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Abstract. We consider λY -calculus as a non-interpreted functional programming lan-
guage: the result of the execution of a program is its normal form that can be seen as the
tree of calls to built-in operations. Weak monadic second-order logic (wMSOL) is well
suited to express properties of such trees. We give a type system for ensuring that the
result of the execution of a λY -program satisfies a given wMSOL property. In order to
prove soundness and completeness of the system we construct a denotational semantics of
λY -calculus that is capable of computing properties expressed in wMSOL.

1. Introduction

Higher-order functional programs are more and more frequently used to write interactive
applications. In this context it is important to reason about behavioral properties of
programs. We present a kind of type and effect discipline [26] where a well-typed program
will satisfy behavioral properties expressed in weak monadic second-order logic (wMSOL).

We consider the class of programs written in the simply-typed calculus with recursion
and finite base types: the λY -calculus. This calculus offers an abstraction of higher-order
programs that faithfully represents higher-order control. The dynamics of an interaction
of a program with its environment is represented by the Böhm tree of a λY -term that
is a tree reflecting the control flow of the program. For example, the Böhm tree of the
term Y x.ax is the infinite sequence of a’s, representing that the program does an infinite
sequence of a actions without ever terminating. Another example is presented in Figure 1. A
functional program for the factorial function is written as a λY -term Fct and the value of Fct
applied to a constant c is calculated. Observe that all constants in Fct are non-interpreted.
The Böhm tree semantics reflects the call-by-name evaluation strategy. Nevertheless, the
call-by-value evaluation can be encoded, so can be finite data domains and conditionals over
them [15, 20, 13]. The approach is then to translate a functional program to a λY -term and
to examine the Böhm tree it generates.

Since the dynamics of the program is represented by a potentially infinite tree, monadic
second-order logic (MSOL) is a natural candidate for the language to formulate properties in.
This logic is an extension of first-order logic with quantification over sets. MSOL captures
precisely regular properties of trees [29], and it is decidable if the Böhm tree generated by a

Key words and phrases: higher-order model checking, weak monadic second order logic, simply typed
lambda-Y-calculus, denotational semantics, recognizability, finite state methods.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(1:14)2017
c© S. Salvati and I. Walukiewicz
CC© Creative Commons

http://creativecommons.org/about/licenses


2 S. SALVATI AND I. WALUKIEWICZ

Figure 1: Böhm tree of the factorial function

given λY -term satisfies a given property [27]. In this paper we will restrict to weak monadic
second-order logic (wMSOL). The difference is that in wMSOL quantification is restricted
to range over finite sets. While wMSOL is a proper fragment of MSOL, it is sufficiently
strong to express safety, reachability, and many liveness properties. Over sequences, that is,
degenerated trees where every node has one successor, wMSOL is equivalent to full MSOL.

The basic judgments we are interested in are of the form BT (M) � α meaning that the
result of the evaluation of M , i.e. the Böhm tree of M , has the property α formulated in
wMSOL. Going back to the example of the factorial function from Figure 1, we can consider
a property: all computations that eventually take the middle branch in a node labeled by
“if” are finite. This property holds in BT (Fct c). Observe by the way that BT (Fct c) is
not regular – it has infinitely many non-isomorphic subtrees as the number of subtractions
occurring in the left branches of “if” nodes is growing with the depth of those nodes. In
general, the interest of judgments of the form BT (M) � α is due to their ability to express
liveness and fairness properties of executions, like: “every open action is eventually followed
by a close action”, or that “there are infinitely many read actions”. Various other verification
problems for functional programs can be reduced to this problem [20, 22, 28, 37, 12].

Technically, the judgment BT (M) � α is equivalent to determining whether a Böhm
tree of a given λY -term is accepted by a given weak alternating automaton. This problem is
known to be decidable thanks to the result of Ong [27], but we hope that the denotational
approach we are pursuing here brings additional benefits. Our two main contributions are:

• A construction of a finitary model for a given weak alternating automaton. The ranking
condition on the automaton is lifted to the denotational model and reflected in the
alternation of the least and greatest fixpoints. The value of a term in this model determines
if the Böhm tree of the term is accepted by the automaton. So verification is reduced to
evaluation in the model.
• Two type systems. A typing system deriving statements of the form “the value of a term
M is bigger than an element d of the model”; and a typing system for dual properties.
These typing systems use standard fixpoint rules and follow the methodology coined as
Domains in Logical Form [1]. Thanks to the first item, these typing systems can directly
talk about acceptance/rejection of the Böhm tree of a term by an automaton. These type
systems are decidable, and every term has a “best” type that simply represents its value
in the model.

Having a model and a type system has several advantages over having just a decision
procedure. First, it makes verification compositional: the result for a term is calculated from
the results for its subterms. In particular, it opens possibilities for a modular approach to
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the verification of large programs. Next, it enables semantic based program transformations
as for example reflection of a given property in a given term [8, 34, 13]. It also implies the
transfer theorem for wMSOL [33] with a number of consequences offered by this theorem.
Finally, models open a way to novel verification algorithms be it through evaluation, type
system, or through hybrid algorithms using typing and evaluation at the same time [36].
We come back to these points in the conclusions.

Related work. Historically, Ong [27] has shown the decidability of the MSOL theory
of Böhm trees for all λY -terms. This result has been revisited in several different ways.
Some approaches take a term of the base type, and unroll it to some infinite object: tree
with pointers [27], computation of a higher-order pushdown automaton with collapse [14],
a collection of typing judgments that are used to define a game [21], a computation of
a Krivine machine [32]. Recently, Tsukada and Ong [38] have presented a compositional
approach: they give a typing system where the notion of a derivation is standard, their
types are extended with annotations, and the fixpoint combinator is defined via game on
these types with annotations. We will comment more on the relation with this work after
we introduce our type system, as well as in the conclusions. Another recent advance is given
by Hofmann and Chen [11] who provide a type system for verifying path properties of trees
generated by first-order λY -terms. In other words, this last result gives a typing system for
verifying path properties of trees generated by deterministic pushdown automata. Compared
to this last work, we consider the whole λY -calculus and an incomparable set of properties.

Already some time ago, Aehlig [2] has discovered an easy way to prove Ong’s theorem
restricted to properties expressed by tree automata with trivial acceptance conditions (TAC
automata). The core of his approach can be formulated by saying that the verification
problem for such properties can be reduced to evaluation in a specially constructed and
simple model. Later, Kobayashi proposed a type system for such properties and constructed
a tool based on it [20]. This in turn opened a way to an active ongoing research resulting
in the steady improvement of the capacities of the verification tools [19, 9, 10, 30]. TAC
automata can express only safety properties. Our models consist of layers of models used by
Aehlig, and our type system is a layered version of Kobayashi’s system. This close relation
to the model and type system for trivial properties, makes us hope that our model and
typing system can be useful for practical verification of wMSOL properties.

The model approach to verification of λY -calculus is quite recent. In [34] it is shown
that simple models with greatest fixpoints capture exactly properties expressed with TAC
automata. An extension is then proposed to allow one to detect divergence. The simplicity
offered by models is exemplified by Haddad’s recent work [13] giving simple semantic based
transformations of λY -terms.

We would also like to mention two other quite different approaches to integrate properties
of infinite behaviors into typing. Naik and Palsberg [25] make a connection between model-
checking and typing. They consider only safety properties, and since their setting is much
more general than ours, their type system is more complex too. Jeffrey [17, 18] has shown
how to incorporate Linear Temporal Logic into types using a much richer dependent types
paradigm. The calculus is intended to talk about control and data in functional reactive
programming framework, and aims at using SMT solvers.

Organization of the paper. In the next section we introduce the main objects of our
study: λY -calculus, and weak alternating automata. Section 3 presents the type system. Its
soundness and completeness can be straightforwardly formulated for closed terms of atomic
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type. For the proof though, we need a statement about all terms. This is where the model
based approach helps. Section 4 describes how to construct models for wMSOL properties.
In Section 5 we come back to our type systems. The general soundness and completeness
property we prove says that types can denote every element of the model, and the type
systems can derive precisely the judgments that hold in the model (Theorem 5.5). In the
conclusion section we mention other applications of our model.

2. Preliminaries

We quickly fix notations related to the simply typed λY -calculus and to Böhm trees. We
then recall the definition of weak alternating automata on ranked trees. These will be used
to specify properties of Böhm trees. Finally, we introduce the notion of the greatest fixpoint
models for the λY -calculus. This notion allows us to adapt the definition of recognizability
from language theory, so models can be used to define sets of terms. These sets of terms are
closed under the reduction rules of the λY -calculus. We recall the characterization, in terms
of automata, of the sets of terms recognizable by the greatest fixpoint models.

The set T of types of λY -calculus is constructed from a unique basic type o using a
binary operation → that associates to the right1. Thus o is a type and if A, B are types,
so is (A → B). The order of a type is defined by: order(o) = 0, and order(A → B) =
max(1 + order(A), order(B)). We work with tree signatures that are finite sets of typed
constants of order at most 1. Types of order 1 are of the form o → · · · → o → o that we
abbreviate oi → o when they contain i+ 1 occurrences of o. For convenience we assume that
o0 → o is just o. If Σ is a signature, we write Σ(i) for the set of constants of type oi → o.
In examples we will often use constants of type o → o as this makes the examples more
succinct. At certain times, we will restrict to the types o and o2 → o that are representative
for all the cases.

