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1 Introduction

Synthesis is about constructing a system from a given specification. An example is con-
struction of a circuit realizing a given boolean function. In this setting, the task is easy
until one adds some constraints, for example on gate placement. In some other settings
the task is algorithmically impossible from the very beginning: there is no algorithm con-
structing a program realizing the specified I/O function from an arithmetic formula. Yet,
some severe restrictions of this problem are decidable, e.g., when considering only for-
mulas of Presburger arithmetic. In this chapter we will be interested in an extension of
the first example to infinite, reactive behavior.

We give an overview of some of the most important versions of the synthesis problem.
In the first part of this chapter we present a pure formulation of the problem, proposed by
Church. It asks to construct a single input/output device subject to a given specification.
We then proceed to the richer setting of Ramadge and Wonham, where the objective is to
find a controller for a given plant. These classical formulations have been extended in an
overwhelming number of ways. From a multitude of possibilities we choose to focus on
distributed synthesis: a promising and challenging direction for synthesis.

More than half a century ago, Church [24] formulated a synthesis problem for devices
that transform an infinite sequence of input bits into an infinite sequence of output bits.
Such a device is required to work “on-line”: for each input bit read, it should produce
an output bit. Church asked for an algorithm constructing such a device from a given
specification. The specification language he considered is monadic second-order logic
(MSOL) over the natural numbers with order, 〈N,6〉. In this case, a specification is a for-
mula ϕ(X,Y ), where X and Y stand for subsets of N, or equivalently, infinite sequences
of bits. So the formula defines a desired relation between the input sequence X and the
output sequence Y .

The problem formulated by Church is fundamentally more difficult than decidability
of the MSOL theory of natural numbers with order. Observe that the satisfiability of the
formula ∀X.∃Y. ϕ(X,Y ) is just a necessary condition for the existence of a required
device: not only for every input sequence there should exist a good output sequence, but
moreover this sequence should be produced “on-line”. Indeed, while Büchi showed the
decidability of the MSOL theory of 〈N,6〉 in 1960 [15], the solution to the synthesis
problem came almost a decade later [14, 55, 56].

Another interesting formulation of a synthesis problem was proposed by Ramadge
and Wonham at the end of the 1980’s [59, 40, 18]. It is based on concepts used in control
theory. The formulation starts with a finite automaton, also called a plant, that defines all
possible sequential behaviors of the system. The goal is to find, for a given plant, another
finite automaton, called controller, such that the product of the two automata satisfies a
given specification. Specifications, are usually MSOL properties of the language of the
product. This formulation makes it possible to put restrictions not only on the controlled
system, but also on the controller itself. For example, one can require that a controller does
not block some actions or that it cannot observe some actions. We will present the basic
formulation, as well as its extension permitting the handling of all regular specifications.

In a distributed system one can have multiple processes. The system specifies possible
interactions between the processes and the environment, as well as, interactions between
the processes themselves. The synthesis problem is to find a controller for each of the
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processes such that the overall behavior of the system satisfies a given specification. The
question studied most in this framework is a characterization of architectures and speci-
fications for which the synthesis problem is decidable. Up to the present time, we know
many undecidable cases, but only a few decidable ones. We will present these results, as
well as some research directions.

2 Church problem

The Church problem is to construct a device that transforms an infinite sequence of input
bits to an infinite sequence of output bits in a way given by a specification (cf. Figure 1).
The device is required to work on-line, that is, for every bit read from the input, it should
produce one bit on the output before reading the next input bit.

0010 . . . 1010 . . .

1/1

1/0

0/0 0/0

Figure 1. An I/O device, and its realization as an automaton with two states. It is
more readable to have devices with input on the right since the first letter of a word
is on the left.

Example: Suppose that we want that at every moment the number of 1’s produced in the
output is half of that read on the input. To be precise, let us say that there should be bn/2c
of 1’s in the output, where n is the number of 1’s in the input. A possible device realizing
this specification can simply copy input to the output, changing every second 1 to 0. A
finite automaton, or one could say a transducer, doing this is presented in Figure 1; a label
1/0 on a transition means that when reading 1 on the input the automaton produces 0 on
the output.

Of course it is not difficult to find specifications that are not realizable by a finite
automaton; consider, for example : “output 1 when the number of 1’s on the input is a
prime number”.

Example: The specification from the first example is very special, because it describes
exactly what the output at every time instance should be, as a function of the input that
has been read. To see a different type of specification, consider the one saying “Infinitely
many 1’s on the input if and only if infinitely many 1’s on the output”. There are many
ways to realize this specification. The device from the previous example realizes it, but
probably the simplest solution is just to copy the input to the output.

Example: Sometimes specifications are easier to realize than it may seem at first; consider
for example: “if infinitely many 1’s in the input then finitely many 1’s in the output”. A
simple way to realize this specification is to output only 0’s. This makes the conclusion
of the implication true, independently of the input. With this simple example we touch
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an important difficulty in synthesis, at least in the Church style. If a specification is not
sufficiently accurate, then we are very likely to get “strange” solutions.

Example: A variation on the previous example shows an instructive case when the prob-
lem has no solution. Consider a specification: “infinitely many 1’s in the input if and only
if finitely many 1’s in the output”. Suppose that there is a device realizing this specifica-
tion. Let us look at its behavior when reading a sequence of 0’s on the input. In order
to realize the specification, the device should write 1 at some moment on the output. If
not, then after reading an infinite sequence of 0’s on the input the device would produce
an infinite sequence of 0’s on the output violating the specification. When the device pro-
duces 1 on the output, we put 1 on the input followed by another sequence of 0’s. For
the same reason as before, when reading this second sequence of 0’s the device should at
some moment output 1. At that point we put 1 on the input and restart sending 0’s. This
procedure is guaranteed to confuse our hypothetical device, since we will produce an in-
put with infinitely many 1’s on which the device outputs infinitely many 1’s, contradicting
the specification.

2.1 Specification formalisms

In order to state the Church problem algorithmically, we need to settle on a formal lan-
guage for describing specifications. In the examples above, specifications were binary
relations on infinite sequences over the alphabet {0, 1}, or equivalently, sets of sequences
over the alphabet {0, 1}2. It will be convenient to use two different formalisms for de-
scribing such objects: finite automata, and monadic second-order logic (MSOL).

Formally, an infinite sequence over an alphabet A is a function w : N→ A. Often we
will write it as w0w1 · · · , and call such a sequence an infinite word, where wi ∈ A are
its letters. To describe a solution to the Church problem we will need to consider infinite
trees. An infinite binary labeled tree over an alphabet A is a function t : {0, 1}∗ → A. So
the nodes are finite sequences over a two-letter alphabet, and each node is labeled with
a letter from A. The empty word ε is the root of the tree, and every word w has the left
successor, w0, and the right successor, w1.

Automata A (deterministic) parity automaton over an alphabetA is presented as a tuple
〈Q, q0, e : Q×A→ Q,Ω : Q→ N〉. The last component of the automaton is a function
assigning a rank to every state: it is used to define acceptance. A run of the automaton over
a word w is a sequence of states q0, q1, . . . such that qi+1 = e(qi, wi). A run is accepting
if the associated sequence of ranks Ω(q0),Ω(q1), . . . satisfies the parity condition:

lim sup
i→∞

Ω(qi) is even.

In other words, a run is accepting if the largest rank appearing infinitely often in the run
is even. Since Q is finite, this largest rank always exists. The language of the automaton
is the set of words it accepts.

Example: Consider a language “all but finitely many positions are 0’s” over an alphabet
A = {0, 1}. So the language consists of words with only finitely many occurrences of
1’s. This language is recognized by an automaton having the set of states Q = {q0, q1},
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with Ω(qi) = i, and the transition function: e(qi, 0) = q0, e(qi, 1) = q1; for i = 0, 1.
Since the transition function depends only on a letter that is read, it is not important what
the initial state is. The run of the automaton on a word w ∈ Aω reflects this word, in the
sense that the (i + 1)-st element of the run is q1 if and only if wi = 1. In consequence,
the largest rank appearing infinitely often in the run over a word w is 1 if and only if there
are infinitely many 1’s in the word. So the word is accepted if and only if there are only
finitely many occurrences of 1’s in the sequence.

A (nondeterministic) tree parity automaton is a tuple

〈Q, q0, δ : Q×A×Q×Q,Ω : Q→ N〉 .

The difference with the word case is that, instead of a transition function, we have a more
complicated transition relation. A run of the automaton on a tree t : {0, 1}∗ → A is
another labeled tree r : {0, 1}∗ → Q whose root is labeled with the initial state, r(ε) =
q0, and whose labeling respects the transition relation, (r(w0), r(w1)) ∈ δ(r(w), t(w)).
A run is accepting if and only if for every path of the tree the sequence of states appearing
on the path satisfies the parity condition given by Ω.

Example: Consider a language “there is a path where all but finitely many positions are
0’s” over the alphabet A = {0, 1}. It is recognized by an automaton having the set of
states Q = {q0, q1, q2}, with Ω(qi) = i, and the transition relation

δ(q2, j) = {(q2, q2)} δ(qi, j) = {(qj , q2), (q2, qj)} i ∈ {0, 1}, j ∈ {0, 1}.

This means that starting from q2 the automaton accepts every tree. In states q0 and q1,
the automaton accepts one subtree by sending q2 there, and sends qj to the other subtree,
where j is the letter read. So a run of the automaton is a tree with states q0, q1 on one
path, and state q2 everywhere else. The path with states q0, q1 satisfies the parity condition
if there are infinitely many 1’s on it. Hence, there is an accepting run of the automaton
on a tree if and only if there is a path with finitely many 1’s in the tree. Notice that
nondeterminism is important here to single out such a path.

Monadic second-order logic If A has two letters, say {0, 1}, then a word w : N → A
can be identified with a subset of natural numbers: the positions in the word having the
symbol 1. This set representation is very convenient for logic. We will write Sw to denote
this subset of N. To manipulate such sets we will need very little structure of the natural
numbers; we will just take the successor relation as the only predicate:

〈N, succ〉.

Monadic second order logic (MSOL) is an extension of first-order logic with quan-
tification over sets of elements. For the structure 〈N, succ〉, first-order variables x, y, . . .
range over natural numbers, and second-order variables X,Y, . . . over sets of natural
numbers. The formulas are constructed using the binary relation symbol succ, standard
Boolean operations, and quantification. Apart from these, formulas of monadic second-
order logic admit a membership relation written in an infix notation (z ∈ X), and quan-
tification over second-order variables. The semantics should be clear from the syntax and
we omit it. For example, a formula

∀X.
[
(y ∈ X) ∧ ∀z, z′. (z ∈ X ∧ succ(z, z′))⇒ (z′ ∈ X)

]
⇒ y′ ∈ X
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defines the inequality relation y 6 y′. Literally, the formula says that for every set of
numbers X , if y is in X , and X is closed under taking successors, then y′ is in X . The
use of second-order quantification is crucial here. Using Ehrenfeucht-Fraı̈ssé games, one
can show that first-order logic cannot define the order from the successor relation.

We write 〈N, succ〉, V � ϕ to say that ϕ holds in the model 〈N, succ〉 under valua-
tion V . Observe that V assigns natural numbers to first-order variables in ϕ and sets of
numbers to set variables in ϕ. Thanks to identification of infinite sequences with sets of
natural numbers, a formula ϕ(Z) with one free second-order variable Z defines a set of
sequences. For example,

〈N, succ〉, V � ∃x. ∀y. x 6 y ⇒ ¬Z(y)

holds if the valuation of Z, namely V (Z), is a finite set. Thus the formula defines the set
of words with finitely many 1’s.

If ϕ(Z) is a formula with a unique free second-order variable Z, and if S ⊆ N, then
we simply write 〈N, succ〉 � ϕ(S) to say that ϕ(Z) is true under a valuation that maps
Z to S, i.e., when 〈N, succ〉, V [Z 7→ S] � ϕ(Z). So, such a formula defines the set of
sequences w satisfying 〈N, succ〉 � ϕ(Sw).

