
Local logics for traces

Igor Walukiewicz

BRICS∗

Abstract

A µ-calculus over dependence graph representation of traces
is considered. It is shown that the µ-calculus cannot express all
monadic second order (MSO) properties of dependence graphs.
Several extensions of the µ-calculus are presented and it is proved
that these extensions are equivalent in expressive power to MSO
logic. The satisfiability problem for these extensions is PSPACE
complete.

1 Introduction

Infinite words, which are linear orders on events, are often used to model
executions of systems. Infinite traces, which are partial orders on events,
are often used to model concurrent systems when we do not want to put
some arbitrary ordering on actions occurring concurrently. A state of a
system in the linear model is just a prefix of an infinite word; it represents
the actions that have already happened. A state of a system in the trace
model is a configuration, i.e., a finite downwards closed set of events that
already happened.

Temporal logics over traces come in two sorts: a local and a global one.
The truth of a formula in a local logic is evaluated in an event, the truth
of a formula in a global logic is evaluated in a configuration. Global logics
(as for example the one in [11, 2]) have the advantage of talking directly
about configurations hence potentially it is easier to write specifications
in them. The disadvantage of global logics is the high complexity of

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

the satisfiability problem [12]. Here we are interested in local temporal
logics.

In this paper we present several local logics for traces and show that
they have two desirable properties. First, the satisfiability problem for
them is PSPACE complete. Next, these logics are able to express all the
trace properties expressible in monadic second order logic (MSOL).

We start from the observation that branching time program logics,
like the µ-calculus, can be used to describe properties of traces. This
is because these logics talk about properties of labelled graphs and a
trace (represented by a dependence graph) is a labelled graph with some
additional properties. It is well known that the µ-calculus is equivalent
to MSOL over binary trees but it is weaker than MSOL over all labelled
graphs. It turns out that the µ-calculus is weaker than MSOL also over
dependence graphs.

To obtain a temporal logic equivalent to MSOL over traces we con-
sider some extensions of the µ-calculus. The one which is easiest to
describe here is obtained by adding coa propositions. Such a proposition
holds in a event e of a trace if there is in the trace an event incomparable
with e which is labelled by a.

The first local temporal logic for traces was proposed by Ebinger [3].
This was an extension of LTL. He showed that over finite traces his logic is
equivalent in expressive power to first order logic. The logic that is most
closely related with the present work νTrPTL proposed by Niebert [8].
This is an extension of the µ-calculus which captures the power of MSOL.
Unfortunately the syntax of the logic is rather heavy. The proof that the
logics captures the power of MSOL uses some kind of decomposition of
traces and coding of asynchronous automata. The present work may be
seen as an attempt to find another trace decomposition that makes the
work easier, partly by allowing the use of standard facts about MSOL
on trees. We do not use here any kind of automata characterisation of
MSOL over traces or any other “difficult” result about traces.

Outline of the paper

In the next section we define traces as labelled graphs representing partial
orders on events. Such a representation is called dependence graph rep-
resentation of traces. Next, we define MSO logic and the µ-calculus over
labelled graphs. We also recall results linking MSOL with the µ-calculus
and an automata characterisation of the later logic.

In Section 5 we describe a new representation of traces by trees

2

that we call lex-trees. These trees have the property that every trace
is uniquely represented by such a tree. The other important property
of lex-trees is that a lex-tree is MSOL definable in dependence graph
representation of a trace and dependence graph is MSOL definable in
lex-tree representation of a trace. Hence MSOL over dependence graphs
is equivalent to MSOL over lex-trees. This allows us to use an equiva-
lence of the µ-calculus and MSOL over trees to obtain an extension of the
µ-calculus equivalent to MSOL over dependence graphs. This extension
may not seem that natural as it is very much connected with particular
representation.

In Section 6 we consider some other extensions of the µ-calculus. One
is µ(co), an extension with coa propositions. Such a proposition holds in
a event e if in the trace there is an event incomparable with e which is
labelled by a. The other is µ(Before) which is an extension with Beforeab

propositions. Such a proposition holds in a event, roughly, when among
the events after it an a event occurs before the first b event.

In the same section we present the main result of the paper (Corol-
lary 24) which says that the two logics can express all MSOL definable
properties. The proof of this fact relies on existence of some automaton
that can reconstruct a lex-tree inside a dependence graph. This construc-
tion is given in the next two sections.

In Section 7 we give a characterisation of lex-trees in terms of some
local properties. Initially, we define lex-trees using some formulas with
quantification over paths in dependence graph. Here, we show that lex-
trees can be defined by existence of some marking of nodes satisfying
some local consistency conditions.

In Section 8 we describe the construction of an automaton recon-
structing lex-trees in dependence graphs. This construction uses the
local definition of lex-trees from the preceding section.

In Section 9 we give translations of our logics to automata over infinite
words. For a given formula we construct an exponential size automaton
accepting linearizations of traces satisfying the formula. From this we
deduce PSPACE-completeness of the satisfiability problem for our logics.

Section 10 contains a comparison with νTrPTL.

2 Traces and their representations

A trace alphabet is a pair (Σ, D) where Σ is a finite set of actions and
D ⊆ Σ × Σ is a reflexive and symmetric dependence relation.

3

A Σ-labelled graph is 〈V,R, λ〉 where V is the set of vertices, R defines
the edges and λ : V → Σ is a labelling function. A Σ-labelled partial
order is a Σ-labelled graph where R is a partial order relation.

Definition 1 A trace or a dependence graph over a trace alphabet (Σ, D)
is a Σ-labelled partial order 〈E,R, λ〉 satisfying the following conditions:

(T1) ∀e ∈ E. {e′ : R(e′, e)} is a finite set.
(T2) ∀e, e′ ∈ E. (λ(e), λ(e′)) ∈ D ⇒ R(e, e′) ∨ R(e′, e).
(T2) ∀e, e′ ∈ E. R(e, e′) ⇒ (λ(e), λ(e′)) ∈ D ∨

∃e′′. R(e, e′′) ∧ R(e′′, e′) ∧ e 6= e′′ 6= e′.

The nodes of a dependence graph are called events. An a-event is an
event e ∈ E which is labelled by a, i.e., λ(e) = a. We say that e is before
e′ iff R(e, e′) holds. In this case we also say that e′ is after e.

The first condition of the definition of dependence graphs says that
the past of each event (the set of the events before the event) is finite.
The second one postulates that events labelled by dependent letters are
ordered. The third, says that the order is induced by the order between
dependent letters.

Below we describe two variations on the representation of depen-
dence graphs. These variations will be important when defining logics
for traces.

Definition 2 A Hasse diagram of a trace G = 〈E,R, λ〉 is a labelled
graph 〈E,RH , λ〉 where RH is the smallest relation needed to determine
R, i.e., R∗

H = R and if RH(e, e′) then there is no e′′ different from e and
e′ such that RH(e, e′′) and RH(e′′, e′) hold.

Definition 3 A process diagram of a trace G = 〈E,R, λ〉 is a labelled
graph 〈E,RP , λ〉 where RP (e, e′) holds if e and e′ are labelled by de-
pendent letters and e′ is the first λ(e′)-event after e. More formally the
condition is: (λ(e), λ(e′)) ∈ D, R(e, e′) and ∀e′′ 6= e. R(e, e′′) ∧ λ(e′′) =
λ(e′) ⇒ R(e′, e′′).

Proviso: In the whole paper we fix a trace alphabet (Σ, D) and a linear
order <Σ on Σ. We also assume that we have a special letter ⊥ ∈ Σ which
is dependent on every other letter of the alphabet, i.e., {⊥} × Σ ⊆ D.
Finally, we assume that in every trace there is the least event (with
respect to the partial order R∗) and it is labelled by ⊥. We denote this
least event also by ⊥.

4

The assumption that every trace has the least event will turn out to
be very useful for local temporal logics we consider in this paper. In
particular the definition of a set of traces definable by a formula becomes
unproblematic in this case.

3 MSOL over graphs and traces

In this section we give a definition of Monadic Second Order Logic
(MSOL) over labelled graphs. Then we recall the known properties of
this logic over the class of dependence graphs.

Let Γ be a finite alphabet. We define MSOL suitable to talk about Γ-
labelled graphs. The signature of the logic consists of one binary relation
R and a monadic relation Pa for each a ∈ Γ. Let Var = {X, Y, . . . } be
the set of (second order) variables. The syntax of MSOL is given by the
grammar:

X ⊆ Y | Pa(X) | R(X, Y) | ¬α | α ∨ β | ∃X. α

where X, Y range over variables in Var , a over letters in Γ, and α, β
over formulas.

Given a Γ-labelled graph M = 〈S,R ⊆ S × S, ρ : S → Γ〉 and
a valuation V : Var → P(S) the semantics is defined inductively as
follows:

• M,V � X ⊆ Y iff V (X) ⊆ V (Y),

• M,V � Pa(X) iff there is s ∈ S with V (X) = {s} and ρ(s) = a,

• M,V � R(X, Y) iff there are s, s′ ∈ S with V (X) = {s}, V (Y) =
{s′} and R(s, s′),

• M,V � ∃X.α iff there is S ′ ⊆ S such that M,V [S ′/X] � α,

• the meaning of boolean connectives is standard.

As usual, we write M � ϕ to mean that for every valuation V we have
M,V � ϕ. A MSOL formula ϕ defines a set of traces {G : G � ϕ}. In
the sequel we will sometimes use first order variables in MSOL formulas.
To denote them we will use small letters x, y, . . . The intention is that
these variables range over nodes of a graph and not over sets of nodes as
second order variables do. First order variables can be “simulated” with

5

second order variables because being a singleton set is expressible in our
variant of MSOL.

Büchi theorem tells us that the class of finite or infinite words (depen-
dence graphs for alphabets where all the letters are mutually dependent)
the properties definable by MSOL are exactly the recognizable languages.
This characterisation carries through to traces.

