
Games for synthesis of controllers with partial

observation

A. Arnold, A. Vincent, I. Walukiewicz
LaBRI, Université Bordeaux I and CNRS (UMR 5800)

Abstract

The synthesis of controllers for discrete event systems, as intro-
duced by Ramadge and Wonham, amounts to computing winning strate-
gies in parity games. We show that in this framework it is possible to
extend the specifications of the supervised systems as well as the con-
straints on the controllers by expressing them in the modal µ-calculus.

In order to express unobservability constraints, we propose an ex-
tension of the modal µ-calculus in which one can specify whether an
edge of a graph is a loop. This extended µ-calculus still has the inter-
esting properties of the classical one. In particular it is equivalent to
automata with loop testing. The problems such as emptiness testing
and elimination of alternation are solvable for such automata.

The method proposed in this paper to solve a control problem con-
sists in transforming this problem into a problem of satisfiability of a
µ-calculus formula so that the set of models of this formula is exactly
the set of controllers that solve the problem. This transformation re-
lies on a simple construction of the quotient of automata with loop
testing by a deterministic transition system. This is enough to deal
with centralized control problems. The solution of decentralized con-
trol problems uses a more involved construction of the quotient of two
automata.

This work extends the framework of Ramadge and Wonham in two
directions. We consider infinite behaviours and arbitrary regular spec-
ifications, while the standard framework deals only with specifications
on the set of finite paths of processes. We also allow dynamic changes
of the set of observable and controllable events.

1 Introduction

At the end of the eighties, Ramadge and Wonham introduced the theory
of control of discrete event systems (see the survey [14] and the books [8]

1

and [4]). In this theory a process (also called a plant) is a deterministic
non-complete finite state automaton over an alphabet A of events, which
defines all possible sequential behaviours of the process. Some of the states
of the plant are termed marked.

The alphabet A is the disjoint union of two subsets: the set Acont of
controllable events and the set Aunc of uncontrollable events. A is also the
disjoint union of the sets Aobs of observable events and Auno of unobservable
events.

A controller is a process R which satisfies the two following conditions:

(C) For any state q of R, and for any uncontrollable event a, there is a
transition from q labelled by a.

(O) For any state q of R, and for any unobservable event a, if there is a
transition from q labelled by a then this transition is a loop over q.

In other words, a controller must react to any uncontrollable event and
cannot detect the occurrence of an unobservable event.

If P is a process and R is a controller, the supervised system is the
product P × R. Thus, if this system is in the state (p, r) and if for some
controllable event a, there is no transition labelled by a from r, the controller
forbids the supervised system to perform the event a. On the other hand,
if an unobservable event occurs in the supervised system, the state of the
controller does not change, as if the event had not occurred.

Of course, a supervised system has less behaviours than its plant alone.
In particular a supervised system may not reach states of the plant which
are unwanted for some reason. On the other hand, one can a priori define
a set of admissible behaviours of the plant, and the control problem is to
find a controller R such that all behaviours of the supervised system are
admissible. For instance, one can demand that some dangerous states are
never reachable, or that one can always go back to the initial state of the
plant.

More formally, the basic control problem is the following:

Given a plant P and a set S of behaviours, does there exist a
controller R satisfying (C) and (O) such that the behaviours of
the supervised system P ×R are all in S?

and the synthesis problem is to construct such a controller if it does exist.
Some variants of this problem take into account the distinction be-

tween terminal and non terminal behaviours (in [14] called marked and non
marked) of the plant.

2

In their works Ramadge and Wonham are mainly interested in finding
maximal controllers, i.e., controllers such that the behaviours of the super-
vised system are exactly the admissible behaviours of the plant. A less
restrictive problem than finding maximal controllers is finding controllers
such that the set of supervised behaviours lies between a set of admissi-
ble behaviours and a set of required behaviours, for instance, to discard
controllers which forbid everything (all the behaviours of an empty set are
admissible!).

Indeed, all these constraints on the behaviour of the supervised system,
which amounts to saying that all paths in the system are in some regular
languages, and/or that all words of a given language are paths of the sys-
tem, can be expressed by formulas of the modal µ-calculus: for each such
constraint there is a formula Φ such that the supervised system satisfies Φ if
and only if its behaviour satisfies the constraint. Therefore, we extend the
Ramadge-Wonham’s approach by using any formula of the modal µ-calculus
to specify the desired property of the supervised system. In this way, we can
specify much more requirements on the supervised system (see, for instance,
the example of Section 2.5 below).

Hence, the control problem becomes

Given a plant P and a formula Φ , does there exist a controller
R satisfying (C) and (O) such that P ×R satisfies Φ?

In [20], this problem is solved when R has only to satisfy the condition
(C) and the corresponding synthesis problem is solved by finding a winning
strategy in a parity game.

But it turns out that the condition (C) is also expressible in the modal µ-
calculus by the formula νx.(

∧
b∈Aunc

〈b〉x∧
∧

c∈Acont
[c]x), taking into account

the fact that this formula applies to a deterministic process.
Therefore, a natural generalization of the problem addressed in [20] is

(P) Given a plant P and two formulas Φ and Ψ, does there exist
a controller R satisfying Ψ such that P ×R satisfies Φ?

An example of such a formula Ψ characterizing the controller is the
following. Let a, c, f be three events where only c is controllable. The
event f symbolizes a failure of the device which controls c so that after an
occurrence of f , the event c becomes uncontrollable. The formula expressing
this phenomenon is νx.(〈a〉x ∧ [c]x ∧ 〈f〉νy.(〈a〉y ∧ 〈c〉y ∧ 〈f〉y)). Another
example is the case where only one out of two events c1 and c2 is controllable
at a time. This is expressed by νx.(〈a〉x ∧ ((〈c1〉x ∧ [c2]x) ∨ ([c1]x ∧ 〈c2〉x)).

3

It remains to deal with the condition (O) which, unfortunately, is not
expressible in the modal µ-calculus because it is not invariant under bisim-
ulation. That is why we extend the modal µ-calculus into a modal-loop
µ-calculus. This extension consists in associating with each event a a ba-
sic proposition 	a whose standard interpretation is that a state q of a
controller has this property if the event a occurs in state q and leads to
the same state q. For instance the condition (O) can be expressed as
νx.(

∧
a∈Aobs

[a]x ∧
∧

a∈Auno
([a]false∨ 	a). And also, we can express that

an observable event becomes unobservable after a failure: νx.(· · · ∧ [a]x ∧
〈f〉νy.(· · · ∧ ([a]false∨ 	a)∧ 〈f〉y)), or that at most one out of two events a
and b is observable: [a]false∨ 	a ∨[b]false∨ 	b.

Therefore we consider problem (P) as the general form of a control prob-
lem when Φ and Ψ are modal-loop formulas.

It turns out, fortunately, that modal-loop µ-calculus has quite similar
properties to the ordinary µ-calculus. For instance, and it is very con-
venient, modal automata have the same expressive power as the modal µ-
calculus, and moreover, translating µ-formulas into automata and vice-versa
is quite easy. Here we introduce modal-loop automata which are an exten-
sion of standard modal automata with the ability to test for existence of a
loop. These loop automata are equivalent in expressive power to the loop
µ-calculus in the same way as standard automata are equivalent to the stan-
dard µ-calculus [1]. The reason for this is simply that one can consider the
property of having a loop as a local property of states. Therefore, although
in this introduction we speak about formulas, in the paper we will consider
only automata.

The two crucial properties of alternating automata, that are also shared
by loop alternating automata are:

Eliminating alternation Every loop automaton is equivalent to a nonde-
terministic loop automaton(Theorem 23).

Sat The emptiness of a nondeterministic loop automaton can be effectively
decided and a process accepted by the automaton can be effectively
constructed (Theorem 24).

The first result of the paper is the construction of a modal-loop formula
Φ/P that is satisfied by precisely those controllers R for which P ×R � Φ.
This way a process R is a solution of the synthesis problem P if and only if
R � (Φ/P) ∧Ψ.

By the properties above, (Φ/P) ∧Ψ can be effectively transformed into
a nondeterministic loop automaton and a controller R can be synthesized.

4

This transformation may cause an exponential blow-up in size, and the
powerset construction given in [2] for dealing with the condition (O) is indeed
a special case of this transformation.

Therefore, all control problems of the form (P) are indeed satisfiability
problems in the modal-loop µ-calculus and the synthesis problems amount to
finding models of modal-loop formulas, whose effectiveness is ensured by the
above properties. Indeed, finding such models consists in finding winning
strategies in parity games, probably the most fascinating problem in the
µ-calculus [21]. (Reciprocally, finding a winning strategy is itself a control
problem: your moves are controllable and the moves of your opponent are
not!)

Ramadge and Wonham have considered also the synthesis of decentral-
ized controllers: a plant can be supervised by several independent controllers
(instead of only one). But each controller has its own set of controllable
and observable events. Hence the decentralized control problem is to find
R1, . . . , Rn such that the supervised system P ×R1 × · · · ×Rn satisfies the
specification S and for each i, Ri satisfies (Ci) and (Oi). More generally, in
our setting, a decentralized control problem is:

Given a plant P and modal-loop formulas Φ, Ψ1, . . . ,Ψn, do
there exist controllers Ri satisfying Ψi (i = 1, . . . , n) such that
P ×R1 × · · · ×Rn satisfies Φ?

