
Typing weak MSOL properties

Sylvain Salvati and Igor Walukiewicz

CNRS, Université de Bordeaux, INRIA

Abstract. We consider λY -calculus as a non-interpreted functional pro-
gramming language: the result of the execution of a program is its normal
form that can be seen as the tree of calls to built-in operations. Weak
monadic second-order logic (wMSO) is well suited to express properties
of such trees. We give a type system for ensuring that the result of the
execution of a λY -program satisfies a given wMSO property. In order to
prove soundness and completeness of the system we construct a denota-
tional semantics of λY -calculus that is capable of computing properties
expressed in wMSO.

1 Introduction

Higher-order functional programs are more and more often used to write inter-
active applications. In this context it is important to reason about behavioral
properties of programs. We present a kind of type and effect discipline [22]
where a well-typed program will satisfy behavioral properties expressed in weak
monadic second-order logic (wMSO).

We consider the class of programs written in the simply-typed calculus with
recursion and finite base types: the λY -calculus. This calculus offers an abstrac-
tion of higher-order programs that faithfully represents higher-order control. The
dynamics of an interaction of a program with its environment is represented by
the Böhm tree of a λY -term that is a tree reflecting the control flow of the pro-
gram. For example, the Böhm tree of the term Y x.ax is the infinite sequence of
a’s, representing that the program does an infinite sequence of a actions with-
out ever terminating. Another example is presented in Figure 1. A functional
program for the factorial function is written as a λY -term Fct and the value of
Fct applied to a constant c is calculated. Observe that all constants in Fct are
non-interpreted. The Böhm tree semantics means call-by-name evaluation strat-
egy. Nevertheless, call-by-value evaluation can be encoded, so can be finite data
domains, and conditionals over them [18,13]. The approach is then to translate
a functional program to a λY -term and to examine the Böhm tree it generates.

Since the dynamics of the program is represented by a potentially infinite
tree, monadic second-order logic (MSOL) is a natural candidate for the language
to formulate properties in. This logic is an extension of first-order logic with
quantification over sets. MSOL captures precisely regular properties of trees [25],
and it is decidable if the Böhm tree generated by a given λY -term satisfies a given
property [23]. In this paper we will restrict to weak monadic second-order logic
(wMSO). The difference is that in wMSO quantification is restricted to range

2

Fig. 1. Böhm tree of the factorial function

over finite sets. While wMSO is a proper fragment of MSO, it is sufficiently strong
to express safety, reachability, and many liveness properties. Over sequences, that
is degenerated trees where every node has one successor, wMSO is equivalent to
full MSO.

The basic judgments we are interested in are of the form BT (M) � α mean-
ing that the result of the evaluation of M , i.e. the Böhm tree of M , has the
property α formulated in wMSO. Going back to the example of the factorial
function from Figure 1, we can consider a property: all computations that even-
tually take the “if” branch of the conditional are finite. This property holds in
BT (Fct c). Observe by the way that BT (Fct c) is not regular – it has infinitely
many non-isomorphic subtrees as the number of subtractions is growing. In gen-
eral the interest of judgments of the form BT (M) � α is to be able to express
liveness and fairness properties of executions, like: “every open action is eventu-
ally followed by a close action”, or that “there are infinitely many read actions”.
Various other verification problems for functional programs can be reduced to
this problem [18,20,24,32,12].

Technically, the judgment BT (M) � α is equivalent to determining whether
a Böhm tree of a given λY -term is accepted by a given weak alternating automa-
ton. This problem is known to be decidable thanks to the result of Ong [23], but
here we present a denotational approach. Our two main contributions are:

– A construction of a finitary model for a given weak alternating automaton.
The value of a term in this model determines if the Böhm tree of the term
is accepted by the automaton. So verification is reduced to evaluation.