To describe a solution to the Church problem we will need also monadic second-
order logic on the infinite binary tree. Similarly to infinite sequences, this tree can be
represented as a relational structure

〈{0, 1}∗, succ0, succ1〉,

where succ0 and succ1 are the left and right successor relations.
The utility of working with subsets of the binary tree will be immediately visible if

we observe that a device in the Church formulation of the synthesis problem is a function
f : {0, 1}+ → {0, 1}. This means that a device can be identified with a subset of nodes
of the binary tree: the set of nodes w ∈ {0, 1}+ with f(w) = 1. We will write Sf to
denote this subset of {0, 1}∗.

Thanks to identification of devices with subsets of the nodes of the binary tree, we can
use monadic second-order logic on binary trees to talk about devices. The syntax of the
logic is exactly the same as for monadic second-order logic over sequences, but now we
have two successor relations. For example a formula

path(Y ) ≡ ε ∈ Y ∧
∀x, x0, x1(x ∈ Y ∧ succ0(x, x0) ∧ succ1(x, x1))⇒ (x0 ∈ Y ∨ x1 ∈ Y )

says that Y is a set containing at least one infinite path starting in the root of the tree.
Monadic second-order logic over sequences and trees is a well studied logic. For us

the most important are decidability and regular witness properties. We say that S is a
regular subset of 〈{0, 1}∗, succ0, succ1〉 if and only if S considered as a language over
{0, 1}∗ is a regular language, i.e., a language recognized by a finite automaton.

Theorem 2.1. [15, 55] It is decidable if a given MSO formula holds in the sequence model
〈N, succ〉. Similarly for the tree model 〈{0, 1}∗, succ0, succ1〉. If a sentence ∃Z.ϕ(Z)
holds in 〈{0, 1}∗, succ0, succ1〉 then there is a regular set S such that ϕ(S) holds in this
model.
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2.2 Formulation of the problem

The formulation of the Church problem requires saying what is a specification and what
are possible devices that we are looking for. A specification is a relation between input and
output sequences, that is, a subset of {0, 1}ω × {0, 1}ω . Recall that we have identified
sequences w ∈ {0, 1}ω with subsets Sw ⊆ N. Thanks to this identification, a relation
between two sequences can be given by an MSOL formula ϕ(X,Y ) with two free set
variables:

{(v, w) : 〈N, succ〉 � ϕ(Sv, Sw)}.

The form of devices is not restricted. This concretely means that a device can be
an arbitrary function f : {0, 1}+ → {0, 1}. Intuitively, such a function determines the
output bit, depending on the sequence of input bits received so far. For an input sequence
v ∈ {0, 1}ω the output sequence produced by f is

w = f(v) with w(i) = f(v(0) · · · v(i)) for i = 0, 1, . . .

This abstract definition clearly includes every physical device that bases its answers on
the history of inputs, and it clearly excludes all kinds of devices with oracles or look-
ahead. We say that f satisfies a specification given by ϕ(X,Y ) if for every input sequence
v ∈ {0, 1}ω , the formula ϕ(Sv, Sf(v)) holds in 〈N, succ〉.

We now have all the ingredients to state the problem formally:

Definition 2.1 (Church synthesis problem). For a specification given as an MSOL for-
mula ϕ(X,Y ), decide if there exists a device satisfying the specification, and construct
one if it exists.

The second part of the formulation may seem rather unrealistic, since it is in general
not clear how to construct an arbitrary function f : {0, 1}∗ → {0, 1}. Fortunately, it
turns out that if the answer is positive then there is a device implementable as a finite
automaton.

2.3 Solution to the problem

To solve the Church synthesis problem we use MSOL over the binary tree, since this
logic is able to talk directly about the existence of a device with the desired properties.
An infinite sequence w ∈ {0, 1}ω determines an infinite path in the tree, namely, the set
of nodes that are finite prefixes of w. We denote this path by Pw. Recall that a device f
can be encoded as a subset Sf of the binary tree (cf. page 1154). In this presentation, the
output sequence f(w) is just the sequence of labels on Pw: i-th element of the sequence
is 1 when the i-th node on the path, not counting the root, belongs to Sf (cf. Figure 2).
Given a specification ϕ(X,Y ) as in the definition of the Church problem, it is not difficult
to write a formula ϕ̂(P,Z) over the binary tree such that for every sequence w ∈ {0, 1}ω

formula ϕ̂(Pw, Sf ) holds in the tree structure 〈{0, 1}, succ0, succ1〉 if and
only if formula ϕ(Sw, Sf(w)) holds in the sequence structure 〈N, succ〉.

The later formula says that for the input sequence w, the output sequence f(w) sat-
isfies the specification. Device f is a solution to the Church problem if and only if
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1 0

1 1

w = 01 . . .

f(w) = 11 . . .

Figure 2. Device f encoded in a tree

ϕ(w, f(w)) holds for every infinite sequence w. Since infinite sequences correspond
to paths in the binary tree, using the above equivalence, we can express it as the re-
quirement that ∀Y. path(Y ) ⇒ ϕ̂(Y, Sf ) holds in 〈{0, 1}∗, succ0, succ1〉. In conse-
quence, the solution to the Church problem is equivalent to the satisfiability of the for-
mula ∃Z.∀Y. path(Y ) ⇒ ϕ̂(Y,Z) in the tree structure 〈{0, 1}∗, succ0, succ1〉. Indeed,
the formula is satisfiable when there is an appropriate valuation for Z, and this valu-
ation determines a device f . By Theorem 2.1 we can decide if the formula holds in
〈{0, 1}∗, succ0, succ1〉; and if it does then a regular witness for the meaning of Z can be
constructed. This witness gives a device in a form of a finite automaton.

2.4 Synthesis via games

There exists another way of formulating the Church synthesis problem and its solution.
One can view a specification as a game between a device and its environment: the environ-
ment provides inputs to the device and the device gives outputs. The winning condition
is given by the specification, that is, by an MSOL formula. The advantage of this ap-
proach is that some automata theory permits us to greatly simplify the class of winning
conditions: it is enough to consider parity conditions instead of all MSO properties.

The Church problem can be quite simply reduced to solving games with regular win-
ning conditions. Indeed, it is sufficient to consider a game where repeatedly first Adam
chooses a bit and then Eve responds with her choice of a bit (cf. Figure 3). If we have
an instance of the Church problem given by an MSOL formula ϕ(X,Y ), then we con-
sider the game where the winning plays for Eve are exactly those that satisfy the formula
ϕ(X,Y ) (identifying plays with sequences of pairs of bits). It follows directly from the
definitions that the Church problem given by ϕ(X,Y ) has a solution if and only if Eve
has a winning strategy in the constructed game.

The above game has a rather complex winning condition. In the rest of this section we
will present a reduction to games with parity conditions that have many good properties.
We will start with a brief presentation of parity games.

Parity games A game is a graph with a partition of nodes between two players, called
Eve and Adam, and a labeling defining the winning condition. Formally it is a tuple

G = 〈V, VE , VA, T ⊆ V × V,Ω : V → N〉
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(∗, ∗) (0, ∗)

(0, 0)

(0, 1)

(1, ∗)

(1, 0)

(1, 1)

Figure 3. Reduction of the Church synthesis problem to a game. From rectangular
vertices Adam chooses an input bit, and from circular vertices Eve responds with an
output bit.

where (VE , VA) is a partition of the set of vertices V into those of Eve and Adam, T is the
transition relation determining what are possible successors for each vertex, and Ω defines
the parity winning condition. Since, unlike for automata, V is not necessarily finite, we
should explicitly require that the there are finitely many ranks: the image of V under Ω
should be finite.

A play between Eve and Adam from some vertex v ∈ V = VE ∪ VA proceeds as
follows: if v ∈ VE , then Eve makes a choice of a successor, otherwise Adam chooses a
successor. From this successor the same rule applies and a play goes on forever unless
one of the parties cannot make a move. The player who cannot make a move loses. The
result of an infinite play is an infinite path v0v1v2 · · · This path is winning for Eve if it
satisfies the parity condition: the biggest rank appearing infinitely often in the sequence
Ω(v0),Ω(v1), . . . is even. Otherwise Adam is the winner.

In the game presented in Figure 4, the positions of Eve are marked with circles and
the positions of Adam with squares. Observe that the unique position with no successors
belongs to Adam, so he loses there. Eve wins a play if it passes infinitely often through
the position labeled with 2. For instance, if in the unique node for Eve she always chooses
to move down then she wins, as 2 is on the loop. Actually Eve can also allow herself to
move up, as then Adam has to go back to the position of rank 1 and Eve has once again a
chance to move down. So as long as Eve moves infinitely often down, she sees 2 infinitely
often and wins.

2 1 0

0

0

Figure 4. A parity game
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A strategy for Eve is a function θ assigning, to every sequence of vertices ~v ending
in a vertex v from VE , a vertex θ(~v) which is a successor of v. A play respecting θ is
a sequence v0v1 · · · such that vi+1 = θ(vi) for all i with vi ∈ VE . The strategy θ is
winning for Eve from a vertex v if all the plays starting in v and respecting θ are winning.
A vertex is winning if there exists a strategy winning from it. The strategies for Adam
are defined similarly. A strategy is positional if it does not depend on the sequence of
vertices that were played until now, but only on the present vertex. So such a strategy can
be represented as a function θ : VE → V and identified with a choice of edges in the
graph of the game.

The main algorithmic question about parity games is to decide which of the two play-
ers has a winning strategy from a given position. In other words, to decide whether a
given position is winning for Eve or winning for Adam. The principal results that we need
about parity games are summarized in the following theorem. We refer the reader to [69]
for more details.

Theorem 2.2 ([47, 30, 50]). Every position of a parity game is winning for one of the two
players. Moreover, a player has a positional strategy winning from each of his winning
vertices. It is algorithmically decidable who is the winner from a given vertex in a finite
game.

Reduction to parity conditions The reduction of the Church problem to games with
parity winning conditions is based on the following fundamental theorem relating mod-
els of MSO formulas and languages of deterministic parity automata. This is possible
thanks to the representation of models of a formula ϕ(X,Y ) by infinite sequences over
an alphabet {0, 1} × {0, 1}.

Theorem 2.3 ([15, 49]). For every MSOL formula ϕ(X,Y ), there is a deterministic par-
ity automaton Aϕ whose language is exactly the set of representations of the models
satisfying the formula.

The deterministic parity automaton Aϕ given by the theorem provides a quick re-
duction of the Church synthesis problem to the problem of solving parity games. The
automaton is over the alphabet A = {0, 1} × {0, 1}. We transform it into a game where
Adam guesses the first bit of the pair and Eve the second. The states of the game are
Q ∪ (Q × {0, 1}). From a position q ∈ Q Adam can move to a position (q, b) for
b ∈ {0, 1}. From a position (q, b) ∈ Q × {0, 1} Eve can move to q′ ∈ Q if there is a
bit b′ ∈ {0, 1} such that q′ = δ(q, (b, b′)), where δ is the transition function of Aϕ. The
rank of a position is given by the rank function of the automaton: the rank of q as well as
that of (q, b) is Ω(q). Hence, an infinite play is winning for Eve if and only if the chosen
sequence of pairs of bits is accepted by Aϕ. This means that there is a strategy for Eve
in this game if and only if the Church synthesis problem for the formula ϕ(X,Y ) has a
solution.

To sum up, the notion of a parity game together with Theorems 2.2 and 2.3 provide
another algorithmic solution to the Church problem.
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2.5 Notes

Of course, the work on the centralized synthesis problem has a much more varied past and
present than described in this section. For example, Kleene [39] talks about synthesizing
automata from regular expressions. Later the synthesis problem was considered in the
context of temporal logics [25, 46]. It has been even the motivation for introducing CTL
(Computational Tree Logic).