Simply typed λY -terms are built from the constants in the signature, and constants
Y A, ΩA for every type A. These stand for the fixpoint combinator and undefined term,
respectively. The fixpoint combinators allows to have have computations with a recursion.
The undefined terms represent diverging computation, but also, at a technical level are
used to construct finite approximations of infinite computations. Apart from constants, for
each type A there is a countable set of variables xA, yA, . . . . Terms are built from these
constants and variables using typed application: if M has type A→ B and N has type A,
then (MN) has type B; and λ-abstraction: if M has type B then (λxA.M) has type A→ B.
We shall remove unnecessary parentheses, in particular, we write sequences of applications
((N0N1) . . . Nn) as N0 . . . Nn and we write sequences of λ-abstractions λx1. . . . λxn. M with
only one λ: either λx1 . . . xn. M , or even shorter λ~x. M . We will often write Y x.M instead
of Y (λx.M). Every λY -term can be written in this notation since Y N has the same Böhm
tree as Y (λx.Nx), and the latter term is Y x.(Nx). We write M [x1 := N1, . . . , xn := Nn] for
the term obtained from M by the simultaneous capture-avoiding substitution of N1, . . . , Nn

for the variables x1, . . . , xn. All the substitutions we shall consider map variables to terms
of the same type. When working with an abstract substitution σ, we write M.σ for the
term obtained by applying σ to M . We use the usual operational semantics of the calculus,

1We use a unique atomic type, but our approach generalizes without problems to any number of atomic
types.
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βδ-reduction (
∗→βδ) which is the reflexive transitive closure of the union of the relations of

β-contraction (→β) and δ-contraction (→δ) which are the following rewriting relations:

(λx.M)N →β M [x := N ] YM →δ M(YM)

Definition 2.1. The Böhm tree of a term M is a possibly infinite labeled tree that is defined
co-inductively. If M can be reduced so as to obtain a term of the form λ~x.N0N1 . . . Nk with
N0 a variable or a constant, then BT (M) is a tree whose root is labeled by λ~x.N0 and the
immediate successors of its root are BT (N1), . . . , BT (Nk). Otherwise BT (M) is a single
node tree whose root is labeled ΩA, where A is the type of M .

Böhm trees are infinite normal forms of λY -terms. A Böhm tree of a closed term of type
o over a tree signature is a potentially infinite ranked tree: a node labeled by a constant a
of type oi → o has i successors (c.f. Figure 1).

Example 2.2. As an example take (Y F. N)a where N = λg.g(b(F (λx.g(g x)))). Both
a and b have the type o → o; while F has type (o → o) → o, and so does N . Observe
that we are using a more convenient notation Y F here. The Böhm tree of (Y F.N)a is
BT ((Y F.N)a) = aba2ba4b . . . a2nb . . . after every consecutive occurrence of b the number of
occurrences of a doubles because of the double application of g inside N .

wMSOL and weak alternating automata. We will be interested in properties of trees
expressed in weak monadic second-order logic. This is an extension of first-order logic with
quantification over finite sets of elements. The interplay of negation and quantification
allows the logic to express many infinitary properties. The logic is closed for example under
constructs: “for infinitely many vertices a given property holds”, “every path consisting of
vertices having a given property is finite”. From the automata point of view, the expressive
power of the logic is captured by weak alternating automata.

A weak alternating automaton works on trees over a fixed tree signature Σ. It is a tuple:

A = 〈Q,Σ, q0 ∈ Q, {δi}i∈N, ρ : Q→ N〉
where Q is a finite set of states, q0 ∈ Q is the initial state, ρ is the rank function, and
δi : Q× Σ(i) → P(P(Q)i) is the transition function. For q in Q, we call ρ(q) its rank. The
automaton is weak in the sense that when (S1, . . . , Si) is in δi(q, a), then the rank of every
q′ in

⋃
1≤j≤i Sj is not bigger than the rank of q, i.e. ρ(q′) ≤ ρ(q).

Observe that since Σ is finite, only finitely many δi are non-empty functions. From the
definition it follows that δ2 : Q × Σ(2) → P(P(Q) × P(Q)) and δ0 : Q × Σ(0) → {∅, {()}}.
We will simply write δ without a subscript when this causes no ambiguity.

Automata will work on Σ-labeled trees that are partial functions t : N∗ ·→ Σ∪{Ω} whose
domain of definition satisfies the usual requirements, and such that the number successors
of a node is determined by the label of the node. In particular, if t(u) ∈ Σ(0) ∪ {Ω} then u
is a leaf.

The acceptance of a tree is defined in terms of games between two players that we call Eve
and Adam. A play between Eve and Adam from some node v of a tree t and some state q ∈ Q
proceeds as follows. If v is a leaf and is labeled by some c ∈ Σ(0) then Eve wins iff δ0(q, c)
holds (i.e. δ0(q, c) is not empty). If v is labeled by Ω then Eve wins iff the rank of q is even.
Otherwise, v is an internal node: Eve chooses a tuple of sets of states (S1, . . . , Si) ∈ δ(q, t(v));
then Adam chooses Sj (for j = 1, . . . , i) and a state q′ ∈ Sj . The play continues from the
j-th son of v and state q′. When a player is not able to play any move, he/she looses. If the
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play is infinite then the winner is decided by looking at ranks of states appearing on the play.
Due to the weakness of A, the rank of states in a play can never increase, so it eventually
stabilizes at some value. Eve wins if this value is even. A tree t is accepted by A from a
state q ∈ Q if Eve has a winning strategy in the game started from the root of t and from q.

Automata with trivial acceptance conditions, as considered by Kobayashi [19], are
obtained by requiring that all states have rank 0. Automata with co-trivial conditions are
just the ones where all states have rank 1.

Observe that without a loss of generality we can assume that δ is monotone, i.e. if
(S1, . . . , Si) ∈ δ(q, a) then for every (S′1, . . . , S

′
i) such that Sj ⊆ S′j ⊆ {q′ : ρ(q′) ≤ ρ(q)} we

have (S′1, . . . , S
′
i) ∈ δ(q, a). Indeed, adding the transitions needed to satisfy the monotonicity

condition does not give Eve more winning possibilities.
An automaton defines a language of closed terms of type o, it consists of terms whose

Böhm trees are accepted by the automaton from its initial state q0:

L(A) = {M : M is closed term of type o, BT (M) is accepted by A from q0} .
Observe that L(A) is closed under βδ-conversion since the Church-Rosser property of

the calculus implies that two βδ-convertible terms have the same Böhm tree.

Example 2.3. Consider a weak alternating automaton A defining the property “action
b appears infinitely often”. The automaton has states Q = {q1, q2}, and the signature
Σ = {a, b} consisting of two constants of type o→ o. Over this signature, the Böhm trees
are just sequences. The transitions of A are:

δ(q1, a) = {q1} δ(q2, a) = {q1, q2}
δ(q1, b) = ∅ δ(q2, b) = {q2}

The ranks of states are indicated by their subscripts. When started in q2 the automaton
spawns a run from q1 each time it sees letter a. The spawned runs must stop in order to
accept, and they stop when they see letter b (cf. Figure 2). So every a must be eventually
followed by b.

Figure 2: A run of an alternating automaton on a . . . ab . . .

Models. We use standard notions and notations for models for λY -calculus, in particular
for valuation/variable assignment and of interpretation of a term (see [16]). We shall write

[[M ]]Sν for the interpretation of a term M in a model S with the valuation ν. As usual, we
will omit subscripts or superscripts in the notation of the semantic function if they are clear
from the context.

The simplest models of λY -calculus are based on monotone functions. A GFP-model of
a signature Σ is a tuple S = 〈{SA}A∈T , ρ〉 where So is a finite lattice, called the base set of
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the model, and for every type A→ B ∈ T , SA→B is the lattice mon[SA 7→ SB] of monotone
functions from SA to SB ordered coordinate-wise. The valuation function ρ is required to
interpret ΩA as the greatest element of SA, and Y A as the greatest fixpoint operator of
functions in SA→A. Observe that every SA is finite, hence all the greatest fixpoints exist
without any additional assumptions on the lattice.

We can now adapt the definition of recognizability by semigroups taken from language
theory to our richer models.

Definition 2.4. A GFP model S over the base set So recognizes a language L of closed
λY -terms of type o if there is a subset F ⊆ So such that L = {M | [[M ]]S ∈ F}.

A direct consequence of Statman’s finite completeness theorem [35] is that such models
can characterize a term up to equality: BT (M) = BT (N) iff the values of M and N are the
same in every monotone models. This property is sufficient for our purposes. The celebrated
result of Loader [24] implies that we cannot hope for a much stronger completeness property,
and have good algorithmic qualities at the same time.

The following theorem characterizes the recognizing power of GFP models.

Theorem 2.5 ([34]). A language L of λY -terms is recognized by a GFP-model iff it is a
boolean combination of languages recognized by weak automata whose all states have rank 0.

3. Type systems for wMSOL

In this section we describe the main result of the paper. We present a type system to
reason about wMSOL properties of Böhm trees of terms. We will rely on the equivalence of
wMSOL and weak alternating automata, and construct a type system for an automaton.
For a fixed weak alternating automaton A we want to characterize the terms whose Böhm
trees are accepted by A, i.e. the set L(A). The characterization will be purely type theoretic
(cf. Theorem 3.2).

Fix an automaton A = 〈Q,Σ, q0, {δi}i∈N, ρ〉. Let m be the maximal rank, i.e., the
maximal value ρ takes on Q. For every 0 ≤ k ≤ m we write Qk = {q ∈ Q : ρ(q) = k} and
Q≤k = {q ∈ Q : ρ(q) ≤ k}.

The type system we propose is obtained by allowing the use of intersections inside
simple types. This idea has been used by Kobayashi [20] to give a typing characterization
for languages of automata with trivial acceptance conditions. We work with, more general,
weak acceptance conditions, and this will be reflected in the stratification of types, and
two fixpoint rules: greatest fixpoint rule for even strata, and the least fixpoint rule for odd
strata.

First, we define the sets of intersection types. They are indexed by a rank of the
automaton and by a simple type. Note that every intersection type will have a corresponding
simple type; this is a crucial difference with intersection types characterizing strongly
normalizing terms [4]. Letting TypeskA =

⋃
0≤l≤k typeslA we define:

typesko = {q ∈ Q : ρ(q) = k}, typeskA→B = {T → s : T ⊆ TypeskA and s ∈ typeskB} .
The difference with simple types is that now we have a set constructor that will be interpreted
as the intersection of its elements. This technical choice amounts to quotient types with
respect to the associativity, the commutativity and the idempotency of the intersection
operator. A nice consequence in our context is that the sets typeskA and TypeskA are finite.
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Notice also that the application of the intersection type operator to two sets of types is then
represented by the union of those two sets.

