Relating hierarchies of word and tree automata

Damian Niwinski* and Igor Walukiewicz*

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, POLAND
{niwinski,igw}mimuw.edu.pl

Abstract. For an w-word language L, the derived tree language Path(L)
is the language of trees having all their paths in L. We consider the hierar-
chies of deterministic automata on words and nondeterministic automata
on trees with Rabin conditions in chain form. We show that L is on some
level of the hierarchy of deterministic word automata iff Path(L) is on
the same level of the hierarchy of nondeterministic tree automata.

1 Introduction

For an w-regular set of infinite words L C X%, we consider the derived language
of infinite binary trees, Path(L), consisting of the trees all of whose paths are
in L. In this paper, we address the following question: what is the connection
between the complexity of L and that of Path(L)? Here, by the complexity
of a language of w-words or trees we understand the minimal complexity (in
appropriate sense) of an automaton recognizing this language.

One motivation for considering this question is the following. In application of
automata to program verification, a language L usually represents some property
of computations of a program, e.g. expressed in a temporal logic of linear time.
Now, we are often interested in a more general issue of whether all computations
of a program satisfy the given property. Representing all possible computations
of a program by a tree we are led to consider the derived tree language Path(L).

In most of the cases our language L will be an w-regular language. It is
easy to transform a deterministic automaton recognising L into a determinis-
tic automaton recognising Path(L). However, we may a priori hope that using
nondeterminism in some clever way we can simplify the automaton for Path(L).

In [6], Kupferman, Safra and Vardi investigated this question and showed
a result that refutes such a hope in a special case of Biichi automata. More
specifically, these authors show that a derived tree language is recognizable by
a nondeterministic Biichi tree automaton if and only if the original language of
w—-words is recognizable by a deterministic Biichi automaton. Read under the
negation, the implication “only if” says that nondeterministic Biichi tree au-
tomata do not recognize more languages of the form Path(L) than they must.
In yet other words, if an w-regular language L cannot be recognized by a deter-
ministic Biichi automaton, its inherent difficulty persists in Path(L).

* Supported by Polish KBN grant No. 8 T11C 002 11

In the present paper we show that a similar phenomenon occurs for all w-
regular languages. To make the statement precise, we need somehow to measure
the complexity of languages L and Path(L). This can be done using hierar-
chies classifying w-regular languages of trees or words. Qur choice here (advo-
cated below) is to consider the hierarchies induced by an index of a Mostowski
acceptance condition. This condition, in different phrasing, was introduced by
A.W. Mostowski [7]. It was independently introduced by Emerson and Jutla [3].
We use their formulation of the condition.

The Mostowski condition is given by a function {2 :) — N assigning to each
state of the automaton a natural number called its priority. Then a computation
path is accepting if limsup,,_,., of all the priorities occurring along the path
is even, in other words, the highest priority persisting infinitely often is even.
The index of a condition {2 : — N is the pair (1,n) where ¢+ and n are,
respectively, the minimal and maximal values of the function (2. By the nature of
Mostowski condition, one can always scale 2 down so that ¢ is either 0 or 1. The
concept of an index naturally gives rise to the hierarchies of w-regular languages
of words and trees recognized by automata equipped with Mostowski condition.
Here we shall focus on the hierarchies induced by deterministic automata on
w-words and nondeterministic automata on trees. Both hierarchies are known
to be infinite and to exhaust the classes of w-regular languages and regular sets
of infinite trees, respectively. Moreover, these hierarchies refine the analogous
hierarchies induced by the Rabin acceptance criterion. (Note that a hierarchy
of nondeterministic automata on w-words is uninteresting as it collapses at the
level of Biichi automata, i.e., automata of the Mostowski index (1,2).)

Our main result is that Path(L) can be recognized by a nondeterministic tree
automaton of Mostowski index (¢,n) iff L can be recognized by a deterministic
automaton of the same index. That is, L and Path(L) are on the same level in
the corresponding hierarchies. In [6] the result was shown for index (1,2).