In recent years the Church problem has been studied in a multitude of variants. More
expressive specification formalisms have been explored. One possibility is to consider ex-
tensions of MSOL with monadic predicates [57, 37]. Another is to consider deterministic
pushdown automata on infinite words [72], or even on higher-order collapsible pushdown
automata [17, 13]. The problem becomes undecidable if we consider specifications given
by nondeterministic pushdown automata with Büchi conditions.

Going a different way, one can consider the game formulation that lends itself to nu-
merous extensions. It is possible to change the rules of the game so that the two players
choose at the same time [21]. The games become not determined and naturally suggest the
introduction of randomization both to moves of the game as well as to strategies [26, 22].
It is also possible to consider infinite arenas. One example is arenas defined by push-
down automata or their extensions, another is timed games [23, 10], and yet another is to
consider vector addition systems or general well-quasi order conditions on the transition
graph of the game [1]. Then there is also a vast literature on partial observation games,
where players do not have complete information about the state of the game.

3 Control of discrete event systems

The Ramadge and Wonham set-up [59] offers a more detailed view of the synthesis prob-
lem than the Church formulation. It introduces new concepts allowing us to track down
some challenging aspects of the problem. In particular, the idea of a split between a plant
and a controller makes it possible to put additional requirements on the control. After pre-
senting the standard Ramadge and Wonham setting, we discuss an extension to all regular
specifications [58, 5]. We show how to formulate the Church problem in this extension.

3.1 Standard specifications

We start with principal concepts and a standard formulation of the problem. For this we
do not need more than the basic theory of finite automata on finite words.

A plant over an alphabetA is a finite deterministic automaton without accepting states

Ap = 〈Qp, q0p, ep : Qp ×A→ Qp〉.

Here Qp is a finite set of states of the plant, q0p is the initial state, and ep is the transition
function. The behavior of the plant is the language of Ap when all the states are con-
sidered accepting. We denote it by L(Ap). In other words, L(Ap) is the set of labels of
paths in the graph of the automaton starting from the initial state. By definition L(Ap) is
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prefix-closed.
A controller for Ap is another automaton Ac over the same alphabet as Ap. A con-

trolled plant is the product automaton Ap ×Ac
Ap ×Ac = 〈Qp ×Qc, (q0P , q0C), e× : (Qp ×Qc)×A→ (Qp ×Qc)〉,

with e×((qp, qc), a) = (q′p, q
′
c), where q′p = ep(qp, a) and q′c = ec(qc, a). Intuitively the

role of the controller is to limit the set of possible behaviors, as only actions present in the
controller are possible in the controlled plant.

The reason for having separated a plant and a controller is that we can now put some
restrictions on the form of the controller. It is important to remark that these restrictions
may not necessarily be visible in the product of a plant and a controller. Hence, being
able to talk about the properties of a controller separately is something new and useful.

A first example of a restriction on a controller talks about uncontrollable actions. The
idea is that a controller should not be able to forbid an uncontrollable action. Formally,
the controllability condition with respect to a set Aunc ⊆ A of uncontrollable actions is
as follows

Controllability : From every state there is a transition on every a ∈ Aunc.

c

b
a,
c b

e

a

Plant

c

b
a,
c e

a, b, c, e

a

a, b, c, e

e

Controller

c

b
a,
c

a

Controlled plant

Figure 5. A plant, a controller, and the resulting controlled system. The set of
uncontrollable actions is Aunc = {e}.

Example: Figure 5 shows a plant, a possible controller, and the resulting controlled plant.
Assuming that Aunc = {e}, every state of the controller should have an outgoing tran-
sition on e. The control objective is K = {a, b, c}∗, or in other words, “avoid e”. With
these assumptions the presented controller is the maximal one. For example, it cannot
permit doing the sequence cb from the upper-left state, as this would enable action e in
the product.

It is somehow more elegant to formulate the Ramadge and Wonham control problem
in terms of languages rather than automata. We call this synthesis problem centralized
in anticipation of a more general, decentralized, problem that asks to construct several
controllers at the same time.

Definition 3.1 (Centralized controller synthesis). Given a setAunc ⊆ A of uncontrollable
actions, and prefix closed languages P,K ⊆ A∗, find the largest language C ⊆ A∗ with
respect to inclusion such that P ∩ C ⊆ K and the two following conditions are satisfied:
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prefix C is prefix closed;
control if w ∈ C and a ∈ Aunc then wa ∈ C.

The formulation asks for the largest controller, since the empty language is always
a solution. The prefix closure requirement is equivalent to asking that a language be
recognized by a finite automaton with all states accepting.

Theorem 3.1 ([59]). There always exists the largest controller that is a solution to the
centralized control problem. Moreover, this controller is a regular language, and can be
constructed algorithmically.

Proof. Take the minimal complete deterministic automata Ap, Ak for languages P and
K, respectively. Since both languages are prefix closed, both automata have only one
non-accepting state that is also a sink state (a state from which all outgoing transitions
are self-loops). We denote these states ⊥p and ⊥k, respectively. Let us take the product
automaton A× = Ap ×Ak and do the following:
• Introduce a new state >, and make it recognize all A∗.
• Direct all transitions leading to states of the form (⊥p, sk) to >.
• Remove all states (sp, sk) from which a state (s′p,⊥k) is reachable by a (possibly

empty) sequence of uncontrollable actions.
LetAC be the result of these operations and let C = L(Ac). We claim that C constructed
this way is the solution announced by the theorem. The first observation gives a useful
characterization of the behavior of the controlled plant.

Lemma 3.2. w ∈ P ∩ C if and only if w ∈ P ∩K and wA∗unc ∩ P ⊆ wA∗unc ∩K.

To see why this characterization holds, consider a word w ∈ P ∩C. By construction,
after reading this word Ac ends up in a state (sp, sk) with none of its components being
a sink state. This means that w ∈ P ∩K. To check the second condition, take u ∈ A∗unc
and suppose wu ∈ P . This means that for the state (s′p, s

′
k) reached on this word in Ac

the first component is not ⊥p. Observe that (s′p, s
′
k) is also the state reached on u from

(sp, sk) on u. Since (sp, sk) is not removed, s′k is not ⊥k. Hence wu ∈ K.
For the other direction of the Lemma 3.2, take w ∈ P ∩K. Automaton A× reading

w reaches a state (sp, sk) with neither of the two components being a sink state. It is
sufficient to check that this state is not removed in the second step of the construction.

Using Lemma 3.2 we can check that C = L(Ac) is a solution to the problem. The
lemma implies that P ∩ C ⊆ K. By construction C is prefix closed. It remains to check
the control condition. For this we take w ∈ C and a ∈ Aunc. We want to show wa ∈ C.
There are two cases.
• Ifwa 6∈ P thenwa = vbu, where v is the longest prefix included in P . We have that

in Ac word v leads to a state (sp, sk) with sp not a sink state. By the construction
a transition on b from this state leads to >c. Hence vbA∗ ⊆ C, and in particular,
wa ∈ C.

• The second case is when wa ∈ P . Then w ∈ P ∩ C, so using Lemma 3.2 we get
wa ∈ K. Moreover for every u ∈ Aunc we have that if wau ∈ P then wau ∈ K.
Hence wa ∈ C again by Lemma 3.2.
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Finally, we check that C is the largest solution with respect to language inclusion. For
this, consider some other controller C ′ and take w ∈ C ′. We need to show w ∈ C. If
w ∈ P then w ∈ P ∩C ′ ⊆ K, since C ′ is supposed to be a controller for the specification
K. Analogously, for every u ∈ (Aunc)

∗, if wu ∈ P then wu ∈ K, since wu ∈ C ′ by
the control condition. From Lemma 3.2 we get that w ∈ C. The remaining case is when
w 6∈ P . Let v be the longest prefix of w that is in P , so w = vbu for some letter b and
word u. From the previous case we have v ∈ P ∩ C. Since vb 6∈ P , we have that in Ac
the word vb leads to>c. This means that vbA∗ ⊆ C, and in particular w = vbu ∈ C.

The interesting point of the above theorem is that it guarantees the existence of a
maximal controller implementable as a finite automaton. The price to pay is rather severe
limits on the form of a specification. In particular, the formulation does not allow express-
ing deadlock or liveness constraints. For example, the controlled plant from Figure 5 has
deadlock states from which no transition is possible. In this example, a controller avoiding
deadlocks should permit nothing but a actions.

The simplest approach to handle deadlock is to explicitly require that the resulting
controlled plant does not have deadlock states.

Blocking : Every state of the controlled plant has an outgoing transition.

Observe that this time the condition refers to a controlled plant and not on a controller
alone. Of course there are many different variants of the blocking condition. We take this
one as a representative example.

It is not difficult to solve the control problem with a blocking requirement. We take
the automatonAc as constructed above. We call a state (p, k) blocked if there is no action
enabled from it. Clearly, in order to satisfy the blocking condition we should remove all
blocked states. We call a state (p, k) unstable if there is there is some uncontrollable ac-
tion enabled in p and not enabled in (p, k). InAc there are no unstable states, but once we
remove blocked states we can get unstable states. Removing unstable states can produce
new blocked or unstable states that should be removed. We repeat this process until there
are no states to remove. The automaton we obtain at the end is the solution to the synthe-
sis problem with blocking condition and it is the largest solution with respect to language
inclusion.

Another important example concerns unobservable actions. These are actions whose
execution by a plant should not be visible to a controller. In other words, transition labeled
with an unobservable action should not change the state of the controller – it should be
a self-loop. Formally, the observability condition with respect to a set Auno ⊆ A of
unobservable actions is as follows:

Observability : Every transition on a ∈ Auno is a self-loop.

Example: Again consider the plant from Figure 5. Suppose that additionally c is unob-
servable; that is Auno = {c}, and as before Aunc = {e}. If the specification is to avoid
doing the action e then the largest controller for this plant has just one state with actions
a, c, e being self-loops on this state. Put differently, the language of the controller permits
all the sequences of actions not containing b.

In general, in order to solve the control problem with observability constraints, one
first needs to perform a kind of powerset construction on the plant with respect to un-
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observable actions. Then the rest of the argument is the same as in the previous cases.
While conceptually easy in a centralized setting, the observability condition increases the
algorithmic complexity of the problem. The constructions we have presented before were
all in polynomial time. In particular, a controller has been always a sub-automaton of
the product of the plant and the specification automata. A controller under observability
constraints can be exponentially bigger than this product.

3.2 General specifications

In the previous subsection we have seen three types of constraints: controllability, block-
ing, and observability. One can, of course, very well imagine variations on these prop-
erties, as well as completely different properties. For example, liveness properties of the
form: some action appears infinitely often on every execution. Or branching properties
like: from every state it is possible to reach a reset state. In this subsection we will present
a way to handle such extensions.

A specification in the centralized control problem talks about some properties of the
product Ap × Ac of the plant and the controller. The most general way to specify such
properties would be to talk directly about the product as a graph with labeled edges: states
are nodes, and edges are given by the transition function. More precisely, an automaton
〈Q, q0, e : Q × A → A〉 can be seen as a graph with labeled edges and a distinguished
node 〈Q, q0, {Ra}a∈A〉where (q, q′) ∈ Ra when e(q, a) = q′. To connect this to standard
terminology we will call such graphs transition systems. Observe that these transition
systems are deterministic: for every node and label there is at most one outgoing edge
with that label.

Example: The transition system view of an automaton encourages formulation of prop-
erties not expressible in terms of language inclusion. For example, we may require that
from every node one can reach a node where a transition on a reset action r is possible.
In terms of properties of the language this means that every word in the language has a
prolongation ending with r.

We are looking for a logic capable of describing properties of graphs with labeled
edges. This time, though, we cannot just take monadic second-order logic as we have
done for sequences, since the logic is undecidable over graphs. Fortunately, there exists
a well-determined fragment of the logic that is decidable and can express most of the
properties we are interested in.

