P(Qk) where k is the number of
arguments of b. So, for example, if the type of b is o→ o→ o then δ(q, b) ∈ P(Q×Q). For
a constant c ∈ Σ of the base type o, we have δ(q, c) ∈ P(Q0) = {ff , tt}; constant c labels
a leaf in a tree, so δ(q, c) indicates if a run can reach the state q in a leaf labeled c. The
next step is to take a transition system S to model check and to construct a two player
game K(A,S). The idea is that this game characterizes when A accepts the unfolding
of S. The positions of the game are either pairs (q, v), where q is a state of A and v is a
node of S, or tuples (q1, . . . , qk, v) if v is labeled by a letter of arity k. In a position of the
form (q, v) a player, that we call Eve, chooses any position (q1, . . . , qk) ∈ δ(q, b) where
b is the label of v. In this new position the other player, that we call Adam, chooses
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i ∈ {1, . . . , k} so that the game can proceed to (vi, qi), where vi is the i-th successor of
v. A play in this game is an infinite sequence of moves, or a finite one if there is no
outgoing move from some position. The later can happen only when v is labeled by a
nullary constant, and then Eve wins if δ(q, v) = tt . An infinite play is won by Eve if the
sequence of states seen on the play is winning with respect to the parity condition Ω
of the automaton. This way model-checking is reduced to game solving: the property
given by A holds in a node v of S iff Eve has a winning strategy in K(A,S) from the
position (qinit, v).

To apply the outlined automata theoretic method one needs a suitable description of
what a Böhm tree of a term is, since it will be S in the approach outlined above. First
such description using game semantics was given by Ong [Ong 2006], and it him al-
lowed to prove the decidability result. Another one is via an extension of higher-order
pushdown automata with a collapse operation (CPDA) [Hague et al. 2008]. This split
the decidability proof in two independent steps: (i) an equivalence of λY -calculus and
CPDA; (ii) a decidability result for trees generated by CPDA. None of these steps is
easy. Step (i) is a quite intricate challenge in programming of CPDA, and it has been
the subject of independent studies [Carayol and Serre 2012; Salvati and Walukiewicz
2016]. Step (ii) is not easy either, it resembles a bit methods used for pushdown au-
tomata but requires to put CPDA into some normal form first.

Another approach came from the word of λ-calculus, where Krivine machines [Kriv-
ine 2007] have been used to understand β-reduction. Taking Krivine machines instead
of CPDA greatly simplifies step (i) since equivalence of λY -calculus and trees gener-
ated by Krivine machines is almost evident. The good news is that this also simplifies
step (ii) since Krivine machines have much more structure than CPDA, in particular
they carry typing information from the term.

Yet another formalism has been proposed recently [Clemente et al. 2015]. Is is based
on prefix tree rewriting and is more flexible in the sense that there are direct trans-
lations of Krivine machines and CPDA to this formalism. This flexibilty allowed for
example to notice that verification of ordered pushdown systems [Atig 2012] is a par-
ticular instance of higher-order model checking.

Below we briefly outline the Krivine machine approach as it is the one that is most
on the borderline between different communities.

A Krivine machine [Krivine 2007], is an abstract machine that computes the weak
head normal form of a λ-term. For this it uses explicit substitutions, called environ-
ments. Environments are functions assigning closures to variables, and closures them-
selves are pairs consisting of a term and an environment. This mutually recursive
definition is schematically represented by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x 7→ C] .

As in this grammar, we will use ∅ for the empty environment. The notation ρ[x 7→ C]
represents the environment that is as ρ but for the variable x where its value is C.
Intuitively, a closure (M,ρ) denotes a closed λ-term: it is obtained by substituting for
every free variable x of M the λ-term denoted by the closure ρ(x).

A configuration of a Krivine machine is a triple (M,ρ, S), where M is a term, ρ is
an environment, and S is a stack. A stack is a sequence of closures. By convention the
topmost element of the stack is on the left. The empty stack is denoted by ε. The rules
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(a) (b) (c)

Fig. 7. Computation of the Krivine machine on (M, ∅, ε), (a); from which we can read out the Böhm
tree BT (M), (b); and on which we can define the acceptance game K(A,M), (c). Letter C abbreviates
(b, ρ, (N1, ρ1)(N2, ρ2)).

of a Krivine machine are as follows:

(λx.M, ρ, (N, ρ′)S)→(M,ρ[x 7→ (N, ρ′)], S)

(MN, ρ, S)→(M,ρ, (N, ρ)S)

(Y x.M, ρ, S)→(M,ρ[x 7→ (Y x.M, ρ)], S)

(x, ρ, S)→(M,ρ′, S) when ρ(x) = (M,ρ′).