To solve this problem we show how to construct a formula Φ/Ψ which
is satisfied by a process R if and only if there exists a process P such that
P � Ψ and P × R � Φ. So, in the case when Ψ has only one model P ,
the meaning of Φ/Ψ is equivalent to Φ/P . If Ψ has more models then our
construction works only in the case when Ψ is a formula of the standard µ-
calculus, i.e., Ψ does not mention loops. Without this restriction the formula
Φ/Ψ may not exist, since the set of all the processes R as described above
may not be regular.

The construction of Φ/Ψ allows us to solve a decentralized control prob-
lem when at most one of the formulas Ψi contains loop predicates. We
show that if one allows two such formulas then the existence of a solution
to the problem is undecidable. Similar undecidability results in case of two
controllers with partial observation have been obtained independently by
Thistle and Lamouchi [11] and Tripakis [19].

This work extends the framework of Ramadge and Wonham [14] in two
directions. We consider infinite behaviours and arbitrary regular specifica-
tions, while the standard framework deals only with specifications on the

5

set of finite paths of processes. We also allow dynamic changes of the set of
observable and controllable events.

Kupferman and Vardi [9, 10] consider a problem very similar to the
problem P. They use different terminology, still it essentially amounts to
the same setting but with a fixed set of observable and controllable actions.
They do not consider the problem of synthetizing decentralized controllers.

Pnueli and Rosen [13] consider the problem of decentralized synthesis on
given arhitectures. They show several decidablility/undecidability results
depending on the shape of the architecture. Their setting is quite differ-
ent from the one we have here. It is not clear that their architectures can
simulate controllability/observability assumptions. There are also architec-
tures that cannot be expressed by controllability/observability assumptions.
They consider only linear time specifications.

Finally Maler, Pnueli and Sifakis [12] consider the problem of centralized
synthesis in the presense of time constraints. This is an extension we have
not pursued here. They consider only linear time specifications and only the
case when all the actions are observable.

The second section of the paper contains only basic notions about pro-
cesses and automata. After defining processes and their product we intro-
duce simple automata. These are just standard tree automata over trees
of bounded arity. As we do not assume that the trees are complete, the
automata have means to check if an edge is present. We give the semantics
of these automata in terms of games, and we recall their main properties:
elimination of alternation and decidability of satisfiability. Next we intro-
duce a special kind of automata called cut automata, which serve as a bridge
between simple automata and loop automata and allow us to derive prop-
erties of loop automata from properties of simple automata. At the end of
this section we introduce loop automata. We also show their two properties:
elimination of alternation and decidability of satisfiability.

In the third section we define the quotient of a loop automaton over a
process and over a simple automaton and we characterize the set of models
of these quotients. In the fourth section we show how to use these quotients
to solve some control problems, but we also give an example of undecidable
control problem. We end the paper by some considerations on the complex-
ity of synthesizing controllers.

6

2 Processes and automata

2.1 Processes

Let A be a finite set of events and let Λ be a nonempty finite set of labels
(for instance Λ may be the powerset of a finite set of state properties).

A process is a tuple P = 〈A,Λ, S, s0, e, λ〉 where e is a partial mapping
from S ×A to S defining the transitions of the process; and λ is a mapping
from S to Λ defining the labelling of the states of the process. The state
s0 ∈ S is the initial state of the process.

We denote by outP (s) the set of all a ∈ A such that e(s, a) is defined,
and by loopP (s) the set of all a ∈ outP (s) such that e(s, a) = s.

If P1 = 〈A,Λ1, S1, s
0
1, e1, λ1〉 and P2 = 〈A,Λ2, S2, s

0
2, e2, λ2〉 are two pro-

cesses, their product P1×P2 is the process 〈A,Λ1×Λ2, S1×S2, (s
0
1, s

0
2), e, λ〉

where λ(s1, s2) = (λ1(s1), λ2(s2)) and e((s1, s2), a) is defined and equal to
(s′1, s

′
2) if and only if for i = 1, 2, ei(si, a) is defined and equal to s′i. It follows

that outP1×P2
(s1, s2) = outP1

(s1) ∩ outP2
(s2) and that loopP1×P2

(s1, s2) =
loopP1

(s1) ∩ loopP2
(s2).

2.2 Simple automata on processes

The automata introduced in this section are the usual alternating automata
on trees of bounded degree. The degree of a node is bounded by the size
of A, with each element of A interpreted as a different direction. We will
define runs of these automata not just on trees but on all processes. It will
be clear from the definition that such automata cannot distinguish between
a process and an unwinding of a process into a tree. One more thing to note
is that nodes in processes may have different degrees, and thus automata
must have means to check if an edge exists.

2.2.1 Definition

A simple automaton on processes is a tuple:

A = 〈A,Λ, Q,Q∃, Q∀, q0, δ : Q× Λ → P(Moves(A,Q)),Acc〉

where Q∃, Q∀ form a partition of the finite set of states Q into existential and
universal states and where Acc ⊆ Qω is a regular set of infinite sequences
over Q. The set A of actions is the set of directions in which the automaton
can proceed and the set Λ is the set of possible labels of the processes’ nodes.
The state q0 is the initial state of the automaton and δ is the transition

7

function assigning to each state and label a set of possible moves, where:

Moves(A,Q) = ((A ∪ {ε}) ×Q) ∪ (A× {→, 9})

Intuitively, a move (a, q′) means to go to direction a and change the state to
q′. When a = ε, the automaton just changes state. A move (a,→) checks
that there is a transition a from the current node of the process. A move
(a, 9) checks that there is no such transition.

Definition 1 A condition Acc ⊆ Qω is a parity condition if there is a
function r : Q → N such that a sequence q0, q1, . . . , qn . . . belongs to Acc
if and only if the number lim supn r(qn) is even. An automaton is said to be
a parity automaton if its accepting condition is a parity condition.

2.2.2 Semantics

The simplest way of formalizing the notions of a run and of an acceptance
of an automaton is in terms of games. Given a process P = 〈A,Λ, S, s0, e, λ〉
we define the acceptance game G(A, P) = 〈V0, V1, v

0, E,AccG〉 as follows:

• The set V0 of vertices for player 0 is (Q∃ × S) ∪ {⊥}.

• The set V1 of vertices for player 1 is (Q∀ × S) ∪ {>}.

• v0 = (q0, s0),

• From each vertex (q, s), for every (a, q ′) ∈ δ(q, λ(s)) we have an edge
in E to (q′, s) if a = ε or to (q′, e(s, a)) if e(s, a) is defined.

• From each vertex (q, s), for every (a,→) ∈ δ(q, λ(s)) we have and edge
in E to > if e(s, a) is defined and an edge to ⊥ otherwise. For (a, 9)
we do the same but exchanging the roles of > and ⊥.

• The winning condition AccG consists of the sequences

(q0, s0)(q1, s1) . . .

such that the sequence q0q1 . . . is in Acc, i.e., belongs to the acceptance
condition of the automaton.

A memory for such a game is a set H, whose elements are called histories,
containing an initial history h0 and equipped with a history update mapping
hist : H × (V0 ∪ V1) → H.

8

A strategy with memory H is a partial mapping σ : V0 × H → V1 such
that if (q′, s′) = σ((q, s), h) is defined then there is an edge in E from (q, s)
to (q′, s′). A strategy σ is finite-memory if H is finite. It is said to be
memoryless or positional if H is a singleton. In the latter case σ is a partial
mapping from V0 to V1.

A play from v0 consistent with σ is a finite or infinite sequence (v0, h0),
(v1, h1), . . . such that

• h0 = h0 and hi = hist(hi−1, vi−1), for every i > 0,

• if vi ∈ V1 then (vi, vi+1) ∈ E,

• if vi ∈ V0 then vi+1 = σ(vi, hi),

and which is maximal, i.e.:

• if vi ∈ V1 and there is some v′ such that (vi, v
′) ∈ E then vi+1 is

defined and (vi, vi+1) ∈ E,

• if vi ∈ V0 and σ(vi, hi) is defined then vi+1 is defined and equal to
σ(vi, hi).

It follows that a play is finite only if its last element (vn, hn) satisfies one
of the two conditions:

• vn ∈ V1 and there is no edge from vn in E,

• vn ∈ V0 and σ(vn, hn) is undefined.

A play is won by player 0 if

• either it is finite and vn belongs to V1,

• or it is infinite and the sequence v0v1 · · · belongs to AccG.

We say that a strategy is winning from a position v if player 0 wins all
plays consistent with this strategy starting from (v, h0).

We say that A accepts a process P if and only if there is a winning
strategy from the initial position v0 in the game G(A, P). The language
recognized by A, denoted Mod(A), is the set of processes accepted by A.
Often we write P � A instead of P ∈ Mod(A), and such a P is called a
model of A.

Later on we will make an important use of the following classical result
of game theory (see, for instance, [3, 6, 18, 1]).

9

Theorem 2

For every game G(A, P) there is a wining finite-memory strategy which is
maximal, i.e., winning for all the vertices from which player 0 has a win-
ning strategy. If A is a parity automaton then there is a winning maximal
positional strategy.

2.2.3 Nondeterministic automata

Definition 3 An automaton as above is nondeterministic if for every label
l ∈ Λ we have: δ(q, l) ⊆ {ε}×Q for every q ∈ Q∃; and δ(q, l) ⊆ Moves(A,Q)\
{ε} × Q for every q ∈ Q∀. In the case of q ∈ Q∀ we additionally require
that if (a1, q1), (a2, q2) ∈ δ(q, l), with q1, q2 ∈ Q, and a1 = a2 then q1 = q2.
Moreover, we assume that the initial state is existential (i.e., in Q∃).