In case of traces there seem to be many possibilities to say what it
means to be MSOL definable. That is, we can take MSOL over depen-
dence graphs, or over Hasse diagrams of dependence graphs, or over pro-
cess diagrams. Fortunately, MSOL has the same expressive power over
each of these representations. Hence it makes sense to just say MSOL de-
finable set of traces without mentioning a representation. The following
theorem summarizing many results on traces can be found in [4].

Theorem 4
Fix a given trace alphabet. For a set L of traces the following are equiv-
alent:

• L is definable by a MSOL formula.

• L is definable by a c-regular expression.

• L is recognizable by an asynchronous automaton.

• The set of linearizations of traces in L is a recognizable language
of infinite words.

We will not need asynchronous automata or c-regular expressions in
this paper so we will not define them here. If linearizations are concerned,
let us just say that a linearization of a trace is an infinite word which
corresponds to some linear order of type ω extending the partial order of
the trace.

The above theorem shows that the class of MSOL definable properties
of traces is interesting because it admits many different characterisations.
In case of infinite words MSOL has a role of some kind of expressibility
yardstick. The theorem tells us that MSOL can play the same role also
for traces.

To finish this section let us recall a tool for defining one labelled
graph inside another one by means of MSOL formulas. This is a very
simple instance of the method of interpretations of one structure inside
the other.

6

Let ξ(x, y) be a MSOL formula with two free first order variables x, y.
In a given labelled graph M = 〈S,R, ρ〉 this formula defines a relation
Rξ

M = {(v, v′) : M � ξ(v, v′)}. Let M ξ = 〈S,Rξ
M , ρ〉 be a labelled graph

obtained from M by using Rξ
M as an edge relation. We will use the

following straightforward observation.

Proposition 5 For every MSOL formula ϕ there is an MSOL formula
ϕξ such that M ξ � ϕ iff M � ϕξ.

Proof
Formula ϕξ can be obtained by replacing every occurrence of R in ϕ by
ξ(x, y). �

4 The µ-calculus over graphs and traces

Next we define the µ-calculus over an alphabet Γ. For some fixed set
Var of variables the syntax is defined by the grammar:

X | Pa | ¬α | α ∨ β | 〈·〉α | µX.α

where X ranges over variables in Var , a over letters in Γ, and α, β
over formulas. In the construction µX.α we require that X appears only
positively in α (i.e., under even number of negations).

The meaning of a formula α in a Γ-labelled graph M = 〈S,R, ρ〉 with
a valuation V : Var → P(S) is a set of nodes [[α]]MV ⊆ S defined by:

[[Pa]]
M
V ={s ∈ V : ρ(s) = a}

[[X]]MV =V (X)

[[〈·〉α]]MV ={s ∈ S : ∃s′. R(s, s′) ∧ s′ ∈ [[α]]MV }

[[µX.α(X)]]MV =
⋂

{A ⊆ S : [[α(A)]]MV [A/S] ⊆ A}

The omitted clauses for boolean constructors are standard. We write
M,V, s � α if s ∈ [[α]]MV .

If G is a trace that has the least event ⊥ then we write G � α to
mean that G, V,⊥ � α for all V . A µ-calculus formula α defines the set
of traces {G : G � α}.

A Γ-labelled graph 〈S,R, ρ〉 is called deterministic tree if 〈S,R〉 is a
tree and for every v ∈ S and every a ∈ Γ there is at most one v ′ ∈ S with

7

R(v, v′) and ρ(v′) = a. The following equivalence was shown by Niwinski
(cf. [9]).

Theorem 6
Over deterministic trees µ-calculus is equivalent to MSOL. In other words,
for every MSOL sentence ϕ there is a µ-calculus sentence αϕ such that
for every deterministic tree M : M � ϕ iff M � αϕ. Also conversely,
for every µ-calculus sentence α there is an MSOL sentence ϕα such that:
M � α iff M � ϕα for every deterministic tree M .

The µ-calculus cannot be equivalent to MSOL over all labelled graphs
or even trees because in MSOL we can say that there is some fixed
number of successors of the node and this is impossible in the µ-calculus.
Dependence graphs are deterministic acyclic graphs but usually they are
not trees. Later we will see that the µ-calculus is weaker than MSOL
over dependence graphs.

We recall (from [6]) a characterisation of the µ-calculus in terms of
(alternating) automata. This will allow us to use automata instead of
the µ-calculus which is easier for some constructions. The only difference
between these automata and alternating automata on binary trees is in
the transition function which now needs to cope with nodes of arbitrary
degree.

Definition 7 A µ-automaton over an alphabet Γ is a tuple

A = 〈Q,Γ, q0, δ, F,Ω〉

where: Q is a finite set of states, Γ is a finite alphabet, q0 ∈ Q is an
initial state, δ : Q × Γ → P(P(Q)) is a transition function, F ⊆ Q is a
set of final states and Ω : Q→ N defines a winning condition.

Let M = 〈E,R, ρ〉 be a Γ-labelled graph and v0 a vertex of M . A run
of A on M starting from a vertex v0 is a labelled tree r : S → E × Q;
where S is a tree and r is a labelling function. We require that the root
of S is labeled with (v0, q0) and for every node v with r(v) = (e, q) we
have that either q ∈ F or there is W ∈ δ(q, ρ(e)) satisfying:

• for every successor e′ of e there is a son of v labelled by (e′, q′) for
some q′ ∈ W ;

• for every q′ ∈ W there is a son of v labelled by (e′, q′) for some
successor e′ of e.

8

An infinite sequence (e0, q0), (e1, q1), . . . satisfies the parity condition
given by Ω if the smallest number among those appearing infinitely often
in the sequence Ω(q0),Ω(q1), . . . is even. We call a run accepting if every
leaf of the run is labelled by a state from F and every infinite path
satisfies the parity condition. We say that A accepts M from v0 iff A
has an accepting run on M from v0. Automaton A defines a set of traces
L(A) = {G : A accepts G from ⊥}.

The following theorem from [6] shows equivalence of µ-automata and
the µ-calculus over Γ-labelled transition systems.

Theorem 8
For every automaton A there is a µ-calculus sentence αA such that for
every Γ-labelled transition system G we have: G � αA iff G ∈ L(A).
Conversely; for every µ-calculus sentence α there is an automaton Aα

such that {G : G � α} = L(Aα).

We finish this section with the proposition showing that over traces
the µ-calculus does not have sufficient expressive power. This example
motivates the search for extensions of the µ-calculus that can capture
the power of MSOL over traces.

Proposition 9 No µ-calculus sentence can distinguish between the fol-
lowing two Hasse diagrams of traces presented in Figure 1. In the left

c

d

OO

c

OO

doo

a

OO

b

OO

⊥

__????????

??��������

d

c

OO

c // d

OO

a

OO

b

OO

⊥

__????????

??��������

Figure 1: Indistinguishable traces

9

graph the dots stand for the sequence (dc)ω and in the right graph
for (cd)ω. In this example the trace alphabet ({⊥, a, b, c, d}, D) where
D is the smallest symmetric and reflexive relation containing the pairs
{(a, c), (b, d), (c, d)} ∪ {⊥} × {a, b, c, d}

Proof
The two dependence graphs are bisimilar. Proposition follows from the
fact that no µ-calculus formula can distinguish between two bisimilar
graphs. �

Observe that this proposition holds independently of the representa-
tion of the traces. The figure above shows Hasse diagrams of traces. But
also process diagrams of the two traces are bisimilar. This is also true
for dependence graphs of the traces.

5 Lex-trees

In this section we describe a representation of traces by some kind of
trees which we call lex-trees. This will allow us to use the equivalence of
MSOL and the µ-calculus over trees.

Definition 10 (Lex-Tree) Let G = 〈E,R, λ〉 be a trace. A path of
events e1e2 . . . en inG determines a sequence of labels λ(e1)λ(e2) . . . λ(en).
So, we can compare two such paths using the lexicographic ordering on Σ∗

obtained from our fixed ordering <Σ on Σ. We will denote this ordering
also by <Σ. For e ∈ E let lexp(e) be the smallest in lexicographical
ordering path from the least element of G to e.

Lex-tree of G, denoted Lex(G), is a Σ-labelled graph T = 〈E, Son, λ〉
where Son(e, e′) holds iff lexp(e′) = lexp(e)e′ (in words: if the lexico-
graphic path to e′ goes through e and e′ is a successor of e). In this case
we will call e′ a lex-son of e in G.

Definition of lex-trees gives a natural ordering on sons of a node that
then can be extended to an ordering between any two nodes of lex-tree
which are not on the same path.

Definition 11 (“To the left” ordering) We define “to the lex-left”
ordering on events of G: e 4 e′ iff lexp(e) <Σ lexp(e′) but lexp(e) is not
a prefix of lexp(e′). We say that e′ is to the right of e if e is to the left of
e′.

10

Lemma 12 For every dependence graph G, Lex (G), is a tree.

Proof
Every path in the lex-tree is a lex-path. There cannot be two lex-paths
to the same event. �

Lemma 13 There is a MSOL formula ξ defining Lex (G) in G (i.e., Gξ

is isomorphic to Lex (G)).

Proof
It is not difficult to write a formula lpath(X, e) which says that X is the
lexicographic path to e. Using this we write a formula ξ(x, y) such that
G � ξ(e, e′) iff lexp(e′) = lexp(e)e′. �

Lemma 14 There is a MSOL formula ξ−1 defining G from Lex (G).

Proof
Let G = 〈E,R, λ〉 be a dependence graph. First observation is that for a
pair of dependent letters (a, b) ∈ D an a-event ea is before a b-event eb in
G iff ea is an ancestor or to the right of eb in the tree Lex(G). Indeed if
ea is before eb in G then either lexp(ea) is a prefix of lexp(eb) or lexp(eb)
is lexicographically smaller than lexp(ea). For the other direction, if ea

is to the right of eb in Lex (G) then ea is before eb in the trace ordering
because otherwise we could have a path to ea going through eb (as a and
b are dependent).