The first rule says that in order to evaluate an abstraction λx.M , we should look for
the argument at the top of the stack, then we bind this argument to x, and calculate
the value of M . To evaluate an application MN we create a closure out of N and the
current environment so as to be able to evaluate N correctly when necessary and put
that closure on the stack; then we continue to evaluate M . The rule for Y x.M simply
amounts to bind the variable x in the environment to the current closure of Y x.M and
to calculate M . Finally, the rule for variables says that we should take the value of the
variable from the environment and should evaluate it; the value is not just a term but
a closure: a term with an environment giving the right meanings to the free variables
of the term.

Note that the rules of a Krivine machine are deterministic and that there is one rule
per form of a term. The rules preserve typing in a sense that every configuration reach-
able from (M, ∅, ε) with M of type o is of the form (N, ρ, S) where (i) N is a subterm of
M ; (ii) ρ is defined for all free variables in N and assigns to them closures of appropri-
ate types, and (iii) S is a sequence C1 . . . Ck of closures of types A1, . . . , Ak, respectively,
where A1 → . . . Ak → o is the type of N . In particular, the length of S is bounded.

Let us explain how to use Krivine machines to calculate the Böhm tree of a term,
cf. Figure 7(a). For our purposes it is enough to consider a closed term M of the base
type. We start the machine in a configuration with the empty environment and stack:
(M, ∅, ε). The machine is deterministic, but it may not stop due to the fixpoint rule. If it
does not stop then BT (M) = Ω0. If it does stop then, since its execution preserves typ-
ing, the reached configuration must be of the form (b, ρ, (N1, ρ1)(N2, ρ2)), for simplicity
suppose that the arity of b is 2. The type of b is o2 → o; and N1, N2 are terms of type
o. In this case b is the root of BT (M) and the subtrees attached to the root are Böhm
trees computed form (N1, ρ1), and (N2, ρ2), cf. Figure 7(b).

The next step is exactly the same as in the standard automata theoretic approach
outlined above. We take the computation tree of the Krivine machine K(M), as in
Figure 7(a), make a product with a tree automaton A recognizing the property. This

ACM SIGLOG News 12 Vol. 0, No. 0, 0000



gives the a game K(A,M) from Figure 7(c). There is a new branching corresponding to
the choice of a transition of the automaton by Eve. So the question whether BT (M) is
accepted by A is reduced to the question of existence of a winning strategy for Eve in
K(A,M).

The game K(A,M) is infinite because K(M) is infinite due to environments that may
grow arbitrary big. One can think of a Krivine machine as a kind of pushdown machine
with a tree-shaped stack.

The last step is to construct form K(A,M) a finite game G(A,M). The idea is to
replace closures by elements from a finite domain. This domain will depend on the
ranks used in the acceptance condition of A, say that the range of Ω is {1, . . . , d}. We
let Ro, the set of residuals of type o, to be P(Q)× {1, . . . , d}; and RA→B to be the set of
functions from A to B. The positions of G(A,M) are of the form q : (N, ρR, SR) where
N is a subterm of M , ρR assigns residuals of appropriate types to variables, and SR is
a stack of residuals of types determined by the type of N . So the number of positions is
finite. It can be then shown that G(A,M) is equivalent to K(A,M) in a sense that the
winner in the two games is the same [Salvati and Walukiewicz 2014]. Game G(A,M)
can be then solved algorithmically since it is finite.

Finally, one can observe that there is an MSOL-transduction defining G(A,M) from
tree(M) provided M comes from some fixed set Terms(Σ,X , T ) for some finite set of
variables X , and a finite set of types T . This construction gives the desired result [Sal-
vati and Walukiewicz 2013]

THEOREM 2.3 (TRANSFER THEOREM). Fix Σ, T , and X . For every MSOL formula
ϕ one can effectively construct an MSOL formula ϕ̂ such that for every closed λY -term
M ∈ Terms(Σ, T ,X ) of type o:

M � ϕ̂ iff BT (M) � ϕ.