Let us comment on the advantages of the Mostowski criterion compared to
other acceptance criteria considered in the literature, and on the relevance of
the aforementioned hierarchies.

The Mostowski condition is as powerful as Muller condition for nondeter-
ministic automata on trees [7] and deterministic automata on w-words [16]. Yet,
Mostowski condition is much easier to work with. This is mainly because this
is the unique condition that admits memoryless winning strategies for both of
the players in infinite games with perfect information. This fact allows for a rel-
atively easy proof of Rabin’s Complementation Lemma ([8], cf. [14]); it is also
used in many other applications of automata. The other reason for considering
Mostowski condition is that when translating the u-calculus into automata one
naturally ends up with automata with Mostowski condition [3, 4]. Finally, as we
have mentioned above, the hierarchies induced by the Mostowski condition are
more subtle than those induced by the Rabin condition (cf. [11]); they also enjoy
nice symmetry.

The aforementioned hierarchies are interesting for at least two reasons. First,
they allow to classify the expressive power of formalisms. For example, one can

better understand the expressive power of some logic of programs by translating
it into automata of some level of the hierarchy. The second reason comes from
considering complexity problems. For example, the general framework for solving
satisfiability problems for logics of programs is to translate them into automata
and then to do the emptiness check. Up to current knowledge, the deterministic
complexity of the emptiness check depends exponentially on the size of the index
(in general it is NP-complete for Rabin automata [2] and in NPNco-NP for
Mostowski automata [1]).

Our work was directly inspired by the work of Kupferman, Safra and Vardi [6],
but our proof is different from theirs. For our proof we need a characteriza-
tion of the index of an w-word language in terms of properties of the graph of
a deterministic automaton recognizing the language. This is related with the
work of Wagner [16]. One may see our characterization as a simplification of
his characterization for the restricted case of Mostowski conditions. Actually
our characterization of Mostowski index can be transformed into a polynomial
time algorithm computing the index of an w-regular language (i.e. a minimal
index of an automaton recognizing L). This is related with the work of Krishnan,
Puri and Brayton [5] who show that computing the Rabin index of a language
presented by a deterministic Rabin automaton is NP-complete. On the other
hand, solving the same question is polynomial if the winning condition of the
automaton is given in Muller form (c.f. Wilke and Yoo [17]).

The plan of the paper is as follows. We start with the preliminary section
introducing automata and the hierarchies. In Section 3, we show a simple char-
acterization of the index of a w-language in terms of properties of the graph
of a deterministic Mostowski automaton recognizing the language. In the final
section we use this characterization to show the main theorem.

2 Preliminaries

The set of natural numbers is denoted by w or by N. For a set X, X* is the set of
finite words over X, including the empty word ¢, and X is the set of mappings
from w to X usually referred to as infinite words. The length of a finite word w
is denoted by |w|; note that |¢| = 0. We write v < w to mean that v is an initial
segment of w. For u € X%, we let Inf(u) = {2 € X : (Vm3In > m)u(n) = z}
be the set of elements appearing infinitely often in w.

A nonempty subset T of X* closed under initial segments is called a tree.
The elements of T' are called nodes, the <-maximal nodes are leaves and ¢ is the
rootof T.IMfu €T,z € X, and ux € T then ux is an immediate successor of u
in T. An infinite sequence P = (wqg, wy, .. .) such that wy = ¢ and, for each m,
Wy,+1 1S an immediate successor of w,, is called a path in T'.

If ¥ is an arbitrary set and T is a tree then a mapping t : T — X is called an
X -valued tree or shortly a X'-tree; in this context T is the domain of ¢t denoted by
T = dom(t). We say “root of ¢, “path in t” etc., referring to the corresponding
objects in dom(t). If P = (wo,w1,...) is a path in ¢, we denote by t(P) the

labeling of P, i.e., the w—word t(wp)t(wy) ... in X“. Note that Inf(¢(P)) is the
set of values occurring infinitely often on the path P.