A nondeterministic automaton is bipartite if for every l ∈ Λ we have:
δ(q, l) ⊆ {ε} ×Q∀ when q ∈ Q∃ and δ(q, l) ∩A×Q ⊆ A×Q∃ when q ∈ Q∀.

The following theorem, sometimes referred to as the Simulation theorem
is one of the major results of the theory of automata and of the modal
µ-calculus (see, for instance, [1, 18])

Theorem 4

Every automaton is equivalent to a bipartite nondeterministic parity automa-
ton.

A bipartite nondeterministic automaton is complete if ∀q ∈ Q∀,∀l ∈ Λ,
∀a ∈ A, ∃q′ ∈ Q∃ : (a, q′) ∈ δ(q, l).

Proposition 5 Every bipartite nondeterministic automaton can be made
complete. If the given automaton is a parity automaton then so is the
resulting complete automaton.

Proof

It is sufficient to add two states q∃> and q∀> which accept any process (i.e.,
for any l, δ(q∃>, l) = {(ε, q∀>)} and δ(q∀>, l) = {(a, q∃>) : a ∈ A}, to modify
Acc accordingly, and to add (a, q∃>) to δ(q, l) if needed to “complete” the
automaton. �

2.2.4 Satisfiability of automata

Let A be a bipartite nondeterministic automaton, which we can assume
complete by Proposition 5.

We define the game G(A) = 〈V0, V1, v
0, E,AccG〉 as follows.

10

• V0 = Q∃,

• V1 = Q∀ × Λ×P(A),

• v0 = q0 ∈ V0,

• there is an edge in E from q ∈ V0 to (q1, l, L) if (ε, q1) ∈ δ(q, l), and if
for any a ∈ A, (a,→) ∈ δ(q1, l) ⇒ a ∈ L and (a, 9) ∈ δ(q1, l) ⇒ a /∈ L.

• there is an edge in E from (q1, l, L) to q2 if (a, q2) ∈ δ(q1, l) for some
a ∈ L.

• AccG is the set of infinite sequences whose projection on Q is in Acc.

Theorem 6

A has a model if and only if there exists a winning strategy in G(A).

Proof

Without loss of generality we may assume that A is complete.
Let us assume that P |= A and let σ be a winning strategy with finite

memory H in the game G(A, P). Let hist : H × V → H be the history
update function for σ.

We are going to define the strategy σ′ in G(A) over the set of histories
H ′ = Q × SP × H. We will do it in such a way that whenever we have a
play (q0, h

′
0), ((q1, l1, L1), h

′
1), (q2, h

′
2) . . . consistent with σ′ in G(A) then the

sequence h′0, h
′
1, . . . will be a play in G(A, P) consistent with σ. Moreover

we will guarantee that the first component of h′i is qi for all i = 0, 1,
This will show that every play in G(A) consistent with σ ′ is won by player
0.

Suppose that we have a position q in G(A), a state s ∈ SP and a history
h such that (q1, s) = σ((q, s), h) is defined. Then we set σ ′(q, (q, s, h)) =
(q1, λ(s), out(s)).

We also need to define the mapping hist ′ : H ′ × (V0 ∪ V1) → H ′. For
(q1, l, L) ∈ V1 we set

hist ′((q, s, h), (q1, l, L)) = (q1, s, hist(h, (q1, s)))

For q2 ∈ V0 we set

hist ′((q1, s, h), q2) = (q2, s2, hist(h, (q2, s2)))

where s2 = e(s, a) for a ∈ out(s) such that (a, q2) ∈ δ(q1, λ(s)). Actually
there may be more than one a satisfying this condition. It does not matter

11

which one we choose, so we can assume that we have some order on the set
of actions A and we choose the smallest a that satisfies the condition.

Conversely, let us assume that there exists a winning strategy σ ′ with
finite memory H ′ in the game G(A). Let us define a process P as follows:

• SP = {(q, h′) ∈ Q∃ ×H ′ : σ′(q, h′) is defined.},

• The initial state is (q0, h′0), i.e., the initial state and the initial history
respectively,

• λ(q, h′) = l where (q1, l, L) = σ(q, h′),

• e((q, h′), a) = (q2, h2) if a ∈ L and (a, q2) ∈ δ(q1, l, L), with (q1, l, L) =
σ(q, h′) (in this case there is and edge from (q1, l, L) to q2 in G(A)).

Note that this process is deterministic: because of the requirement,
given in Definition 3, for any a there is at most one q2 such that (a, q2) ∈
δ(σ(q, h′)).

It is not difficult to construct from σ ′ a strategy σ in G(A, P) that is
winning from every position (q, (q, h)) such that σ ′(q, h) is defined.

�

RemarkAs shown in the second part of the proof of the previous theorem,
each winning finite-memory strategy in G(A) defines a model of A. The
proof of the first part amounts to showing that up to bisimulation equiva-
lence, every model of A can be obtained in this way.

Since the existence of a winning strategy in a game is decidable, and that
if it exists such a strategy can be effectively computed (see the last section
of this article on the complexity issues), a consequence of Theorem 6 is that
the satisfiability problem is decidable.

Corollary 7 It is decidable to know whether a nondeterministic automaton
A is satisfiable. Moreover, if it is, one can effectively find a process P such
that P � A.

Definition 8 A nondeterministic automaton A is pruned if for each state
q the automaton Aq, obtained from A by taking q as an initial state, has a
model.

Fact 9 Every nondeterministic automaton can be effectively pruned.

12

Proof

Let Q∅ be the set of all states that have no model. This set can be effectively
computed because of Theorem 6. For any q ∈ Q∃ \Q∅ let δ′(q, l) = δ(q, l) \
({ε}×Q∅). For any q ∈ Q∀ \Q∅, let δ′(q, l) be the set obtained by replacing
in δ(q, l), each (a, q′) with q′ ∈ Q∅ by 9a. �

2.3 Cut automata

In this subsection we present some constructions on automata that we will
need in the proofs. The goal is to reuse known results for simple automata
in the context of loop automata that we will introduce in the next section.
The first step is to code the information about the loops into the labels.
Then we also study an operation that cuts out all the loops in the process.

Definition 10 A process P = 〈A,Λ × P(A), S, s0, e, λ〉 over a set of labels
Λ×P(A) is well-labelled if for every s ∈ S, the second projection λ(s)↓2 of
λ(s) is equal to loopP (s).

With every process P over the label set Λ we associate a well-labelled
process P̂ over the label set Λ×P(A):

P̂ = 〈A,Λ×P(A), S, s0, e, λ̂〉

such that for every s, λ̂(s) = (λ(s), loopP (s)).

Definition 11 We say that an automaton A over a set of labels Λ×P(A)
is a cut automaton if for every q, l, L: δ(q, (l, L)) ∩ (L× (Q ∪ {→})) = ∅.

Definition 12 If P is a process over Λ×P(A) then Cut(P) is the process
whose components are the same as in P but for the transition function where
we make Cut(e)(s, a) undefined if a ∈ λ(s)↓2 and we make Cut(e)(s, a) =
e(s, a) otherwise.

Fact 13 If A is a cut automaton then P |= A if and only if Cut(P) |= A.

Proof

It is easy to check that the games G(A, P) and G(A,Cut(P)) are identical.
�

Lemma 14 If A is a cut automaton then there exists a bipartite nondeter-
ministic cut automaton equivalent to A.

13

Proof

Let B be a bipartite nondeterministic automaton equivalent to A. Let B ′

be the bipartite nondeterministic cut automaton whose components are the
same as in B, except that for any universal state q, δ ′(q, (l, L)) = δ(q, (l, L))\
L× (Q ∪ {→}).

It is obvious that for any P , the games G(B,Cut(P)) and G(B ′,Cut(P))
are identical, hence, Cut(P) |= A if and only if Cut(P) |= B if and only if
Cut(P) |= B′.

It follows that P |= A if and only if Cut(P) |= A if and only if Cut(P) |=
B′ if and only if P |= B′.

�

Definition 15 If A is an automaton over Λ×P(A) then Cut(A) is the cut
automaton obtained by the following modification of the transition function
of A. For each universal state q we have:

Cut(δ)(q, (l, L)) =δ(q, (l, L)) \ (L× (Q ∪ {→}))

∪ {(ε, q′) : (a, q′) ∈ δ(q, (l, L)), a ∈ L}

For each existential state q we have:

Cut(δ)(q, (l, L)) =δ(q, (l, L)) \ (L× (Q ∪ {→, 9}))

∪ {(ε, q′) : (a, q′) ∈ δ(q, (l, L)), a ∈ L}

∪ {(ε, q>) : δ(q, (l, L)) ∩ (L× {→}) 6= ∅}

where q> is a universal state with δ(q>, (l, L)) = ∅.

Fact 16 For every well-labelled process P we have:

P � A if and only if P � Cut(A)

Proof

It is easy to check that if P is well-labelled, the games G(A, P) and
G(Cut(A), P) are identical. �

2.4 Automata with loop testing

2.4.1 Definition

Here we extend the automata with the feature of testing for loops in the
process. We will call these automata loop automata. Loop automata have

14

the same components as simple automata, but for a transition function
which has extended range:

δ : Q× Λ → P(Moves(A,Q) ∪A× {	,	})

We will write →a, 9a, 	a and 	a instead of (a,→), (a, 9), (a,) and
(a,), respectively. Intuitively, the meaning of a move 	a is to check that
there is a loop on a action. Similarly 	a checks that there is no such loop.