Mu-calculus with loop testing Mu-calculus [4, 11, 71, 12] is a modal logic with fix-
points. A formula of this logic describes a set of states of a transition system. To define the
syntax we fix an alphabetA of actions, that is, labels of edges of a transition system, and a
countable set of variables, whose meanings will be sets of states of the transition system.
The set of formulas of the logic is the smallest set containing variables, the constant true ,
closed under Boolean connectives, and two additional constructs:

modalities if α is a formula and a an action, then 〈a〉α is a formula;
fixpoint if α is a formula andX a variable whose all occurrences in α are positive (under

even number of negations), then µX.α is a formula.
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The meaning of a formula in a transition system is a set of states satisfying the formula.
Since a formula may have free variables, its meaning depends on the meanings of the free
variables. More formally, given a transition systemM = 〈S, {Ra}a∈Act〉 and a valuation
V : Var→ P(S) we define the meaning of a formula [[α]]

M
V by induction on its structure.

The meaning of variables is given by the valuation. The meaning of true is the set of all
the states of the transition system. The meaning of Boolean connectives is standard.

The meaning of modalities is determined by transitions. Formula 〈a〉α holds in all
states from which there is an transition on a to a state satisfying α

[[〈a〉α]]
M
V ={s ∈ S : ∃s′.Ra(s, s′) ∧ s′ ∈ [[α]]

M
V }.

Finally, the µ construct is interpreted as the least fixpoint of an operator determined by
α. A formula α(X) containing a free variable X can be seen as an operator on sets of
states mapping a set S′ to the semantics of α when X is interpreted as S′; in symbols:
S′ 7→ [[α]]

M
V[S′/X]. As all occurrences of X in α are positive, this operator is monotonic.

Its least fixpoint is given by

[[µX.α]]
M
V =

⋂
{S′ ⊆ S : [[α]]

M
V[S′/X] ⊆ S

′}.

We will often writeM, s,V � α instead of s ∈ [[α]]
M
V . Moreover we will omit V orM if

it is not important or clear from the context.
Before giving some examples, let us introduce some useful abbreviations. We will

write [a]α for ¬〈a〉¬α. This formula holds in a state if α holds in all states reachable
from it by transitions on a. We will write νX.α(X) for ¬µX.¬α(¬X). It can be checked
that νX.α(X) is the greatest fixpoint of the operator defined by α(X).

Example: Formula 〈a〉true means ‘there is transition labeled by a’. With one fixpoint,
we can talk about termination properties of paths in a transition system. The formula
νX.〈a〉X means that there is an infinite sequence of a transitions. The formula µX.[a]X
means that all sequences of a transitions are finite. Observe the crucial role of fixpoints
in the last two formulas; indeed changing µ to ν in the last formula gives νX.[a]X that
is always true since [a]true is always true. With two fixpoints, we can write fairness
formulas, such as νY.µZ.(〈a〉Z) ∨ 〈b〉Y , meaning “there is a path of a’s and b’s with
infinitely many occurrences of b’s”. A very useful formula νX.(〈b〉true) ∧

∧
a∈A[a]X

says that action b is possible from every node reachable by a sequence of actions from
A. Since A is the set of all actions, it means that action b is possible from every node
reachable from the initial node. We write Everywhere(γ) for the same formula with γ
replacing 〈b〉true . So Everywhere(γ) says that in every node reachable from the initial
node the formula γ is true.

The relation between MSOL and the mu-calculus is expressed in terms of bisimulation
invariance. Two states are bisimilar if the computations from them behave in the same
way. More formally, a bisimulation is a symmetric relation on states of a transition system
such that for every (s1, s2) in the relation and letter b the following holds: if there is a
transition on b from s1 to s′1, then there is a transition on b from s2 to a state in the relation
with s′1. A set of states of a transition system is bisimulation invariant if for every pair of
states in some bisimulation relation, the two states are either both in the set or both outside
the set. For every transition system, a mu-calculus sentence defines a set of states where
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the sentence holds. This set is always bisimulation invariant. In short, we can say that
every sentence of the mu-calculus defines a bisimulation invariant property. An MSOL
formula with one free variable also defines a set of states of a given transition system.
This set may not be bisimulation invariant. Mu-calculus can be translated to MSOL in
the sense that for every mu-calculus sentence one can construct an MSOL formula with
one free variable such that in every transition system the two formulas define the same
set of states. The translation is syntax directed, and follows from the fact that least and
greatest fixpoints are definable in MSOL. The following characterization shows under
which condition the inverse translation is possible.

Theorem 3.3 ([38]). The mu-calculus is expressively equivalent to the bisimulation-
invariant fragment of MSOL: if an MSOL formula ϕ(x) defines a bisimulation-invariant
property, then it is equivalent to a mu-calculus sentence.

We will use this theorem to avoid writing complicated formulas. Formulations of a
synthesis problem use specifications of the form “the label of every path is in a regular
language K”. Since this condition is expressible in MSOL and bisimulation invariant, it
is also expressible in the mu-calculus.

Going in the opposite direction, we introduce a useful construct that does not preserve
bisimulation invariance. We consider a loop testing predicate 	a. This predicate holds
in a state if there is a transition on a that is a self-loop: s �	a if (s, s) ∈ Ra. This
construction allows to express observability conditions, and at the same time does not
increase the complexity of the satisfiability problem for the mu-calculus.

Theorem 3.4 ([5]). The satisfiability problem for the modal mu-calculus with loop testing
predicates is decidable in EXPTIME.

Generalized specifications The first advantage of the mu-calculus with loop testing is
that it is expressive enough to express control, blocking and observability constraints, as
well as their many possible variations.
• Control; every accessible state has outgoing transition on every uncontrollable ac-

tion: Everywhere(
∧
a∈Aunc〈a〉true).

• Blocking; every accessible state has at least one outgoing transition:
Everywhere(

∨
a∈A〈a〉true)

• Observability; for every accessible state all actions on unobservable events are self-
loops: Everywhere(

∧
α∈Auno

	a)

Note that for the last of the above properties we really need a loop testing predicate;
the property is not expressible in the standard mu-calculus, since it is not bisimulation
invariant.

Let us see some more examples of new conditions we can express in the mu-calculus.
Suppose that A contains two actions c1, c2 and we want to say that at each moment at
most one of the two is controllable: Everywhere(〈c1〉true ∨ 〈c2〉true).

For another example take the alphabet A = {a, f}. Suppose the failure action f is
uncontrollable, and we want to say that action a becomes uncontrollable after f occurs:
νX.([a]X ∧ 〈f〉Everywhere(〈a〉true)).



1166

Finally, our example from the beginning of the section “from every state a reset action
is reachable” is expressible by Everywhere

(
µX. (〈r〉true) ∨

∨
a∈A〈a〉X

)
.

These examples justify the following definition.

Definition 3.2 (Generalized centralized controller synthesis). Given an automaton Ap
and formulas α, β of the mu-calculus with loop testing, decide if there is an automaton
Ac such that Ac � β and Ap ×Ac � α.

Observe that we can use β to state controllability or observability constraints. The
blocking constraint can be expressed using α. On the other hand, in this approach we have
no way to express maximality of a controller. In its original formulation, the maximality
constraint was introduced to avoid trivial solutions. Here we can avoid trivial solutions
using specifications. The price to pay for the richer specification language is that we
cannot expect to always have a maximal controller. For example, if the specification
α says that every sequence of b actions should be finite, then we can have controllers
permitting longer and longer sequences of b actions, but there is no maximal controller
for this specification since there is no bound on the length of these sequences.

Theorem 3.5 ([5]). The generalized controller synthesis problem is decidable.

It turns out that it is not a restriction to require that a controller is a finite automaton.
It can be shown that whenever a potentially infinite controller exists then there exists a
finite one too.

The proof of the theorem uses an operation called division [3, 5]. It can be shown that
for a transition system P and a formula α of the µ-calculus with loop predicates there is
a formula α/P of the same logic such that for every transition system C:

P × C � α if and only if C � α/P.

With the help of this operation, we have that

Ac � β ∧ (α/P ) if and only if Ac � β and Ac × P � α.

This means that the synthesis problem is reduced to checking satisfiability of the formula
β ∧ (α/P ) of the mu-calculus with loop predicates. By Theorem 3.4 the satisfiability
problem is decidable, and, in case the answer is positive, a finite automaton can be effec-
tively constructed.

As a final remark about the generalized Ramadge and Wonham problem, we sketch
the encoding of the Church problem. Recall that Church problem is given by an MSOL
formula ϕ(X,Y ) specifying the relation between input and output sequences of bits. To
make the distinction between input and output explicit we take two alphabets Ain and
Aout of input and output bits. For the plant we take a two-state automaton Ap accepting
the language (Ain · Aout)

∗; that is, all the words with interleaved input and output bits.
We declare all the letters of Ain uncontrollable. This way the controller cannot influence
what letters appear in the input. The constraint β that we put on controllers is the con-
junction of the controllability condition together with the requirement that there should be
no deadlock states in a controller. Finally, the specification α for the controlled plant says
that all the labels of all the infinite paths considered as infinite sequences of pairs of bits
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satisfy the Church specification ϕ(X,Y ). Since this is a bisimulation-invariant property,
it can be written as a mu-calculus formula. If Ac is a solution to a problem formulated
this way, we can directly transform Ap × Ac to a device in the Church sense satisfying
the specification.

3.3 Notes

The Ramadge and Wonham formulation of the synthesis problem has been intensively in-
vestigated [8, 40, 18, 73]. The problem for generalized specifications has been extended
to nondeterministic automata [6]. Some extensions not covered by this line of research
concern the case when a plant is a pushdown automaton. In this case there are some
non-regular specifications talking about stack properties for which the problem is decid-
able [16, 9, 63].

There are also other formulations of the synthesis problem with devices given be-
forehand. For example, one can ask to construct a system from a given set of I/O de-
vices, that is, finite-state transducers, subject to some precise restrictions for composing
them [42, 61]. Other types of general devices and composition methods are considered in
the field of web-services orchestration [2, 7].

4 Distributed synthesis: synchronous architectures

Recall that the Church synthesis problem requires constructing a device that interacts with
an environment by reading input signals and sending output signals. We have represented
this schematically in Figure 1 as a box with an ingoing arrow for the input and an outgoing
arrow for the output.

The distributed synthesis problem formulated by Pnueli and Rosner [54] asks to con-
struct several devices that communicate with the environment and between themselves.
This is represented as a graph, with boxes being place-holders for the devices to construct,
and edges being communication channels (see Figure 6). As in the Church problem, in
every box we put an input/output automaton that reads a letter from every input channel
going into the box, and outputs a letter to every output channel going out of the box. The
behavior of the whole system is totally synchronous: in one cycle every device reads its
input letter and then produces its output letter. Observe that the output of one device can
be the input of another device. In this case the letter output by the first device is read in
the same cycle by the second device. This kind of semantics is, of course, problematic if
there are loops in the architecture graph. For this reason we will restrict our discussion
to architectures without loops. Adding loops complicates the semantics, but does not add
new insights to the problem, at least from the perspective of this chapter.

After formulating the problem precisely, we will show that the problem is undecid-
able for essentially all architectures except pipelines. Our objective in this section is to
present a selection of results highlighting phenomena that can appear in the distributed
synthesis problem. Concerning undecidability, we will discuss a couple of representative
architectures in detail. Concerning the pipeline architecture, we will not only present the
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decidability proof, but also a detailed sketch of the nonelementary lower bound for the
synthesis problem. Even though this architecture is of limited use in itself, the tools used
in the analysis may be of broader interest.