Example 3.1. Suppose that inQ we have states q0, r0, q1 with ranks given by their subscripts.
A type {q0, r0} ⊆ Types0

o will type terms whose Böhm tree is accepted both from q0

and from r0. A type {{q0, r0} → {q1}} ⊆ types1
o→o will type terms that when given a

term of type {q0, r0} produce a Böhm tree accepted from q1. Observe that, for example,
{{q0, r0} → {q1}, {q1} → {q1}} ⊆ Types1

o→o while {{q1}, {q1} → {q1}} is not an intersection
type in our sense since the two types in the set have different underlying simple types.

When we write typesA or TypesA we mean typesmA and TypesmA respectively; where m
is the maximal rank used by the automaton A.

For S ⊆ TypeskA and T ⊆ typeskB we write S → T for {S → t : t ∈ T}. Notice that

S → T is included in typeskA→B.
We now give subsumption rules that express the intuitive dependence between types. So

as to make the connection with the model construction later, we have adopted an ordering
of intersection types that is dual to the usual one (the first rule can be derived from the
second and third one, but we find it more intuitive to explicitly spell it out). Usually in
intersection types, the lower a type is in the subsumption order, the less terms it can type.
Here we take the information order instead, the lower a type is in the subsumption order,
the less precise it is. As we said earlier, this choice is motivated by the connection of types
with models, the information order gives us an isomorphism between the two, while the
usual choice would give us a duality between types and models.

S ⊆ T ⊆ Q

S vo T

∀s ∈ S,∃t ∈ T, s vA t

S vA T

s = t

s vo t

T vA S s vB t

S → s vA→B T → t

Given S ⊆ TypesA→B and T ⊆ TypesA we write S(T ) for the set {t : (U → t) ∈ S and U v
T}.

The typing system presented in Figure 3 derives judgments of the form Γ ` M ≥ S
where Γ is an environment containing all the free variables of the term M , and S ⊆ TypesA
with A the type of M . As usual, an environment Γ is a finite list x1 ≥ S1, . . . , xn ≥ Sn
where x1, . . . , xn are pairwise distinct variables of type Ai, and Si ⊆ TypesAi

. We will use a
functional notation and write Γ(xi) for Si. We shall also write Γ, x ≥ S for an extension of
the environment Γ with the declaration x ≥ S.

The rules in the first row of Figure 3 express standard intersection types dependencies:
the axiom, the intersection rule and the subsumption rule. The rules in the second line are
specific to our fixed automaton. The third line contains the usual rules for application and
abstraction with the caveat that the abstraction rule incorporates the stratification of types
with respect to ranks so that the types used in the judgment are always well-formed. The
least fixpoint rule in the next line is standard, it expresses that the least fixpoint can be
approximated by iterations started in the least element: if we derive Γ ` λx.M ≥ ∅ → T
then we obtain that Γ ` Y x.M ≥ T , that can allow us to derive Γ ` Y x.M ≥ T ′ provided
Γ ` λx.M ≥ T → T ′ etc. The greatest fixpoint rule in the last line is more intricate. It
is allowed only on even strata. If taken for k = 0 the rule becomes the standard rule for
the greatest fixpoint as the set T must be the empty set. For k > 0 the rule permits to
incorporate T that is the result of the fixpoint computation on the lower stratum.

Our main result says that the typing in this system is equivalent to accepting with our
fixed weak alternating automaton.
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Γ, x ≥ S ` x ≥ S
Γ `M ≥ S Γ `M ≥ T

Γ `M ≥ S ∪ T

Γ `M ≥ S T v S

Γ `M ≥ T

Γ ` c ≥ {q : δ0(q, c) 6= ∅}
(S1, . . . , Si) ∈ δi(a, q)

Γ ` a ≥ {S1 → · · · → Si → q}

Γ `M ≥ S Γ ` N ≥ T

Γ `MN ≥ S(T )

S ⊆ Typesk, T ⊆ typesk Γ, x ≥ S `M ≥ T

Γ ` λx.M ≥ S → T

Γ ` (λx.M) ≥ S Γ ` (Y x.M) ≥ T
Y odd

Γ ` Y x.M ≥ S(T )

S ⊆ types2kA , T ⊆ Types2k−1A , Γ ` λx.M ≥ (S ∪ T )→ S Γ ` Y x.M ≥ T
Y even

Γ ` Y x.M ≥ S ∪ T

Figure 3: Type system

Theorem 3.2. For every closed term M of type o and every state q of A: the judgment
`M ≥ q is derivable iff A accepts BT (M) from q.

Since there are finitely many types, this typing system is decidable. As we will see in the
following example, this type system allows us to prove in a rather simple manner properties
of Böhm trees that are beyond the reach of trivial automata. Compared to Kobayashi and
Ong type system [21] and to Tsukada and Ong type system [38], the fixpoint typing rules we
propose do not refer to an external parity game. Our type system does not require flagged
types, and is on the contrary based on a standard treatment of free variables. In the example
below we use fixpoint rules on terms of order 2.

In order to prove Theorem 3.2 we will need to formulate and prove a more general
statement that concerns terms of all types (Theorem 5.5). To describe the properties of the
type system in higher types, we will construct a model from our fixed automaton A, and
show (Theorem 4.13) that the model recognizes L(A) in the sense of Definition 2.4. Then
Theorem 5.5 will say that the type system reflects the values of the terms in the model.

Due to the symmetries in weak alternating automata, and in the model we are going to
construct, we will obtain also a dual type system. This system can be used to show that the
Böhm tree of a term is not accepted by the automaton.

The dual type system is presented in Figure 4 on page 10. The notation is as before but
we now define S(T ) to be {s : U → s ∈ S ∧ U w T}. The rules for application, abstraction
and variable do not change. By duality we obtain:

Corollary 3.3. For every closed term M of type o and every state q of A: judgment
`M � q is derivable iff A does not accept BT (M) from q.

So the two type systems together allow us to derive both positive and negative information
about a program.

We finish this section with two moderate size examples of typing derivations.

Example 3.4. Take a signature consisting of two constants c : o and a : o → o. We
consider an extremely simple weak alternating automaton with just one state q of rank 1
and transitions:

δ(q, a) = {q} δ(q, c) = ∅ .
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S ⊆ T ⊆ Q

S wo T

∀s ∈ S,∃t ∈ T, s wA t

S wA T

s = t

s wo t
T wA S s wB t

S → s wA→B T → t

Γ ` c ≥ {q : δo(q, c) = ∅}
∀(S1, S2) ∈ δ(a, q), (T1 ∩ S1) ∪ (T2 ∩ S2) 6= ∅

Γ ` a � T1 → T2 → q

Γ `M � S Γ ` N � T

Γ `MN � S(T )

S ∈ Typesk, T ⊆ typesk Γ, x � S `M � T

Γ ` λx.M � S → T

S ⊆ types2k+1
A , T ∈ Types2k

A , Γ ` λx.M � (S ∪ T )→ S Γ ` Y x.M � T
Y odd

Γ ` Y x.M � S ∪ T
Γ ` (λx.M) � S Γ ` (Y x.M) � T

Y even
Γ ` Y x.M � S(T )

Figure 4: Dual type system

This automaton accepts the finite sequences of a’s ending in c. Observe that these transition
rules give us typing axioms

` a ≥ {q} → q ` c ≥ q
Notice that we omit some set parenthesis over singletons; so for example we write c ≥ q
instead of c ≥ {q}. In this example we will still keep the parenthesis to the left of the arrow
to emphasize that we are in our type system, and not in simple types. In the next example
we will omit them too.

First, let us look at a term G1 ≡ λfo→oλxo. f(fx). It has a simple type τ1 ≡ (o →
o)→ o→ o. The judgment ` G1 ≥ γ1 is derivable in our system; where γ1 ≡ {{q} → q} →
{q} → q.

Γ ` f ≥ {q} → q

Γ ` f ≥ {q} → q Γ ` x ≥ q

Γ ` fx ≥ q

Γ ` f(fx) ≥ q

` λfλx. f(fx) ≥ γ1

here Γ ≡ f ≥ {q} → q, x ≥ q.
Consider now G2 ≡ λf τ1λxo→o. f(fx). We have that G2 is of type τ2 ≡ τ1 → τ1. A

derivation very similar to the above will show ` G2 ≥ γ2 where γ2 ≡ {γ1} → γ1.
Then by induction we can define Gi ≡ λf τi−1λxτi−2 . f(fx) that is of a type τi ≡ τi−1 →

τi−1. Still a similar derivation as above will show ` Gi ≥ γi where γi ≡ {γi−1} → γi−1.
One use of application rule then shows that GiGi−1 ≥ γi−1:

` Gi ≥ {γi−1} → γi−1 ` Gi−1 ≥ γi−1

` GiGi−1 ≥ γi−1

In consequence, we can construct by induction a derivation of

` GiGi−1 . . . G1ac ≥ q
This derivation proves that the Böhm tree of GiGi−1 . . . G1ac is a sequence of a’s ending in
c. While the length of this sequence is a tower of exponentials in the height i, the typing
derivation we have constructed is linear in i (if types are represented succinctly). This simple
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example, already analyzed in [20], shows the power of modular reasoning provided by the
typing approach. We should note though that if the initial automaton had two states, the
number of potential types would also be roughly the tower of exponentials in i. Due to the
complexity bounds [36], there are terms and automata for which there is no small derivation.
Yet one can hope that in many cases a small derivation exists. For example, if we wanted to
show that the length of the sequence is even then the automaton would have two states but
the derivation would be essentially the same.

Example 3.5. Consider the term M = (Y F.N)a where N = λg.g(b(F (λx.g(g x)))). As we
have seen on page 5, BT (M) = aba2ba4b . . . a2nb . . . . We show with typing that there are
infinitely many occurrences of b in BT (M). To this end we take an automaton having states
Q = {q1, q2}, and working over the signature containing a and b. The transitions of the
automaton are:

δ(q1, a) = {q1}, δ(q2, a) = {q1, q2}, δ(q1, b) = ∅, δ(q2, b) = q2 .

The ranks of states are indicated by their subscripts. Starting with state q2, the automaton
only accepts sequences that contain infinitely many b’s. So our goal is to derive ` (Y F.N)a ≥
q2. First observe that from the definition of the transitions of the automaton we get axioms:

` a ≥ q1 → q1 ` a ≥ {q1, q2} → q2 ` b ≥ ∅ → q1 ` b ≥ q2 → q2
Looking at the typings of a, we can see that we will get our desired judgment from the
application rule if we prove:

` Y F.N ≥ S where S is {q1 → q1, {q1, q2} → q2} → q2.