2.4.2 Semantics

The semantics of such an automaton is defined via game as before. Given
a process P , the game G(A, P) is defined as for simple automata but with
additional edges given by the clause:

• From each vertex (q, s), for every (a,) ∈ δ(q, λ(s)) we have an edge
to > if e(s, a) = s and an edge to ⊥ otherwise. For (a,) we have the
same but exchanging the roles of > and ⊥.

2.4.3 Nondeterministic loop automata

Definition 17 A loop automaton is bipartite nondeterministic if it satisfies
the condition of Definition 3 and if moreover, for any universal state q and
any label l: if 	a∈ δ(q, l) then δ(q, l) ∩ ({a} ×Q) = ∅.

Therefore, a bipartite nondeterministic automaton is complete if ∀q ∈
Q∀,∀l ∈ Λ, ∀a ∈ A, if 	a 6∈ δ(q, l) then ∃q′ ∈ Q : (a, q′) ∈ δ(q, l).

The proof of the following result is similar to the proof of Proposition 5

Proposition 18 Every bipartite nondeterministic automaton can be made
complete. If we are given a parity automaton, the resulting complete au-
tomaton is also a parity automaton.

Definition 19 With every loop automatonA = 〈A,Λ, Q,Q∃, Q∀, q0, δ,Acc〉,
we associate a simple automaton Â over the alphabet Λ×P(A).

This automaton will have the same components but for two new states
q⊥, q> and a transition function changed as described below. We make q⊥
and q> an existential and a universal state respectively. We set δ̂(q⊥, (l, L)) =
δ̂(q>, (l, L)) = ∅ for every label (l, L) ∈ Λ×P(A). For any other state q we
make δ̂(q, (l, L)) contain δ(q, l) \ (A× {	,	}) and we add:

• (ε, q⊥) ∈ δ̂(q, (l, L)) if q ∈ Q∀

and {a :	a∈ δ(q, l)} 6⊆ L or L ∩ {a : 	a ∈ δ(q, l)} 6= ∅,

15

• (ε, q>) ∈ δ̂(q, (l, L)) if q ∈ Q∃

and {a : 	a ∈ δ(q, l)} 6⊆ L or L ∩ {a :	a∈ δ(q, l)} 6= ∅,

Proposition 20 For every loop automaton A over a label alphabet Λ and
every process P ,

P � A if and only if P̂ � Â

Proof

For every process P the games G(A, P) and G(Â, P̂) are “almost” iso-
morphic. For every position (q, s) there are the same edges from (q, s) in
G(A, P) and in G(Â, P̂) with the exception that there may be an edge to ⊥
or to > in G(A, P) and this will be matched by an edge to (q⊥, s) or (q>, s),
respectively, in G(Â, P̂). Still it is easy to see there is a winning strategy
from a position (q, s) in G(A, P) if and only if there is a winning strategy
from this position in G(Â, P̂). �

Definition 21 For any nondeterministic cut automaton B over Λ × P(A)
we construct the nondeterministic loop automaton B∨ over Λ as follows.

The set of states of B∨ is Q∃ ∪ (Q∀ × P(A)). The states from Q∃ are
existential, the states from Q∀ × P(A) are universal. The acceptance set
is the set of infinite sequences in Q∃ ∪ (Q∀ × P(A)) whose projection on
(Q∃ ∪Q∀)ω are in Acc.

The transition function for a universal state q is defined by:

δ∨((q, L), l) =δ(q, (l, L)) ∪ {	a: a ∈ L} ∪ {	a : a 6∈ L}

For an existential state q we set:

δ∨(q, l) ={(ε, (q′, L)) : (ε, q′) ∈ δ(q, (l, L)), L ⊆ A}

Fact 22 For any nondeterministic cut automaton B, B is equivalent to B̂∨.

Proof

For any universal state q of B and for any L′ ⊆ A, state (q, L′) is an

universal state of B∨ and of B̂∨. Moreover

δ∨((q, L′), l) = δ(q, (l, L′)) ∪ {	a: a ∈ L′} ∪ {	a : a /∈ L′}

It follows that δ̂∨((q, L′), (l, L)) contains (ε, q⊥) if and only if L 6= L′. Oth-

erwise δ̂∨((q, L), (l, L)) = δ(q, (l, L)).

16

For any existential state q of B:

δ̂∨(q, (l, L)) = δ∨(q, (l, L)) = {(ε, (q′, L′)) : (ε, q′) ∈ δ(q, (l, L))}

But, for any process P , in an existential position (q, s) of the game G(B̂∨, P)
with λ(s) = (l, L), every move to ((q′, L′), s) with L′ 6= L leads to a

losing position. Thus we do not change the semantics of B̂∨ if we set
δ̂∨(q, (l, L)) = {(ε, (q′, L)) : (ε, q′) ∈ δ(q, (l, L))}. Now, the two games

G(B̂∨, P) and G(B, P) are isomorphic since each universal position (q, s)
of the second one is associated with ((q, loopP (s)), s) in the first one.

�

Theorem 23

For every loop automaton A there exists a bipartite nondeterministic loop
automaton equivalent to A.

Proof

By Lemma 14 there exists a nondeterministic cut automaton B equiva-
lent to Cut(Â).

By Proposition 20 and Facts 16, 13 and 22, for any process P over Λ,
we have

P |= A if and only if P̂ |= Â if and only if Cut(P̂) |= B

if and only if P̂ |= B if and only if P̂ |= B̂∨

if and only if P |= B∨.

�

The decidability of satisfiability of bipartite nondeterministic loop au-
tomata is proved in a way quite similar to the case of simple automata but
for a small difference in the definition of the game G(A): in a universal
position, to the subset of A corresponding to out(s), we add a second subset
corresponding to loop(s).

If we assume that A is complete (see Proposition 18), we define the game
G(A) = 〈V0, V1, v

0, E,AccG〉 as follows.

• V0 = Q∃,

• V1 = Q∀ × Λ×P(A) ×P(A),

• v0 = q0 ∈ V0,

17

• there is an edge in E from q ∈ V0 to (q′, l, L, L′) if there exists l ∈ Λ
such that (ε, q′) ∈ δ(q, l), L′ ⊆ L, and if for any a ∈ A, →a∈ δ(q′, l) ⇒
a ∈ L, 9a∈ δ(q′, l) ⇒ a /∈ L, 	a∈ δ(q′, l) ⇒ a ∈ L′, 	a ∈ δ(q′, l) ⇒
a /∈ L′,

• there is an edge in E from (q, l, L, L′) to q′ if and only if (a, q′) ∈ δ(q, l)
for some a ∈ L \ L′,

• AccG is the set of infinite sequences whose projection on Q is in Acc.

Theorem 24

A complete bipartite nondeterministic loop automaton A has a model if and
only if there exists a winning strategy in G(A).

Here again, all models of A are defined by winning finite-memory strate-
gies in G(A) up to a bisimulation equivalence modified to take into account
the existence of loops.

2.5 Example

As an example of properties that we can express in our setting we consider
the diagnosability problem [16]. Suppose that we have a set F ⊆ Λ of labels
that mark failure states of a plant, i.e., a failure state s has λ(s) ∈ F . We
also have a set Ao ⊆ A of actions of the plant that we can observe. The
objective is to determine if the plant passed through a failure state provided
we can only observe actions from Ao. The diagnosability problem is to
decide if it is possible to reach this objective for a given plant P .

We can reformulate the problem in terms of controllers. Say that an
observer is a controller that cannot forbid any action. So the problem is to
construct for a given plant P an observer R over the set of labels Λ′ = {w, f}
such that for every infinite path v0, v1, . . . of the controlled plant P ×R we
have:

• if {λ(v0), λ(v1), . . . }∩(F×Λ′) = ∅ then {λ(v0), λ(v1), . . . } ⊆ (Λ×{w})
(if there is no failure then the controller does not signal it),

• if λ(vi) ∈ F × Λ′ then there is j ≥ i with λ(vj) ∈ Λ× {f} (if a failure
occurs then it is reported).

In the original definition of the problem it was required that there is a
constant n depending only on the plant such that in the last clause we have
j < i+n. Intuitively this means that there is a uniform bound on the delay
between the occurrence of an error and its notification. We do not have an

18

explicit requirement on a uniform bound in our specification. Still, as P ×R
is finite, there is such a bound by König’s lemma (if there were an arbitrary
long delay between an error and its notofication then there would also be
an infinite delay).

The following automaton A describes the desired behaviour of the ob-
served plant. The states of A are Q = {q0, q1}, all of the states are universal.
The transition function is defined by

• δ(q0, (l, l
′)) = {(a, q0) : a ∈ A} for l 6∈ F and δ(q0, (l, l

′)) = {(a, q1) :
a ∈ A} for l ∈ F ,

• δ(q1, (l, w)) = {(a, q1) : a ∈ A} and δ(q1, (l, f)) = {(a, q0) : a ∈ A}

The acceptance condition is that q0 must appear infinitely often.
The automaton A stays in the state q0 until a failure appears. Then

it changes state to q1 and stays there until the failure is notified. Then it
changes state back to q0.