P1 P2

P3

c1 c2

c3 c4

c5

Figure 6. A distributed architecture

Formally, an architecture over a channel alphabet A is a tuple

〈A,P,C, src : C → P(P ∪ {ε}), tgt : C → P(P ∪ {ε})〉

where P is the set of processes, nodes in the graph; C is the set of channels, edges in the
graph; and src, tgt are the functions defining the incidence relation. Here ε is a special
label standing for the environment. So if src(c) = ε then c goes from the environment,
or in other words, c is an input channel for the system. Similarly, if tgt(c) = ε then
c is an output channel. As it will be clear from the semantics below, channels c with
src(c) = tgt(c) = ε do not make much sense, since they do not influence the behavior
of the architecture. We will write Inp = tgt−1(p) for the set of channels that arrive at
the process p, similarly we set Outp = src−1(p). Going back to the architecture from
Figure 6, we have P = {p1, p2, p3}, and C = {c1, . . . , c5}. For the edges, we have, for
example, src(c1) = ε, and tgt(c1) = p1.

At every moment each channel contains one letter. So the content of the channels is
described by a function χ : C → A. We write Inp(χ) for a restriction of χ to Inp, and
analogously for Outp(χ). A device for a process p ∈ P is a function fp : (AInp)∗ →
AOutp . Given a device for each process a behavior of a system is a sequence: χ0, χ1, . . .
such that for every i = 0, 1, . . . and every p ∈ P we have

Outp(χi) = fp(Inp(χ0) · · · Inp(χi)).

This means that the output of p in cycle i depends on the contents of all its input channels
during all the previous cycles, including cycle i. Observe that a system may have many
behaviors, as the contents of the channels coming from the environment is not constrained.
Let us go back to the example in Figure 6. We take f1 to be the identity function. We then
take f2(~χ) = 1 if and only if ~χ contains a 1; this means that f2 will emit constantly 1 after
the first appearance of 1 on the input. For f3 we take the Boolean conjunction: a function
such that f3(~χ) = 1 if and only if ~χ ∈ ({0, 1}2)∗ ends in the letter (1, 1). Representing a
channel contents χ as a vector of five bits, the following is a possible behavior

(1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (1, 0, 1, 1, 1), . . .

In the second cycle device f2 receives 1 on its input, so from that moment the value of its



1169

output channel, c4, will be always 1. Hence, from that moment the architecture will copy
the contents of the channel c1 to c5.

Distributed synthesis problem for a fixed architecture asks if for a given specification
there exist devices such that when put into the boxes the behavior of the resulting system
satisfies the specification.

Definition 4.1 (Distributed synthesis problem). Given an architecture 〈A,P,C, src, tgt〉
with p processes and k channels, and a specification in a form of a regular language K of
infinite trees over Ak, decide if there exist devices f1, . . . , fp such that the tree of all the
behaviors of the resulting system is in K.

In this formulation we have permitted branching regular specifications since this is the
most general case we treat in this chapter. Undecidability results from the next subsection
hold also when we take much weaker specifications as in the formulation of the original
Ramadge and Wonham problem, namely when we require that all finite prefixes of all the
behaviors are in a given language of finite words.

4.1 Undecidability: global and local specifications

It turns out that for most architectures the synthesis problem is undecidable. We will
first discuss a general undecidability result that uses the power of specifications to talk
about all the processes at the same time. This leads to a notion of local specification
that is a conjunction of requirements on each process separately. We show that somehow
surprisingly this does not help substantially. The class of decidable architectures for this
kind of specifications does not increase substantially.

Consider an architecture presented in Figure 7 consisting of two independent pro-
cesses, each having its own input and its own output.

P1 P2

In1 In2

Out1 Out2

Figure 7. A simple undecidable architecture.

Theorem 4.1. [54] The synthesis problem for the architecture from Figure 7 is undecid-
able.

Proof. We reduce the halting problem for deterministic Turing machines. Given a Turing
machine we construct a specification that is realizable if and only if the run of the machine
from the empty configuration is infinite.

We fix a deterministic Turing machine M . We assume some encoding of configu-
rations of M by infinite words; say that there is a blank symbol to make the encoding
infinite. Let AM be the alphabet used to write configurations. For two infinite words
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v, w ∈ (AM )ω we write v `M w to say that w is a successor configuration of v in a
computation of M ; in particular v must be a configuration too.

The alphabet of the architecture will contain the alphabet of configurations, AM , to-
gether with two special letters # and $. The specification will only consider what happens
when the input to the two processes is of the form #i$ω , namely a sequence of # symbols
followed by infinitely many $ symbols. The first requirement is that each process on the
input #i$ω produces an output #iv with v ∈ (AM )ω . We will also require that on the
input $ω , namely when there is no # symbol, the word v on the output is the encoding of
the initial configuration of M .

The remaining two requirements will talk about behavior of the two processes at the
same time. The first is pictorially expressed by:

if
In1:
Out1:
In2:
Out2:

#
#
#
#

· · ·
#
#
#
#

$
a1
$
b1

$
a2
$
b2

· · · then ai = bi for all i (4.1)

where we have represented channel contents at consecutive cycles as vertical tuples. The
specification says that if the first $ sign arrives at the same time in In1 and in In2 then the
outputs of the two processes should be the same, namely, ai = bi for all i.

The second requirement is schematically represented by:

if
In1:
Out1:
In2:
Out2:

#
#
#
#

· · ·
#
#
#
#

$
a1
#
#

$
a2
$
b1

$
a3
$
b2

· · · then (a1a2 . . . ) `M (b1b2 . . . ) (4.2)

It says that when in the second input the first $ sign arrives one cycle later than in the first
input, the word (b1b2 . . . ) should represent the successor configuration of the configura-
tion represented by the word (a1a2 . . . ).

We claim that this specification is realizable if and only if the run of M from the
initial configuration is infinite. Suppose that we have devices f and g that realize the
specification. The crucial observation is that the output in Out1 is independent from
the input in In2. This means that on the input #i$ω device f outputs the same #iv
independently of what is the input to the other device. Let vi denote the word that is
output by f when reading #i$ω . Similarly wi for g.

For the proof in one direction suppose that the computation of M from the initial state
is infinite. For f , we can take the device outputting the i-th configuration of M as vi. We
take same device for g. Clearly this strategy realizes the specification.

For the proof in the other direction, the first part of the specification tells us that v0 is
the initial configuration of M . The requirement (4.1) tells us that vi = wi for all i. The
requirement (4.2) enforces vi `M wi+1 for all i. This way we have:

v0 `M w1 = v1 `M w2 = v2 `M w3 . . .

So the sequence v1, v2, . . . is an infinite computation of M . Hence, a specification is
realizable if an only if there is an infinite computation of M on the empty input.

Looking at the proof one is tempted to “blame” the specification for undecidability.
Indeed, the specification links behaviors of the two processes while they have no means
to communicate between themselves. One can say that the specification is global, i.e.,
describes the behavior of the system from the outside; while the visibility of each process
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is local, i.e., it sees only its input and output channels.
This observation suggest to consider only local specifications [44]: specifications that

are conjunctions of requirements on input and output channels of each process. Restrict-
ing to local specifications remedies our immediate trouble because it makes the synthesis
problem decidable for the architecture in Figure 7. Indeed, in this case we just need to
solve two independent instances of Church synthesis.

Surprisingly, the restriction to local specifications does not enlarge the class of decid-
able architectures substantially.

P1 P2

P3

Figure 8. Undecidable architectures for local specifications. The argument for the
architecture in the middle of the figure relies on a specification “fixing the input”.

Theorem 4.2 ([44]). The synthesis problem for local specifications is undecidable for the
architectures presented in Figure 8.

The consequence of this theorem is that the synthesis problem is undecidable for all
architectures in which we can find one of the patterns from Figure 8. This theorem leaves
us with not much more than the pipeline architecture that we will discuss in the next
section.

Let us explain the reasons for the undecidability results from Theorem 4.2. For the
first architecture of Figure 8 it is not difficult to imagine that a local specification on the
process at the bottom can simulate a global specification on the two processes above it.
This gives undecidability since these two processes form exactly undecidable architecture
from Figure 7.

The reasons for undecidability for the two other architectures are a bit different. We
will briefly describe the argument for the second architecture, the one for the third being
similar.

Consider the following specification. For every i: on the input of the form #i$v, the
output should be #iv. This means that after reading $ on the input the process should
output the first letter of v. In the next cycle the same first letter should appear on the
input and the process outputs the second letter of v, etc. This strange specification fixes
one arbitrary v in a sense that after reading #i$ only the fixed v can be send to the input
without violating the specification.

As in the proof of Theorem 4.1, we want to write a specification which is realizable if
and only if a given deterministic Turing machine has an infinite run on the empty word.
For this we impose the strange specification from the previous paragraph on both P2 and
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PnPn−1P1

cncn−1c0

Figure 9. A pipeline architecture. The input on cn is processed in sequence by
Pn, . . . , P1 and the results is output on c0.

P3. We will be interested in inputs to P1 of two forms: #i(eq)$ω or #i(succ)$ω; where
(eq) and (succ) are new symbols. On an input #i(eq)$ω process P1 should send #i$v
both to P2 and P3. The only restriction on v is that if i = 0 then v should be encoding of
the initial configuration of M . On an input #i(succ)$ω process P1 should send #i$v to
P2 and #i+1$w to P3, with a condition that v and w are successive configurations of our
fixed Turing machine M . This property can be checked using a finite automaton since
v and w are produced letter by letter in parallel. Now, because of the specifications we
have imposed on P2 and P3, for every i there is only one vi such that #i$vi can be an
input to P2. Similarly wi for P3. Because of the conditions on P1 we have that: v0 is the
initial configuration, vi = wi as well as wi+1 is the successor configuration of vi; for all
i = 0, 1, . . . . Hence, the specification is realizable if and only if the computation of M
from the initial configuration is infinite.

4.2 How to solve pipeline

A pipeline is a sequence of processes, each reading the output of the preceding one (cf.
Figure 9). For unrestricted specifications, the undecidability results from the previous
subsection leave pipelines as essentially the only candidates for architectures with de-
cidable distributed synthesis problem. We give a decidability proof, and examine the
computational complexity of the problem.

Theorem 4.3 ([54]). For every pipeline architecture the synthesis problem is decidable.

Before presenting the proof let us mention that for local specifications the problem is
decidable also for a pipeline with additional input at process P1 [44, 43]. Observe that
Theorem 4.2 implies that the problem is undecidable if we add an input at some process
Pi for n > i > 1.

Proof. Consider a pipeline as in Figure 9. Suppose that for z = n, . . . , 1, we have a
device fz : A∗ → A for the process Pz . A behavior of the pipeline with these devices is a
sequence χ0, χ1, . . . of channel contents χi : {cn, . . . , c0} → A. The constraints coming
from the architecture tell us that the output on the channel cz−1 is the result of applying
device fz to the input on the channel cz:

χi(cz−1) = fz(χ0(cz) . . . χi(cz)), for i = 0, 1 . . . and z = 1, . . . , n.

In particular, once devices are fixed, the input on channel cn determines the behavior of
the pipeline. For w ∈ Aω , let χw0 , χ

w
1 , . . . denote the behavior of the pipeline on the input

w, namely a unique sequence as above satisfying: χwi (cn) = wi for i = 0, 1, . . . .
The solution we will present uses a reformulation of the notion of the behavior of the

pipeline. We will need an operation of composition: for functions h1 : A∗1 → A2 and
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h2 : A∗2 → A3, the composition comp(h1, h2) is a function A∗1 → (A2 × A3) such that
for all v ∈ A∗1

comp(h1, h2)(v) = (h1(v), h2(h1(v))) (4.3)

where h1(v) is the sequence of results of h1 on prefixes of v, namely the sequence
h1(v0)h1(v0v1) . . . h1(v0 . . . vi) where v = v0 . . . vi.

Using the operation of composition we can put together the devices, starting from the
rightmost one

g1 = f1 and gi = comp(fi, gi−1) for i = 2, . . . , n . (4.4)

It may be useful at this point to recall the types of objects in these formulas, fi : A∗ → A,
and gi : A∗ → Ai. In particular gn : A∗ → An. We get that gn describes the semantics
of the pipeline.