We now fix a finite alphabet Y. For notational convenience, we shall focus in
this paper on full binary trees over X, i.e., the Y-trees with dom(t) = {1,2}*.
Thus, every node w € dom(t) has exactly two successors wl and w2. Let T'x; be
the collection of all such trees.

Lemma 1. The following is the key concept of our paper.

Definition 2. Let L C X¥. The path tree language derived from L is defined
by

Path(L) = {t € Ty : for each path Pin ¢, t(P) € L}

We call a set M C Ts a path tree language whenever M = Path(L), for some
LCXv.

Ezamples. Let ¥ = {a,b}, and let L; = {a,b}*a¥, Ly = ({a,b}*b)* (for
simplicity we abbreviate {s} by s). Then Path(L;) is the set of trees such that
on each path, b occurs only finitely many times, while Path(Ls) is the set of
trees such that on each path b occurs infinitely often.

Not every set of trees is a path language. For example, the set of trees ¢, such
that t(w) = a for at least one w, is not.

Automata on words A finite automaton on infinite words can be presented
as a tuple A = (X,Q,qo,Tr, Acc), where X is a finite alphabet, @) is a finite
set of states, qo is an initial state, Tr C QQ x X x @) is a set of transitions, and
Ace C Q¥ is an acceptance criterion, usually given in some special finitary form.

A run of the automaton A on an infinite word v € X“ can be presented as
an infinite word r € Q¥ such that r(0) = qo, and (r(m),u(m),r(m+1)) € Tr for
every m < w. A run is accepting if it belongs to Acc. A word u € X¥ is accepted
by A if there exists an accepting run of A on u. The set of all accepted words is
denoted L(A).

An automaton A as above is deterministic whenever Tr is a partial function
from @ x X to Q, i.e., for every q € Q, o € X, there is at most one ¢’ such that
{q,0,¢') € Tr. Note that a deterministic automaton can have at most one run
on a given word u € X¥.

Several kinds of automata have been considered in the literature according to
the actual form of the acceptance criterion. A Biichi criterion is given by a set
F C @, and the corresponding set Acc consists of those r for which Inf(r)NF # (.
A Muller criterion is given by a family F C p(Q), and Acc = {r : Inf(r) € F}.
A Rabin criterion is given by family {(L1,U1),...,(Ln,Un)}, L, U; € @, and
Ace ={r: () Inf(r)NL; =0 and Inf(r) NU; # 0}. Note that Biichi criterion
can be presented as a special case of Rabin criterion (namely, {0, F}), and the
last as a special case of Muller criterion.

In this paper we focus on yet another criterion that we call the Mostowski
acceptance criterion. (This criterion has been often referred to as Rabin criterion

in chain form.) Mostowski criterion can be presented by a priority function
2:Q — N, and Acc consists of those r for which limsup,,_, ., 2(r(n)) is even;
in other words, the highest priority repeating infinitely often is even. It is not
difficult to see that this can be represented by a Rabin criterion given by a family
({g: 2(q) isodd and >i+1}, {q: 2(q) is even and > i}), where ¢ ranges over
even numbers less than or equal to max(£2(Q)).

According to the actual form of the acceptance criterion we shall refer to
Biichi automata, Mostowski automata, etc.

Two automata Ay, As are equivalent whenever L(A;1) = L(Az). By the re-
marks above, for every Biichi, Rabin or Mostowski automaton, there is an equiv-
alent Muller automaton.

Moreover, the following facts are well-known (see e.g. [13]).

Theorem 3. For every Muller automaton there is an equivalent nondetermin-
istic Biichi automaton, and an equivalent deterministic Mostowski automaton,
but in general there may be no equivalent deterministic Biichi automaton.

Automata on trees An automaton over binary trees can be presented by
A = (X,Q,q0, Tr, Acc), where all the items are as for automata on words except
that Tr C Q@ X X x Q x Q. A run of 4 on a tree t € Ty is a Q—valued tree
r: {1,2}* — @ such that r(¢) = gqo, and, for each w € dom(r), the tuple
{r(w), t(w), r(wl),r(w2)) is in Tr.