Let us define the relation H(e, e′) which holds if the two events are
labelled by dependent letters and e is an ancestor or to the right of
e′. Clearly H is definable in MSOL. The observation from the above
paragraph can be reformulated as: H(e, e′) iff R(e, e′) and (λ(e), λ(e′)) ∈
D. In particular H∗ ⊆ R as R is transitive. An easy induction using
conditions (T1) and (T3) of the the definition of the trace shows R ⊆ H∗.
We are done as the transitive closure of a relation is definable in MSOL.
�

Using Proposition 5 we immediately obtain.

Corollary 15 MSOL over dependence graphs and over lex-trees has the
same expressive power. More precisely, for every MSOL formula ϕ there
is a MSOL formula ϕT such that for every dependence graph G we have:
G � ϕ iff Lex (G) � ϕT . Vice versa, for every MSOL formula ψ there is
a MSOL formula ψG such that for every graph G we have: G � ψG iff
Lex(G) � ψ.

11

Corollary 16 MSOL over dependence graphs is equivalent to the µ-
calculus over lex-trees. More precisely, for every MSOL formula ϕ there
is a µ-calculus formula α such that for every dependence graph G we
have: G � ϕ iff Lex(G) � α. Moreover for every µ-calculus formula α
there is a MSOL formula ϕα such that for every dependence graph G we
have: G � ϕα iff Lex (G) � α.

6 Extended µ-calculi for traces

Proposition 9 shows that it is not possible to reconstruct the shape of a
trace in the µ-calculus over dependence graph representation of a trace.
The same is true for Hasse diagram or process diagram representations.
This means that we need to consider richer representations of traces.
Here we propose to extend the labelling with events. Before this we
define some auxiliary relations.

Definition 17 Let G = 〈E,R, λ〉 be a dependence graph. Relation co is
the concurrency relation between events in the trace defined by co(e, e′)
iff neither R(e, e′) nor R(e′, e) hold. We define relation Beforea,b(e) for
every event e and every pair of dependent letters (a, b) ∈ D. The relation
holds if λ(e) depends on both a and b and moreover among events after
e there are a and b-events and some a-event appears before all b-events.
More formally Beforea,b(e) holds if λ(e) depends on a and b and there
are events ea, eb 6= e such that R(e, ea), R(e, eb) and λ(ea) = a, λ(eb) = b.
Moreover for every e′b 6= e with R(e, e′b) and λ(e′b) = b we must have
R(ea, e

′
b).

Definition 18 Let G = 〈E,R, λ〉 be a dependence graph or Hasse dia-
gram of a dependence graph or a process diagram of it. We define its two
annotations Mco(G) and MB(G). Let Mco(G) = 〈E,R, λco〉 be labelled
graph over an alphabet Γco = Σ × P(Σ) where λco(e) = (λ(e), {λ(e′) :
co(e, e′)}). LetMB(G) = 〈E,R, λco〉 be a labelled graph over an alphabet
ΓB = Σ × P(Σ × Σ) where λB(e) = (λ(e), {(a, b) : Beforeab(e)}).

Definition 19 For a traceG we define six graph representations: Mco(G),
MB(G), MH

co
(G), MH

B (G), MP
co

(G), MP
B (G). Superscripts H and P stand

for Hasse and process diagram representations respectively. The sub-
scripts determine the kind of annotation.

12

Our goal is to show that the µ-calculus over three out of these six
representations is expressively complete. The next proposition says that
the remaining three representations are to weak.

Proposition 20 The µ-calculus over Mco(G), MB(G) and MP
co

(G) rep-
resentations cannot express all MSOL properties.

Proof
Let us first consider two representations with co annotation. Take an
alphabet with three letters a, b, c that are mutually dependent on each
other, i.e., Σ = ({⊥, a, b}, {⊥, a, b}2). Recall that we assume that there
is always special ⊥ letter in the alphabet. Consider the two process dia-
grams of traces presented in Figure 6. The two diagrams are bisimilar so

b

a

OO

b

OO

a

OO

⊥

OO

==

a

b

OO

a

OO

b

OO

⊥

OO

aa

Figure 2: Indistinguishable process diagrams

no µ-calculus formula can distinguish between them. The co annotation
is void in this case as all the actions are mutually dependent. This settles
the case of MP

co
(G) representation as there is a FOL formula distinguish-

ing between these two graphs. The same example also works for Mco(G)
representation. The difference is that in that representation we also have
an arrow between every two places connected by a path. Still the two
diagrams remain bisimilar in this case.

The case of MB(G) representation is more difficult. Consider the
same trace alphabet as before. We claim that the property:

(∗) a appears even number of times in G

13

is not expressible by a µ-calculus formula over MB(G) representations.
Even though all the letters in our alphabet are mutually dependent
MB(G) representation of a trace is not an infinite word. For example
in the graph MB(⊥ababbω) there is an edge from each position to each
later position. Predicate Beforeab holds in a position if the next position
is labelled by a; otherwise Beforeba holds.

Suppose that the property (∗) is expressible in the µ-calculus over
MB(G) representations. Let A = 〈Q,Σ, q0, δ,Ω, F 〉 be an automaton
reconginizing this property. Take a trace of the form (ab)2nbω for some
n and consider an accepting run of A on this trace. The first move
of the automaton is to choose a set W ∈ δ(q0,⊥) and assign a set of
states r(i) 6= ∅ to each position i > 1. The assignment is such that
⋃

i>1 r(i) = W . Moreover for every i and q ∈ r(i) automaton A has an
accepting run from q starting at position i.

By finiteness of the automaton we must have n and k such that the
first move of an accepting run of A on the words:

⊥(ab)2nbω and ⊥(ab)2k(ab)2nbω

uses the same set W ∈ δ(q0,⊥). Let r1, r2 : {2, . . . } → P(Q) be the
assignments chosen by the automaton in the first move on the two words.
We can assume that on the second word the assignment to the (ab)2nbω

suffix is exactly the same as the assignment in the first word, i.e., r1(i) =
r2(i+ 2k) for i > 1. Consider the word

⊥ab(ab)2k−1(ab)2nbω

It is not difficult to check that an assignment r3(i) = r2(i + 2), for all
i > 1, is a correct move of A and can be extended to an accepting run
of A. �

So we are left with three representations MH
co

(G), MH
B (G) andMP

B (G).
The first observation is that MH

co
(G) representation gives at least as much

information about G as MH
B (G).

Proposition 21 For every pair (a, b) ∈ D there is a µ-calculus formula
βab defining Beforeab in MH

co
(G); more formally for every G and e in G

we have: MH
co

(G), e � βab iff Beforeab(e) holds in G.

Proof
Suppose Beforeab holds in G then:

• e is labelled by a letter dependent on both a and b;

14

• there is a b-event after e;

• there is a path from e to an event ea labelled by a such that no
event on this path is a b-event or is concurrent with a b-event;

One can check that these three conditions are also sufficient for Beforeab(e)
to hold. The above conditions are expressed by the formula:

[

∨

c∈Σab

Pc

]

∧
〈

·〉[µX.Pb ∨ 〈·〉X
]

∧
〈

·〉[µY.Pa ∨ 〈·〉(¬cob ∧ ¬Pb ∧ Y)
]

where Σab is the set of all letters dependent on both b and c, i.e., Σab =
{c : (a, c) ∈ D ∧ (a, b) ∈ D}. In the above we use Pa to stand for a set
of events with a as the first component of the label and we use cob for
the set of events with b in the second component of the label. The proof
that the formula expresses the required conditions is routine. �

We are now ready to formulate the main technical result of the paper.

Theorem 22
For every MSOL sentence ϕ there is a µ-calculus sentence βϕ such that
for every dependence graph G: G � ϕ iff MH

B (G),⊥ � βϕ iff MP
B (G),⊥ �

βϕ

Proof
The line of the proof is as follows. By Corollary 16 from ϕ we construct
a µ-calculus formula αϕ such that G � ϕ iff Lex (G),⊥ � αϕ. By The-
orem 8 we get an equivalent automaton Aϕ working on lex-trees. Next,
we construct an automaton C which “reconstructs” a lex-tree in MH

B (G)
as well as in MP

B (G). Then, we construct an automaton B which is a
kind of product of Aϕ and C. This is an automaton running on MH

B (G)
or MP

B (G) and accepting iff Aϕ accepts Lex (G). Using once again The-
orem 8, automaton B can be translated back to a µ-calculus formula
βϕ.

The main difficulty in the proof is the construction of the automaton
C. Here we just state the lemma saying that it is possible. The proof
of this lemma will be given in the two following sections. Recall that
MH

B (G) and MP
B (G) are Γ-labelled graphs where Γ = Σ × P(Σ × Σ). So

our automaton C will also use this alphabet. We will write ↓1 and ↓2 for
projections on the first and second component respectively.

Lemma 23 There is an automaton C = 〈Qc,Γ, q
0
c , δc, Fc,Ωc〉 which re-

constructs lexicographic trees, i.e., for every dependence graph G =
〈E,R, λ〉:

15

• C has unique accepting run r : S → E × Qc on MH
B (G) as well as

on MP
B (G).

• there is a special state tt ∈ FC such that when we restrict r to
S ′ = {v : r(v)↓2 6= tt} then S ′ is a tree and r↓1: S

′ → E is a tree
isomorphism between S ′ and Lex(G).