Lemma 4.4. For every infinite sequence w ∈ Aω , and its prefix w1 · · ·wi we have
gn(w1 · · ·wi) = (χwi (cn−1), . . . , χwi (c0)).

Recall that the semantics of a distributed system is a tree of all its behaviors. Using
the above lemma we can consider that the semantics of the pipeline is rather given as a
function h : A∗ → An. In particular, we can assume that the specification is given as a
regular language Ln of functions h : A∗ → An. Indeed, it is straightforward to translate
an MSOL specification on tree of behaviors into MSOL specification on such functions.
Hence, the pipeline problem can be stated as: given by a regular language L of functions
h : A∗ → An, decide if there exist devices fn, . . . , f1 such that gn as defined in (4.4) is
in L.

To solve this problem we consider an automaton construction that allows us to deal
with comp operation used in (4.4) to define the semantics of the pipeline. Given L, a set
of functions h : A∗1 → (A2 ×A3), we define the set

shape(L) = {g : A∗2 → A3 : ∃f : A∗1 → A2. comp(f, g) ∈ L} .

So shape(L) is the set of all g for which it is possible to find f such that the result of the
composition of the two is in L.

Theorem 4.5 ([41]). IfL is a regular tree language of functions h : A∗1 → (A2×A3), then
shape(L) is a regular tree language of functions h′ : A∗2 → A3. The parity automaton
for shape(L) can be effectively constructed from the parity automaton for L.

The construction stated in the theorem is based on the equivalence of non-deterministic
and alternating tree automata. This theorem gives us a tool to solve the pipeline problem.
Taking our specification L we define a sequence of languages:

Ln = L, Li = shape(Li+1) for i = n− 1, . . . , 1.

Let us verify that the pipeline problem has a solution if and only if L1 is not empty.
If fn, . . . , f1 is a solution to the pipeline problem then we take the functions gi as

defined in (4.4). Since the pipeline with devices fn, . . . , f1 satisfies the specification, we
have that gn ∈ Ln. By definition gn = comp(fn, gn−1), hence gn−1 ∈ shape(Ln) =
Ln−1. By a straightforward induction gi ∈ Li for all i = n, . . . , 1.
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For the opposite direction, suppose that L1 6= ∅. Take f1 : A∗ → A from L1. Since
L1 = shape(L2), by definition there exists f2 : A∗ → A such that comp(f2, f1) ∈ L2.
Let us use h2 to denote comp(f2, f1). By induction on i we show that there exists fi :
A∗ → A such that hi = comp(fi, hi+1) ∈ Li. Hence hn ∈ Ln. Function hn describes
the semantics of the pipeline as in (4.4). We get that fn, . . . , f1 is a solution to the pipeline
problem.

4.3 A lower bound for pipeline architecture

Even though the synthesis problem for pipeline is decidable, it turns out to be algorith-
mically difficult. The complexity grows by one exponential with every new element of
the pipeline. We will show that every algorithm for solving the synthesis problem for a
pipeline of n elements needs order of Towern−2(k) time, where k is the size of the spec-
ification given as a finite automaton. We denote by Towern(k) the tower of exponentials
function, namely, Tower0(k) = k and Tower i+1(k) = 2Toweri(k).

Theorem 4.6 ([54]). The complexity of the synthesis problem for pipeline architectures
is nonelementary in the number of components.

This subsection is devoted to a rather detailed sketch of this result since the lower
bounds stated in the literature refer to results on multi-player Turing machines [53]. The
argument presented below gives an opportunity to show some peculiar specifications one
can write in this framework. Among others, we will see once again strange specifications
fixing the input we have used to show undecidability of architectures from Figure 8. The
specifications we present below can be made local in a sense of [44]. So the lower bound
applies also to local specifications. It is a challenging problem to find an interesting
subclass of specifications for which the pipeline synthesis problem has lower complexity.

The proof of the lower bound will use similar tools as the proof from [66] of the
nonelementary complexity of the satisfiability problem for first-order logic over 〈N,6〉.
We will simulate an alternation of quantifiers of the form ∀x1

∃x2>x1
∀x3>x2

. . . , where
variables range over positions in an infinite word. Universal quantifiers will be simulated
by the input from the environment, existential quantifiers by guessing. The nesting of
quantifiers will be simulated by visibility restrictions.

Let us fix n. We will be interested in counters counting to Towern(n). We suppose
that we have alphabets Σk = {ak, bk,`k,ak} for k = 1, . . . , n. Additionally we will
have a blank symbol B.

Definition 4.2. A 1-counter is a sequence of n-letters from Σ1 prefixed with `1 and fin-
ished with a1. Such a sequence represents a number between 0 and 2n−1 by interpreting
a1 as 0 and b1 as 1, and assuming that the most significant bit is on the right.

A k-counter, for k > 1, is a sequence of the form `k c0σ0 . . . ciσi ak, where all
cj are (k − 1)-counters and all σj ∈ Σk. Moreover we require that c0 represents 0;
cj+1 represents the successor of a number represented by cj , for all j = 0, . . . , i − 1;
and ci represents the maximal possible value (that is Towerk(n) − 1). The value of the
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counter is given by the sequence σ0 . . . σi interpreted as a binary number with the most
the significant bit to the right (as before we consider that ak stands for 0 and bk for 1).

In what follows we will construct a specification forcing a controller for a pipeline
architecture to output an (n+ 1)-counter. As soon as we achieve this, it will be then easy
to modify the construction so that this word is not an (n+1)-counter but a computation of
Towern(n)-space bounded Turing machine. The architecture will have n+ 2 processes.

We will start by describing what we mean by forcing a controller to output a word,
then we will describe, a quite complicated, specification that forces this word to be an
n-counter.

Fixing a word. Suppose that we ask that the letter output by process P−1 should appear
on its input in the next cycle. In other words, in the first cycle the input to P−1 should
be the blank symbol B, and the output some letter a0. Then in a cycle i the input should
be ai−1, the letter on the output from the cycle i − 1, and the output some letter ai.
This curious requirement implies that in some sense process P−1 controls its input. We
have already used this kind of specifications to prove undecidability for architectures from
Figure 8.

We use this requirement in the following context. Suppose that for all processes
P0, . . . , Pn−1 we just demand that they copy their input to their output. We do not put
any requirement on process Pn. The accumulated effect of these requirements is that the
processes have to agree on the word that they will output: they should output this word
independently on what is the input to Pn. This situation is schematically presented in
Figure 10. For a fixed infinite word w, process P−1 outputs w, and the other processes
output Bw. In particular process Pn disregards its input u.

P−1 P0 Pn
w Bw Bw u

Figure 10. Fixing a word

Marking question and answer positions. Being able to fix a word gives us a great deal
of control. Our objective is to force this word to be an n-counter. In what follows we will
forget about process P−1 whose unique role is to fix a word as described above.

Of course the construction cannot ignore the input completely. The actual mechanics
will be slightly more complicated since we will allow processes to output letters decorated
by pointers. We will have two sets of pointers:

Questions = {↑0, . . . , ↑n} ∪ {↑s0, . . . , ↑sn} and Answers = {↓0, . . . , ↓n}.

We have two kinds of question pointers and one kind of answer pointers. One should
think of pointers as accents: they come at the same time as a letter. So the alphabet of the
pipeline is really: (

{B} ∪
⋃

i=1...,n

Σi
)
×
(
Questions ∪ Answers

)
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We will consider only inputs that are sequences of blanks possibly decorated with
pointers. The only interesting input sequences will be those that have n + 1 question
pointers, starting from index n and going down to 0, followed by (n+ 1) answer pointers
with the same order of indices. The pointers will be marking beginnings of counters in
the sense that a k pointer will mark the beginning of a k counter. So, in the majority of
cases, only symbols `k will have pointers attached.

We will now describe formally the requirements on appearances of pointers. These
requirements intend to simulate the quantifier alternation. As we will see, for an n-counter
we will need n quantifier alternations. The descriptions of encodings of 1-counters and
2-counters, presented later, give an example of how these requirements work.

A schema of the desired behavior of pointers is presented in Figure 11. We require
that when the pointer ↑j , or ↑sj (for j = 0, . . . , n) appears at the input of a process Pi,
for i = n, . . . , n − j + 1, then the process should immediately copy it to the output.
The process Pn−j is forbidden to copy the pointer so the other processes are not aware
of its position. In particular ↑0 is not copied, so only Pn knows its placement. The only
interesting case will be when all the pointers are placed in the n-counter pointed by ↑n.
After this, process P0 can mark one of the following n-counter with ↓n. Hence ↓n should
mark an occurrence of `n symbol.

When P0 emits ↓n all other processes should be informed about it, but this information
has to flow against the sense of the arrows. We will use once again the “fixing the input”
trick to accomplish this. When P0 emits ↓n, we require in the next cycle ↓n appears
also on the input of Pn and that it is copied immediately by all other processes. The
specification is instantly satisfied if it is not the case that ↓n appears on the input of P0

one cycle after it appeared on the output of P0. Observe that P0 emits ↓n before it learns
that there is one on the input. With this mechanism we “discard” all the inputs but the one
that points to the position following the one chosen by P0. Next process P1 emits ↓n−1
at the beginning of some (n− 1)-counter inside the n-counter pointed by ↓n. All process
are informed about this by the same mechanism as before. This procedure continues till
Pn emits ↓0. At that moment some properties of the structure of pointers, as described in
the following paragraphs, will be checked. A schema of this desired behavior is presented
in Figure 11. For clarity we do not show pointers ↓i used to inform other processes about
the answer. From now on we assume the behavior of the pipeline as described above.

P0 P1 P2 Pn↓n ↑n ↓n−1 ↑n ↑n−1 ↓n−2 ↑n ↑n−1 ↑n−2 ↓0 ↑n . . . ↑0

Figure 11. The behavior of question and answer pointers

Specifications eq1 and struct1. This first part of the specification will force process
Pn−1 to place ↓1 pointer at the beginning of a 1-counter with the same value as the 1-
counter pointed by ↑1. For this specification we are interested only in processes Pn and
Pn−1. The following picture describes their behavior according to the general mechanics
described above.
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Pn−1 Pn
Bw

↓1
Bw

↑1 ↓0 ↑1 ↑0

We will say that ↑1 and ↑0 are well-placed if ↑1 arrives at the beginning of a 1-counter
and ↑0 follows at the distance at most n from ↑1. By the distance we mean the number
of letters in between the two pointers in our fixed word, or equivalently, the number of
cycles between appearances of the two pointers.

The specification eq1 requires that if ↑1 and ↑0 are well placed then ↑0 points to the
same position in the counter pointed by ↑1 as the position pointed by ↓0 in the counter
pointed by ↓1. Moreover the bits pointed by ↑0 and ↓0 should be the same.

We claim that if there is a strategy satisfying eq1, and the general constraints on me-
chanics described above are satisfied, then after receiving ↑1 pointer marking a 1-counter,
process Pn−1 should at some later moment emit ↓1 marking a 1-counter with the same
value. Indeed, placing ↓1 by Pn−1 depends only on the position of ↑1, as Pn−1 should
emit ↓1 before seeing ↓0. Now, Pn−1 should put the pointer in such a way that Pn will be
able to put its pointer ↓0, no matter when ↑0 pointer arrives on the input. As Pn−1 does
not know the position of ↑0, the only way it can make it possible for Pn to satisfy this
condition is to put ↓1 at the sequence of n-letters that is the same as that after ↑1.

The specification struct1 will force the output word w to be of the form c1v1c2v2 . . .
where ci are 2-counters and vi are some, words of size6 n over the alphabet Σ2∪· · ·∪Σn.
In principle, these will be the parts used for bigger counters. The specification will be very
similar to eq1. One difference will be that ↑1 pointer is replaced by ↑s1 pointer in order to
signal that a modified behavior is required.