Now we want to specify that we are interested in a controller which is
an observer, so it cannot prohibit an action and it can see only actions in
Ao. This is done with another automaton B. The automaton has only one
state {q0} and this state is universal. The transition function is defined by:

δ(q0, l′) = {(a, q0) : a ∈ A} ∪ {→a: a ∈ Ao} ∪ {	a: a ∈ A \Ao}

The diagnosability problem may be now rephrased as: given P , is there
a controller R such that P × R � A and R � B. We will show in the next
sections that R is such a controller if and only if it satisfies A/P and B. In
particular such an R exists if and only if Mod(A/P)∩Mod (B) is not empty.

3 Quotients of loop automata

In this section we introduce the quotient operation which is an adjoint op-
eration to the product. For each loop automaton A and a process P we will
construct an automaton A/P such that for every process R:

R � A/P if and only if P ×R � A

Then we generalize this operation to A/B, where B is a simple automaton,
so that Mod(A/B) =

⋃
P∈Mod(B) Mod(A/P).

19

3.1 Quotient over processes

Definition 25 We define the automaton A/P where the automaton A =
〈A,Λ×Λ′, Q,Q∃, Q∀, q0, δ,Acc〉 is a loop automaton and P = 〈A,Λ, S, s0, e, λ〉
is a process.

The set of labels of A/P is Λ′. Its set of states is (Q×S)∪{q⊥, q>} with
the set of existential states being (Q∃ × S) ∪ {q⊥}.

The acceptance condition Acc/P of A/P is the set of all infinite sequences
(q0, s0)(q1, s1) . . . in (Q× S)ω such that q0q1 . . . belongs to Acc.

Next we define the transition function of A/P . For a universal state
(q, s) we set

δ/P ((q, s), l′) = {(ε, q⊥)}

if there exists →a∈ δ(q, (λ(s), l′))\out(s) or there exists 	a∈ δ(q, (λ(s), l′))\
loop(s). Otherwise we set

δ/P ((q, s), l′) ={(a, (q′, s′)) : (a, q′) ∈ δ(q, (λ(s), l′)), e(s, a) = s′}

∪ δ(q, (λ(s), l′)) ∩ (A× {→,	})

∪ δ(q, (λ(s), l′)) ∩ (out(s)× {9})

∪ δ(q, (λ(s), l′)) ∩ (loop(s)× {	})

The transition function for an existential state (q, s) is defined dually. We
set

δ/P ((q, s), l) = {(ε, q>)}

if there exists 9a∈ δ(q, (λ(s), l′))\out(s) or there exists 	a ∈ δ(q, (λ(s), l′))\
loop(s). Otherwise we set

δ/P ((q, s), l′) ={(a, (q′, s′)) : (a, q′) ∈ δ(q, (λ(s), l′)), e(s, a) = s′}

∪ δ(q, (λ(s), l′)) ∩ (A× {9,	})

∪ δ(q, (λ(s), l′)) ∩ (out(s)× {→})

∪ δ(q, (λ(s), l′)) ∩ (loop(s)× {	})

Finally, we set δ/P (q⊥, l′) = δ/P (q>, l′) = ∅.

Fact 26 If A is nondeterministic, then A/P can be made nondeterministic.

Proof

The automaton defined above is not nondeterministic because it may have
δ/P ((q′, s), l′) = {(ε, q⊥)} for some universal state q′. In this case clearly the

automaton does not accept anything from (q ′, s). So, for every q ∈ Q∃, we

20

can remove the move (ε, (q′, s)) from all δ/P ((q, s), l′) without changing the
semantics of the automaton. Then the value of the transition function for
(q′, s) and l becomes irrelevant and we can set δ/P ((q′, s), l′) = ∅.

The other thing to check is that whenever (a, (q ′, s′)) ∈ δ/P ((q, s), l′)
then 	a 6∈ δ/P ((q, s), l′). If (a, (q′, s′)) ∈ δ/P ((q, s), l′) then by the definition
of δ/P we have (a, q′) ∈ δ(q, (λ(s), l′)). But A is nondeterministic, so 	a 6∈
δ(q, (λ(s), l′)). Hence 	a 6∈ δ/P ((q, s), l′). �

Theorem 27

For every loop automaton A over the set of labels Λ × Λ′, every process P
over the set of labels Λ, and every process R over the set of labels Λ′,

P ×R � A if and only if R � A/P

Proof

We want to show that for every process R the games G× = G(A, P ×R)
and G/ = G(A/P,R) are isomorphic but for some parts that are immediately
winning or immediately losing. Take positions (q, (s1, s2)) and ((q, s1), s2)
in G× and G/ respectively. There are several cases to consider:

• If there is an edge from ((q, s1), s2) to (q⊥, s2) in G/ then q is a universal
state and in G× there is an edge from (q, (s1, s2)) to ⊥ .

• Similarly, if there is an edge to (q>, s2) in G/ then q is existential and
in G× there is an edge from (q, (s1, s2)) to >.

• Otherwise, a direct inspection of the definitions shows that there is an
edge from (q, (s1, s2)) to (q, (s′1, s

′
2)) in G× if and only if there is an

edge from ((q, s1), s2) to ((q, s′1), s
′
2) in G/.

Using the above three observations it is easy to see that there is a winning
strategy from (q, (s1, s2)) in G× if and only if there is one from ((q, s1), s2)
in G/. �

3.2 Quotient over simple automata

Definition 28 LetA be a bipartite nondeterministic parity loop automaton
over Λ×Λ′ and let C be a bipartite nondeterministic parity cut automaton
over Λ′ ×P(A). We are going to define an automaton A/C.

Without loss of generality we may assume that C is complete, i.e., for
any universal state q, if a /∈ L, then δC(q, (l, L)) ∩ ({a} × Q) 6= ∅ (see

21

Proposition 18). Moreover, we may assume that C is pruned (see Definition 8
and Fact 9).

We will also assume that A satisfies a strange condition which is useful
at one point of the following proof. Namely, we will require that for all
states q, q1, q2, every action a, and every label (l, l′), if (ε, q1) ∈ δA(q, (l, l′))
and (a, q2) ∈ δA(q1, (l, l

′)) then q 6= q2. By duplicating some states of the
automaton one can easily guarantee this condition.

We construct the automaton A/C as follows.
The sets of existential and universal states of A/C are respectively:

Q∃
/ = Q∃

A ×Q∃
C and Q∀

/ = Q∀
A ×Q∀

C × Λ′ ×P(A)

The acceptance condition Acc/ of A/C contains all those sequences over

Q∃
/ ∪ Q∀

/ for which the projection on the first component belongs to AccA
and the projection on the second component belongs to AccC .

For an existential state (q, q′) the transition function δ/((q, q
′), l) contains

all the tuples (ε, (q1, q
′
1, l

′, L′)) such that

• l′ ∈ Λ′,

• (ε, q1) ∈ δA(q, (l, l′)),

• L′ = {	a : 	a∈ δA(q1, (l, l
′))},

• (ε, q′1) ∈ δC(q
′, (l′, L′)),

• if 9a∈ δC(q
′
1, (l

′, L′)) then →a 6∈ δA(q1, (l, l
′)),

For a universal state (q, q′, l′, L′) let us first denote M = δA(q, (l, l′)) and
M ′ = δC(q

′, (l′, L′)). We put into δ/((q, q
′, l′, L′), l) the moves:

• (a, (q1, q
′
1)), if →a∈ M ∪M ′, (a, q1) ∈ M , and (a, q′1) ∈ M ′,

• →a and 	a, if they appear in M ,

• 9a, if 9a∈ M and →a∈ M ′,

Fact 29 The automaton A/C is bipartite nondeterministic.

Proof

If there exist a, q1, q′1 such that 	a and (a, (q1, q
′
1)) are both contained

in δ/((q, q
′, l′, L′), l) then 	a and (a, q1) are both in δA(q, (l, l′)). This is

impossible since A is nondeterministic. �

22

Proposition 30 Let A and C be as in the previous definition. For every
process P over Λ: P |= A/C if and only if there is a process R over Λ′ such
that R̂ |= C and P ×R |= A.

Proof

Suppose that there is a winning strategy in G(A/C, P) for some process
P . We want to find a process R such that there is a winning strategy in
G(A, P ×R) and in G(C, R̂).

Let σ : (Q∃
/ × SP)×H → Q∀

/ × SP be a winning strategy in G(A/C, P)

and let hist : H × (Q/ × SP) → H be the corresponding history update
function. As the acceptance conditions of the game are regular, we know
that it is enough to have a finite set H of histories.

We have assumed that C is pruned, so for every state q ′ of C there is a
process Rq′ with R̂q′ � Cq′ , where Cq′ is C with the initial state changed to
q′.

The states of R will be the quadruples (q, q ′, s, h) ∈ QA ×QC × SP ×H
such that σ((q, q′), s, h) is defined. Additionally R will contain the states of
all Rq′ for every q′ ∈ QC . The initial state of R is (q0

A, q0
C , s

0, h0), where the
first three components are the initial states of A, C and P respectively and
the last component is the initial history.

To define the transition function of R from (q, q ′, s, h) ∈ QA×QC×SP×H
consider ((q1, q

′
1, l

′, L′), s) = σ((q, q′), s, h). Let us denote M = δA(q1, (l, l
′)),

M ′ = δC(q
′
1, (l

′, L′))′ and h1 = hist(h, ((q, q′), s)). We set:

1. eR((q, q′, s, h), a) = (q, q′, s, h) if a ∈ L′,

2. eR((q, q′, s, h), a) = (q2, q
′
2, s2, h2) if→a∈ M∪M ′, (a, q′2) ∈ M ′, (a, q2) ∈

M , eP (s, a) = s2 and h2 = hist(h1, ((q1, q
′
1, l

′, L′), s)),

3. eR((q, q′, s, h), a) = s0
q′

1

if →a∈ M ∪M ′, (a, q′1) ∈ M ′ and ({a} ×Q) ∩

M = ∅. (Here s0
q′

1

is the initial state of Rq′

1
.)