To this end, we apply the subsumption rule and the greatest fixpoint rule:
` λF.N ≥ (S ∪ T )→ S ` Y F.N ≥ T

Y even
` Y F.N ≥ S ∪ T

` Y F.N ≥ S

where T = {(q1 → q1)→ q1}

The derivation of the top right judgment uses the least fixpoint rule:

g ≥ q1 → q1 ` g ≥ q1 → q1 g ≥ q1 → q1 ` b(F (λx.g(g x))) ≥ q1

g ≥ q1 → q1 ` g(b(F (λx.g(g x)))) ≥ q1

` λFλg.g(b(F (λx.g(g x)))) ≥ ∅ → (q1 → q1)→ q1
Y odd

` Y F.N ≥ (q1 → q1)→ q1
We have displayed only one of the two premises of the Y odd rule since the other is of the
form ≥ ∅ so it is vacuously true. The top right judgment is derivable directly from the axiom
on b. The derivation of the remaining judgment ` λF.N ≥ (S ∪ T )→ S is as follows.

Γ ` g ≥ {q1, q2} → q2 Γ ` b(F (λx.g(g x))) ≥ q1, q2

Γ ` g(b(F (λx.g(g x)))) ≥ q2

` λFλg.g(b(F (λx.g(g x)))) ≥ (S ∪ T )→ S

where Γ is F ≥ S ∪ T, g ≥ {q1 → q1, {q1, q2} → q2}. So the upper left judgment is an axiom.
The other judgment on the top is an abbreviation of two judgments: one to show ≥ q1 and
the other one to show ≥ q2. These two judgments are proved directly using application and
intersection rules.
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4. Models for weak automata

We describe a construction of a model that recognizes, in a sense of Definition 2.4, the
language defined by a weak automaton. The model depends only on the states of the
automaton and their ranks. The transitions of the automaton will be encoded in the
interpretation of constants. We shall work with (finite) complete lattices and with monotone
functions between complete lattices. In the first subsection we define the basic structure of
the model. Its properties will allow us later to define fixpoints and show that indeed we
can interpret the λY -calculus in the model. In the last subsection we will show that with
an appropriate interpretation of constants the model can recognize the language of a given
weak automaton.

The challenge in this construction comes from the fact that using only the least or only
the greatest fixpoints is not sufficient. Indeed, we have shown in [34] that extremal fixpoints in
finitary models of λY -calculus capture precisely boolean combinations of properties expressed
by automata with trivial acceptance conditions. The structure of a weak automaton will help
us here. For the sake of the discussion let us fix an automaton A, and let A≤k stand for A
restricted to states of rank at most k. Ranks stratify the automaton: transitions for states of
rank k depend only on states of rank at most k. We will find this stratification in our model
too. The interpretation of a term at stratum k will give us the complete information about
the behaviour of the term with respect to A≤k. Stratum k + 1 will refine this information.
Since in a run the ranks cannot increase, the information calculated at stratum k+1 does not
change what we already know about A≤k. Abstract interpretation tells us that refinements
of models are obtained via Galois connections which are instrumental in our construction. In
our model, every element in the stratum k is refined into a complete lattice in the stratum
k + 1 (cf. Figure 5). Therefore we will be able to define the interpretations of fixpoints
by taking at stratum k the least or the greatest fixpoint depending on the parity of k. In
the whole model, the fixpoint computation will perform a sort of zig-zag as represented in
Figure 6.

4.1. A stratified model. We fix a finite set of states Q and a ranking function ρ : Q→ N.
Let m be the maximal rank, i.e., the maximal value ρ takes on Q. Recall that for every
0 ≤ k ≤ m we let Qk = {q ∈ Q : ρ(q) = k} and Q≤k = {q ∈ Q : ρ(q) ≤ k}.

Given two complete lattices L1 and L2 we write mon[L1 7→ L2] for the complete lattice
of monotone functions between L1 and L2.

We define by induction on k ≤ m an applicative structure Dk = (DkA)A∈types and a

logical relation Lk (for 0 < k) between Dk−1 and Dk. For k = 0, the model D0 is just the
model of monotone functions over the powerset of Q0 with

D0
o = P(Q0) and D0

A→B = mon[D0
A 7→ D0

B].

For k > 0, we define Dk by means of Dk−1 and a logical relation Lk:

Dko =P(Q≤k) Lko = {(R,P ) ∈ Dk−1
o ×Dko : R = P ∩Q≤(k−1)},

LkA→B ={(f1, f2) ∈ Dk−1
A→B ×mon[DkA 7→ DkB] :

∀(g1, g2) ∈ LkA. (f1(g1), f2(g2)) ∈ LkB}

DkA→B ={f2 : ∃f1 ∈ Dk−1
A→B. (f1, f2) ∈ LkA→B}
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Observe that DkA is defined by a double induction: the outermost on k and the auxiliary

induction on the structure of the type. Since Lk is a logical relation between Dk−1 and
Dk, each Dk is an applicative structure: for all f in DkA→B and g in DkA, f(g) is in DkB. As

Dk−1
o = P(Q≤(k−1)), the refinements of elements R in Dk−1

o are simply the sets P in P(Q≤k)

so that R = P ∩Q≤(k−1). This explains the definition of Lko . For higher types, Lk is defined

as it is usual for logical relations. Notice that DkA→B is the subset of the monotone functions

e from DkA to DkB for which there exist an element d in Dk−1
A→B so that (d, e) is in LkA→B;

that is we only keep those monotone functions that correspond to refinements of elements in
Dk−1
A→B.

Remarkably this construction puts a lot of structure on DkA. We review this structure
here, and provide necessary justification in lemmas that follow. The first thing to notice is
that for each type A, the set DkA is a complete lattice. Given d in Dk−1

A , we write LkA(d) for

the set {e ∈ DkA : (d, e) ∈ LkA}. For each d, we have that LkA(d) is a complete lattice and

that moreover, for d1 and d2 in Dk−1
A , LkA(d1) and LkA(d2) are isomorphic complete lattices.

We write d↑∨ and d↑∧ respectively for the greatest and the least elements of LkA(d). Finally,

for each element e in DkA, there is a unique d so that (d, e) is in LkA, we write e↓ for that

element. Figure 5 represents schematically these essential properties of DkA. Notice that,

in Figure 5, for every element e′ in Lk(e) (or d′ in Lk(d)) we have e′↓ = e (or d′↓ = d). All
these properties are consequences of the following lemma and of Lemma 4.5.

Figure 5: Relation between models Dk−1 and Dk. Every element in Dk−1 is related to a
sub-lattice of elements in Dk.

Lemma 4.1. For every 0 < k ≤ m, and every type A, we have:

(0) LkA is a lattice: if (d1, d2), (e1, e2) are in LkA, then so are (d1 ∨ e1, d2 ∨ e2) and (d1 ∧
e1, d2 ∧ e2).

(1) Given (d1, d2) and (e1, e2) in LkA, if d2 ≤ e2 then d1 ≤ e1.

(2) Given d2 in DkA, there is a unique d1 in Dk−1
A , so that (d1, d2) in LkA. Let us denote this

unique element d↓2.

(3) If d1 ≤ e1 in Dk−1
A , then:

(a) there is e↑∨1 in LkA(e1) so that for every d2 in LkA(d1) we have d2 ≤ e↑∨1 ,

(b) there is d↑∧1 in LkA(d1) so that for every e2 in LkA(e1) we have d↑∧2 ≤ e2.

Proof. Item 0 can be proved by a straightforward induction on the size of types.
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The proof of items 1, 2, 3, is by simultaneous induction on the size of A. Notice that
item 2 is an immediate consequence of item 1. We shall therefore not prove it, but we feel
free to use it as an induction hypothesis.

We start with the case when A is the base type o:
Ad 1. In that case DkA = Q≤k, e1 = e2 ∩ Q≤k−1 and d1 = d2 ∩ Q≤k−1. Thus, we indeed
have that d2 ≤ e2 implies that d1 ≤ e1.

Ad 3. Here, we have Dk−1
A = Q≤k−1 and then letting e↑∨1 = e1 ∪Qk and d↑∧2 = d2 is enough

to conclude.
Let us now suppose that A = B → C:

Ad 1. Given f1 in Dk−1
B , by induction hypothesis, using item 3, we know that there exist f2

in DkB so that (f1, f2) is in LkB. Thus, we have (d1(f1), d2(f2)) and (e1(f1), e2(f2)) in Lk,C .
With the assumption that d2 ≤ e2, we obtain d2(f2) ≤ e2(f2). By induction hypothesis we
get e1(f1) ≤ d1(f1). As f1 is arbitrary, we can conclude that e1 ≤ d1.

Ad 3. By induction hypothesis, using item 2, for f2 in DkB, there is a unique element f↓2 of

Dk−1
B so that (f↓2 , f2) is in LkB. Given h1 in Dk−1

A we define for every element f2 in DkB:

h↑∨1 (f2) = (h1(f↓2 ))↑∨ h↑∧1 (f2) = (h1(f↓2 ))↑∧ .

We will verify only item 3(a), the case of h↑∧1 being analogous.

We need to check that h↑∨1 is in DkA. First of all we need to check that it is in

mon[DkB 7→ DkC ]. Take g2 and f2 in DkB so that g2 ≤ f2. By induction hypothesis, using

item 1, we have that g↓2 ≤ f
↓
2 . Then h1(g↓2) ≤ h1(f↓2 ) by monotonicity of h1. From item 3 of

induction hypothesis we obtain (h1(g↓2))↑∨ ≤ (h1(f↓2 ))↑∨ ; proving that h↑∨1 is monotone.

Next, we show that (h1, h
↑∨
1 ) is in LkA. If we take (f↓2 , f2) in Lk,B, we obtain by the

induction hypothesis, item 3, that (h1(f↓2 ), (h1(f↓2 ))↑∨) is in LkC . But, by our definition, this

implies that (h1(f↓2 ), h↑∨1 (f2)) is in LkC . As f2 is arbitrary we obtain that (h1, h
↑∨
1 ) is indeed

in LkA proving then that h↑∨1 is in DkA.