Pn−1 Pn
Bw

↓1
Bw

↑s1 ↓0 ↑s1 ↑0

The other changes to eq1 are as follows. We demand that ↓1 points at the 1-counter
immediately following the 1-counter pointed by ↑s1. If the value of ↑s1 counter is not
maximal (not a sequence of n letters b1) then the bits pointed by ↑0 and ↓0 should satisfy
the dependencies required by the successor relation. Moreover, there must be precisely
one letter from Σ2 in between the two counters. If the value is maximal then we can have
up to n letters before the next 2-counter, and the value of the counter pointed by ↓1 should
be 0 (the sequence of n letters a1).

To sum up, the specification struct1 enforces that each 1-counter in w is followed by
a 1-counter representing the successor number, and after the maximal number is reached
the counter restarts at 0. This forces the fixed word to be a sequence of 2-counters.

Specifications eq2 and struct2.T Before giving an inductive construction we examine
the constructions for 2-counters. We want to write a specification that permits the input
to chose a 2-counter, after which the only way for controllers to win will be to choose
another 2-counter with the same value. For this we will use pointers with indices 0, 1,
2. In the picture below we present the relevant part of the behavior of the pipeline that
satisfies our general requirements.

Pn−2 Pn−1 Pn↓2
Bw

↑2 ↓1
Bw

↑2 ↑1 ↓0
Bw

↑2 ↑1↑0
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To give an intuition we repeat the description of general mechanics in this particular
case. On the input we have three pointers arriving in the order ↑2, ↑1, ↑0. When ↑2 arrives
both process Pn and Pn−1 have to copy it to their respective output channels, while Pn−2
does not copy the pointer. When ↑1 arrives, only Pn copies the pointer. The pointer ↑0 is
not copied. At some later moment, process Pn−2 should output a ↓2 pointer. If one cycle
later ↓2 pointer does not appear on the input of Pn then the specification is instantaneously
satisfied. So the only interesting case is when ↓2 appears at the right moment and it is
copied by all the processes. In consequence, Pn and Pn−1 get to know that ↓2 has been
emitted. At some later point Pn−1 outputs a pointer ↓1, and Pn is informed about it by
the same mechanism. Finally, Pn outputs ↓0.

We will require that struct1 holds so we can think that w is a sequence of 2-counters
with some other letters in between. Similarly to the previous case, we will say that ↑2, ↑1,
are well-placed if ↑2 is at the beginning of a 2-counter (at the symbol `2 followed by the
1-counter representing 0) and ↑1 is inside this 2-counter (i.e., before the next letter a2).
We will also talk about well-placed ↓2, ↓1.

The specification eq2 requires four things:
• specification struct1 should be satisfied;
• the policy of pointer placement as described above should be followed;
• if ↑2, ↑1 are well-placed then so should be ↓2, ↓1.
• the specification eq1 should hold, and the letter from Σ2 just after 1-counter pointed

by ↑1 should be the same as the letter after one counter pointed by ↓1.
We claim that if there is a strategy satisfying eq2 then in a reply to a ↑2 pointer placed

at the beginning of some 2-counter the strategy must put ↓2 at the beginning of some other
2-counter with the same value. First, as struct1 is satisfied, we know that w is a sequence
of 2-counters separated by some control letters. The mechanics of putting pointers is set
so that Pn−2 has to place ↓2 pointer only knowing the placement of ↑2 pointer. It should
do this so that Pn−1 has then a chance to put ↓1 pointer without violating the specification.
As ↓1 must be well-placed, this means that the 1-counter pointed by ↓1 should be inside
the 2-counter pointed by ↓2. Because eq1 must hold, the values of the counters pointed by
↑1 and ↓1 should be the same. This means that the position of the ↓1 pointer is uniquely
determined when the position of ↓2 is chosen. Because Pn−2 does not know the position
of ↓1, the only way to satisfy the specification is to choose a 2-counter that has the same
value as the one pointed by ↑2.

Let us briefly describe a specification struct2 that will force the output to be of the
form c1v1c2v2 . . . , where ci are 3-counters and vi are some words of size 6 n − 1.
It is very similar to eq2 but for the following modifications. Pointer ↑2 is replaced by
↑s2 to signal that a different type of check is need. We additionally require that ↓2 pointer
should point to the 2-counter immediately after the one pointed by ↑s2. We still require that
eq1 condition holds, but now the letters from Σ2 just after 1-counters pointed by ↑1 and
↓1 should not be compared for equality but rather should follow the rules for successor.
There is one exception, when the counter pointed by ↑s2 is maximal (consists only of b2’s)
then the counter pointed by ↓2 should represent 0 (consist only of a2’s). These conditions
mean that ↓2 should point to the counter just following the one pointed by ↑s2. Pointers
↑1 and ↓1 should point at the same positions in respective counters, and the bits at these
positions should respect the successor rules. So the value of a 2-counter pointed by ↑s2 is
the successor of the value of the counter pointed by ↓2.
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Specifications eqk and structk.T We can now present a generalization of eq2 to arbi-
trary k 6 n. We want to enforce that ↓k pointer is put at the beginning of a k-counter
with the same value as the k-counter pointed by ↑k. The construction is by induction so
we assume that we already have specifications eqk−1 and structk−1.

The behavior implied by the general rules of pointer placement is depicted below:

Pn−k Pn−(k−1)

Pn

↓k
Bw

↑k ↓k−1 ↑k ↑k−1 ↓k−2

↑k . . . ↑1 ↓0 ↑k . . . ↑0

As in the previous cases we say that ↑k, ↑k−1 are well-placed when: (i) ↑k points at
the beginning of some k-counter, and (ii) ↑k−1 points inside this k-counter. The condition
(i) means that ↑k marks the symbol `k, and the value of the k − 1 counter that follows is
0. This is easily verified as it amounts to checking that there are no bk−1 letters before a
letter from Σk. The condition (ii) amounts to checking that ↑k−1 is before the next Σk+1

letter. We will also talk about well-placed ↓k and ↓k−1.
The specification eqk requires four things:

• the specification structk−1 should be satisfied;
• the policy of pointer placement should be followed;
• if ↑k, ↑k−1 are well-placed then ↓k, ↓k−1 should be too.
• specification eqk−1 should be satisfied, and the letter from Σk appearing after (k−

1)-counter pointed by ↑k−1 should be the same as the letter appearing after (k−1)-
counter pointed by ↓k−1.

Since structk−1, holds we know that the fixed word is a sequence of k-counters. The
placement of ↑k depends only on ↓k. The later should be placed in such a way that process
Pn−(k−1) can place ↓k−1 pointer without violating the specification. The specification
asks that positions of ↓k−1 and ↑k−1 in their respective counters should be the same. The
specification also says that the bits of the k-counters at these positions should be the same.
Since process Pn−k does not know the position of ↑k−1 pointer, the only way for him to
permit satisfaction of the specification is to put ↓k pointer at the counter whose value is
equal to the one pointed by ↑k pointer.

The specification structk should say that the fixed word is of the form c1v1c2v2 . . . ,
where ci are k+ 1-counters and vi are some words of size6 n−1. This specification is a
modification of eqk specification in the same way as struct2 is that of eq2. Pointer ↑sk is
used in place of ↑k. It is required that ↓k points to the k-counter immediately following the
one pointed by ↑sk. Finally, the dependencies of bits should follow the rules for successor.

Summing up Our encoding of long computations of a Turing machine uses the tech-
nique of “fixing an input word” that is done by process P−1 in Figure 10. Then with
structn−1 we can force the fixed word to be of the form c1v1c2v2 . . . where c1, c2, . . .
are n-counters. An n-counter is a sequence `n c′0σ0 . . . c′iσi an where c′0, . . . , c

′
i are all

the n−1 counters listed in the increasing order. The sequence σ0, . . . , σi can then encode
a configuration of a Turing machine of size Towern(n). We can subsequently modify
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structn so that it does not force the fixed word to be (n + 1)-counter, but rather a se-
quence d1$d2$d3 . . . where d1, d2, . . . are successive configurations of size Towern(n)
of some given Turing machine. This way for a pipeline with n+2 processes we can write
a specification that is realizable if and only if the given Towern(n)-space bounded Turing
machine accepts a given input.

4.4 Notes

The idea of synthesizing a distributed system is of course very attractive. Since [25] it has
reappeared in many contexts [48, 19, 65]. One can encode distributed synthesis problem
of Pnueli and Rosner into Ramadge and Wonham setting using visibility restrictions [60,
74, 5]. Unfortunately, this does not give distinctively new decidable classes [58, 70, 5, 68,
6].

The decidability proof for pipelines presented here is based on [41]. Generalization
to architectures with loops requires to consider a semantics with a delay: a process reads
its input in one cycle and reacts with an output in the following cycle. This complicates
notation considerably but does not add anything substantially new to the problem. In op.
cit. it is shown that the synthesis problem is decidable for doubly flanked pipelines. An
extension of the model with broadcast has been also studied [32, 62].

The notion of local specifications has been introduced and studied in [44, 43]. Some
more decidability results have been obtained by further restricting specifications to talk
only about external inputs and outputs [34, 67].

One promising attempt to get a decidable framework of distributed synthesis is to
change the way information is distributed in the system. In the setting presented in this
chapter, every controller sees only its inputs and its outputs. In order to deduce some
information about the global state of the system a controller can use only his knowledge
about the architecture and the initial state of the system. In particular, controllers are not
permitted to pass additional information during communication. It is clear though that
when we allow some transfer of information during communication, we give more power
to controllers.

Pushing the idea of sharing information to the limit, we obtain a model where two pro-
cesses involved in a communication share all the information they have about the global
state of the system [33]. This point of view is not as unrealistic as it may seem at the
first glance. It is rooted in the theory of traces that studies finite communicating au-
tomata with this kind of information transfer. A fundamental result of Zielonka [75, 29]
implies that in fact there is a bound on the size of additional information that needs to
be transferred during communication. In our terms, the theory of traces considers the
case of distributed synthesis for closed systems, i.e., systems without environment. For
the distributed synthesis with environment, decidability results for some special cases are
known [33, 45, 52, 20, 36, 51, 31]. Moreover, similarly to Zielonka’s Theorem, these
results give a bound on additional information that needs to be transferred. The decid-
ability of the general case is open. Interestingly, the general case can be formulated as
an extension of the Ramadge and Wonham setting from words, that is linear orders, to
special partial orders called Mazurkiewicz traces. We describe this approach in the next
section.
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5 Distributed synthesis: Zielonka automata

The synthesis problem for synchronous architectures from the previous section is not con-
strained enough. We have seen that suitably using the interplay between specifications and
an architecture, one can get undecidability results for most architectures. Yet the kinds of
specifications that lead to these results are rather artificial, like: using a constraint linking
two disconnected parts of the system; or using an output channel to single out one input of
an unbounded length. These observations motivate a search for other formulations of the
distributed synthesis problem that would eliminate some of these undesirable phenomena,
and would be decidable for some larger classes of systems.

A Zielonka automaton is a very simple parallel device. It is a parallel composition of
several finite automata synchronizing on common actions. Every component has its own
alphabet of actions, but these alphabets may have letters in common. A Zielonka automa-
ton accepts a regular language respecting the parallelism implied by the distribution of
actions over component automata: if a is followed by b and the two letters do not share a
component, i.e. do not appear together in an alphabet of some component, then it can be
as well that b is followed by a. Languages of this kind are called trace languages. The
theory of trace languages offers many results and tools. In particular, many fundamental
results of the theory of regular languages have their equivalent trace versions [29].

In this section we present an adaptation of the Ramadge and Wonham formulation of
the control problem to Zielonka automata. We obtain this way a setting for distributed
synthesis since the devices we construct are distributed by design. In this formulation
specifications cannot constraint the flow of information between the components. In con-
sequence, we avoid many pathological behaviors of the Pnueli-Rosner formulation from
the previous section. Still, as we will see, the setting is far from being trivial. There are
more architectures for which the problem is known to be decidable. It is even possible
that the synthesis problem for Zielonka automata is decidable for all architectures.