The transfer theorem can be also derived from the typing system of Kobayashi and
Ong [Kobayashi and Ong 2009]. In [Salvati and Walukiewicz 2013] Transfer Theo-
rem is also proved for infinite λ-terms. The restriction to Terms(Σ, T ,X ) looks to be
unavoidable: the transfer property does not hold for the class of all terms if the poly-
nomial time hierarchy is strict [Salvati and Walukiewicz 2013].

3. RECOGNIZABILITY
Recognizability by a morphism from Σ∗ to a finite semi-group is a standard notion from
language theory [Eilenberg 1974]. Recognizable languages of finite words are precisely
regular languages, or equivalently, languages definable in MSOL. Here we will take
the same definition but instead of semi-groups we take models for the λY -calculus. We
will see that in this case we can also recognize all MSOL definable languages of λY -
terms. But, at present it is not known if there are some other languages of λY -term
that are recognizable.

A model D is a family of sets indexed by types, {DA}A∈T , together with an interpre-
tation [[·, ·]]D mapping a term M of type A and a valuation υ to an element [[M,υ]] of
DA. As usual, a valuation is a function assigning elements of the model to variables;
this function should respect typing, meaning that υ(xA) ∈ DA for every variable xA.
Recall that variables are explicitly typed but we often do not write this type when it
is not important. Similarly, we will often omit the superscript D in [[·]]D. While there
are more general formulations, here we will simply require that DA→B is a subset of
DA → DB , so elements of a higher type are functions on elements of a lower type. A
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model must satisfy the following identities:

[[x, υ]] =υ(x)

[[MN,υ]] =[[M,υ]]([[N, υ]])

[[λxA.M, υ]](d) =[[M,υ[d/x]]] for every d ∈ DA

[[Y (A→A)→A, υ]](d) =d([[Y, υ]](d)) for every d ∈ DA

These identities guarantee that [[M,υ]] ∈ DA for every term of type A. They imply
also that a model assigns the same value to βδ-equal terms, i.e., if M →β,δ N then
[[M,υ]] = [[N, υ]], for arbitrary υ. If M is a closed term, we will simply write [[M ]] without
mentioning a valuation.

A model D can be used to recognize a set of terms [Salvati 2009]. Given a set of
elements of the base type F ⊆ Do, the language recognized by F in D is a set of closed
terms of the base type: {M : [[M ]]

D ∈ F}.
This definition of recognizability is of the same form as recognizability of word lan-

guages by semi-groups. The nice thing is that for words the two are equivalent in the
following sense. Recall from page 7 that a word w can be represented as a term Mw

of type o → o. Let us suppose that we have a constant c : o just to be able to con-
struct terms of type o; so Mwc has type o. For every finite model D and F ∈ Do the set
{w : [[Mwc]] ∈ F} is recognizable by a finite semi-group; and conversely, for every set
of words recognizable by a finite semi-gorup we can find an appropriate model D and
F ∈ Do.

By definition, the set of recognizable sets of terms is closed under union, intersection,
and complement. The important difference with recognizability for words is that it is
not closed under relabeling [Salvati 2009], in particular a problem arises when two
constants are relabeled to the same constant. Another important difference is that the
emptiness of a recognizable set is not decidable: one cannot determine if there is a term
of a given value. This is a reformulation of the result of Loader about undecidability of
λ-definability [Loader 2001].

The definition of the model allows to interpret Y as an arbitrary fixpoint. At present
we do not know what is the recognition power of such models, the difficulty comes from
the fact that it is not clear how to handle arbitrary fixpoints. We know the answer in
some particular cases though.

The first obvious thing to consider are greatest fixpoints. A GFP model is when Do

is a finite lattice, and DA→B is the set of monotone functions in DA → DB ordered
componentwise. As the name suggests, Y is interpreted as the greatest fixpoint, and
ΩA as the greatest element >A in DA. By inverting the order we also obtain LFP
models.

As an example of a GFP model, consider D2 with Do = {⊥,>}. All constants other
than Y and Ω are interpreted as the least element of the appropriate type. This model
can recognize terms that do not have a head normal form:

BT (M) = Ω iff [[M ]]
D2 = >.