A path P in a run r is accepting if r(P) € Acc; a run is accepting if so are
all of its paths. The set of trees accepted by A, denoted L(A), consists of those
t € T’ for which there exists an accepting run of A on .

Two automata Ajp,exitAs are semantically equivalent whenever L(A;) =
L(A).

Similarly as for automata on infinite words, we can consider different kinds
of tree automata according to the form of the acceptance criterion. Since the
concept of acceptance criterion is the same as for automata on words, we have
again some trivial inclusions. Moreover, Mostowski [7] established the following.

Theorem 4. For every Muller tree automaton there is an equivalent Mostowski
tree automaton.

This is the furthest that the analogy with Theorem 3 can go. In contrast to
automata on words, tree automata cannot in general be determinized and the
expressive power of nondeterministic Biichi tree automata is weaker than that
of Muller automata, and incomparable with that of deterministic Muller tree
automata [12].

2.1 Index hierarchies

It is an acceptance criterion that gives rise to the expressive power of automata;
the criteria also induce several semantical hierarchies. Here we will restrict our
considerations to the hierarchy of Mostowski conditions because there is close

correlation between this hierarchy and both: the hierarchy of Rabin conditions
and the hierarchy of fixpoint alternations (cf. [11]).

Definition 5. An indez of a Mostowski condition given by the function (2 is
a pair (¢,n), where ¢+ and n are the minimal and the maximal values of 2,
respectively.

We say that a language L C X% is t-n-feasible if L can be recognized by a de-
terministic Mostowski automaton with the condition of index (¢, n). Otherwise,
L is t-n—unfeasible.

We say that a set of trees M C Ty is t-n-feasible if it can be recognized by
a nondeterministic Mostowski automaton on trees with the condition of index
(¢,n), and is t-n-unfeasible otherwise.

Note that we express feasibility of sets of words in terms of deterministic
automata, and feasibility of sets of trees in terms of general, i.e., nondeterministic
automata.

It turns out that the hierarchy of indices induces a strict hierarchy of lan-
guages. Let, for n < w, X, = {0,1,...,n}. Consider the following families of
languages, M, N, C X¥:

M, ={u e X¥ : limsupu(i) is even }
i— 00
N, ={u€e X¥ : limsupu(i) is odd }

i—00

The following results have been originally stated in different terms but the
actual phrasing follows directly from the correspondence between Rabin and
Mostowski indices (cf. [11]).

Theorem 6 (Wagner [15]). For every n < w: (i) M, is 0-n-feasible but 1-
(n + 1)-unfeasible; (ii) Ny is 1-(n + 1)-feasible but 0-n-unfeasible.

Theorem 7 (Niwinski [9,11]). For every n < w: (i) Path(M,) is 0-n-feasible
but 1-(n + 1)-unfeasible; (i) Path(Ny) is 1-(n + 1)-feasible but 0-n-unfeasible.

We end this section by an observation which is an easy part of our main
result.

Proposition 8. For a deterministic Mostowski automaton A, Path(L(A)) is
recognized by a (deterministic) Mostowski tree automaton of the same indez.

Proof. f A = (¥,Q,qo,Tr, Acc) is a deterministic automaton recognizing L,
then the automaton for Path(L) is A’ = (¥, Q, go,Tr', Acc), with all the same
components as A but Tr' = {{(g,a,q,q') : {¢,a,q') € Tr}. O

3 Flower Lemma

In this section we will show a connection between the Mostowski index of an
w-word language and the shape of a deterministic Mostowski automaton recog-
nizing the language. Roughly speaking, we will show that in the graph of an
automaton recognizing a “hard” language there must be a subgraph, called a
flower, “responsible” for this hardness.

Definition 9. Let A = (¥, Q, qo, Tr, 2) be a Mostowski automaton on words.
The graph of A is the graph obtained by taking) as the set of vertices and
adding an edge from ¢ to ¢ whenever {q, a,q¢') € Tr, for some letter a.