It remains to prove that, given d1 ≤ e1 in DkA, for all d2 in LkA(d1) we have d2 ≤ e↑∨1 .

Given (f↓2 , f2) in LkB, we have (d1(f↓2 ), d2(f2)) in LkC . Using induction hypothesis, item 3,

we get d2(f2) ≤ (d1(f↓2 ))↑∨ . Since d1 ≤ e1 we obtain d2(f2) ≤ (e1(f↓2 ))↑∨ that is the desired

d2(f2) ≤ e↑∨1 (f2). As f2 is arbitrary, this shows that d2 ≤ e↑∨1 .

Notice that the fact that DkA is a complete lattice is an immediate consequence from the

fact that LkA is a complete lattice.

The formalization of the intuition that DkA is a refinement of Dk−1
A is given by the fact

that the mappings (·)↓ and (·)↑∨ form a Galois connection between DkA and Dk−1
A and that

(·)↓ and (·)↑∧ form a Galois connection between Dk−1
A and DkA.

Corollary 4.2. For each k ≤ m, and each type A, DkA is a non-empty lattice.

The mappings (·)↓ and (·)↑∨ form a Galois connection between DkA and Dk−1
A . For every

d2 ∈ DkA and e1 ∈ Dk−1
A we have: d↓2 ≤ e1 iff d2 ≤ e↑∨1 .

Similarly (·)↓ and (·)↑∧ form a Galois connection between Dk−1
A and DkA. For every

d1 ∈ Dk−1
A and e2 ∈ DkA we have: d↑∧1 ≤ e2 iff d1 ≤ e↓2.

From now on, ⊥kA and >kA will denote the least and the greatest element of DkA.
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Corollary 4.3. Given d2 in DkB→C and e2 in DkB, we have (d2(e2))↓ = d↓2(e↓2). Given d1 in

Dk−1
B→C and e2 in DkB, we have: d↑∧1 (e2) = (d1(e↓2))↑∧ and d↑∨1 (e2) = (d1(e↓2))↑∨.

Finally, we show one more decomposition property of our models that we will use later
to show a correspondence between types and elements of the model (Lemma 5.2).

Definition 4.4. We define an operation d on the elements d of DkA by induction on A:

• if A = o, then d = d ∩Qk,
• if A = B → C, then for e in DkB, d(e) = d(e).

A simple induction shows that the operation (·) is an involution and that d = d. A

similar induction shows that (·) is the identity function on LkA(⊥k−1
A ).

Lemma 4.5. For every 0 < k ≤ m, and every d in DkA; let d be as defined above, and let

d̃ = (>k−1
A )↑∧ ∨ d. We have d = ((d↓)↑∧) ∨ d and d = ((d↓)↑∨) ∧ d̃.

Proof. We prove only the first identity, the second being similar. The proof is by induction
on the size of A.

In case A = o, from definitions we get d = d ∩Qk while (d↓)↑∧ = d ∩Q≤k−1. Thus we

indeed have d = ((d↓)↑∧) ∨ d.
In case A = B → C. Given e in DkB, we have that (d↓)↑∧(e) = (d↓(e↓))↑∧ = ((d(e))↓)↑∧ .

Moreover, d(e) = d(e). Therefore, (((d↓)↑∧)∨ d)(e) = (((d(e))↓)↑∧)∨ d(e). But, by induction,

we have d(e) = (((d(e))↓)↑∧)∨d(e) = (((d↓)↑∧)∨d)(e). As e is arbitrary, we get the identity.

Lemma 4.6. Given e1, e2 in DkA and d in Dk−1
A :

• if e1 6= e2 then d↑∧ ∨ e1 6= d↑∧ ∨ e2,
• if ẽ1 6= ẽ2 then d↑∨ ∧ e1 6= d↑∨ ∧ e2,

Proof. We only prove the first identity, the second being essentially dual.
We proceed by induction on A. When A = o, then as d↑∧ = d (see the proof of

Lemma 4.1), d ⊆ Q≤k−1 and e1, e2 are included in Qk, the conclusion is immediate.
When A = B → C, since e1 6= e2 there is a so that e1(a) 6= e2(a). Now we have

(d↑∧ ∨ ei)(a) = d↑∧(a) ∨ ei(a) = (d(a↓))↑∧ ∨ ei(a) for i in {1, 2}. The induction hypothesis

implies that (d(a↓))↑∧ ∨ e1(a) 6= (d(a↓))↑∧ ∨ e2(a). Therefore (d↑∧ ∨ e1)(a) 6= (d↑∧ ∨ e2)(a)
and d↑∧ ∨ e1 6= d↑∧ ∨ e2 as desired.

Lemma 4.5 shows that every element d2 in LkA(d1) is of the form d↑∧1 ∨ e2 with e2 in

LkA(⊥k−1
A ) and of the form d↑∨1 ∧ e2 with e2 in LkA(>k−1

A ). Thus not only LkA puts every

element d1 in relation with a lattice Lk(d1), but, from Lemma 4.6, this relation is injective.

As a consequence the lattice LkA(d1) is isomorphic to LkA(⊥k−1
A ) and to LkA(>k−1

A ), showing

as we said earlier, that for any e and d in Dk−1
A , LkA(e) is isomorphic to LkA(d). Another

consequence is that DkA is isomorphic to the lattice Dk−1
A × Lk,A(⊥k−1

A ) or to the lattice

Dk−1
A × Lk,A(>k−1

A ). This isomorphism is important as it shows that the types we have
described Section 3 are a faithful representation of the elements of the model we have just
constructed.
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4.2. Fixpoints in a stratified model. The properties from the previous subsection allow
us to define fixpoint operators in every applicative structure Dk. Then we can show that a
stratified structure is a model of λY -calculus.

Definition 4.7. For f ∈ D0
A→A we define fix0

A(f) =
∧
{fn(>0) : n ≥ 0}. For 0 < 2k ≤ m

and f ∈ D2k
A→A we define

fix2k
A (f) =

∧
{fn(e) : n ≥ 0} where e = (fix2k−1

A (f↓))↑∨

For 0 < 2k + 1 ≤ m and f ∈ D2k+1
A→A we define

fix2k+1
A (f) =

∨
{fn(d) : n ≥ 0} where d = (fix2k

A (f↓))↑∧

Observe that, for even k, e is obtained with (·)↑∨ ; while for odd k, (·)↑∧ is used.
The intuitive idea behind the definition of the fixpoint is presented in Figure 6. On

stratum 0 it is just the greatest fixpoint. Then this greatest fixpoint, call it d, is lifted to
stratum 1, and the least fixpoint computation is started in the complete sub-lattice of the
refinements of d. The result is then lifted to stratum 2, and once again the greatest fixpoint
computation is started, and so on. The Galois connections between strata guarantee that
this process makes sense.

Figure 6: A computation of a fixpoint: it starts in D0, and then the least and the greatest
fixpoints alternate.

It remains to show that equipped with the interpretation of fixpoints given by Defini-
tion 4.7 the applicative structure Dk is a model of the λY -calculus. First, we check that
fixkA is indeed an element of the model and that it is a fixpoint.

Lemma 4.8. For every 0 ≤ k ≤ m and every type A we have that fixkA is monotone, and if

k > 0 then (fixk−1
A ,fixkA) ∈ Lk(A→A)→A. Moreover for every f in DkA→A, f(fixkA(f)) = fixkA(f).

Proof. We proceed by induction on k. For 0 the statement is obvious. We will only consider
the case where k is even, the other being dual.

Consider the case 2k > 0. First we show monotonicity. Suppose g ≤ h are two elements
of D2k

A→A. By Lemma 4.1 we get g↓ ≤ h↓. Consider g1 = fix2k−1
A (g↓) and h1 = fix2k−1

A (h↓).

By induction hypothesis fix2k−1
A is monotone, so g1 ≤ h1. Then, once again using the

Lemma 4.1, we have (g1)↑∨ ≤ (h1)↑∨ . This implies fix2k
A (g) ≤ fix2k

A (h).

Now we show (fix2k−1
A , fix2k

A ) ∈ L2k
(A→A)→A. We take an arbitrary pair (f1, f2) ∈ L2k

A→A

and we need to show that (fix2k−1
A (f1), fix2k

A (f2)) ∈ L2k
A . This follows from the following
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calculation

(fix2k−1(f1), (fix2k−1(f1))↑∨) ∈L2k
A by Lemma 4.1

(f1(fix2k−1(f1)), f2((fix2k−1(f1)↑∨)) ∈L2k
A by logical relation

(fix2k−1(f1), f2((fix2k−1(f1)↑∨)) ∈L2k
A since fix2k−1(f1)

is a fixpoint of f1

(fix2k−1(f1), f i2((fix2k−1(f1)↑∨)) ∈L2k
A for every i ≥ 0

Moreover, from Lemma 4.1, we have that f2((fix2k−1(f1)↑∨) ≤ (fix2k−1(f1))↑∨ . This implies

f i+1
2 ((fix2k−1(f1)↑∨) ≤ f i2((fix2k−1(f1))↑∨)

for every i ∈ N. Therefore, (f i2((fix2k−1(f1))↑∨)i∈N is a decreasing sequence of D2k
A . Since

the model is finite this sequence reaches the fixpoint, namely fix2k
A (f2) = f i2((fix2k−1

A (f1)↑∨))

for some i. Thus, at the same time, this shows that (fix2k−1
A (f1),fix2k

A (f2)) ∈ L2k
A and that

fix2k(f2) is a fixpoint of f2.

This lemma has the following interesting corollary that will prove useful in the study of
type systems.

Corollary 4.9. For k > 0, A a type, and f ∈ DkA→A we have

fix2k
A (f) =

∨
{d | f(d) ≥ d and d↓ = fix2k−1

A (f)}

fix2k+1
A (f) =

∧
{d | f(d) ≤ d and d↓ = fix2k

A (f)}

Moreover, the fundamental lemma on logical relations gives us the following consequence.

Corollary 4.10. For every k > 0, every term M and valuation ν into Dk−1 we have

([[M ]]k−1
ν , [[M ]]kν↑∧ ) ∈ Lk and ([[M ]]k−1

ν , [[M ]]kν↑∨ ) ∈ Lk; where ν↑∧ and ν↑∨ are as expected, i.e.