Suppose that we have such an automaton C as in the lemma and let us
proceed with the proof. Let Aϕ = 〈Qa,Σ, q

0
a, δa, Fa,Ωa〉 be an automaton

over alphabet Σ. We construct an automaton B:

B = 〈Qb,Γ, q
0
b , δb, Fb,Ωb〉

where:

• Qb = (Qa × (Qc \ {tt})) ∪Qc

• q0
b = (q0

a, q
0
c)

• for qa 6∈ Fa we have δb((qa, qc), l) =
⋃

{Choice(Wa,Wc) : Wa ∈
δ(qa, l↓1), Wc ∈ δ(qc, l)} with Choice(Wa,Wc) consisting of all the
sets W such that:

{q′a : ∃q′c. (q′a, q
′
c) ∈ W} = Wa

{q′c : ∃q′a. (q′a, q
′
c) ∈ W} ∪ {tt : tt ∈ W} = Wc

• for qa ∈ Fa we have δb((qa, qc), l) = δc(qc, l)

• Fb = (Fa × (Fc \ {tt})) ∪ {tt}

• Ωb((qa, qc)) = Ωa(qa) and Ωb(qc) = Ωc(qc)

We show that for every dependence graph G:

MH
B (G) ∈ L(B) iff Lex (G) ∈ L(Aϕ)

The proof for MP
H(G) representation is essentially the same.

First, let us show that if there is an accepting run ra : Sa → E ×Qa

of Aϕ on Lex(G) then there is accepting run rb : Sb → E × Qb of B on
MH

B (G). Let rc : Sc → E ×Qc be the unique run of C on G.
We construct a run rb : Sb → E×Q by induction on the distance of a

node from the root. The nodes of Sb will come from the set (Sa×Sc)∪Sc.
If a node of Sb will be of the form (va, vc) ∈ Sa × Sc then we will have:

rb(va, vc) = (e, (qa, qc))

with e = ra(va)↓1= rc(vc)↓1, qa = ra(va)↓2 and qc = rc(vc)↓2

(1)

16

If a node of Sb will be of the form vc ∈ Sc then we will have:

rb(vc) = rc(vc) (2)

The root of Sb is (⊥a,⊥c) where ⊥a, ⊥c are the roots of Sa and Sc

respectively. We put rb(⊥a,⊥c) = (⊥, (q0
a, q

0
c)), where ⊥ is the least event

of G.
Suppose we have a node (va, vc) of Sb and (1) holds. We have several

cases depending on whether va or vc have sons.
If vc has no sons in Sc then e is a leaf in Lex(G). So qa ∈ Fa as ra is

an accepting run of Aϕ on Lex (G). Hence (qa, qc) ∈ Fb as qc 6= tt .
If va has no sons and vc has sons w1

c , . . . , w
n
c then we know that

qa ∈ Fa. For each i = 1, . . . , n we make wi
c a son of (va, vc) and put

rb(w
i
c) = rc(w

i
c).

The last case is when both va and vc have sons. Let w1
a, . . . , w

m
a

and w1
c , . . . , w

n
c be sons of va and vc respectively. For each i, j such

that ra(w
i
a)↓1= rc(w

j
c)↓1 we create a son (wi

a, w
j
c) of (va, vc) labelled by

(ra(w
i
a)↓1, (ra(w

i
a)↓2, rc(w

j
c)↓2)). This way we have taken care of all the

events that are sons of e in Lex (G). For every event e′ which is a successor
of e but not a son of e in Lex (G) there is j with rc(w

j
c)↓1= (e′, tt). We

make wj
c a son of (va, vc) and label it with rc(w

j
c).

Finally, we define rb for nodes of Sb of the form vc ∈ Sc. In this case
we know by (2) that rb(vc) = rc(vc) and we just copy the run of C. More
precisely for each son wc of vc in Sc we make wc also a son of vc in Sb

and put rb(wc) = rc(wc).
It is not difficult to check that rb is a locally consistent run. Clearly,

every leaf is labelled by a state from Fb. So it remains to show that
every infinite path satisfies the parity condition of B. Suppose v0, v1, . . .
is an infinite path in Sb and vi ∈ Sa × Sc for all i. Let vi = (vi

a, v
i
c) for

all i. Recall that rb(v
i)↓2= (ra(v

i
a)↓2, ra(v

i
c)↓2). By definition of Ωb we

have that Ωb(ra(v
i
a)↓2, ra(v

i
c)↓2) = Ωa(ra(v

i
a)↓2). Hence v0, v1, . . . satisfies

the parity condition Ωb because by the assumption v0
a, v

1
a, . . . satisfies the

parity condition Ωa. The other case is when for an infinite path v0, v1, . . .
we have vi ∈ Sc for some i. Then vj ∈ Sc and rb(vj) = rc(vj) for all j ≥ i.
As Ωb(vj) = Ωc(vj), we get that this path satisfies the parity condition.

Now we want to show that whenever B accepts G then Aϕ accepts
Lex(G). Let rb : Sb → E × Qb be an accepting run of B on G. Let
rc : Sc → E × Qc be the unique accepting run of C on G. Let us define
f : G→ Qc by f(e) = q iff there is v ∈ Sc with rc(v) = (e, q) and q 6= tt .
This function is well defined by our assumption on C.

17

We claim that for every v ∈ Sb if rb(v) = (e, (qa, qc)) then qc = f(e).
This follows by an easy induction on the distance of v from the root.

Let Sa = {v ∈ Sb : rb↓2 (v) ∈ Qa × Qc}. Clearly Sa is a tree by the
definition of automaton B. We define ra : Sa → E×Qa by ra(v) = (e, qa)
whenever rb(v) = (e, (qa, qc)).

We want to show that ra is an accepting run of Aϕ on Lex (G). It
is easy to see that every infinite path in Sa satisfies the parity condition
given by Ωa. So it remains to check if ra is locally consistent. Let v ∈ Sa

with rb(v) = (e, (qa, qc)). As qc = f(e) we know that the sons of v which
are assigned state other than tt are labelled with lex-sons of e and every
lex-son of e is in a label of one of the sons of v. Then by the definition
of B we get that ra is locally consistent in v. �

We sum up the results of this section in the corollary below. This is
the main result of the paper.

Let µ(Before) stand for the extension of the µ-calculus over the alpha-
bet Σ with added proposition Beforeab for every (a, b) ∈ D. The meaning
of such a proposition is: G, e � Beforeab iff Beforeab(e) holds in G. It is
straightforward to see that µ(Before) over dependence graph represen-
tation of traces is equivalent to the plain µ-calculus over the alphabet
ΓB = Σ × P(Σ × Σ) and MH

B (G) representation of traces.
Similarly let µ(co) stand for the extension of the µ-calculus over the

alphabet Σ with propositions coa for every a ∈ Σ. The meaning of such
a proposition is: G, e � coa iff there is an event e′ in G labelled with a
and such that co(e, e′) holds. Once again µ(co) corresponds to the plain
µ-calculus over MH

co
(G) representations of traces.

Corollary 24 (Expressive completeness) For every MSOL formula
ϕ there are equivalent formulas αϕ, βϕ and γϕ of the µ-calculus such that:
G � ϕ iffMP

B (G) � αϕ iffMH
B (G) � βϕ iffMH

co
(G) � γϕ. Also the converse

holds: for a µ-calculus formula over one of the three representations of
traces there is an equivalent MSOL formula.

7 Local characterisation of lex-trees

What remains to be done is the construction of an automaton C re-
constructing lex-trees in dependence graphs. We have defined lex-trees
using some global properties of events. In this section we would like to
show that there is a labelling of events which is defined by some local
conditions and such that a label of an event identifies which among the

18

successors of the event are lex-sons (i.e., sons in the lex-tree). We will
use this labelling in the next section to construct an automaton recon-
structing the lex-tree in a given dependence graph. For this section let
us fix a dependence graph G = 〈E,R, λ〉.

Definition 25 In a lex-tree a left split from e is an event e′ which is a son
of an ancestor of e and which is to the left of e (i.e., lexp(e′) <Σ lexp(e)).

Lemma 26 For every e there are no more than |Σ| left splits from e.

Proof
Let e be an event and let ea, eb be its two sons labelled a and b respec-
tively. Assume that a is smaller than b in our fixed ordering on Σ. The
lemma follows from the observation that there cannot be an a labelled
descendant of eb in the lex-tree. Suppose conversely that there is an a-
event e′a which is a lex-descendant of eb. Then lexp(e′a) goes through e
and eb but not through ea. So ea is after e′a in the trace ordering. Hence
ea cannot be a direct successor of e in the trace as we have a path to ea

going through eb and e′a. �

Definition 27 A lex-slice from an event e, denoted G(e), is the restric-
tion of G to the events:

{e′ : R(e, e′) or R(e′′, e′) for e′′ a left split from e}

In words, this is the set of events which are after e or after some left split
from e.

Next, we define a concept of a view. Intuitively, a view from an
event e describes the dependencies one can see in the lex-slice of e. As
we want views to be finite, we just note the dependencies between first
occurrences of actions. A view is something that will be guessed, so we
define it without a reference to a particular event or trace.

Definition 28 A view is a binary relation V on a set X ⊆ Σ such that
V relates two letters a, b ∈ X iff (a, b) ∈ D and such that a reflexive and
transitive closure V ∗ of V is a partial order. Let Views be the set of all
the views.

Definition 29 For a view V , let Alph(V) ⊆ Σ be the set of letters
the view relates. Let Min(V) be the set of minimal elements of V (i.e.,
minimal in the partial order V ∗). For a letter a ∈ Min(V) let Left(V, a) =

19

{b : ∃c6=aV (c, b) and c minimal in V } be the set of those letters from
Alph(V) which are bigger than some minimal element of V other than
a (the name comes from the fact that usually a will be the “rightmost”
minimal element).

Definition 30 Let e be an event and let V be a view. By V ↓e we
denote the view obtained from V by possibly changing the relation of
λ(e) to letters a such that (a, λ(e)) ∈ D. We put (a, λ(e)) in V (e)↓e if
Beforeaλ(e)(e) holds and we put (λ(e), a) in V (e)↓e if Beforeλ(e)a(e) holds.
If none of these holds then λ(e) does not appear at all in G(e) \ {e}. In
this last case V ↓e does not relate λ(e) at all and the domain of V ↓e

becomes Alph(V) \ {λ(e)}. If λ(e) 6∈ Alph(V) then V ↓e= V .

We define a projection from an event to be the correct view from the
event.