A path in a graph is a sequence of vertices vy, ...,v;, such that, for every
i=1,...,7—1 there is an edge from v; to v;41 in the graph. A mazimal strongly
connected component of a graph is a maximal subset of vertices of the graph,
such that, for every two vertices v1, v in the subset, there is a path from v, to
v and from vy to vy.

For an integer k, a k-loop in A is a path vy,...,v; in the graph of A such
that, v, = v;, j > 1 and k = max{2(v;) : i = 1,...,j}. Please observe that a
k-loop must necessarily go through at least one edge.

Given integers m and n, a state ¢ € @ is an m-n-flower in A if for every
k € {m,...,n} there is, in the graph of A, a k-loop containing g.

First, we need an operation allowing us to scale unnecessary indices up.

Definition 10. For a Mostowski automaton 4 as above and an integer i we
define the automaton .A1¢ obtained from A by lifting the indez i. The automaton
A1 has all the same components as A except for the priority function (2 1%
defined in the following steps:

1. Take the set Q<; = {g € @ : 2(¢q) < i}. Let G<; denote the graph of A
restricted to the states from @Q)<;.

2. If S'is a trivial maximal strongly connected component of the graph G<;, i.e.,
a component consisting of one state without a self loop, then let 21% (q) =
i+ 1 for g being the unique state in S.

3. If S is a nontrivial maximal strongly connected component of G<; and S
contains only states of priorities strictly smaller than i then let 21% (¢) =
2(q) +2 for every g€ S .

4. Tf a state g is in none of the above components then let 21¢ (q) = 2(q).

Lemma 11. For every deterministic Mostowski automaton A on words and ev-
ery integer i: L(A) = L(A1T?Y).

Proof. Let A=(X,Q,q0, Tr,2:Q — {0,...,n}) be a deterministic Mostowski
automaton on words. Consider an infinite word w € X“. There is at most one
run of A on w and if it exists it is also a run of .[A1?. This run determines the set of
states @), that are met infinitely often on the run. Let k¥ = max{2(q) : ¢ € Qu}-

Suppose k > i. Every state of priority k in @, has still the priority k in .41%.
Observe that if 21 (q) # 2(q) then 21%(q) < i+ 1. Hence k = max{21¢(q) :
q € Qu} as well. So, in this case, A accepts w iff A1? does.

If £ < i then all the states in @), belong to the same strongly connected
component of the graph G<;. According to the definition of A 1%, all of the
priorities of the states in @, are either increased by 2 or left unchanged. In both
cases, A accepts w iff A1¥ does. O

Lemma 12. L(_et A be a deterministic Mostowski automaton and let i € N. Let
B = A1% .. A% If a state q has priority m in B then q is a m-i-flower in B.

Proof. We prove the claim by induction on 4. Let us denote by f2<; the priority
function of the automaton A1 .. 4%,

First, consider the case i = 0. If 2<o(¢) > 0 then the claim is trivial, so
suppose 2<o(g) = 0.

Let, as in Definition 10, G<o be the graph of A restricted to the states
that have priority 0. There must be a 0-loop in G<¢ containing g, otherwise
the priority of ¢ would be increased. Call this loop P. Clearly, the operation 1°
increases the priority of no state on this loop, and thus P remains a 0-loop in
the automaton A10. Therefore, ¢ is a 0-0-flower.

Now, let ¢ > 0 and suppose the result holds for i — 1. Let 2<;(¢) = m. Again,
if m > i, the claim is trivial, so we can assume m < 1.