ν
↑∧

(x) = (ν(x))
↑∧

and ν
↑∨

(x) = (ν(x))
↑∨

.

Now we turn to showing that for every k, Dk is indeed a model of λY -calculus. Since
DkA→B does not contain all the functions from DkA to DkB we must show that there are enough

of them to form a model of λY , the main problem being to show that [[λx.M ]]D
k

υ defines an

element of Dk. For this it will be more appropriate to consider the semantics of a term as a
function of values of its free variables. Given a finite sequence of variables ~x = x1, . . . , xn of
types A1, . . . , An respectively and a term M of type B with free variables in ~x, the meaning

of M in the model Dk with respect to ~x will be a function [[M ]]k~x in DkA1
→ · · · → DkAn

→ DkB
that represents the function λ~p.[[M ]]k[p1/x1,...,pn/xn]. Formally it is defined as follows:

(1) [[Y B]]
k
~x = λ~p. fixB

(2) [[a]]k~x = λ~p. ρ(a)

(3) [[xAi
i ]]

k

~x = λ~p.pi

(4) [[MN ]]k~x = λ~p. ([[M ]]k~x ~p)([[N ]]k~x ~p)

(5) [[λy.M ]]k~x = λ~p.λpy. [[M ]]k~xy~ppy
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Note that the λ symbol on the right hand side of the equality is the semantic symbol used
to denote a relevant function, and not a part of the syntax while the sequence ~p denote a
sequence of parameters p1, . . . , pn ranging respectively in DkA1

, . . . , DkAn
.

Lemma 4.8 ensures the existence of the meaning of Y in Dk. With this at hand, the
next lemma provides all the other facts necessary to show that the meaning of a term with
respect to ~x is always an element of the model.

Lemma 4.11. For every sequence of types ~A = A1 . . . An and every types B, C we have the
following:

• For every constant p ∈ DkB the constant function fp : A1 → · · · → An → B belongs to

DkA1→···→An→B.

• For i = 1, . . . , n, the projection πi : A1 → · · · → An → Ai belongs to DkA1→···→An→B.

• If f : ~A→ (B → C) and g : ~A→ B are in Dk then λ~p.f~p(g~p) : ~A→ C is in Dk.

Proof. For the first item we take p ∈ DkB and show that the constant function fp : A→ B

belongs to DkA→B. For k = 0 this is clear. For k > 0 we take p↓ and consider the constant

function fp↓ ∈ Dk−1
p . We have (fp↓ , fp) ∈ LkA→B since (p↓, p) ∈ LkB by Lemma 4.1. So

fp ∈ DkA→B.
The (easy) proofs for the second and the third items follow the same kind of reasoning.

These observations allow us to conclude that Dk is indeed a model of the λY -calculus,
that is:

(1) for every term M of type A and every valuation ν ranging of the free variables of M ,

[[M ]]kν is in DkA,

(2) given two terms M and N of type A, if M =βδ N , then for every valuation ν, [[M ]]kν =

[[N ]]kν .

Theorem 4.12. For every finite set Q, and function ρ : Q → N. For every k ≤ 0 the
applicative structure Dk is a model of the λY -calculus.

4.3. Correctness and completeness of the model. We show that the models introduced
above are expressive enough to recognize all properties definable by weak alternating
automata. For a given automaton we will take a model as defined above, and show that
with the right interpretation of constants the model can recognize the set of terms whose
Böhm trees are accepted by the automaton (Theorem 4.13).

For the whole section we fix a weak alternating automaton

A = 〈Q,Σ, q0, δo, δo2→o, ρ〉 ,
where Q is a set of states, Σ is the alphabet, δo ⊆ Q×Σ and δo2→o : Q×Σ→ P(P(Q)×P(Q))
are transition functions, and ρ : Q→ N is a ranking function. For sake of the simplicity of
the notation in this section we assume that the only constants in the signature are either of
type o or o2 → o.

Recall that weak means that the states in a transition for a state q have ranks at
most ρ(q), in other words, for every (S0, S1) ∈ δ(q, a), S0, S1 ⊆ Q≤ρ(q). As noted before,
without a loss of generality, we assume that δ is monotone, i.e. if (S0, S1) ∈ δ(q, a) and
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S0 ⊆ S′0 ⊆ Q≤ρ(q) and S1 ⊆ S′1 ⊆ Q≤ρ(q) then (S′0, S
′
q) ∈ δ(q, a). For a closed term M of

type o, let
A(M) = {q ∈ Q : A accepts BT (M) from q}

be the set of states from which A accepts the tree BT (M).
We want to show that our model Dm as defined in the previous section can calculate

A(M); here m is the maximal value of the rank function of A. The following theorem states
a slightly more general fact. Before proceeding we need to fix the meaning of constants:

[[c]]k ={q ∈ Q≤k : (c, q) ∈ δo}

[[a]]k(S0, S1) ={q ∈ Q≤k : (S0, S1) ∈ δo2→o(q, a)}
Notice that, by our assumption about monotonicity of δ, these functions are monotone.

Theorem 4.13. For every closed term M of type o, and for every 0 ≤ k ≤ m we have:

[[M ]]k = A(M) ∩Q≤k.

The rest of this section is devoted to the proof of the theorem. For k = 0 the model D0

is just the GFP model over Q0. Moreover A restricted to the states in Q0 is an automaton
with trivial acceptance conditions. The theorem follows from Theorem 2.5.

For the induction step consider an even k > 0. The case where k is odd is similar and
we will not present it here. The two directions of Theorem 4.13 are proved using different
techniques. The next lemma shows the left to right inclusion and is based on a rather
simple unrolling. The other inclusion is proved using a logical relation between the syntactic
model of the λY -calculus and the stratified model (Lemma 4.18). This relation allows us to
formally relate the abstractions built into the model to their syntactic meanings that are
expressed by the acceptance of Böhm trees of closed λY -terms of atomic type by the weak
parity automaton.

Lemma 4.14. [[M ]]k ⊆ A(M).

Proof. We take q ∈ [[M ]]k and describe a winning strategy for Eve in the acceptance game
of A on BT (M) from q (cf. page 5). If the rank of q < k then such a strategy exists by the
induction assumption. So we suppose that ρ(q) = k.

If M does not have a head normal form then BT (M) consists just of the root ε labeled
with Ω. Then Eve wins by the definition of the game since k is even.

If the head normal form of M is a constant c : o then since q ∈ [[c]]k we have (q, c) ∈ δo.
Eve wins by the definition of the game.

Suppose then that M has a head normal form aM0M1. As [[M ]]k = [[aM0M1]]k we have

q ∈ [[aM0M1]]k. By the semantics of a we know that ([[M0]]k, [[M1]]k) ∈ δ(q, a). The strategy

of Eve is to choose ([[M0]]k, [[M1]]k). Suppose Adam then selects i ∈ {0, 1} and qi ∈ [[Mi]]
k. If

ρ(qi) < k then Eve has a winning strategy by induction hypothesis. Otherwise, if ρ(qi) = k
we repeat the reasoning.

This strategy is winning for Eve since a play either stays in states of even rank k or
switches to a play following a winning strategy for smaller ranks.

It remains to show that A(M)∩Q≤k ⊆ [[M ]]k. For this we will define one logical relation
between Dk and the syntactic model of λY and show a couple of lemmas.
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Definition 4.15. We define a logical relation between the model Dk and closed terms

Rk0 ={(P,M) : A(M) ∩Q≤k ⊆ P}

RkA→B ={(f,M) : ∀(g,N)∈RA
. (f(g),MN) ∈ RB} .

Since Rk is a logical relation we have:

Lemma 4.16. If M =βδ N and (f,M) ∈ RkA then (f,N) ∈ RkA.

The next lemma shows a relation between Rk and Rk−1.

Lemma 4.17. For every type A, f ∈ DkA, g ∈ Dk−1
A :

• if (f,M) ∈ RkA then (f↓,M) ∈ Rk−1
A ;

• if (g,M) ∈ Rk−1
A then (g↑∨ ,M) ∈ Rk;

Proof. The proof is an induction on the size of the type. The base case is when A = o.
For the first item suppose (f,M) ∈ RkA. By definition, this means A(M) ∩ Q≤k ⊆ f .

Then A(M) ∩Q≤k−1 ⊆ f ∩Q≤k−1 = f↓. So (f↓,M) ∈ Rk−1
A .

For the second item suppose (g,M) ∈ Rk−1
A . So A(M) ∩ Q≤k−1 ⊆ g. We have

A(M) ∩Q≤k ⊆ (A(M) ∩Q≤k−1) ∪Qk ⊆ g ∪Qk = g↑∨ .
For the induction step let A be B → C. Let us consider the first item. Suppose

(f,M) ∈ RkB→C . Take (h,N) ∈ Rk−1
B , we need to show that (f↓(h),MN) ∈ Rk−1

C . By

the second item of the induction hypothesis we get (h↑∨ , N) ∈ RkB. Then (f(h↑∨),MN) ∈
RkC , by the definition of RkB→C . Using the first item of the induction hypothesis we

get ((f(h↑∨))↓,MN) ∈ Rk−1
C . Then using Corollaries 4.2 and 4.3 we obtain (f(h↑∨))↓ =

f↓((h↑∨)↓) = f↓(h).

For the proof of the second item consider (g,M) ∈ Rk−1
B→C and (h,N) ∈ RkB. We need

to show that (g↑∨(h),MN) ∈ RkC . From the first item of the induction hypothesis we obtain

(h↓, N) ∈ Rk−1
B , so (g(h↓),MN) ∈ Rk−1

C . The second item of the induction hypothesis gives

us ((g(h↓))↑∨ ,MN) ∈ RkC . We are done since g↑∨(h) = (g(h↓))↑∨ by Corollary 4.3.

The right to left inclusion of Theorem 4.13 is implied by the following more general
statement.

Lemma 4.18. Let v be a valuation, and let σ be a substitution of closed terms satisfying
(v(xA), σ(xA)) ∈ RkA for every variable xA in the domain of σ. For every term M of a type

A we have ([[M ]]kv ,M.σ) ∈ RkA.