– Two type systems. A typing system deriving statements of the form “the
value of a term M is bigger than an element d of the model”; and a typ-
ing system for dual properties. These typing systems use standard fixpoint
rules and follow the methodology coined as Domains in Logical Form [1].
Thanks to the first item, these typing systems can directly talk about ac-
ceptance/rejection of the Böhm tree of a term by an automaton. These type
systems are decidable, and every term has a “best” type that simply repre-
sents its value in the model.

3

Having a model and a type system has several advantages over having just
a decision procedure. First, it makes verification compositional: the result for
a term is calculated from the results for its subterms. In particular, it opens
possibilities for a modular approach to the verification of large programs. Next,
it enables semantic based program transformations as for example reflection of
a given property in a given term [8,29,13]. It also implies the transfer theorem
for wMSO [28] with a number of consequences offered by this theorem. Finally,
models open a way to novel verification algorithms be it through evaluation,
type system, or through hybrid algorithms using typing and evaluation at the
same time [31]. We come back to these points in the conclusions.

Historically, Ong [23] has shown the decidability of the MSO theory of Böhm
trees for all λY -terms. This result has been revisited in several different ways.
Some approaches take a term of the base type, and unroll it to some infinite
object: tree with pointers [23], computation of a higher-order pushdown automa-
ton with collapse [14], a collection of typing judgments that are used to define a
game [19], a computation of a Krivine machine [27]. Very recently Tsukada and
Ong [33] have presented a compositional approach: a typing system is used to
reduce the verification problem to a series of game solving problems. Another
recent advance is given by Hofmann and Chen who provide a type system for
verifying path properties of trees generated by first-order λY -terms [11]. In other
words, this last result gives a typing system for verifying path properties of trees
generated by deterministic pushdown automata. Compared to this last work, we
consider the whole λY -calculus and an incomparable set of properties.

Already some time ago, Aehligh [2] has discovered an easy way to prove
Ong’s theorem restricted to properties expressed by tree automata with trivial
acceptance conditions (TAC automata). The core of his approach can be formu-
lated by saying that the verification problem for such properties can be reduced
to evaluation in a specially constructed and simple model. Later, Kobayashi
proposed a type system for such properties and constructed a tool based on
it [18]. This in turn opened a way to an active ongoing research resulting in the
steady improvement of the capacities of the verification tools [17,9,10,26]. TAC
automata can express only safety properties. Our model and typing systems set
the stage for practical verification of wMSO properties.

The model approach to verification of λY -calculus is quite recent. In [29] it
is shown that simple models with greatest fixpoints capture exactly properties
expressed with TAC automata. An extension is then proposed to allow one to
detect divergence. The simplicity offered by models is exemplified by Haddad’s
recent work [13] giving simple semantic based transformations of λY -terms.

We would also like to mention two other quite different approaches to inte-
grate properties of infinite behaviors into typing. Naik and Palsberg [21] make a
connection between model-checking and typing. They consider only safety prop-
erties, and since their setting is much more general than ours, their type system
is more complex too. Jeffrey [15,16] has shown how to incorporate Linear Tempo-
ral Logic into types using a much richer dependent types paradigm. The calculus

4

is intended to talk about control and data in functional reactive programming
framework, and aims at using SMT solvers.

In the next section we introduce the main objects of our study: λY -calculus,
and weak alternating automata. Section 3 presents the type system. Its sound-
ness and completeness can be straightforwardly formulated for closed terms of
atomic type. For the proof though we need a statement about all terms. This
is where the model based approach helps. Section 4 describes how to construct
models for wMSO properties. In Section 5 we come back to our type systems.
The general soundness and completeness property we prove says that types can
denote every element of the model, and the type systems can derive precisely
the judgments that hold in the model (Theorem 3). In the conclusion section
we mention other applications of our model. All proofs can be found in a long
version of the paper [30].

2 Preliminaries

We quickly fix notations related to the simply typed λY -calculus and to Böhm
trees. We then recall the definition of weak alternating automata on ranked trees.
These will be used to specify properties of Böhm trees.