As expected, the transitions from a state in Rq′ are the same as in Rq′ .
The following two claims show that R satisfies the properties stated in

the theorem.

Claim 30.1 There is a winning strategy in G(A, P ×R) from the position
(q0, (s0, (q0

A, q0
C , s

0, h0))).

We will describe a strategy from the position (q, (s, (q, q ′, s, h))) in G(A, P ×
R) provided σ((q, q′), s, h) is defined. We know that σ((q0

A, q0
C), s

0, h0) is
defined.

23

Let σ((q, q′), s, h) = ((q1, q
′
1, l

′, L′), s). The strategy from the position

(q, (s, (q, q′, s, h)))

is to move to (q1, (s, (q, q
′, s, h))).

We will show that this is a winning strategy by showing that each edge
from (q1, (s, (q, q

′, s, h))) leads to a position of the from (q2, (s2, (q2, q
′
2, s2, h2)))

such that there is an edge to ((q2, q
′
2), s2) from σ((q, q′), s) and

h2 = hist(hist(h, ((q, q′), s)), σ((q, q′), s)).

Let M = δA(q, (l, l′)) and M ′ = δC(q
′, (l′, L′)). Suppose that there is an

edge from (q1, (s, (q, q
′, s, h))) to (q2, (s2, (q3, q

′
3, s3, h3))). By definition, this

means that for some letter a we have:

(a, q2) ∈ M, eP (s, a) = s2, and eR((q, q′, s, h), a) = (q3, q
′
3, s3, h3).

We get immediately that h3 = h2. Let us examine what q3, q′3 and s3

might be. We have 	a 6∈ M since (a, q2) ∈ M and A is nondeterministic.
Hence, a 6∈ L′ and the first clause of the definition of eR cannot hold.
Since C is complete, there is q′2 with (a, q′2) ∈ M ′. We also must have
→a∈ M ∪ M ′ since there is an edge from (q, q′, s) in R. Hence, we have
eR((q, q′, s, h), a) = (q2, q

′
2, s2, h2). This means that q3 = q2, q′3 = q3 and

s3 = s2. So every edge from (q, (s, (q, q′, s, h))) leads to a node of the form
(q2, (s, (q2, q

′
2, s2, h2))) and it can be matched with an edge from ((q, q ′), s)

to ((q2, q
′
2), s2).

We also want to check that there is no edge to⊥ from (q1, (s, (q, q
′, s, h))).

If 	a∈ M then a ∈ L′ and a ∈ loopR((q, q′, s, h)). As ((q, q′, l′, L′), s) is a
winning position in G(A/C, P) we must have that a ∈ loopP (s). So P × R
has a loop on action a in state (s, (q, q ′, s, h)).

If 	a ∈ M then 	a 6∈ M so a 6∈ L′. Then we do not have a loop on action
a in process R from (q, q′, s, h).

If →a∈ M then a ∈ outP (s) because the position ((q, q′, l′, L′), s) is
winning. We also have a ∈ outR(q, q′, s, h) by the definition of R because we
have assumed that C has the property that for every letter a, either a ∈ L′

or (a, q′1) ∈ δC(q
′, (l′, L′)) for some q′1.

Suppose 9a∈ M . If →a∈ M ′ then a 6∈ outP (s), because ((q, q′, l′, L′), s)
is a winning position. Otherwise →a 6∈ M ∪ M ′, so R has no a transition
from (q, q′, s, h).

This finishes the proof of the above claim. So now we know that P ×R �

A. It remains to show that R̂ � C.

24

Claim 30.2 There is a winning strategy in G(C, R̂) from the position
(q0
C , (q

0
A, q0

C , s
0, h0)).

Consider a position (q′, (q, q′, s, h)) in the game G(C, R̂) such that σ((q, q′), s, h)
is defined. Let σ((q, q′), s, h) = ((q1, q

′
1, l

′, L′), s). The strategy is to go
to the position (q′1, (q, q

′, s, h)). Let us set M = δA(q, (l, l′)) and M ′ =
δC(q

′, (l′, L′)).
Suppose that there is an edge from (q ′1, (q, q

′, s, h)) to some (q′2, (q3, q
′
3, s3)).

This means that (a, q′2) ∈ M ′ and eR((q, q′, s, h), a) = (q3, q
′
3, s3, h3).

We analyze the definition of eR case by case. We cannot have a ∈ L
because (a, q′2) ∈ M ′ and C is a cut automaton.

Suppose →a∈ M ∪M ′ and (a, q′3) ∈ M ′ and (a, q3) ∈ M and e(s, a) = s3.
Then q′2 = q′3 and we have a transition from ((q1, q

′
1, l

′, L′), s) to ((q3, q
′
3), s3).

This is a matching transition as σ((q3, q
′
3), s3, h3) is defined because h3 =

hist(hist(h, ((q, q′), s)), σ((q, q′), s)).
The third case gives a transition from (q ′1, (q, q

′, s)) to (q′3, s
0
q′

3

), which is

a winning position.
If →a∈ M ′ then a ∈ outR((q, q′)) by the definition of the eR relation.
If 9a∈ M ′ then →a 6∈ M ′ and →a 6∈ M by the consistency conditions. So

a 6∈ outR((q, q′, s)). This finishes the proof of the claim.

Now we want to prove the converse implication of the theorem. Suppose
we have R̂ � C and P × R � A. We want to show that P � A/C. This is
implied by the following claim.

Claim 30.3 If R̂ � C and P × R � A then there is a winning strategy in
G(A/C, P) from ((q0

A, q0
C), s

0).

Let σA be the winning positional strategy in G(A, P × R). As the first
preparatory step we need to unwind R a little. We construct a process R1

with states (SR ×QA × SP) ∪ SR. The initial state is (s0
R, q0

A, s0
P) and the

label of (s, q, s′) is the label of s. From states in SR the edges are exactly
like in R. There is an edge on action a from (s′, q, s) in R1 if and only if
there is s′2 with eR(s′, a) = s′2. The target of the edge depends on the set
M = δA(q1, (λ(s), λ(s′))) where q1 is such that σA(q, (s, s′)) = (q1, (s, s

′)).

1. (s′2, q2, s2), if eP (s, a) = s2 and (a, q2) ∈ M ,

2. (s′2, q, s), if 	a∈ M ,

3. s2, otherwise.

25

In the first case, the edge is not a loop since q2 6= q. This follows from an
assumption we have made about A at the beginning of the proof. In the
second case the edge is a loop because 	a∈ M = δA(q1, (λ(s), λ(s′))) so
a ∈ loopP (s) and a ∈ loopR(s′). Let us also remark that the first and the
second conditions are mutually exclusive because we cannot have both (a, q2)
and 	a in M = δA(q1, (λ(s), λ(s′))) as A is a nondeterministic automaton.
Hence loopR1

(s′, q, s) = {a :	a∈ M}.
By definition, R and R1 have the same unwindings, so C accepts R1 as

C is a simple automaton. Let σC be a winning strategy in G(C,Cut(R̂1)).
We are now ready to describe the automaton strategy in G(A, P × R).

Suppose we are in a position ((q, q′), s) of G(A/C, P) and moreover the
strategies in positions (q, (s, s′)) and (q′, (s′, q, s)) are defined (these are po-

sitions in the games G(A, P ×R) and G(C,Cut(R̂1)) respectively). Let

(q1, (s, s
′)) = σA(q, (s, s′)) and (q′1, (s

′, q, s)) = σC(q
′, (s′, q, s))

The strategy in ((q, q′), s) is to choose ((q1, q
′
1, l

′, L′), s) such that :

l′ = λ′(s′), and L′ = {	a : 	a∈ δA(q1, (λ(s), l′))}

Let us denote M = δA(q, (l, l′)) and M ′ = δC(q
′, (l′, L′)).

To see that the above is a valid move it remains to check that if 9a∈ M ′

then →a 6∈ M . If 9a∈ M ′ then a 6∈ outR(s′) as the position (q′1, (s
′, q, s))

is winning. But then in P × R there is no a edge from (s, s′) so →a 6∈ M
as (q1, (s, s

′)) is winning. By the property of R1 mentioned above we have
L′ = loopR1

(s′, q, s). Hence M ′ = δC(q
′
1, (l

′, L′)) = δC(q
′
1, λ

′(s′, q, s)).
Suppose now that we have an edge from ((q1, q

′
1, l

′, L′), s) to some posi-
tion ((q2, q

′
2), s2). By the definition of A/C, this is because

→a∈ M ∪M ′, (a, q2) ∈ M, (a′, q′2) ∈ M ′, and eP (s, a) = s2.

Because →a∈ M ∪ M ′ we must have a ∈ outQ(s′), say eQ(s′, a) = s′2. If
so, we have an edge from (q1, (s, s

′)) to (q2, (s2, s
′
2)) in G(A, P × R). From

(q′1, (s
′, q, s)) we have an edge to (q′2, (s

′
2, q2, s2)) by the definition of R.