Proof. The proof is by induction on the structure of M .
If M is a variable then the proof is immediate.
If M is a constant a then we show that ([[a]], a) ∈ Rko→o→o. For this we take arbitrary

(S0, N0), (S1, N1) ∈ Rk0 , and we show that ([[a]]k(S0, S1), aN0N1) ∈ Rk0 . Take q ∈ A(aN0N1)∩
Q≤k. Let us look at Eve’s winning strategy in the acceptance game from q on BT (aN0N1).
In the first round of this game she chooses some (T0, T1) ∈ δ(a, q). So q ∈ [[a]](T0, T1).
Since her strategy is winning we have T0 ⊆ A(N0) and T1 ⊆ A(N1), and by weakness of
the automaton T0, T1 ⊆ Q≤k. From the definition of Rk0 we get A(N0) ∩ Q≤k ⊆ S0 and
A(N1) ∩Q≤k ⊆ S1. By monotonicity we get the desired q ∈ [[a]](S0, S1).

If M is an application NP then the conclusion is immediate from the definition of RkA
and the induction hypothesis.
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If M is an abstraction λx. N : B → C, then we take (g, P ) ∈ RkB. By induction

hypothesis ([[N ]]kv[g/x], N.σ[P/x]) ∈ RkC . So ([[M ]]kv(g),MP ) ∈ RkC by Lemma 4.16.

If M = Y (A→A)→A. Take (f, P ) ∈ RkA→A. By Lemma 4.17 we have (f↓, P ) ∈ Rk−1
A→A.

As by the outermost induction hypothesis

(fixk−1
A , Y (A→A)→A) ∈ Rk−1

(A→A)→A ,

and we obtain (fixk−1
A (f↓), Y P ) ∈ Rk−1

A . Once again using Lemma 4.17 we can deduce

((fixk−1
A (f↓))↑∨ , Y P ) ∈ RkA. By the choice of (f, P ) we obtain

(f((fixk−1
A (f↓))↑∨), P (Y P )) ∈ RkA .

Since Y P =βδ P (Y P ), we have (f i((fixk−1
A (f↓))↑∨), Y P ) ∈ RkA for all i ≥ 0. Since the

sequence of f i((fixk−1
A (f↓))↑∨) is decreasing, it reaches the fixpoint fixkA(f) in a finite number

of steps and (fixkA(f), Y P ) is in RA. As (f, P ) is an arbitrary element of RkA→A, this shows

that (fixkA, Y ) is in Rk(A→A)→A.

5. From models to type systems

We are now in a position to show that our type system from Figure 3 can reason about the
values of λY -terms in a stratified model, cf. Theorem 5.5 below. Thanks to Theorem 4.13
this means that the type system can talk about the acceptance of the Böhm tree of a
term by the automaton. This implies the soundness and completeness of our type system,
Theorem 3.2.

Throughout this section we work with a fixed signature Σ and a fixed weak alternating
automaton A = 〈Q,Σ, q0, δo, δo2→o, ρ〉. As in the previous section, for the sake of the
simplicity of notations we will assume that the constants in the signature are of type o or
o→ o→ o. We will also prefer the notation Y x.M to Y (λx.M).

The arrow constructor in types will be interpreted as a step function in the model. Step
functions are particular monotone functions from a lattice L1 to a lattice L2. For later use
we also define co-step functions. For d in L1 and e in L2, the step function d ⇁ e and the
co-step function d ⇀ g are defined by:

(d ⇁ e)(h) =

{
e when d ≤ h
⊥ otherwise

(d ⇀ e)(h) =

{
e when h ≤ d
> otherwise .

To emphasize that we work in Dk we will sometimes write d ⇁k e and d ⇀k e.
Types introduced on page 7 can be meaningfully interpreted at every level of the model.

So [[t]]k will denote the interpretation of t in Dk defined as follows.

[[q]]k = {q} if ρ(q) ≤ k, ∅ otherwise

[[S]]k =
∨
{[[t]]k : t ∈ S} for S ⊆ TypesA

[[T → s]]k = [[T ]]k ⇁ [[s]]k for (T → s) ∈ TypesA

Directly from the definition we have [[S1 ∪ S2]]k = [[S1]]k ∨ [[S2]]k, and [[S → T ]]k =

[[S]]k ⇁k [[T ]]k.
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The next lemma summarizes basic facts about the interpretation of types. Recall that
the application operation S(T ) on types (cf. page 8) means {t : (U → t) ∈ S ∧U v T}. The
proof of the lemma uses Corollaries 4.3 and 4.2.

Lemma 5.1. For every type A, if S ⊆ TypesA and k ≤ m we have: [[S]]k = [[S ∩ TypeskA]]
k
,

[[S ∩ TypeskA]]
k+1

= ([[S]]kA)↑∧ and [[S]]k = ([[S]]k+1)↓.

Proof. Consider the first statement. Since [[S]]k =
∨
{[[t]]k : t ∈ S} it is sufficient to show

that [[t]]k = ⊥kA for t 6∈ TypeskA. We do it by induction on the type A.

Suppose that t ∈ typeslA for l > k. For the type o it follows directly from the definition

that [[t]]k = ∅. For A of the form B → C we know that t is of the form T → s with

T ⊆ TypeslB and s ∈ typeslC . By induction assumption [[s]]k = ⊥kC . We get [[T → s]]k =

[[T ]]k ⇁k [[s]]k = [[T ]]k ⇁k ⊥C = ⊥kB→C .
We give the proof of the second statement, the proof of the third is analogous. We prove

the result only for elements of typeskA as the more general one is a direct consequence of
that particular case. The proof is by induction on A. The base case is obvious. For A of the

form B → C we have [[T → s]]k+1 is by definition [[T ]]k+1 ⇁k+1 [[s]]k+1 which by induction

hypothesis is ([[T ]]k)↑∧ ⇁k+1 ([[s]]k)↑∧ . We will be done if we show that for every f ∈ DkB
and g ∈ DkC :

f↑∧ ⇁k+1 g↑∧ = (f ⇁k g)↑∧ .

Given e in Dk+1
B , by Corollary 4.3, we have (f ⇁k g)↑∧(e) is equal to ((f ⇁k g)(e↓))↑∧ , and

therefore:

(f ⇁k g)↑∧(e) =

{
g↑∧ if f ≤ e↓,
⊥k+1
C otherwise.

Since f ≤ e↓ iff f↑∧ ≤ e, by Corollary 4.2, this proves the desired equality.

Actually every element of Dk is the image of some type via [[·]]k: types are syntactic

representations of the model. For this we use (·) operation (cf. Definition 4.4).

Lemma 5.2. For every k ≤ m, every type A and every d in DkA there is S ⊆ TypeskA so

that [[S]]k = d, and there is S′ ⊆ typeskA so that [[S′]]k = d.

Proof. We proceed by induction on k.
The case where k = 0 has been proved in [34].
For the case k > 0, as we have seen with Lemma 4.5, that f = (f↓)↑∧ ∨ f . From the

induction hypothesis there is S1 ⊆ Typesk−1
A such that [[S1]]k−1 = f↓. By Lemma 5.1 we get

[[S1]]k = (f↓)↑∧ .
It remains to describe f with types from typeskB→C . Take d ∈ DkB and recall that

f(d) = f(d). By induction hypothesis we have Sd ⊆ TypeskB and S
f(d)
⊆ typeskC such that

[[Sd]]
k = d and [[S

f(d)
]]k = f(d). So the set of types Sd → S

f(d)
is included in typeskB→C

and [[Sd → S
f(d)

]] = d ⇁k f(d). It remains to take S2 =
⋃
{Sd → S

f(d)
| d ∈ DkB}. We can

conclude that S2 ⊆ typeskA and [[S2]]k = f . Therefore [[S1 ∪ S2]]k = f .
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Not only can type represent every element of the model, but also the subsumption rule
exactly represents the partial order of the model.

Lemma 5.3. For each k, A, S and T in TypeskA, we have that [[S]]k ≤ [[T ]]k iff S vA T .

Proof. This is a consequence of the fact that for each k, Dk can be embedded in the monotone
model generated by P(Q≤k) and that according to [31], the ordering on intersection types
simulate the one in monotone models.

An immediate consequence is that the application that we defined at the level of type
simulates the application in the model.

Lemma 5.4. For S ⊆ TypeskA→B and T ⊆ TypeskA, we have:

[[S(T )]]k = [[S]]k([[T ]]k) .

Proof. By definition S(T ) = {t | (U → t) ∈ S and U v T}, but [[S]]k =
∨
{[[U → t]]k |

U → t ∈ S} =
∨
{[[U ]]k ⇁k [[t]]k | U → t ∈ S} and thus [[S]]k([[T ]]k) =

∨
{[[t]]k | U → t ∈

S and [[U ]]k ≤ [[T ]]k}. From Lemma 5.3, U v T iff [[U ]]k ≤ [[T ]]k and we then obtain the

expected idendity: [[S]]k([[T ]]k) = {t | (U → t) ∈ S and U v T} = S(T ).

The next theorem is the main technical result of the paper. It says that the type
system can derive all lower-approximations of the meanings of terms in the model. For an

environment Γ, we write [[Γ]]k for the valuation such that [[Γ]]k(x) = [[Γ(x)]]k.

Theorem 5.5. For k = 0, . . . ,m and S ⊆ Typesk:

[[M ]]k
[[Γ]]k
≥ [[S]]k iff Γ `M ≥ S is derivable.

The above theorem implies Theorem 3.2 stating soundness and completeness of the type
system. Indeed, let us take a closed term M of type o, and a state q of our fixed automaton
A. Theorem 4.13 tells us that [[M ]] = A(M); where A(M) is the set of states from which A
accepts BT (M). So `M ≥ q is derivable iff [[M ]] ⊇ {q} iff q ∈ A(M).

The theorem is proved by the following two lemmas.

Lemma 5.6. If Γ `M ≥ S is derivable, then for every k ≤ m: [[M ]]k
[[Γ]]k
≥ [[S]]k.

Proof. This proof is done by a simple induction on the structure of the derivation of
Γ `M ≥ S. For most of the rules, the conclusion follows immediately from the induction
hypothesis (using the Lemmas 5.1, 5.3 and 5.4). We shall only treat here the case of the
rules Y odd and Y even.