The next theorem characterizes the recognition power of GFP-models in terms of
tree automata. A tree automaton as defined on page 10 is a TAC-automaton if Ω(q) = 0
for all states of the automaton. TAC stands for trivial acceptance condition, as in-
deed every infinite play in the acceptance game is winning for Eve. TAC automata
express exactly the properties expressed in the mu-calculus with formulas using solely
the greatest fixpoint operator (and no negation). An automaton is moreover Ω-blind if
δ(q,Ω) = tt for all states q; this means that it cannot test for divergence.
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THEOREM 3.1. [[Aehlig 2007],[Salvati and Walukiewicz 2015c]] A language L of
λY -terms is recognized by a GFP-model iff it is a boolean combination of languages of
Ω-blind TAC automata.

We would like to outline how to construct a model for a given TAC automaton. This
will, almost, prove the right-to-left implication of the theorem. Given an automaton A
we construct a modelDA. The elements of the base setDo are just the subsets of the set
of states of A: DAo = P(Q). This determines DA for every type A. A constant c of type
o is interpreted as the set {q : δ(q, c) = tt}. A constant b of type 0k → 0 is interpreted
as the function whose value on (S1, . . . , Sk) ∈ P(Q)k is {q : δ(q, b) ∩ S1 × · · · × Sk 6= ∅}.
Finally, for the set FA used to recognize L(A) we put S ∈ FA iff S contains the initial
state of A.

We want to show that for every closed term M of type o:

BT (M) ∈ L(A) iff [[M ]]
DA
∈ FA. (1)

A nice property of GFP-models is that we can define the semantics of a Böhm tree
of a term using its truncations. For every n ∈ N, we denote by BT (M)↓n the finite
term that is the result of replacing in the tree BT (M) every subtree at depth n by the
constant ΩA of the appropriate type. Observe that if M is closed and of type o then A
will be o too. This is because we work with a tree signature. We define

[[BT (M), υ]] =
∧
{[[BT (M)↓n, υ]] : n ∈ N}. (2)

An important consequence of this definition is that [[BT (M)]] = [[M ]] for every closed
term M (c.f. [Amadio and Curien 1998] Exercise 6.1.8).

Coming, back to the eqivalence (1), we first prove the left-to-right direction. We
take a λY -term M such that BT (M) ∈ L(A), and show that the initial state q0 is
in [[BT (M)]]. This will do as [[BT (M)]] = [[M ]] by the above paragraph. Thanks to equa-
tion (2), it is enough to show that q0 ∈ [[BT (M)↓n]] for every n supposing that A accepts
BT (M). This is proved by examining the definition of the model.

To prove the right-to-left direction of equivalence (1), we take a term M and a state
q ∈ [[M ]] = [[BT (M)]]. We show that A accepts BT (M) from q. For this we say how
Eve should play to win in the acceptance game. For example, if BT (M) is of the form
bN1 . . . Nk then by the definition of [[b]], there is (q1, . . . , qk) in δ(q, b) so that qi ∈ [[Ni]], for
all i ∈ {1, . . . , k}. Thus Eve can choose this transition, then Adam chooses a direction i,
and then Eve can proceed with qi from the i-th child of the root. This strategy ensures
that Eve does not loose a finite play. Since A is a TAC automaton, every infinite play
is winning for Eve. So the strategy is winning for Eve, and A accepts BT (M) from q.

As the construction of the model DA is effective, property (1) gives decidability of
higher-order model checking for properties expressed by TAC automata. It is is enough
to take a term and evaluate it in the model using the identities above. The value of a
term of type o will be a set of states of the automaton. The property holds if the initial
state is in this set.

This is a strikingly simple decidability proof. We have outlined one direction of the
proof of Theorem 3.1, the other is not more complicated, moreover the whole proof uses
only standard techniques from λ-calculus. It is then very tempting to try to construct
models for more complicated automata. The left-to-right direction of Theorem 3.1 pre-
dicts some difficulties though as more complicated automata will need more compli-
cated fixpoints.

The first generalization of Theorem 3.1 is to consider consider all TAC automata,
and not necessarily Ω-blind ones. The idea is to combine model D2 for recognizing Ω
with a GFP model for a blind TAC automaton. Intuitively, D2 model changes Ω to a
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“normal” label and then the blind TAC automaton can read this label without restric-
tions [Salvati and Walukiewicz 2015c].