Definition 31 (Projection from an event) Let G(e) be the lex-slice
for e. We define P (e), the projection from e. For every two letters
(a, b) ∈ D such that both of them appear in G(e) we put (a, b) ∈ P (e) if
in G(e) the first a-event is before the first b-event; we put (b, a) ∈ P (e)
otherwise.

The lemmas below show what kind of information we can deduce from
a projection of an event.

Lemma 32 The minimal elements of P (e) are exactly the labels of the
minimal events in G(e), and these are e and all left splits of e.

Proof
If a is minimal in P (e) then by the definition the first a event is minimal
in G(e). Hence this a-event must be e or the left split from e.

We want to show that if e′ is a left split from e then e′ is minimal in
G(e). This will also show that λ(e′) is minimal in P (e).

Suppose not, then there is another event e′′ before e′ which is a left
split of e or e itself. Let e(3), e(4) be events on the lex-path to e of which
e′ and e′′ are respectively lex-sons. If e(3) is before e(4) then we get a
path from e(3) to e′ (it goes from e(3) to e(4) to e′′ and then to e′). This
contradicts the fact that e′ is a successor of e(3) in the Hasse diagram of
G. If e(4) is before e(3) then e′ is not a left split of e as the lex path to e′

does not go through e(3) but through e′′.
�

20

Lemma 33 If b ∈ Left(P (e), λ(e)) then the first b event in G(e) is not
a lex-descendant of e in Lex (G).

Proof
If (c, b) ∈ P (e) for some minimal letter c 6= λ(e) then there is a path
from the first c event to the first b event in G(e). By Lemma 32, the first
c event is a left split from e. �

Lemma 34 For every event e the set Min(P (e)↓e)\(Min(P (e))\{λ(e)})
is the set of labels of lex-sons of e.

Proof
If λ(e) ∈ Min(P (e)↓e) \ (Min(P (e)) \ {λ(e)}) then Beforeλ(e)a(e) holds
for every letter a dependent on λ(e). Hence there is the unique successor
e′ of e labelled by λ(e′) = λ(e). It can be checked that this successor is
a lex-son because every path to e′ goes through e.

For the other case suppose b ∈ Min(P (e)↓λ(e)) \ (Min(P (e)) \ {λ(e)})
with b 6= λ(e). In this case Beforebλ(e)(e) holds.

Let eb be the first b-event in G(e). We want to show that eb is a
lex-son of e. Suppose first that eb is not a successor of e. Then, as b
depends on λ(e), there is a path from e to eb and say e′ is just before
eb on it. We have that λ(e′) is dependent on b and λ(e′) 6= λ(e) hence
(λ(e′), b) ∈ P (e)↓e a contradiction with the minimality of b in P (e)↓e. To
see that eb is a lex-son of e observe that for a similar reason there cannot
be a path from some left split of e to eb.

Finally observe that every lex-son of e is labelled by some letter from
Min(P (e)↓e) \ (Min(P (e)) \ {λ(e)}). This is because whenever e′′ is a
lex-son of e then Beforeλ(e′′)a(e) holds for all a dependent on λ(e′′). So
λ(e′′) ∈ Min(P (e)↓e) and λ(e′′) 6∈ (Min(P (e)) \ λ(e)). �

Next, we define a pair of labelling functions which we call consis-
tent view assignment. Each of this functions will assign a view to an
event of a trace. The main future of these labellings is that some local
consistency conditions are enough to determine them uniquely. Having
local conditions is important because they can be easily checked by an
automaton.

Definition 35 Consistent view assignment for a trace G is a pair of
functions (VL, V) each assigning a view to every event of G. For every
event e, these functions have to satisfy the following consistency condi-
tions.

21

1. If e is the root of G then V (e) = P (e) and VL(e) = ∅.

2. If Min(V (e)↓e) = Min(V (e))\{λ(e)} (intuitively e has no lex-sons)
then VL(e) = V (e)↓e.

3. If Min(V (e)↓e) = Min(V (e)) (intuitively e has a unique lex son
labelled by λ(e)) then there is a successor e′ of e labelled with λ(e)
and we must have V (e′) = V (e) and VL(e′) = VL(e).

4. If Min(V (e)↓e) = (Min(V (e)) \ {λ(e)}) ∪ {b1, . . . , bk} with b1 <Σ

· · · <Σ bk in our fixed ordering on Σ then there must be successors
e1, . . . , ek of e labelled by b1, . . . , bk respectively and we must have:

(a) V (ek) = V (e)↓e,

(b) Alph(VL(ei)) ⊆ Alph(V (ei)) and VL(ei) agrees with V (ei) on
Left(V (ei), λ(ei)) for i = 1, . . . , k,

(c) VL(e) = VL(e1) and V (ei−1) = VL(ei) for i = 2, . . . , k.

Proposition 36 For every dependence graph G there is a consistent
view assignment.

Proof
Define a view assignment by letting V (e) = P (e) and VL(e) = P (eL)
where eL is the biggest in “to the left” ordering split from e (we will call
it biggest left split for short). We put VL(e) = ∅ if there is no such eL.
We have several cases to consider.

Clearly the root condition of the definition of consistent assignment
is satisfied.

Suppose Min(V (e)↓e) = Min(V (e)) \ {λ(e)} then by Lemma 34 there
are no lex-sons of e. We have that P (eL) = P (e)↓e.

Suppose Min(V (e)↓e) = Min(V (e)) then by Lemma 34 there is the
unique lex-son e′ of e labelled λ(e). We have that P (e′) = P (e) and that
eL is the biggest left split also for e′.

Finally suppose Min(V (e)↓e) = (Min(V (e)) \ {λ(e)}) ∪ {b1, . . . , bk}
with b1 <Σ · · · <Σ bk listed according to our ordering on Σ. By Lemma 34
there are lex-sons e1, . . . , ek of e labelled with b1, . . . , bk respectively and
these are the only lex-sons of e.

It is not difficult to check that P (ek) = P (e)↓e. To check the next
condition observe that eL is the biggest left split for e1 and ei−1 is the
biggest left split for ei (i = 2, . . . , k). This means that V (ei−1) = VL(ei)
and VL(e) = VL(e1). We have that Alph(P (ei−1)) ⊆ Alph(P (ei)) because

22

the left slice G(ei−1) is a suffix of G(ei). Finally let us check that VL(ei)
and V (ei) agree on the letters from Left(V (ei), λ(ei)). We have that
VL(ei) = P (e′i) where e′i is the biggest left split of ei (i.e. e′i = ei−1 or
e′i = eL if i = 1). By Lemma 33 for every letter a ∈ Left(P (ei), λ(ei)) the
first a-event in G(ei) is also the first event in G(e′i). �

We finish this section with a proposition showing that there is exactly
one consistent view assignment.

Proposition 37 If (VL, V) is a consistent view assignment then for every
event e we have V (e) = P (e). (Consistency conditions imply that VL is
also determined)

Before proving the proposition we need some lemmas. For the rest of
this section let us fix a consistent view assignment (VL, V).

Definition 38 We say that an event e is good if V (e) = P (e) (it does
not matter what VL(e) is)

Lemma 39 If e is good and e′ is its rightmost lex-son then e′ is good.

Proof
This is because the only difference between V (e) and V (e′) is for pairs
containing letter λ(e). The correct pairs for V (e′) are calculated with
Beforeab(e) predicates. �

Lemma 40 Let e be a good event with lex-sons e1, . . . , ek listed in “to
the left” ordering (with ek rightmost). Suppose that ei and all descen-
dants of ei in Lex (G) are good then ei−1 is good.

Proof
There are two cases to consider.

Suppose there is a leftmost node, e′, in the subtree of the lex-tree
rooted in ei. As e′ is good we get V (e′) = P (e′). Then, by the consistency
conditions (1) and (4c) we have VL(e′) = P (e′)↓e′ and V (ei−1) = VL(e′).
Hence ei−1 is good as P (ei−1) = P (e′)↓e′.

The other case is when there is an infinite leftmost lex-path P =
e′1e

′
2 . . . from ei. To shorten the notation let us write Left(e′) for the set of

letters Left(V (e′), λ(e′)) and Right(e′) for Alph(V (e′)\Left(e′)). Observe
that the sequence Right(e′1),Right(e′2), . . . is not increasing. Hence it
stabilizes on some set Inf .

23

Let e′ be an event on P with Right(e′) = Inf . We claim that for every
letter a ∈ Inf the first a event in G(e′) is a descendant of e′ in Lex (G).
Suppose conversely that ea is to the left. As a ∈ Inf we also know that
ea is after e′. Going down the path P we show that ea is to the left and
after every event in P . But then we would have infinitely many events
before ea. This is impossible by the definition of traces.

This argument actually shows that there are no a events to the left
of e′. So no event labelled by a letter from Right(e′) can appear in
G(ei−1). By definition of consistent views V (e′) is consistent with VL(e′)
on Left(e′). Moreover, as no more event is going to get to the left, V (ei−1)
is just V (e′) restricted to Left(e′). �

Now we are ready to prove Proposition 37
Proof (of Proposition 37)
By definition, the root event is good. Assume that in tree Lex(G) there is
an event which is not good. Let us go down the tree always choosing the
rightmost son in which subtree there is a not good event. By Lemma 34
we know that the label of a good event determines the lex-sons of the
event. Finally we must get to a not good event e as we can make at most
|Σ| right turns. Let e1 be the father of e. By assumption e1 is good so
e cannot be the rightmost son of e1 by Lemma 39. Let e2 be the son
of e immediately to the right of e. By our choice of e all events in the
lex-subtree of e2 are good so e is good by Lemma 40. A contradiction.
�

8 Automaton reconstructing lex-trees

Recall that Views is the set of views over the alphabet Σ (cf. Defini-
tion 28). Before defining an automaton reconstructing lex-trees we will
need one auxiliary operation. Suppose V is a view, a is a minimal ele-
ment in V and B ⊆ (Σ × Σ) is a partial order relation on Σ. We define
updated view V ↓(B,a) to be the same as V on letters other than a and
to have (a, b) if (a, b) ∈ B and (b, a) if (b, a) ∈ B. If a is related to no
element in B then V ↓(B,a) is V without pairs containing a. The intention
is that when we have a trace G and an event e with V = P (e), a = λ(e)
and B = {(b, c) : Beforeb,c(e)} then V ↓(B,a) is P (e)↓e.