It remains to check that there is no edge to ⊥ from ((q1, q
′
1, l

′, L′), s). This
follows from the fact that (q1, (s, s

′)) is a winning position. For example,
if →a∈ δ/((M,M ′, l′, L′), λ(s)) then →a∈ dA(q1, (λ(s), l′)) and P must have
an a transition since P ×R has one. Similarly for 9a, 	a and 	a. �

Theorem 31

Let A be a loop automaton over the set of labels Λ×Λ′ and let B be a simple
automaton over Λ′. There exists an automaton, denoted A/B, over Λ such
that for every process P over Λ:

26

P |= A/B if and only if there is a process R over Λ′ such that
R |= B and P ×R |= A.

Proof

By Theorem 23 and Proposition 18 we may assume without loss of generality
that A is a bipartite nondeterministic parity loop automaton.

By Lemma 14, there exists a bipartite nondeterministic parity cut au-
tomaton C equivalent to Cut(B̂). Then by Fact 16 and Proposition 20,

R̂ |= C if and only if R̂ |= B̂ if and only if R |= B.
We define A/B as the automaton A/C and use Proposition 30. �

4 Synthesis of controllers

4.1 Product of automata

If A and B are automata over the same alphabet, then it is easy to construct
an automaton A×B such that for every P : P � A×B if and only if P � A
and P � B. It is enough to take the disjoint union of A and B, to add a new
universal state q0, and to define δ(q0, l) = {(ε, q0

A), (ε, q0
B)}. Then a process

is accepted from q0 if and only if it is accepted by A and B.
In case A and B are nondeterministic, this construction is equivalent

to the following one (assuming that the set of states of these automata are
disjoint). The universal states of the product are Q∀

A ∪Q∀
B ∪ (Q∀

A×Q∀
B), its

existential states are Q∃
A∪Q∃

B ∪ (Q∃
A×Q∃

B), the initial state is (q0
A, q0

B). The
accepting set is the set of all sequences whose projections over QA and QB

are finite or are respectively in AccA and AccB.
If (q, q′) is existential, then

δ((q, q′), l) = {(ε, (q1, q
′
1)) : (ε, q1) ∈ δA(q, l), (ε, q′1) ∈ δB(q′, l)}.

If (q, q′) is universal, then δ((q, q′), l) =
(δA(q, l) ∪ δB(q′, l)) ∩ (A× {→, 9,	,	})
∪{(a, (q1, q

′
1)) : a ∈ A, (a, q1) ∈ δA(q, l), (a, q′1) ∈ δB(q′, l)}

∪{(a, q1) : a ∈ A, (a, q1) ∈ δA(q, l), ({a} ×QB) ∩ δB(q′, l) = ∅}
∪{(a, q′1) : a ∈ A, ({a} ×QA) ∩ δA(q′, l) = ∅, (a, q′1) ∈ δB(q′, l)}.

However this product may not be nondeterministic. It is the case when
	a∈ δA(q, l) and (a, q′1) ∈ δB(q, l).

27

4.2 Centralized control problems

For a fixed set A of actions and two label alphabets Λ, Λ′ the centralized
control problem is the following:

For a given process P over Λ, and two automata A and B over
Λ× Λ′ and Λ′, respectively, find R over Λ′, such that:

P ×R |= A and R |= B.

Let Sol(P,A,B) be the set of all R such that P ×R |= A and R |= B.
Using Theorem 27, the following result is obvious.

Corollary 32 R ∈ Sol(P,A,B) if and only if R |= (A/P)× B.

4.3 Decentralized control problems

We study the following form of decentralized control problem. Given a
process P over A and Λ, an automaton A over A and Λ×Λ0× · · ·×Λn and
n + 1 automata Bi over A and Λi (for i = 0, . . . , n), we have to find n + 1
processes Ri over A and Λi such that P ×R0 × · · · × Rn |= A and Ri |= Bi

for i = 0, . . . , n.
Let Sol be the set of all (n + 1)-tuples of processes (R0, . . . , Rn) such

that P ×R0 × · · · ×Rn |= A and Ri |= Bi for i = 0, . . . , n.
In the next subsection we will show that the emptiness of Sol is decidable

when at most one of Bi is a loop automaton (and the other Bi’ automata are
simple automata). We then show that the emptiness of Sol is undecidable
if two of the Bi’s are allowed to be loop automata. In the last subsection we
point out that the borderline between decidability and undecidability is not
that obvious. We introduce a notion of deterministic automata, and show
that for some specifications the emptiness of Sol is decidable if all Bi are
determinisitic loop automata. Actually this last case corresponds to one of
the classic formulations of decentralized synthesis problems [15].

4.3.1 Decidable control problems

In this section, we assume that B0 is a loop automaton and B1, . . . ,Bn are
simple automata.

For i = 0, . . . , n, let Soli be the set of all (i + 1)-tuples (R0, . . . , Ri)
such that there exists a (n + 1)-tuple (R0, . . . , Ri, Ri+1, . . . , Rn) ∈ Sol. In
particular Soln = Sol.

28

For i = 0, . . . , n, let Sol′i = {(R0, . . . , Ri) : R0 |= B0, . . . , Ri−1 |= Bi−1,
Ri |= Bi × (A/Bn/ · · · /Bi+1/(P ×R0 × · · · ×Ri−1))}.

By definition, Sol′0 = {R0 : R0 |= B0 × (A/Bn/ · · · /B1/P)}.

Proposition 33 For i = 0, . . . , n, Soli = Sol′i.

Proof

Using Theorems 31 and 27, it is easy to show that (R1, . . . , Ri) ∈ Sol′i if
and only if there exists Ri+1 such that (R1, . . . , Ri, Ri+1) ∈ Sol′i+1. By
Theorem 31, Sol′n = Sol, and the proposition is proved by induction. �

Corollary 34 Sol is not empty if and only if B0 × (A/Bn/ · · · /B1/P) has
a model.

All the elements of Sol can be found by the following algorithm. Find
a model R0 of B0 × (A/Bn/ · · · /B1/P). For i = 1, . . . n find a model Qi of
Bi × (A/Bn/ · · · /Bi+1/(P ×R0 × · · · ×Ri−1)).

4.3.2 An undecidable control problem

Here we show that the decentralized control problem becomes undecidable
if at least two of the Bi’s are loop automata.

First let us remark that, because of Theorem 27, any decentralized con-
trol problem

P ×R0 × · · · ×Rn |= A and Ri |= Bi

can be put in the form R0× · · · ×Rn |= A/P and Ri |= Bi. Moreover, there
is a one-state process 1A over the alphabet A such that A/1A = A. So,
the family of problems stated in the following theorem is indeed a family of
decentralized control problems.

Theorem 35

It is undecidable to check whether for given A, B and B ′ there exist P and
P ′ such that: P |= B, P ′ |= B′, and P ×P ′ |= A. The problem is undecidable
even if A is required to be simple.

Proof

We show below that the Post correspondence problem can be effectively
reduced to a control problem of this kind.

Let {(ui, vi) : i = 1, . . . , n} be a Post system over an alphabet A. Let B
be the alphabet {$i : i = 1, . . . , n}. Define

L1 = {$iui : i = 1, . . . n}∗ and L2 = {$ivi : i = 1, . . . n}∗

29

It is obvious that the associated correspondence problem has a solution
if and only if there are words x ∈ A∗ and y ∈ B∗ such that x tt y ∩ L1 6= ∅
and x tt y ∩ L2 6= ∅. Here x tt y, the shuffle of x and y is the set of all
words w in (A ∪B)∗ such that πA(w) = x and πB(x) = y.

Let # be a new symbol. It is easy to define two nondeterministic simple
automata A1 and A2 such that P |= Ai if and only if P contains a path
(starting in the initial state) labelled by a word in Li# .

As a last preparatory step for the proof consider for each word x ∈ A∗

a process P A
x = 〈A ∪ B, {l}, Sx, s0

x, ex, λ〉 over the set of actions A ∪ B and
an irrelevant set of labels. We define: Sx = {1, . . . , |x|+ 2}; s0

x = 1; λ(i) = l
for all i ∈ S; and

ex(i, d) =

i + 1 if d = xi or (d = # and i = n + 1)

i if d ∈ B

undefined otherwise

Similarly we define P B
y for y ∈ B∗.

Lemma 36 The set of paths of the form u# in P A
x ×P B

y is exactly (xtt y)#.

So P A
x ×P B

y � A1×A2 if and only if x ∈ A∗ and y ∈ B∗ describe a solution
to the Post correspondence problem.

It is not difficult to construct loop automata CA and CB accepting the
structures of the form P A

x and P B
y respectively. Below we show how to

construct CA, the construction of CB is analogous. The existential states
of CA are {q0, q1} and the universal states are {q∅} ∪ {qa : a ∈ A ∪ {#}}.
The acceptance condition of the automaton is ∅, so it can only accept finite
words. The transition function is defined by:

δ(q0, l) ={(ε, qa) : a ∈ A ∪ {#}}

δ(qa, l) ={(a, q0)} ∪ {9d: d ∈ A ∪ {#}, d 6= a} ∪ {	b: b ∈ B} if a 6= #

δ(q#, l) ={(#, q1)} ∪ {9d: d ∈ A} ∪ {	b: b ∈ B}

δ(q1, l) ={(ε, q∅)}

δ(q∅, l) ={9d: d ∈ A ∪B ∪ {#}}

Lemma 37 For every process P : P � CA if and only if it is isomorphic to
PA

x for some x ∈ A∗. Similarly for CB.