In the case of Y odd , when we derive Γ ` Y x.M ≥ S(T ) from Γ ` λx.M ≥ S and

Γ ` Y x.M ≥ T , the induction hypothesis gives that for every k, [[λx.M ]]k
[[Γ]]k

≥ [[S]]k

and [[Y x.M ]]k
[[Γ]]k
≥ [[T ]]k. Therefore [[Y x.M ]]k

[[Γ]]k
= [[(λx.M)(Y x.M)]]k

[[Γ]]k
≥ [[S]]k([[T ]]k) =

[[S(T )]]k, using Lemma 5.4.

In the case of Y even we consider the case k = 2l. Let νk−1 stand for [[Γ]]k−1 and νk for

[[Γ]]k.

By induction hypothesis we have [[Y x.M ]]k−1
νk−1

≥ [[T ]]k−1. Since Lemma 4.10 implies

([[Y x.M ]]k−1
νk−1

, [[Y x.M ]]kνk) ∈ Lk, we have [[Y x.M ]]kνk ≥ ([[T ]]k−1)↑∧ by Lemma 4.1. By

Lemma 5.1 we know ([[T ]]k−1)↑∧ = [[T ]]k. In consequence we have

[[λx.M ]]kνk([[T ]]k) ≥ [[T ]]k.
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Also by induction hypothesis we have [[λx.M ]]kνk ≥ [[(S ∪ T )→ S]]k. This means that

[[λx.M ]]kνk([[S ∪ T ]]k) ≥ [[S]]k. Put together with what we have concluded about [[T ]]k we get

[[λx.M ]]kνk([[S ∪ T ]]k) ≥ [[S ∪ T ]]k.

Now we use Lemma 4.9 which tells us that

[[Y x.M ]]kνk =
∨
{d | [[λx.M ]]k(d) ≥ d and d↓ = [[Y x.M ]]k−1

νk−1
} .

This gives us immediately the desired [[Y x.M ]]kνk ≥ [[S ∪ T ]]k.

Lemma 5.7. Given a type S ⊆ Typesk , if [[M ]]k
[[Γ]]k
≥ [[S]]k then Γ `M ≥ S.

Proof. This theorem is proved by induction on the pairs (M,k) ordered component-wise.
Suppose that the statement is true for M , we are going to show that it is true for Y x.M ,
the other cases are straightforward.

The first observation is that, if T → S is such that [[λx.M ]]k
[[Γ]]k

≥ [[T → S]]k, then

Γ ` λx.M ≥ T → S is derivable. Indeed, since, letting ν = [[Γ, x ≥ T ]]k, if [[M ]]kν ≥ [[S]]k

holds then, Γ, x ≥ T `M ≥ S is derivable by induction hypothesis. So Γ ` λx.M ≥ T → S
is derivable.

There are now two cases depending on the parity of k. First let us assume that k is

even. Suppose [[Y x.M ]]k
[[Γ]]k

= [[S ∪ T ]]k where S ⊆ typesk and T ⊆ Typesk−1. Lemma 5.2

guaranties the existence of such S and T as every element of Dk is expressible by a

set of types. We have [[λx.M ]]k
[[Γ]]k
≥ [[S ∪ T ]]k ⇁k [[S ∪ T ]]k. By the above we get that

Γ ` λx.M ≥ (S ∪ T )→ (S ∪ T ) is derivable and thus Γ ` λx.M ≥ (S ∪ T )→ S is derivable

as well. We also have [[Y x.M ]]k−1 ≥ [[T ]]k−1 which gives that Γ ` Y x.M ≥ T is derivable.
This allows us to derive Γ ` Y x.M ≥ S ∪ T . Using the subsumption rule and the fact
that the subsumption reflects the order in the model (Lemma 5.3), every other judgment

Γ ` Y x.M ≥ U where [[U ]]k ≤ [[Y x.M ]]k
[[Γ]]k

is derivable.

Now consider the case where k is odd. Suppose [[Y x.M ]]k
[[Γ]]k

= [[S ∪ T ]]k with T ⊆
Typesk−1 and S ⊆ typesk. By induction hypothesis on k, we have that Γ ` M ≥ T is

derivable. Take d = [[λx.M ]]k[[Γ]]k
. Lemma 5.2 guarantees us a set of types U ⊆ Typesk

such that [[U ]]k = d. By the observation we have made above, there is a derivation of
Γ ` λx.M ≥ U . Then iteratively using the rule Y odd we compute the least fixpoint by
letting U0(T ) = T and Un+1(T ) = U(Un(T )). As in the case above, we can now conclude

that for every V ⊆ Typesk, if [[V ]]k ≤ [[Y x.M ]]k
[[Γ]]k

, then Γ ` Y x.M ≥ U is derivable.

As we have seen, the applicative structure DkA is a lattice, therefore each construction
can be dualized: in Abramsky’s methodology, this consists in considering ∧-prime elements
of the models, meets and co-step functions instead of ∨-primes, joins and step functions. It is
worth noticing that dualizing at the level of the model amounts to dualizing the automaton.
So, in particular, we can define a system so that BT (M) is not accepted by A from state q
iff Γ `M � q is derivable. While the first typing system establishes positive facts about the
semantics, the second one refutes them. For this, we use the same syntax to denote types,
but we give types a different semantics that is dual to the first semantics we have used. The
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notation, ≥ and �, we have used for the two type systems is motivated by this duality.

〈〈q〉〉k =Q≤k − {q} ,

〈〈S → f〉〉k =
(∧
{〈〈g〉〉k : g ∈ S}

)
⇀k 〈〈f〉〉k .

The dual type system is presented in Figure 4. The notation is as before but we use

� instead of ≥. Similarly to the definition of [[·]]k, we write 〈〈S〉〉k for
∧
{〈〈s〉〉k : s ∈ S}

and we have that 〈〈T → S〉〉k = 〈〈T 〉〉k ⇀k 〈〈S〉〉k. We also need to redefine S(T ) to be
{s : U → s ∈ S ∧ U w T}. By duality, from Theorem 5.5 we obtain:

Theorem 5.8. For S ⊆ Typesk: Γ `M � S is derivable iff [[M ]]k
[[Γ]]k
≤ 〈〈S〉〉k.

Together Theorems 5.5 and 5.8 give a characterization by typing of [[M ]] = L(A), that
is the set of states from which our fixed automaton A accepts BT (M).

Corollary 5.9. For a closed term M of type o:

[[M ]] = [[S]] iff both `M ≥ S and `M � (Q− S).

6. Conclusions

We have shown how to construct a model for a given weak alternating tree automaton so that
the value of a term in the model determines if the Böhm tree of the term is accepted by the
automaton. Our construction builds on ideas from [34] but requires to bring out the modular
structure of the model. This structure is very rich, as testified by Galois connections. This
structure allows us to derive type systems for wMSOL properties following the “domains in
logical form” approach.

The type systems are relatively streamlined: the novelty is the stratification of types
used to restrict applicability of the greatest fixpoint rule. Kobayashi and Ong [21] were
the first to approach higher-order verification of MSOL properies through typing. In their
type system derivations are graphs, or infinite trees, and their validity is defined via some
regular acceptance condition on infinite paths. Their type system handles only closed terms
of type o, and fixpoint are handled via the condition on infinite paths. Tsukada and Ong
have recently proposed a higher-order analogue of this system [38]. The typability is defined
in a standard way as the existence of a finite derivation. The semantics of the fixpoint
combinator is defined via some special games. The soundness and completeness proofs use a
syntactic approach. In our case, thanks to the restriction to wMSO, we can use standard
fixpoint rules to handle the fixpoint combinator, we also obtain a model allowing us to prove
soundness and completeness using quite standard techniques.

Typing in our system is decidable, actually the height of the derivation is bounded by
the size of the term. Yet the width can be large, that is unavoidable given that the typability
is n-Exptime hard for terms of order n [23]. Due to the correspondence of the typing with
semantics, every term has a “best” type.

While the paper focuses on typing, our model construction can be also used in other
contexts. It allows us to immediately deduce reflection [8] and transfer [33] theorems for
wMSOL. Our techniques used to construct models and prove their correctness rely on usual
techniques of domain theory [3], offering an alternative, and arguably simpler, point of view
to techniques based on unrolling.
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The idea behind the reflection construction is to transform a given term so that at
every moment of its evaluation every subterm “knows” its meaning in the model. In [8]
this property is formulated slightly differently and is proved using a detour to higher-order
pushdown automata. Recently Haddad [13] has given a direct proof for all MSOL properties.
The proof is based on some notion of applicative structure that is less constrained than a
model of the λY -calculus. One could apply his construction, or take the one from [34].

The transfer theorem says that for a fixed finite vocabulary of terms, an MSOL formula
ϕ can be effectively transformed into an MSOL formula ϕ̂ such that for every term M of
type o over the fixed vocabulary: M satisfies ϕ̂ iff the Böhm tree of M satisfies ϕ. Since the
MSOL theory of a term, that is a finite graph, is decidable, the transfer theorem implies
decidability of MSOL theory of Böhm trees of λY -terms. As shown in [33] it gives also a
number of other results.

A transfer theorem for wMSOL can be deduced from our model construction. For every
wMSOL formula ϕ we need to find a formula ϕ̂ as above. For this we transform ϕ into
a weak alternating automaton A, and construct a model Dϕ based on A. Thanks to the
restriction on the vocabulary, it is quite easy to write for every element d of the model Dϕ
a wMSOL formula αd such that for every term M of type o in the restricted vocabulary:
M � αd iff [[M ]]Dϕ = d. The formula ϕ̂ is then just a disjunction

∨
d∈F αd, where F is the

set elements of Dϕ characterizing terms whose Böhm tree satisfies ϕ.
The fixpoints in our models are non-extremal: they are neither the least nor the greatest

fixpoints. From [34] we know that this is unavoidable. We are aware of very few works
considering such cases. Our models are an instance of cartesian closed categories with internal
fixpoint operation as studied by Bloom and Esik [6]. Our model satisfies not only Conway
identities but also a generalization of the commutative axioms of iteration theories [5]. Thus
it is possible to give semantics to the infinitary λ-calculus in our models. It is an essential
step towards obtaining an algebraic framework for weak regular languages [7].
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