We define automaton C = 〈Q,Γ, q0, δ, F,Ω〉 as follows:

• Q = (Σ × Views × Views) ∪ {q0, tt},

24

• Γ = Σ × P(Σ × Σ),

• Ω(q) = 0 for every state q.

It remains to define F and the transition function. The set F contains tt
and all the pairs ((a, VL, V), (B, a)) such that Min(V ↓(B,a)) = Min(V) \
{a} and VL = V ↓(B,a). Intuitively in this case from V , B and a we can
determine that the current event has no lex sons.

For the transition function δ we define δ((a, VL, V), (b, B)) by cases:

• if Min(V ↓(B,a)) = Min(V) then
δ((a, VL, V), (a, B)) = {{(a, VL, V), tt}}

• If Min(V ↓(B,a)) = (Min(V)\{a})∪{b1, . . . , bk} (where b1, . . . , bk are
<Σ-ordered by our order on Σ) then δ((a, VL, V), (a, B)) contains
all the sets {(b1, V

′
1 , V1), . . . , (bkV

′
k, Vk), tt} such that:

– Vk = V ↓(B,a),

– Alph(V ′
i) ⊆ Alph(Vi) and V ′

i agrees with Vi on Left(Vi, bi)

– VL = V ′
1 and Vi−1 = V ′

i for i = 2, . . . , k.

• δ((a, VL, V), (b, B)) = ∅ otherwise.

Finally we let δ(q0, (⊥, B)) = δ((⊥, ∅, B), (⊥, B)) as we can consider B
to be a view. There are no tranistions from state tt .

The definition of transition relation directly reflects the definition of
consistent view assignment (cf. Definition 35). The idea of the construc-
tion is that a run of C on G corresponds to a consistent view assignment.
As there is exactly one consistent view assignmnet for every trace, au-
tomaton C will have exactly one accepting run on each trace.

Theorem 41
For every dependence graph G there is a unique accepting run of C on
MH

B (G) or MP
B (G). The restriction of this run to nodes having states

other than tt in their label is isomorphic to the lexicographic tree Lex (G).

Proof
For simplicity we will concentrate on MH

B (G) representation of traces.
The proof for the other representation is very similar. We will mention
the differences in the text.

25

First, let us show that there is a run of C on MH
B (G) for every de-

pendence graph. Let G be a dependence graph and let Lex (G) be the
lex-tree of G. Consider the function r : G→ E ×Q defined by:

r(e) = (e, (λ(e), PL(e), P (e)))

where PL(e) is the projection from the leftmost split of e or PL(e) = ∅ if
there is no such split.

Function r is almost a run of C on MH
B (G). We just need to do

a couple of cosmetic changes. We change the value of r(⊥) to (⊥, q0).
Next, for every e ∈ G and every successor f of e which is not a son of e
in Lex(G) we create a new son ve

f of e. If there are successors of e but
all of them are sons of e in Lex(G) then we choose one such successor f
arbitrary and create a new son ve

f of e. We put r(ve
f) = (f, tt) for each of

the new vertices. Using Proposition 36 one can check that r is a run of
C. As Ω(q) = 0 for all states, every run is accepting. If we had MP

B (G)
representation of a trace then the only difference would be that there
would be more ve

f nodes created.
Now assume that there is an accepting run of C on G. Let r : S →

E × Q be the part of this run restricted to nodes v such that the state
in r(v) is different from tt . In other words r is obtained from the run by
cutting of the leaves labelled with tt . We have a function r↓1: S → E.
We will show that it is an isomorphism.

We say that a vertex v of S is good if r(v) = (e, VL, V) for some e,
VL, V and V = P (e).

Lemma 42 Suppose that v is good then then r↓1 is a bijection between
sons of v and sons of e in Lex (G).

Proof
From Lemma 36 we get that the sons of e in lex-tree are determined by
P (e) and Beforeab(e) relations. Similarly P (e) and the label of e deter-
mine the first components of states in the transition of the automaton.
�

For an event e define the set AR(e) of events which are ancestors or
to the right of e in Lex (G):

AR(e) ={e′ : lexp(e′) is a prefix of lexp(e)}∪

{e′ : lexp(e) <Σ lexp(e′) and lexp(e) is not a prefix of lexp(e′)}

A path v0v1 . . . in S defines a sequence of letters a0a1 . . . which are the
letters appearing in r(v0), r(v1), . . . By the definition of the automaton

26

such a sequence of letters determines uniquely the path in S. Hence we
can compare vertices in S by comparing lexicographically the labels of
paths leading to them. We can also define the set AR(v) of vertices above
or to the right of v in the same way as we did for the events.

We say that r↓1 is a good bijection between a subset of S and the
subset of G iff it is a bijection and each node in the domain is good.

Suppose that we have a vertex v of S such that:

1. r↓1 is a good bijection between AR(v) and AR(e).

2. r↓1 is not a good bijection between subtree of S rooted in v and
the subtree of Lex(G) rooted in r↓1 (v).

We will show that if we have such v then we can find its son v ′ with the
same properties and such that r↓1 (v′) is a son of e in Lex (G).

By Lemma 42 r↓1 is a bijection between the sons of v and the sons
of r↓1 (e). Let v1, . . . , vk be the sons of v listed in the order of letters
in their labels. Vertex vk is the rightmost son of v and r↓1 (vk) is the
rightmost lex-son of e. By Lemma 39 we have that vk is good. Hence
clause 1 is satisfied for vk. If r↓1 is not a good bijection between the
subtrees rooted in vk and r ↓1 (vk) then vk is the son we are looking
for. Otherwise, vk−1 satisfies clause 1 because by Lemma 40 we know
that vk−1 is good. Continuing like this we must find a son vi of v which
satisfies both clauses. Otherwise, we would have that r ↓1 is a good
bijection between descendants of v and descendants of r↓1 (v) which is
impossible by clause 2 of our assumption.

Let us iterate this construction to infinity. Let v′1, v
′
2, . . . be the events

chosen in successive iterations of the construction. We have that the
events r↓1 (v′1), r↓1 (v′2), . . . form a path in Lex (G). As every infinite
path in Lex(G) is eventually leftmost there is an event r↓1 (v′i) starting
from which the path goes only from a father to the leftmost son. But
then r↓1 is an isomorphism between descendants of v′i and descendants
of r↓1 (v′i) which was assumed not to exist. This shows that v with the
above two properties cannot exist.

Take the root v0 of S and the least element ⊥ of G. We have r(⊥) =
(⊥, q0). By definition of the automaton, its move from q0 on the letter
(⊥, P (⊥)) is exactly the same as from the state (λ(⊥), ∅, P (⊥)) on this
letter. So we can pretend r(v0) = (⊥, (λ(⊥), ∅, P (⊥))) and not (⊥, q0).
But then v0 satisfies clause 1 from the above. Hence we must have that 2
is not satisfied. So r↓1 is a good bijection between S and E. This shows
that a run of C is uniquely determined. �

27

9 Complexity issues

In this section we will show that the satisfiability problem for the logics
proposed in this paper is PSPACE-complete. For a given formula α we
will construct an automaton A(α) recognizing all linearisations of all the
traces satisfying α. This way, to check if a formula α is satisfiable it is
enough to check if A(α) accepts some word. As it is usually the case with
linear time logics, the model checking problem has the same complexity
as the satisfiability problem.

Definition 43 A linearization of a trace G = 〈E,R, λ〉 is a word w ∈ Σω

which corresponds to some linear order containing partial order R, i.e., w
is the sequence of labels of events in the chosen linear order. In particular
we consider only linear orders of type ω. Let Lin(G) denote the set of
all linearizations of G.

A word w ∈ Lin(G) determines the linear order extending R. We will
use w(i) for i-th letter of w and ew(i) for the event it represents, namely,
the event which is on i-th position in the linear ordering determined by
w.

First, we will deal with the µ-calculus over dependence graphs without
additional information in the labels. Later, we will extend the construc-
tions to other µ-calculi.

A µ-calculus formula is positive if all the negations appear only before
propositional constants. To have equivalent positive formula for every
formula of the µ-calculus we have to extend the syntax, which is now
given by the grammar:

X | Pa | ¬Pa | α ∨ β | α ∧ β | 〈·〉α | [·]α | µX.α(X) | νX.α(X)

the meaning of the two new constructs is defined by:

[[[·]α]]GV ={e ∈ E : ∀e′. R(e, e′) ∧ e′ ∈ [[α]]GV }

[[νX.α(X)]]GV =
⋃

{S ⊆ E : S ⊆ [[α(X)]]GV [S/X]}

It is well known that every formula of the µ-calculus is equivalent to a
formula generated by the above grammar. We will use σ to denote either
µ or ν. So σX.α(X) can be either µX.α(X) or νX.α(X).

A formula is well-named if every variable is bound at most once in
the formula. Obviously, every formula is equivalent to a well named one.

28

Definition 44 If X is bound in a well-named formula α then the binding
definition ofX in α is the (unique) fixpoint formula of the form σX.γ(X).
The definition list for α is the function Dα assigning to each fixpoint
variable in α its binding definition. A variable X is called µ-variable
if Dα(X) is a µ-formula; similarly we define ν-variables. Let lα be a
binary relation on variables bound in α defined by X lα Y iff X occurs
free in Dα(Y).

It is easy to check that the transitive closure of lα is a partial order.
This allows us to formulate the following definition.

Definition 45 A dependency order for a well named formula α is a linear
order ≤α that extends lα

Definition 46 A closure of a formula α, denoted cl(α), is the smallest
set of formulas containing α and closed under taking subformulas.