It follows that there exist P and P ′ such that P |= CA, P ′ |= CB ,
P × P ′ |= A1 × A2 if and only if the Post correspondence problem has a
solution. �

30

4.3.3 Some other cases

Although a decentralized control problem is in general undecidable if two of
the controllers are specified by loop automata, there are interesting decidable
subcases. For instance, one of the most well known versions of decentralized
control problem [15] is decidable. We show how to solve it in our framework.

For a given process P over the set of actions A, the language of P is the
set L(P) ⊆ A∗ of all words w such that w is a valid sequence of actions of
P from the initial state.

The statement of the problem is as follows. We are given a plant P
over an alphabet A and a singleton label set Λ, a language K ⊆ L(P) and
alphabets A1

c , A
1
o, A

2
c , A

2
o ⊆ Σ. The goal is to find (if they exist) controllers

R1 and R2 such that:
L(P ×R1 ×R2) = K

and moreover for i = 1, 2 the controller Ri can control only actions from Ai
c

and can observe only actions from Ai
o.

To solve this problem we consider two nondeterministic parity automata
AK and A⊇K such that R � AK if and only if L(R) = K and R � A⊇K if
and only if L(R) ⊇ K. It is not difficult to construct these two automata
from the usual word automaton recognizing K. Moreover, these automata
are deterministic, i.e., for every existential state, δ(q) contains at most one
element (ε, q′).

Consider an automaton B1 such that R � B1 if and only if every state of
R has an edge on actions in A \A1

c and has a loop on actions in A \ A1
o. In

other words B1 says that R is a controller that can control only actions in
A1

c and can see only actions in A1
o. Similarly we define B2. These automata

are also parity deterministic automata.
Therefore our problem can now be stated as follows. We have to find R1

and R2 such that R1×R2×P |= AK and Ri |= Bi. But if R1×R2×P |= AK

then L(Ri) ⊇ K hence Ri |= A⊇K . So, the problem can be reformulated as:
find R1 and R2 such that R1 ×R2 × P |= AK and Ri |= A⊇K × Bi.

Let Ci be a nondeterministic loop automaton equivalent to A⊇K ×Bi. It
is easy to see that this automaton is still a deterministic parity automaton.
For deterministic automata the following holds.

Fact 38 Let C be a determnistic automaton over a singleton label set. If
C has a model then it has a smallest model, i.e., a model Rmin such that
Rmin � C and for every other model R � C we have L(Rmin) ⊆ L(R).

The proof of this fact follows from the examination of the proof of Theorem 6.
All the models of C can be obtained from winning strategies in G(C). In

31

general a strategy from an existential state q has to choose l ∈ Λ, (ε, q1) ∈
δ(q, l) and L ∈ A such that A contains {a :→a∈ δ(q1, l)} and has no a from
{a :9a∈ δ(q1, l)}. When C is deterministic and Λ is a singleton, the choice
of l and q1 is determined. So the strategy can only choose between different
L. It is then easy to see that the best strategy to win the game is to choose
the smallest possible L. This strategy determines Rmin.

Now, if (R1, R2) is a solution to our problem then Rmin
1 and Rmin

2 exist.
It follows that:

K = K ∩L(P) ⊆ L(Rmin
1) ∩L(Rmin

2) ∩L(P) ⊆ L(R1) ∩L(R2)∩ L(P) = K

hence (Rmin
1 , Rmin

2) is also a solution.
Therefore, the method to solve the problem is to compute (Rmin

1 , Rmin
2)

and to check whether Rmin
1 ×Rmin

2 × P |= AK .

5 Complexity issues

Here we will just very shortly discuss the complexity of finding a solution
of a control problem. We do not intend to precisely analyze this complexity
because there is a multitude of possible parameters that can vary. For ex-
ample one can assume that some automata in question are nondeterministic
or even deterministic of some special form, as it is the case in the previous
section. It is not clear to us at the present moment which cases are inter-
esting and which are not. So the goal of this section is just to say that our
constructions have reasonable complexity in most obvious cases.

For an automaton A, its size, denoted |A|, is the number of its states.
If moreover A is a parity automaton, its index is the maximal rank of its
states.

First of all, the basic construction needed to solve a control problem
is to find a winning strategy in game G(A) where A is a nondeterministic
automaton. By Theorem 6 finding such a strategy is equivalent to checking
whether A has a model. The most interesting case for us here is the case
when A is a parity automaton. In this case the exact complexity of the
problem is not yet known. It is in NP∩co-NP. So far, the best upper bound is
O(n(k/2)+1) where n is the size of the automaton and k is its index [1, 17, 21].

The other basic result we want to recall concerns translation from alter-
nating to nondeterministic automata. If A is a parity automaton of size n
then there is a parity nondeterministic automaton equivalent to A of size
2O(n log(n)), and of index O(n) [5, 18].

32

The automaton A/P is of size |A||P |. The construction works for alter-
nating as well as for nondeterministic loop automata A. If A is nondeter-
ministic then A/P is nondeterministic. If A is a parity automaton then so
is A/P .

If A and B are both parity alternating automata then A/P × B is an
alternating parity automaton of size n = |A||P | + |B|. Then there is a
nondeterministic automaton C equivalent to A/P ×B of size 2O(n log(n)) and
index O(n). But a more careful look at the construction allows to see that
this size does not depend exponentially on P . This is because when we
transform A/P × B into a nondeterministic automaton, the states of this
nondeterministic automaton are sets of triples (q, s, q ′) of states from A, P
and B respectively. It can be checked that because of the special form of the
transition function of A/P , in the resulting nondeterministic automaton all
reachable states are sets of triples with the same second component. So the
size of C is |P | × 2O(m log(m)) where m = |A|+ |B|.

Next, let us look at the complexity of the construction of A/B. If B is
a simple automaton, then Cut(B̂) is equivalent to a nondeterministic au-
tomaton of size m′ = 2O(m log(m)) with m = O(|B|). Thus A/B is of size
O(|A|m′). The automaton A/B is a nondeterministic Rabin automaton but
not a parity automaton. Still, it can be transformed to a parity automaton
of the same size because the Rabin condition is small.

The analysis presented above is far from being complete or detailed
enough. For example, it can be shown that our solution to the diagnosability
problem discussed in Section 2.5 is implementable in PTIME. The fact that
diagnosibility is in PTIME seems to have been noticed only recently [7, 22].
In these papers a more general diagnosability problem is considered in the
sense that there are several different kinds of failures. Actually an obvious
extension of our solution to this general case would still work in PTIME.

Acknowledgments The starting point of this work was a stimulating
discussion on the very nature of a control problem, in the final meeting of
the Action coopérative INRIA MARS on “Control synthesis by Petri nets”.

References

[1] A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of
Studies in Logic and the Foundations of Mathematics. Elsevier, 2001.

[2] A. Bergeron. A unified approach to control problems in discrete event
processes. RAIRO-ITA, 27:555–573, 1993.

33

[3] J. R. Büchi. State strategies for games in Fσδ∩Gδσ. Journal of Symbolic
Logic, 48:1171–1198, 1983.

[4] C. G. Cassandras and S. Lafortune. Introduction to discrete event sys-
tems. Kluwer Academic Pub., 1999.

[5] E. A. Emerson and C. S. Jutla. The complexity of tree automata and
logics of programs. In 29th FOCS, 1988.

[6] Y. Gurevich and L. Harrington. Trees, automata and games. In 14th
ACM Symp. on Theory of Computations, pages 60–65, 1982.

[7] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial time al-
gorithm for diagnosability of discrete event systems. IEEE Transactions
on Automatic Control, 46(8), 2001.

[8] R. Kumar and V. K. Garg. Modeling and control of logical discrete
event systems. Kluwer Academic Pub., 1995.

[9] O. Kupferman and M. Vardi. Synthesis with incomplete information. In
2nd International Conference on Temporal Logic, pages 91–106, 1997.

[10] O. Kupferman and M. Vardi. µ-calculus synthesis. In MFCS 2000,
pages 497–507. LNCS 1893, 2000.

[11] H. Lamouchi and J. G. Thistle. Effective control synthesis for DES
under partial observations. In Proc. 39th IEEE Conf. on Decision and
Control, December 2000.

[12] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete
controllers for timed systems. In E.W. Mayr and C. Puech, editors,
STACS’95, volume 900 of LNCS, pages 229–242, 1995.

[13] A. Pnueli and R. Rosner. Distributed reactive systems are hard to
synthesize. In 31th IEEE Symposium Foundations of Computer Science
(FOCS 1990), pages 746–757, 1990.

[14] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77, 1989.

[15] K. Rudie and W. Wonham. Think globally, act locally. IEEE Transac-
tions on Automatic Control, 37(11):1692–1708, 1992.

34

[16] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Diagnosability of discrete event systems. IEEE Trans-
actions on Automatic Control, 40(9):1555–1575, 1995.

[17] H. Seidl. Fast and simple nested fixpoints. Information Processing
Letters, 59:303–308, 1996.

[18] W. Thomas. Languages, automata, and logic. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 3.
Springer-Verlag, 1997.

[19] S Tripakis. Undecidable problems of decentralized observation and con-
trol. In IEEE Conference on Decision and Control, 2001.

[20] A. Vincent. Synthèse de contrôleurs et stratégies gagnantes dans les
jeux de parité. In to appear in MSR2001, 2001.

[21] J. Vöge and M. Jurdzinski. A discrete strategy improvement algorithm
for solving parity games. In CAV 2000, pages 202–215, 2000.

[22] T. Yoo and S. Lafortune. On the computataional complexity of some
problems arising in partially-observed discrete-event systems. In Amer-
ican Control Conference 2001, 2001.

35