Let G'.; be the graph of A restricted to the states where priority is not
greater than 7 in the automaton A 1%! ... 471 Let m' = 2<;_1(q). By the
induction hypothesis, ¢ is an m’-(i — 1)-flower in A% .. 471,

We consider two cases (clearly m' < m):

1. Suppose m' = m, i.e., the operation?? has not changed the priority of q. This
is possible only if there existed in G'.; an i-loop containing ¢. Call this loop P.
Clearly, the operation?? has not shifted the priority of any other node in the
maximal strongly connected component of G’ containing ¢. In particular,
P continues to be an i-loop in A 1%! ...1%. Furthermore every j-loop in
A1%1 .. .1 containing ¢, for j < i, remains a j-loop in A1%! ... 1% Since
q 1s an m-(i — 1)-flower in A% .. 1971 it is an m-i-flower in ATOTI 14,

2. m' < m. The only possibility is m = m/ + 2. By the definition of lifting (Def—
inition 10), this means that the operation 1¢ has shifted by 2 the priorities of
all the states in the maximal strongly connected component of G, contain-
ing ¢. Thus, every loop containing q that was a j-loop in A% ... 1%~1, with
j < i, has become a (j +2)-loop in A1 ...1% Since q is an m'-(i —1)-flower
in A1t ... 11t is an m-(i + 1)-flower in A1%! ... 1% Hence a fortiori
an m~i-flower.

|

Definition 13. We say that a language L C X* admits an m-n-flower if there
exists a deterministic Mostowski automaton A, such that L = L(A) and A has
an m-n-flower ¢ for some g not useless state in A (i.e., ¢ occurring in some
accepting run of A).

Lemma 14 (Flower Lemma). For everyn € N and L C X¥: (1) if L is 1-
(n + 1)-unfeasible then L admits a 2i-(2i + n)-flower, for some i; (2) if L is
0-n-unfeasible then L admits a (2i + 1)-(2i + 1 + n)-flower, for some i.

Proof. We prove (1) and leave (2) to the reader.

Let L = L(A) for some deterministic Mostowski automaton A. We can as-
sume without a loss of generality that 4 has no useless states. Clearly, for arbi-
trary k, the operation1* preserves this property.

Let M be the maximal value of the priority function of A. Choose i such
that 2i + n > M. Consider the automaton B = A1%! ...12"" By Lemma 11,
L(B) = L. If we can find a state ¢ whose priority in B is less or equal to 27 then
we are done since, by Lemma 12, ¢ is a 2i-(2¢+n)-flower in B, and by the remark
above ¢ is not useless.

Suppose on the contrary that the minimal value of the priorities of all states
in B is j > 2i. It should be clear that the maximal priority of a state in B cannot
exceed 2i + n + 1. (The operation t* can change the priority of a state to at
most k£ + 1.) By adding, if necessary, some dummy states we obtain that L is
(2¢ + 1)-(2i + 1 + n)-feasible. By scaling the priorities down we conclude that L
is 1-(n + 1)-feasible, contradicting the assumption. O

For a given automaton A and a given integer i one can calculate A1% in the
time proportional to the number of transitions in 4. Hence one can compute
At ...4" in time O(n|A|); where |A| denotes the number of transitions in A.
As we can easily limit the range of the (2 function to be at most twice as big as
the number of states in A we get:

Corollary 15. The problem of establishing the index of the language accepted
by an automaton with a Mostowski condition can be solved in time O(|A?).

4 The main result

Proposition 16. 1. If a language L C X% admits a 2m-(2m + n)-flower for
some m, then Path(L) is 1-(n + 1)-unfeasible.
2. If a language L C X* admits a (2m + 1)-(2m + 1 + n)-flower for some m,
then Path(L) is 0-n-unfeasible.

Proof. We shall prove 1, the case of 2 is analogous.

Let A be a deterministic Mostowski automaton recognizing L and let ¢ be a
2m-(2m + n)-flower in A, where ¢ is not useless.

Suppose on the contrary that Path(L) is 1-(n + 1)-feasible, and let:

C: <Z7Qc7q87 TTCJQC:QC‘_) {17"'7n+1}>

be a nondeterministic Mostowski automaton of index (1,n + 1) recognizing
Path(L). Without a loss of generality we may assume that there are no use-
less states in C.

From C we shall construct a tree automaton D of the same index, but over the
alphabet {0, ... ,n}, that will recognize Path(,). This, however, will contradict
Theorem 7 and will prove that an automaton C cannot exist.