With these definitions we can describe a construction of an alternat-
ing parity automaton over ω-words for a given positive and well-named
formula α. This construction works for MH

B (G) representations of traces,
i.e., when the modalities in α are interpreted as edges in Hasse diagram
of a trace.

A(α) = 〈Q,Σ, q0 ∈ Q, δ : Q× (Σ ∪ {ε}) → P(P(Q)),Ω : Q→ N〉

where we define the components below. We put Q = cl(α) ∪ (cl(α) ×
Σ × P(Σ)); with the second summand needed for checking formulas of
the form 〈·〉γ. The initial state q0 is α. For the acceptance condition Ω
we put

Ω(q) =































2i q = X is i-th in ≤α ordering and X is a ν-variable

2i+ 1 q = X is i-th in ≤α ordering and X is a µ-variable

2m+ 3 q is of the form (〈·〉γ, a, S)

2m+ 4 q is of the form ([·]γ, a, S)

2m+ 5 otherwise (where m is the length of ≤α)

Finally, we need to define the transition function. Notice that we allow
ε-moves in the automaton. For readability we will represent an element
Z ∈ P(P(Q)) by a DNF formula:

∨

Y ∈Z

(
∧

q∈Y q
)

. So if Z is for example
{{q1, q2}, {q3}} we get (q1∧q2)∨q3. To be consistent with this convention
we also write true for {∅} and false for ∅.

29

• δ(Pa, a) = true and δ(Pa, b) = false for b 6= a;

• δ(X, ε) = Dα(X);

• δ(α ∧ β, ε) = α ∧ β and δ(α ∨ β, ε) = α ∨ β;

• δ(σX.γ, ε) = γ;

• δ(〈·〉γ, a) = (〈·〉γ, a, ∅) and δ([·]γ, a) = ([·]γ, a, ∅)

• δ((〈·〉γ, a, S), b) =











(〈·〉γ, a, S ∪ {b}) if bDS

(〈·〉γ, a, S) if ¬[bD(S ∪ {a})]

γ ∨ (〈·〉γ, a, S ∪ {b}) if (a, b) ∈ D and ¬[bDS]

• δ(([·]γ, a, S), b) =











([·]γ, a, S ∪ {b}) if bDS

([·]γ, a, S) if ¬[bD(S ∪ {a})]

γ ∧ ([·]γ, a, S ∪ {b}) if (a, b) ∈ D and ¬[bDS]

In the above, for a set S ⊆ Σ we write bDS to mean that (b, c) ∈ D
for some c ∈ S.

The definition of a run of such an automaton is standard (cf. [7]). In
particular a run is a tree labelled with pairs consisting of a position in
w and a state of A. A run of A is accepting if on every path P of it the
number min{Ω(q) : q appears infinitely often on P} is even.

Most of the cases of the definition of transition function are standard.
The interesting part happens for formulas of the from 〈·〉γ or [·]γ. Sup-
pose we want to check 〈·〉γ from a position i of the word. In state 〈·〉γ
on letter a = w(i) there is only one transition and it leads to the state
(〈·〉γ, a, ∅). If in a position j > i the automaton is still in a state of the
form (〈·〉γ, a, S) for some S then S = {λ(ew(k)) : R(ew(i), ew(k)) k =
i, . . . , j}; in words S contains labels of those events represented by po-
sitions i, . . . , j of w which are after (in the trace ordering) the event
represented by position i. When reading letter w(j + 1) we know that
ew(j+1) is a successor of ew(i) iff w(j+1) depends on a and is indepen-
dent on all the letters in S. In this case A can start checking γ or skip
this successor. As the priority of states of the form (〈·〉γ, a, S) is odd the
automaton must finally decide to start checking γ from some successor.
The case for [·]γ is dual.

Proposition 47 For every formula α of the µ-calculus, every trace G
and every w ∈ Lin(G): MH

B (G) � α iff w ∈ L(A(α)).

30

The proof of this proposition follows standard lines of other transla-
tions of the µ-calculus to alternating automata [5, 10, 1].

The case of process diagram representation of traces is very similar.
It is only necessary to change the definition of the transition function for
formulas starting with modalities. In this case we have:

• δ(〈·〉γ, a) = (〈·〉γ, a, ∅) and δ([·]γ, a) = ([·]γ, a, ∅)

• δ((〈·〉γ, a, S), b) =

{

γ ∨ (〈·〉γ, a, S ∪ {b}) if (a, b) ∈ D and b 6∈ S

(〈·〉γ, a, S) otherwise

• δ(([·]γ, a, S), b) =

{

γ ∧ ([·]γ, a, S ∪ {b}) if (a, b) ∈ D and b 6∈ S

([·]γ, a, S) otherwise

The next step is to extend this construction to µ(Before) calculus.
For a formula α ∈ µ(Before) we want to construct an automaton Ab(α)
which accepts all words w ∈ Σ∗ such that w ∈ Lin(G) and G � α. For
this we extend the construction of A(α) from above by adding new states:

{Before i
ab,NBefore i

ab : i ∈ 0, 1, 2 a, b ∈ Σ}

We also add transitions which make the automaton accept from a state
Before0

ab at position i if w(i) depends both on a and b and in the suffix
of the word w(i)w(i+ 1) . . . the first a appears before the first b. This is
why we need states Before1

ab and Before2
ab. State Before1

ab waits for the
first a and makes sure it comes before any b. State Before2

ab makes sure
there is a b in the sequence. From the state NBefore0

ab we accept the
complement of the language accepted from Before0

ab. It should be clear
how to define transitions from these states. Finally we add transitions:

δ(Beforeab, ε) = δ(Before0
ab) δ(¬Beforeab, ε) = δ(NBefore0

ab)

Let us denote the obtained automaton by Ab(α).

Proposition 48 For every formula α of the µ(Before)-calculus, every
trace G and every w ∈ Lin(G): MH

B (G) � α iff w ∈ L(Ab(α)).

The final step is to consider µ(co) calculus, i.e., the µ-calculus over
MH

co
(G) representations of traces. The construction of an automaton for

this extension is not that straightforward. To check that 〈coa〉tt holds in
some position we need to keep some information about what was already

31

read. This information comes in the form of past view. We assume that
while reading a word w in each position j we calculate the binary relation:

Cj = {(a, b) ∈ Σ2 : (a, b) ∈ D and in w[1, . . . , j]

the last a is before the last b} (3)

In other words Cj is the set of pairs (a, b) ∈ D such that the last a
appears before the last b in the prefix of G determined by the events
ew(1), . . . , ew(j).

Given a C ⊆ Σ2 and b ∈ Σ we define Update(C, b) to be the relation
identical to C on all the pairs not containing b and containing:

{a : (a, b) ∈ D and a appears in C} × {b} ∪ {(b, b)}

Clearly there is a deterministic automaton D which states are subsets of
Σ × Σ and such that after reading j-th letter from a word w it reaches
the state Cj. This automaton starts with the empty set as the initial
state and uses Update operation on each letter it reads.

To extend our construction of alternating automata to handle coa

propositions, we make the product of the previous automaton A with D.
Then we add to the set of states the set P(Σ) × Σ. Finally we add the
transitions

• δ((C, coa), b) = true if a is incomparable with b in Update(C, b);

• δ((C, coa), b) = ({b}, a) if a is smaller than b in Update(C, a) or a
does not appear in C;

• δ((S, a), a) = true if a depends on no letter from S;

• δ((S, a), a) = false if a depends on some letter from S;

• δ((S, a), b) = (S ′, a) for b 6= a; where S ′ is S if b does not depend
on any of the letters from S and S ′ is S ∪ {b} otherwise.

Let us denote the obtained automaton by Ac(α). The behaviour of Ac(α)
is such that after reading j-th letter from w its first component is in a
sate Cj which is the relation as defined in (3). Being in a state (Cj, coa)
and reading a letter b at position j + 1 the automaton can decide that
there is a-event concurrent with ew(j + 1) if a is incomparable with b
in Update(Cj, b). If it is not the case then the automaton enters a state
({b}, a). From this state it accumulates, in the first component, labels

32

of all the events after ew(j + 1) in the trace. If, when reaching the first
a, we have that a is independent from all the letters accumulated in the
first component then we know that it represents an event incomparable
with ew(j + 1).

Theorem 49
For every formula α of the µ(co)-calculus, every trace G and every w ∈
Lin(G): MH

co
(G) � α iff w ∈ L(Ac(α)). The size of Ac(α) is O(|α| ×

2|Σ|2). There is a nondeterministic automaton equivalent to Ac(α) of size
2O(|Σ|2|α| log(|α|)).

The bound on the size of nondeterministic automaton is obtained by
observing that one can glue parts of the states of alternating automaton
that correspond to D automaton. One can also use D automaton to take
care of 〈·〉γ and [·]γ formulas.

Corollary 50 The satisfiability problem for the µ-calculus over MP
B (G),

MH
B (G) and MH

co
(G) representations of traces is PSPACE-complete.

10 Comparison with νTrPTL

In this section we want to compare the logics form this paper with the
logic νTrPTL introduced by Peter Niebert [8]. This was the first local and
expressively complete logic for traces. Although it is also an extension
of the µ-calculus, it is quite different from the logics discussed above.

For the start, Niebert works with distributed alphabets instead of trace
alphabets. Such an alphabet consist of a finite set of locations Loc and
a family of finite alphabets (Σl)l∈Loc . Distributed alphabet determines a
trace alphabet (Σ, D) where Σ =

⋃

l∈Loc
Σl and (a, b) ∈ D iff {a, b} ⊆

Σl for some l ∈ Loc. The first problem is that there is no canonical
translation from a trace alphabet to a distributed alphabet. Given a
trace alphabet (Σ, D) one can take as a set of locations Loc any set of
cliques in D which covers all pairs in D, i.e., for every (a, b) ∈ D there
should be clique l ∈ Loc with (a, b) ∈ l. Then, for every l one defines Σl

to be the set of letters appearing in l. It is easy to verify that the trace
alphabet obtained from such (Σl)l∈Loc is exactly (Σ, D) we have started
from. As there can be many different coverings of D with cliques, there
can be many different distributed alphabets corresponding to the same
trace alphabet. Unfortunately, the semantics of modality in νTrPTL is
sensitive to the choice of distributed alphabet.