5.1 Zielonka automata and Zielonka’s Theorem

Take P a finite set of processes, these are names for the components of a Zielonka au-
tomaton. An alphabet A is distributed over these components. It means that there is a
function dom : A→ (2P \ {∅}) assigning to each letter a set of processes the letter uses.
A Zielonka automaton for this distribution is a tuple:

A = 〈(Sp)p∈P , (δa)a∈A, s
0, F 〉

where Sp is a finite set of states for each process p ∈ P; we will denote by S the product∏
p∈P Sp. We can think of a Zielonka automaton as a constrained product of automata:

each over its set of states Sp. The set S is the set of all possible states of this product; they
are called global states. State s0 ∈ S is the initial (global) state; and F ⊆ S is the set
of finial states. The crucial part is the definition of the transition relation. We have that
δa ⊆ (

∏
p∈dom(A) Sp)

2 namely that it acts only on the components assigned to the letter
a. The transition relation δ ⊆ S × A× S on global states is then given by: (s, a, s′) ∈ δ
if ((sp)p∈dom(a), a, (s

′
p)p∈dom(a)) ∈ δa and s′p = sp for p 6∈ dom(a). The automaton is

deterministic if δa is a function for all a ∈ A.
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The language of the automaton A is the language of the finite automaton 〈S, δ, s0, F 〉
where the components are defined as above. This language has a particular property: if
two letters a, b ∈ A have disjoint process domains, and a word vabw is in the language
then vbaw is too. We can thus define an independence relation on letters (a, b) ∈ I if
dom(a) ∩ dom(b) = ∅, and say that L ⊆ A∗ is I-closed if whenever vabw ∈ L then
vbaw ∈ L for all words v, w and all (a, b) ∈ I . So languages accepted by Zielonka
automata over a fixed distributed alphabet are I-closed.

Zielonka’s theorem says that the converse is true. Namely, if a language is I-closed
for some I induced by a distribution dom : A → (2P \ {∅}) then there is a Zielonka
automaton accepting this language.

Theorem 5.1. [75] Let dom : A → (2P \ {∅}) be a distribution of letters, let I be the
induced independence relation. If a language L ⊆ A∗ is regular and I-closed then there
is a deterministic Zielonka automaton accepting L.

This theorem gives us a tool to implement a regular language on a simple distributed
device. Even though the theorem has been proved more than 20 years ago, there is still
continuing effort to simplify the proof and improve the complexity of the translation. To
give an idea of the complications involved let us look at an example from [27].

Example: Let P = {1, . . . , n} be the set of processes. The letters of the alphabet are
pairs of processes, two letters are dependent if they have a process in common. Formally,
the distributed alphabet A consists of two element subsets of P , and the distribution is
dom({p, q}) = {p, q}.

The language Pathn is the set of words a1 · · · ak such that every two consecutive let-
ters have a process in common: ai ∩ ai+1 6= ∅ for i = 1, . . . , k − 1. Observe that a
deterministic sequential automaton recognizing this language simply needs to remember
the last letter it has read. So it has less than |P|2 states. Zielonka’s theorem guarantees
that there is a deterministic Zielonka automaton for the language. Even for n = 4 it
is not clear how to construct such an automaton with less than a hundred of states. In
general we know how to construct a Zielonka automaton that is polynomial in the size
of a given sequential automaton and simply exponential in the number of processes [35].
There are no non-trivial lower bounds known for the size of deterministic Zielonka au-
tomata for the languages Pathn. A lower bound is known under additional assumption of
automata being locally-rejecting, meaning that a word is rejected if and only if the run of
the automaton passes through some local state designated as rejecting. Locally-rejecting
deterministic automaton for Pathn must have at least 2n/4 states [35].

One could try to use Zielonka’s Theorem directly to solve a distributed synthesis prob-
lem. For example, one can start with the Church synthesis problem, solve it, and if the
solution happenes to respect the required independence, then one could distribute it. Un-
fortunately, there is no reason for the solution to respect the independence. Even worse,
the following, relatively simple, result says that it is usually algorithmically impossible to
approximate a regular language by a language respecting a given independence relation.

Theorem 5.2. [65] It is not decidable if given an independence relation I and a regular
language L ⊆ A∗ there is an I-closed language included in L such that every letter from
A appears in some word of that language.
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The condition on appearance of letters is not crucial here. Observe that we need some
condition in order to make the problem non-trivial, since by definition the empty language
is I-closed.

The above theorem suggest that we will not be able to obtain decidability just by
restricting the class of possible implementations to Zielonka automata. We need also to
restrict specifications. It is quite natural to ask that specifications should be I-closed as
well. This is the direction we will present below. Instead of extending Church formulation
we will immediately look at a, more general, Ramadge and Wonham formulation.

5.2 Control of Zielonka automata

The starting point of the Ramadge and Wonham formulation was a notion of a plant that
is just a finite automaton with all its states accepting. In the distributed case we first fix a
set of processes P and a distribution of actions over processes dom : A→ (2P \ ∅). With
these fixed, a plant is just any Zielonka automaton with all states accepting. Similarly, a
controller is also such an automaton. A controlled plant is modeled by a product of the two
Zielonka automata. The control condition for a set of uncontrollable actions Aunc ⊆ A is
formulated as in the case of finite automata: in every global state of the controller every
uncontrollable action should be possible.

Once again it would be more convenient to formulate the synthesis problem in terms of
languages instead of automata. For this we need to understand what kind of languages are
recognized by deterministic Zielonka automata with all the states accepting. We call such
languages implementable. The characterization of implementable languages is based on
Zielonka’s theorem. One needs to observe that languages of this kind satisfy an additional
property called forward diamond: if wa,wb ∈ L and aIb then wab ∈ L.

Proposition 5.3. [64, 28] A regular language over a distributed alphabet is implementable
if and only if it is prefix-closed, I-closed, and satisfies the forward diamond condition.

Observe that I in the above proposition is determined by the distributed alphabet.

Definition 5.1 (Decentralized control problem). Fix a distribution of actions over pro-
cesses dom : A → (2P \ ∅) and a set of uncontrollable actions Aunc ⊆ A. Given
languages P , K implementable with respect to distribution dom , find the biggest with re-
spect to set inclusion implementable languageC such that P ∩C ⊆ K and two conditions
are satisfied:
implementable C is implementable;
control if w ∈ C and a ∈ Aunc then wa ∈ C.

Observe that the definition is very similar to the centralized case; the difference being
that the prefix closure requirement is replaced by implementability requirement. This is
not surprising as prefix closure is indeed a characterization of languages of finite automata
with all states accepting.

The distributed aspect in this definition is hidden in the notion of implementability
since it is equivalent to being the language of a Zielonka automaton. The intersection
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P ∩ C in the definition translates to the product of two Zielonka automata, the one of a
plant and the one of a controller. Recall that a Zielonka automaton is a distributed device,
so the plant is a set of processes communicating via rendez-vous. Controller can be then
seen as a set of local controllers: one for each process. In the product of the plant and
the controller at the rendez-vous these controllers can exchange their information. So
controller cannot add communication to the plant, but it can use existing communication
to transfer information between its parts. The important point is that the specification
cannot limit the information they can exchange. In consequence, controllers have more
power in this formulation than in Pnueli and Rosner setting.

We will show that with a simple restriction on uncontrollable actions decentralized
control problem can be reduced to centralized case. We say that an action b is local if
dom(b) is a singleton.

Theorem 5.4. Let dom : A → (2P \ ∅) be distributed alphabet, and suppose that every
uncontrollable action is local. Every decentralized control problem over such an alphabet
has a unique maximal solution. Moreover this solution is an implementable language and
can be computed algorithmically.

Proof. For the proof of the theorem we will show that a controller C constructed in the
centralized case is implementable. We know that C is prefix-closed. From the charac-
terization in Lemma 3.2 on page 1161, and using implementability of P and K, it is not
difficult to show that C is I-closed. It remains to check the forward diamond property.

Suppose that wa,wb ∈ C with aIb. We need to show that wab ∈ C. For this we will
use the characterization from Lemma 3.2. First observe that if wa ∈ P then wb ∈ P by
forward diamond property of P . Hence we consider two cases.

The first case is when wa,wb 6∈ P . Hence automatonAc reading wa reaches the state
>c. This means that waA∗ ⊆ C. In particular wab ∈ C.

The second case is when wa,wb ∈ P . By Lemma 3.2 we get that wa ∈ P ∩K and
wa(Aunc)

∗ ∩ P ⊆ wa(Aunc)
∗ ∩K; and similarly for wb. To show wab ∈ C we need to

show two things:
• wab ∈ P ∩K. This follows from forward diamond properties of P and K.
• wab(Aunc)

∗ ∩ P ⊆ wab(Aunc)
∗ ∩ K. Take a word u ∈ (Aunc)

∗ and suppose
that wabu ∈ P . We show that wabu ∈ K. Since all uncontrollable letters are
local, we can split u into three parts: ua the subsequence of letters located on pro-
cesses from doma; ub similarly but for domb; ur the subsequence of the remaining
letters. Observe that the three words are independent and moreover ur is indepen-
dent from a and b. By I-closure property of P we have that wurauabub ∈ P and
wurbubaua ∈ P . We get wuraua ∈ K since wauaur is in P and hence also in
K. For the same reason wurbub ∈ K. By induction on the length of ua and ub,
from I-diamond property we get wurabuaub ∈ K. Then by I-closure we get the
desired waburuaub ∈ K.

This positive result is not that satisfactory. The controllers it gives will often have
deadlocks. For a simple example consider an alphabet A = {a, b, c} with aIb and c
dependent on both a and b. One can imagine that a is on executed on one process, b
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on the other, and c on both. Suppose that all actions are controllable. Let P = A∗ and
K = (a + b)c∗ + (ab). The two languages are implementable. Of course the maximal
controller is just K. But K has deadlocks since when a and b happen concurrently no c
action is possible. The maximal controller without deadlocks given by the procedure in
the sequential setting is C = (a + b)c∗. But this controller is not implementable since it
does not satisfy forward diamond property. An implementable controller needs to decide
to permit only a or only b actions. So for example, Ca = ac∗ or Cb = bc∗ are reasonable
controllers for the problem, but there is no implementable controller containing the two
at the same time.

5.3 Notes

It is not known at present if the decentralized control synthesis problem is decidable. One
direction to approach this problem could be to study the decidability of the MSOL theory
of event structures generated by plants. Using the same ideas as in the sequential case,
it is possible to encode the decentralized control problem into satisfiability problem of
an MSOL formula over the event structure determined by the plant. Unfortunately, there
are very simple plants with undecidable MSOL theory of the generated event structure
but with decidable decentralized control problem. There exist though an interesting case
when the MSOL theory is decidable [45]. The idea is that for every process of the au-
tomaton there should be a fixed bound on the number of actions other processes can do
in parallel with this process. Under this restriction there is an MSOL definable encoding
of the event structure of the language of a given automaton into the full binary tree. On
the other hand, it is easy to see that MSOL theory of the event structure is undecidable
if for every n it contains traces of the form xunvny with u independent form v, and y
dependent on both u and v. The conjecture due to Thiagarajan is that this is the only
forbidden pattern, namely the even structure of a trace language without such a pattern
has a decidable MSOL theory.

Other decidable cases of the decentralized control problem refer to the notion of a
communication graph. This is a graph where nodes are processes and edges are possible
communication channels between them, or more precisely, there is an edge between two
processes if there is an action involving both of them. So the communication graph is
determined by the distribution of actions over processes. Decentralized control problem
is decidable if the communication graph is a co-graph [33]. It is also decidable when
all actions involve at most two processes and the communication graph is a tree [51], or
in other words when every process can communicate only with its parent and with its
children. The case when the communication graph is a cycle of more than 4 processes is
open.
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