λY -calculus The set of types T is constructed from a unique basic type o using
a binary operation → that associates to the right. Thus o is a type and if A, B
are types, so is (A → B). The order of a type is defined by: order(o) = 0, and
order(A → B) = max(1 + order(A), order(B)). We work with tree signatures
that are finite sets of typed constants of order at most 1. Types of order 1 are
of the form o → · · · → o → o that we abbreviate oi → o when they contain
i+ 1 occurrences of o. For convenience we assume that o0 → o is just o. If Σ is
a signature, we write Σ(i) for the set of constants of type oi → o. In examples
we will often use constants of type o → o as this makes the examples more
succinct. At certain times, we will restrict to the types o and o2 → o that are
representative for all the cases.

Simply typed λY -terms are built from the constants in the signature, and
constants Y A, ΩA for every type A. These stand for the fixpoint combinator and
undefined term, respectively. Apart from constants, for each type A there is a
countable set of variables xA, yA, Terms are built from these constants and
variables using typed application and λ-abstraction. We shall write sequences
of λ-abstractions λx1. . . . λxn. M with only one λ: either λx1 . . . xn. M , or even
shorter λx. M . We will often write Y x.M instead of Y (λx.M). Every λY -term
can be written in this notation since Y N has the same Böhm tree as Y (λx.Nx),
and the latter term is Y x.(Nx). We take for granted the operational semantics of
the calculus given by β and δ reductions. The Böhm tree of a term M is obtained
by reducing it until one reaches a term of the form λx.N0N1 . . . Nk with N0 a
variable or a constant. Then BT (M) is a tree having its root labeled by λx.N0

and having BT (N1), . . . , BT (Nk) as subtrees. Otherwise BT (M) = ΩA, where
A is the type of M . Böhm trees are infinite normal forms of λY -terms. A Böhm

5

tree of a closed term of type o over a tree signature is a potentially infinite ranked
tree: a node labeled by a constant a of type oi → o has i successors (c.f. Figure 1).

Example As an example take (Y F. N)a where N = λg.g(b(F (λx.g(g x)))). Both
a and b have the type o → o; while F has type (o → o) → o, and so does
N . Observe that we are using a more convenient notation Y F here. The Böhm
tree of (Y F.N)a is BT ((Y F.N)a) = aba2ba4b . . . a2

n

b . . . after every consecutive
occurrence of b the number of occurrences of a doubles because of the double
application of g inside N .

wMSO and weak alternating automata We will be interested in properties of trees
expressed in weak monadic second-order logic. This is an extension of first-order
logic with quantification over finite sets of elements. The interplay of negation
and quantification allows the logic to express many infinitary properties. The
logic is closed for example under constructs: “for infinitely many vertices a given
property holds”, “every path consisting of vertices having a given property is
finite”. From the automata point of view, the expressive power of the logic is
captured by weak alternating automata. A weak alternating automaton accepts
trees over a fixed tree signature Σ.

A weak alternating tree automaton over the signature Σ is:

A = 〈Q,Σ, q0 ∈ Q, {δi}i∈N, ρ : Q→ N〉

where Q is a finite set of states, q0 ∈ Q is the initial state, ρ is the rank function,
and δi : Q × Σ(i) → P(P(Q)i) is the transition function. For q in Q, we call
ρ(q) its rank. The automaton is weak in the sense that when (S1, . . . , Si) is in
δi(q, a), then the rank of every q′ in

⋃
1≤j≤i Sj is not bigger than the rank of q,

ρ(q′) ≤ ρ(q).
Observe that since Σ is finite, only finitely many δi are nontrivial. From the

definition it follows that δ2 : Q×Σ(2) → P(P(Q)×P(Q)) and δ0 : Q×Σ(0) →
{0, 1}. We will simply write δ without a subscript when this causes no ambiguity.