33

The other small difficulty is that in our logics we have many propo-
sitions and one modality and in νTrPTL there are many modalities but
just one proposition tt . This is rather cosmetic difference. Let us con-
sider MP

B (G) representations of traces and the fixpoint logic µ〈a〉 with
the following syntax:

X | tt | Beforeab | ¬α | α ∨ β | 〈a〉α | µX.α(X)

where in the last construction X is required to appear only positively in
α(X).

The meaning of a formula α in a MP
B (G) = 〈E,RP , λ〉 representation

of a trace is a set of events defined by the standard set of clauses plus:

• e � Beforeab iff Beforeab(e) holds

• e � 〈a〉α iff there is an event e′ labelled with a, s.t., RP (e, e′),
λ(e′) = a and e′ � α.

The important fact here is that the modality is interpreted using arrows
in a process diagram representation of a trace. So the meaning of e � 〈a〉α
is that in the first a-event after e the formula α holds. The following fact
says that this logic is expressively complete.

Fact 51 There is a translation of the µ-calculus over MP
B (G) represen-

tations of traces into µ〈a〉.

Proof
Recall that in the µ-calculus over MP

B (G) representations we have just
one modality 〈·〉α and a proposition Pa,S for every a ∈ Σ and S ⊆ Σ×Σ.
Such a proposition holds in a event e iff λ(e) = a and S = {(a, b) :
Beforeab(e) holds}.

Proposition Beforeab from µ〈a〉 can be defined by a disjunction of Pa,S

propositions. Similarly for propositions Pa saying that the label of an
event is a. Clearly, having Beforeab and Pa propositions is equivalent to
having Pa,S propositions.

To see that we can use 〈a〉 modalities instead of Pa propositions ob-
serve that 〈·〉α is equivalent to 〈·〉

∨

a∈Σ(Pa ∧ α) which is equivalent to
∨

a∈Σ〈a〉α. Then all propositions in α that are not guarded by some
modality can be replaced by conjunctions of Beforeab propositions, or by
either tt or ¬tt . �

The expressive completeness proof for the µ-calculus over MP
B (G) rep-

resentations allows us to restrict the logic µ〈a〉 even further. Instead of

34

predicates Beforeab we can consider predicates Before ′
ab with the seman-

tics:

e � Before ′
ab iff Beforeab(e) holds and λ(e) ∈ {a, b}

This predicate allows to check the ordering between the next even labelled
by the current letter and the next event labelled by some other dependent
letter. Additionally to Before ′

ab propositions we need Startab predicates
with the semantics:

e � Startab iff e is the lest event in the trace and Beforeab(e)
holds

So Startab can hold only in the least event of the trace and in this event
it is equivalent to Beforeab. Essentially we have restricted the use of
Beforeab predicate for all but the least events. Let us call the obtained
logic µ−

〈a〉.

Fact 52 The logic µ−
〈a〉 over MP

B (G) representations of traces is expres-
sively complete.

This fact follows from the inspection of the proof of the expressive com-
pleteness of the µ-calculus over MP

B (G) representations. The only place
were we use Beforeab information is in the translation from MSOL for-
mulas to the µ-calculus is in the construction of C automaton. In that
construction the use of Beforeab is limited exactly to the cases we have
in µ−

〈a〉 logic.
After this preparation we can go back to νTrPTL. The semantics of

this logic is defined over configurations. Then a type system is introduced
and it is shown that all typeable formulas can be given local semantics,
i.e., can be evaluated in events. Here we will try to shortcut this path,
hopefully getting definitions equivalent to original ones.

Given a distributed alphabet (Σl)l∈Loc and a trace G = 〈E,R, λ〉
consider the relation

a
→l is defined by:

e
a
→l e

′ if a, λ(e) ∈ Σl, λ(e′) = a and e′ is the first Σl-labelled
event after e, i.e., ∀e′′. (λ(e′′) ∈ Σl ∧R(e, e′′)) ⇒ R(e′, e′′).

Consider the set of µ-calculus formulas given by the grammar:

X | tt | ¬α | α ∨ β | 〈a〉lα | µX.α(X)

The formulas of νTrPTLcon are the formulas generated by the above
grammar which are typeable. The full logic νTrPTL has modalities 〈a〉L

35

for L a set of locations. We will not need them here. It seems that the
use of type system can be avoided if the logic is interpreted on events and
not on configurations. So instead of dealing with the original definition
of νTrPTLcon we just take the logic given by the above grammar and the
usual semantics of the µ-calculus were modalities are interpreted as:

e � 〈a〉lα iff there is e′ with e
a
→l e

′ and e′ � α.

This is not an expressively complete logic as it cannot distinguish be-
tween the two traces shown in Figure 3. In this example the distributed
alphabet consists of alphabets: {a, b}, {b, c}, {⊥, a}, {⊥, b}, {⊥, c}. The
problem is that for this alphabet we have ⊥ 2 〈b〉b,ctt and ⊥ 2 〈c〉b,ctt .
Hence we cannot tell whether b or c comes first.

b

c

OO

a // b

OO

⊥

__????????

??��������

c

b

OO

a

77ooooooooooooooo c

OO

⊥

__@@@@@@@

??�������

Figure 3: Indistinguishable traces

Fortunately, the original definition of the logic is such that, apart from
the formulas we have defined, it also gives the ability to check the order
between the first occurrences of actions. (This is one of the advantages
of defining the logic over configurations). So we can add to the logic
Starta,b propositions for every pair of dependent letters (a, b) ∈ D. Such
a proposition is true only in the least event of a trace and only when the
first a event in the trace is before the first b event. Hence these are the
same propositions as in µ−

〈a〉 logic.
Let us call the obtained logic µTrPTLcon. This is the µ-calculus with

〈a〉l modalities and Starta,b propositions with the semantics described
above. It seems that this logic is directly translatable into νTrPTLcon.
What we can show is that µTrPTLcon is expressively complete for every

36

distributed alphabet. The expressive completeness of νTrPTLcon was left
open in [8].

Fact 53 For every distributed alphabet (Σl)l∈Loc the logic µTrPTLcon is
expressively complete.

Proof
We show a translation of µ−

〈a〉 overMP
B (G) representations into µTrPTLcon.

The first observation is that if Σl = {a, b} then for every event e we have
e � Before ′

ab iff e � 〈a〉ltt . The translation is more complicated if we
just have {a, b} ⊆ Σl. In this case e � Before ′

ab iff e � µX.〈a〉ltt ∨
∨

c∈Σl,c6=b〈c〉lX (intuitively going through events of Σl we meet a before

b). This solves the case of Before ′
ab propositions of µ−

〈a〉.

It remains to deal with modalities of µ−
〈a〉. Let α be a µ−

〈a〉 formula
and let αcon be an equivalent µTrPTLcon formula. Take an event e and
a location l such that a ∈ Σl. For every event e with λ(e) ∈ Σl we have:
e � 〈a〉α iff e � µX.〈a〉lα

con ∨
∨

c∈Σl,c6=a〈c〉lX. The idea is that the first
a action after e can be found by going through the actions in Σl. Let
us denote this formula by γl. We cannot just use γl in our translation
because in µTrPTLcon we have no means to check what is the label of the
current event. Fortunately, if λ(e) 6∈ Σl then e 6� γl. Hence the formula
∨

{γl : a ∈ Σl} is equivalent to 〈a〉α for all events. �

References

[1] O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching-time model checking. In D. L. Dill, editor, Com-
puter Aided Verification, Proc. 6th Int. Conference, volume 818 of
Lecture Notes in Computer Science, pages 142–155, Stanford, June
1994. Springer-Verlag, Berlin.

[2] V. Diekert and P. Gastin. An expressively complete temporal logic
without past tense operators for mazurkiewicz traces. In CSL, vol-
ume 1683 of LNCS, pages 188–203, 1999.

[3] W. Ebinger. Charakterisierung von Sprachklassen unendlicher
Spuren durch Logiken. PhD thesis, Institut f”ur Informatik, Uni-
versit”at Stuttgart, 1994.

37

[4] W. Ebinger. Logical definability of trace languages. In V. Diek-
ert and G. Rozenberg, editors, The Book of Traces, pages 382–390.
World Scientific, 1995.

[5] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and
determinacy. In Proc. FOCS 91, pages 368–377, 1991.

[6] D. Janin and I. Walukiewicz. Automata for the µ-calculus and re-
lated results. In MFCS ’95, volume 969 of LNCS, pages 552–562,
1995.

[7] D. Muller and P. Schupp. Alternating automata on infinite trees.
Theoretical Computer Science, 54:267–276, 1987.

[8] P. Niebert. A Temporal Logic for the Specification and Verifica-
tion of Distributed Behaviour. PhD thesis, Universität Hildesheim,
March 1998. Also available as Informatik-Bericht Nr. 99-02,Institut
für Software, Abteilung Programmierung, Technische Universität
Braunschweig, Gaußstraße 11, D-38092 Braunschweig/Germany.

[9] D. Niwiński. Fixed point characterization of infinite behaviour of
finite state systems. Theoretical Computer Science, 189:1–69, 1997.

[10] C. S. Stirling. Modal and temporal logics. In S.Abramsky,
D.Gabbay, and T.Maibaum, editors, Handbook of Logic in Comuter
Science, pages 477–563. Oxford University Press, 1991.

[11] P. S. Thiagarajan and I. Walukiewicz. An expressively complete
linear time temporal logic for Mazurkiewicz traces. In LICS’97,
pages 183–194. IEEE, 1997.

[12] I. Walukiewicz. Difficult configurations – on the complexity of LTrL.
In ICALP ’98, volume 1443 of LNCS, pages 140–151, 1998.

38