To this end, we shall use our flower ¢ in A. For every ¢ =0, ... ,n fix a word
w;, such that, there is a (2m + 7)-loop from ¢ to ¢ in A labelled by w;. Clearly,
this is possible by the definition of a flower.

Apart from wy, ..., w,, fix also a finite word v that is a labeling of a path
in A from the initial state to ¢q. For notational convenience we assume that the
length of v as well as all w; (¢ = 1,...,n) is k. The general case, when the lengths
of v and w; are different, requires more complex indexing.

Before defining formally an automaton for Path(M,,), we explain its idea.
It is based on a transformation of trees over the alphabet {0,... ,n} into trees
over the alphabet Y. This transformation essentially replaces a node labelled
by i € {0,...,n} by a finite path labelled by w;. Then, when examining a tree
t (over the alphabet {0,...,n}), our automaton D will mimic the work of the
automaton C on the transformed tree. This will be done in such a way that
a computation of D along a path labelled by igitiz... (i¢ € {0,...,n}) will
essentially simulate a computation of C along a path labelled vw;, w;, wi, . ..

Let a function h : {1,2}* — {1,2}* be defined by:

h(dy...d;) = 1%"1d;1%=1 . d;1k—!

Let us denote by R the smallest tree containing the range of h.

We define an operation transforming a labelled tree 7 : {1,2}* — {0,...,n}
into a labelled tree 7% : R — X. For arbitrary u € {1,2}*, d € {1,2} and
i€{0,....,k— 1} we let:

7#(1%) = the (i + 1)th letter of v
7% (h(u)d1?) = the (i + 1)th letter of Wr(u)
The key property of this transformation is the following:

for every path P = dydsy ... in dom(7) (d¢ € {1,2}), there is a path P =
1F=1d;1%=1dy1%=1 ... in dom(r*) and this path is labelled by 7#(P*) =

VWr(e)Wr(dy)Wr(dida) + - -
Now, it follows form the choice of the words v, wy, ... ,w,, that an infinite word
of the form vw;, w;, ... is in L = L(A) iff limsup,_,, i¢ is even. In particular,

we note the following.

Observation 17. For every infinite path P in the tree 7 we have: 7#(P*) € L iff
7(P) € Mp.

Now, we define the automaton:

D= <Ed’Qd:QC X {17"'Jn+1}U{qS}JqSJ TrdJQd:Qd%{17"'Jn+1}>

where ¥¢ = {0,...,n} and the meanings of the other components are defined
below.

The state g5 is the initial state and it will be used only in the starting move
of D. For the function 2¢, we let 2%(q,i) = i. We let 2%(g,) = 1 but this value
does not really matter.

Before defining the transition function let us introduce an auxiliary notion.
We say that a pair of states q;, g € Q€ is i-reachable from a state ¢g; € Q¢ on a
word w = ay - --ap € X* if there is a sequence of transitions from Tr¢:

(t]1,a1;<I2,11§>, (C]2,a2;Q3;ql3>, s <(]k71;ak71;Qk;Q;c>a <11k,ak;m,qr)

and ¢ = max(2(q1),---,2(qr))-

Now, for every a € {1,...,n}, we let (gs,a, (q,%), (¢r,7)) € Trd if (@, qr) is
i-reachable from the initial state g5 of C on the word v. Also, we put a tuple
{(g,7),m, (@,5), (ar,5)) € Tr if (q;,qy) is j-reachable from ¢ on the word wyy,.

To prove the claim it is enough to show that L(D) = Path(M,,). With the help
of the operation § introduced above, we can state the correspondence between C
and D.

Observation 18. For every tree 7 : {1,2}* — {0,...,n} we have: 7 € L(D) iff 7*
can be extended to a full binary tree that is accepted by C.

Recall that C accepts a tree iff the labeling of every path of this tree is
accepted by A. So, if C accepts an extension of 7# then in particular 7#(P*%) €
L(A) = L, for each path P in dom(7). By Observation 17, we conclude that
T € Path(M,,). We have proved L(D) C Path(M,,).