Automata will work on Σ-labeled binary trees that are partial functions
t : N∗ ·→ Σ ∪ {Ω} such that the number successors of a node is determined by
the label of the node. In particular, if t(u) ∈ Σ(0) ∪ {Ω} then u is a leaf.

The acceptance of a tree is defined in terms of games between two players
that we call Eve and Adam. A play between Eve and Adam from some node v
of a tree t and some state q ∈ Q proceeds as follows. If v is a leaf and is labeled
by some c ∈ Σ(0) then Eve wins iff δ0(q, c) holds. If the node is labeled by Ω
then Eve wins iff the rank of q is even. Otherwise, v is an internal node; Eve
chooses a tuple of sets of states (S1, . . . , Si) ∈ δ(q, t(v)). Then Adam chooses Sj
(for j = 1, . . . , i) and a state q′ ∈ Sj . The play continues from the j-th son of v
and state q′. When a player is not able to play any move, he/she looses. If the
play is infinite then the winner is decided by looking at ranks of states appearing
on the play. Due to the weakness of A the rank of states in a play can never
increase, so it eventually stabilizes at some value. Eve wins if this value is even.
A tree t is accepted by A from a state q ∈ Q if Eve has a winning strategy in
the game started from the root of t and from q.

6

Automata with trivial acceptance conditions, as considered by Kobayashi [17],
are obtained by requiring that all states have rank 0. Automata with co-trivial
are just those whose all states have rank 1.

Observe that without a loss of generality we can assume that δ is monotone,
i.e. if (S1, . . . , Si) ∈ δ(q, a) then for every (S′1, . . . , S

′
i) such that Sj ⊆ S′j ⊆

{q′ : ρ(q′) ≤ ρ(q)} we have (S′1, . . . , S
′
i) ∈ δ(q, a). Indeed, adding the transitions

needed to satisfy the monotonicity condition does not give Eve more winning
possibilities.

An automaton defines a language of closed terms of type o whose Böhm trees
it accepts from its initial state q0:

L(A) = {M : M is closed term of type o, BT (M) is accepted by A from q0}

3 Type systems for wMSOL

In this section we describe the main result of the paper. We present a type
system to reason about wMSO properties of Böhm trees of terms (a dual type
system is presented in the appendix). We will rely on the equivalence of wMSO
and weak alternating automata, and construct a type system for an automaton.
For a fixed weak alternating automaton A we want to characterize the terms
whose Böhm trees are accepted by A, i.e. the set L(A). The characterization
will be purely type theoretic (cf. Theorem 1).

Fix an automaton A = 〈Q,Σ, q0, {δi}i∈N, ρ〉. Let m be the maximal rank,
i.e., the maximal value ρ takes on Q. For every 0 ≤ k ≤ m we write Qk = {q ∈
Q : ρ(q) = k} and Q≤k = {q ∈ Q : ρ(q) ≤ k}.

The type system we propose is obtained by allowing the use of intersections
inside simple types. This idea has been used by Kobayashi [18] to give a typing
characterization for languages of automata with trivial acceptance conditions.
We work with, more general, weak acceptance conditions, and this will be re-
flected in the stratification of types, and two fixpoint rules: greatest fixpoint rule
for even strata, and the least fixpoint rule for odd strata.

First, we define the sets of intersection types. They are indexed by a rank of
the automaton and by a simple type. Note that every intersection type will have
a corresponding simple type; this is a crucial difference with intersection types
characterizing strongly normalizing terms [4]. Letting TypeskA =

⋃
0≤l≤k typeslA

we define:

typesko = {q ∈ Q : ρ(q) = k}, typeskA→B = {T → s : T ⊆ TypeskA and s ∈ typeskB} .

The difference with simple types is that now we have a set constructor that will
be interpreted as the intersection of its elements.

When we write typesA or TypesA we mean typesmA and TypesmA respectively;
where m is the maximal rank used by the automaton A.