The idea of combining models was then streamlined and generalized in [Salvati
and Walukiewicz 2015b] to obtain the result for weak MSOL. Automata recognizing
weak MSOL have a special form. One can think of such an automaton as working in
phases: first runs an Ω-blind TAC automaton and labels the tree, then a dual to an
Ω-blind TAC automaton reads this labeling and produces a new one, then it is the
turn of another Ω-blind TAC automaton, and so on for a fixed number of phases. In
semi-group theory such a cascade composition of automata is captured by the wreath
product of semi-groups recognizing languages of respective automata. In [Salvati and
Walukiewicz 2015b] we do a loosely similar construction but only for a very specific
class of models that is sufficient for weak MSOL.

For all MSOL properties the construction is more complicated [Salvati and
Walukiewicz 2015a]. We have no handy decomposition principle, so we need to con-
struct the model in one step.

THEOREM 3.2 (RECOGNIZABILITY). For every MSOL formula ϕ there is a model
recognizing the set of terms M such that BT (M) � ϕ.

The type system Tsukada and Ong [Tsukada and Ong 2014] can also be used to obtain
such a model, although at the moment there is no explicit description of the seman-
tics of the fixpoint operator. Yet another approach has been proposed by Grellois and
Melliès [Grellois and Melliès 2015; Grellois 2016] who derive a model by extending
some constructions of models for linear logic.

The model construction implies the transfer theorem. Fixing Σ, T , and X as in the
transfer theorem; for every finitary model, and every element d of the model there is an
MSOL formula that holds precisely in terms M ∈ Terms(S, T ,X ) whose value in the
model is d. The formula simply guesses a value for each subterm and checks that these
guesses are consistent with respect to the definition of application and abstraction in
the model.

A finitary model gives also a procedure for some kind of synthesis of programs from
modules. Given a formula ϕ and a finite set of closed λY -terms M1 . . . ,Ml, it is decid-
able if there is a closed term K constructed from M1 . . . ,Ml by means of application,
Y -variables and Y -binders, such that BT (K) � ϕ. If there is such a term then there
exists a finite one. The idea is to construct a finite automaton accepting such terms
K. The transitions of the automaton are determined by meanings of M1 . . . ,Ml in the
model. Every, infinite, tree accepted by this automaton gives a desired, infinite, term
K. Automata theory tells us that if an automaton accepts a tree then it also accepts
some regular tree. This regular tree can be represented as a finite term with a help of
fixpoint operators.

4. CONCLUSIONS
We have presented some results and methods used in higher-order model-checking.
These came from automata theory, logic, semantics, and lambda-calculus. In this
overview we have approached the subject from automata theoretic perspective. A more
linear logic oriented perspective can be found in the recent PhD thesis of Grellois [Grel-
lois 2016]. A more typing oriented view is presented in a survey of Ong [Ong 2015].

The decidability of higher-order model-checking [Ong 2006] is clearly the corner-
stone of the subject. We have chosen to present two more general results: the transfer
theorem, and recognizability. The first follows the automata theoretic tradition. For
safe terms one can prove the result by induction on the order of types using some
transductions and unfoldings. For all terms, the approaches we know show the result
in one step. It is not clear if it can be decomposed into more basic ones. The notion of
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recognizability of λY -terms raises new semantical questions motivated by automata
theory. It requires to study models with fixpoints that are neither least nor greatest
fixpoints. At present we do not have a semantical characterization of those fixpoints
that are sufficient to recognize all properties expressible in monadic second-order logic.

We have said nothing about applications of higher-order model checking to program
verification. As we have seen, higher-order model-checking is conceptually much sim-
pler when restricted to properties expressed by tree automata with trivial acceptance
conditions (TAC automata) [Aehlig 2007]. Kobayashi proposed a type system for such
properties and constructed a tool based on it [Kobayashi 2013]. This in turn opened the
way to an active ongoing research resulting in the steady improvement of the capac-
ities of the verification tools [Broadbent et al. 2013; Broadbent and Kobayashi 2013;
Ramsay et al. 2014; Murase et al. 2016]. Despite non-elementary complexity lower
bounds for the higher-order model-checking problem [Engelfriet 1983; Kobayashi and
Ong 2011] current tools can analyze programs of several thousands of lines. This suc-
cess is another driving force for the subject.
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