For the converse inclusion, let 7 € Path(M,,). Then clearly 7# can be extended
to a tree in Path(L). The conclusion now follows from the hypothesis that L(C) =
Path(L). O

Theorem 19. For every L C X* and m,n € N: L is m-n-feasible if and only
if Path(L) is m-n-feasible.

Proof. The implication “only if” follows from Proposition 8.

Suppose L is m-n-unfeasible. The case of m > n is trivial, so we can assume
m<n.

Suppose m is even. Then clearly L is also 0-(n—m)-unfeasible since otherwise
we could scale up the priorities in the hypothetical automaton by m. By the
Flower Lemma, L admits a (2¢ + 1)-(2¢ + 1 + n — m)-flower, for some ¢, and
then by Proposition 16, Path(L) is 0-(n — m)-unfeasible. Hence clearly it is also
m-n-unfeasible, since otherwise we could scale down the hypothetical automaton
by m.

If m is odd, we present it as m = m' + 1, and the rest of the argument is
similar. O

From the connections between indices of Mostowski and Rabin automata
(cf. [11]) we obtain:

Corollary 20. For every L C X and n € N, L can be recognized by a deter-
ministic Rabin automaton of index n if and only if Path(L) can be recognized by
a nondeterministic Rabin tree automaton of index n.

Finally let us remark on the problem of constructing a deterministic automa-

ton recognising L from a nondeterministic tree automaton recognizing Path(L).
This can be done by constructing a nondeterministic automaton recognizing L,
determinizing it and then applying our index lifting procedure from the flower
lemma. The so—obtained deterministic automaton would have the least possible
index.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.
17.

E. A. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments of -
calculus. In CAV’93, volume 697 of LNCS, pages 385-396, 1993.

E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of
programs. In 29th FOCS, 1988.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. FOCS 91, 1991.

. D. Janin and I. Walukiewicz. Automata for the p-calculus and related results. In

MFCS 95, volume 969 of LNCS, pages 552-562, 1995.

S. Krishnan, A. Puri, and R. Brayton. Srtuctural complexity of w-automata. In
STACS’95, volume 900 of LNCS, 1995.

O. Kupferman, S. Safra, and M. Vardi. Relating word and tree automata. In 11th
IEEE Symp. on Logic in Comput. Sci., pages 322-332, 1996.

A. W. Mostowski. Regular expressions for infinite trees and a standard form
of automata. In A. Skowron, editor, Fifth Symposium on Computation Theory,
volume 208 of LNCS, pages 157-168, 1984.

A. W. Mostowski. Hierarchies of weak automata and week monadic formulas.
Theoretical Computer Science, 83:323-335, 1991.

D. Niwiriski. On fixed-point clones. In Proc. 18th ICALP, volume 226 of LNCS,
pages 464473, 1986.

D. Niwirski. Fixed points vs. infinite generation. In LICS ’88, pages 402-409,
1988.

D. Niwinski. Fixed point characterization of infinite behaviour of finite state sys-
tems. Theoretical Computer Science, 1998. to appear.

M. Rabin. Weakly definable relations and special automata. In Y.Bar-Hillel, editor,
Mathematical Logic in Foundations of Set Theory, pages 1-23. 1970.

W. Thomas. Automata on infinite objects. In J. van Leeuven, editor, Handbook of
Theoretical Computer Science Vol.B, pages 133-192. Elsevier, 1990.

W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3. Springer-Verlag, 1997.

K. Wagner. Eine topologische Charakterisierung einiger Klassen reguliarer Folgen-
mengen. J. Inf. Process. Cybern. EIK, 13:473-487, 1977.

K. Wagner. On w-regular sets. Information and Control, 43:123-177, 1979.

T. Wilke and H. Yoo. Computing the Rabin index of a regular language of infinite
words. Information and Computation, 130(1):61-70, 1996.