For S ⊆ TypeskA and T ⊆ typeskB we write S → T for {S → t : t ∈ T}. Notice
that S → T is included in typeskA→B .

7

We now give subsumption rules that express the intuitive dependence be-
tween types. So as to make the connection with the model construction later,
we have adopted an ordering of intersection types that is dual to the usual one.

S ⊆ T ⊆ Q

S v0 T

∀s ∈ S,∃t ∈ T, s vA t

S vA T

s = t

s v0 t

T vA S s vB t

S → s vA→B T → t

Given S ⊆ TypesA→B and T ⊆ TypesA we write S(T) for the set {t : (U → t) ∈
S ∧ U v T}.

The typing system presented in Figure 2 derives judgments of the form Γ `
M ≥ S where Γ is an environment containing all the free variables of the term
M , and S ⊆ TypesA with A the type of M . As usual, an environment Γ is a
finite list x1 ≥ S1, . . . , xn ≥ Sn where x1, . . . , xn are pairwise distinct variables
of type Ai, and Si ⊆ TypesAi

. We will use a functional notation and write Γ (xi)
for Si. We shall also write Γ, x ≥ S with its usual meaning.

The rules in the first row of Figure 2 express standard intersection types de-
pendencies: the axiom, the intersection rule and the subsumption rule. The rules
in the second line are specific to our fixed automaton. The third line contains the
usual rules for application and abstraction. The least fixpoint rule in the next
line is standard. The greatest fixpoint rule in the last line is more intricate. It
is allowed only on even strata. If taken for k = 0 the rule becomes the standard
rule for the greatest fixpoint as the set T must be the empty set. For k > 0 the
rule permits to incorporate T that is the result of the fixpoint computation on
the lower stratum.

Γ, x ≥ S ` x ≥ S
Γ `M ≥ S Γ `M ≥ T

Γ `M ≥ S ∪ T

Γ `M ≥ S T v S

Γ `M ≥ T

Γ ` c ≥ {q : δo(q, c) holds}
(S1, . . . , Si) ∈ δ(a, q)

Γ ` a ≥ {S1 → · · · → Si → q}

Γ `M ≥ S Γ ` N ≥ T

Γ `MN ≥ S(T)

S ⊆ Typesk, T ⊆ typesk Γ, x ≥ S `M ≥ T

Γ ` λx.M ≥ S → T

Γ ` (λx.M) ≥ S Γ ` (Y x.M) ≥ T
Y odd

Γ ` Y x.M ≥ S(T)

S ⊆ types2kA , T ⊆ Types2k−1
A , Γ ` λx.M ≥ (S ∪ T)→ S Γ ` Y x.M ≥ T

Y even
Γ ` Y x.M ≥ S ∪ T

Fig. 2. Type system

The main result of the paper says that the typing in this system is equivalent
to accepting with our fixed weak alternating automaton.

8

Theorem 1. For every closed term M of type o and every state q of A: the
judgment `M ≥ q is derivable iff A accepts BT (M) from q.

Since there are finitely many types, this typing system is decidable. As we will see
in the following example, this type system allows us to prove in a rather simple
manner properties of Böhm trees that are beyond the reach of trivial automata.
Compared to Kobayashi and Ong type system [19], the fixpoint typing rules
we propose avoid the use of an external solver for a parity game. Our type
system makes it also evident what is the meaning of higher-order terms with
free variables. In the example below we use fixpoint rules on terms of order 2.

Example 2 Consider the term M = (Y F.N)a where N = λg.g(b(F (λx.g(g x)))).
As we have seen on page 5, BT (M) = aba2ba4b . . . a2

n

b We show with typing
that there are infinitely many occurrences of b in BT (M). To this end we take an
automaton has states Q = {q1, q2}, and works over the signature that contains
a and b. The transitions of the automaton are:

δ(q1, a) = {q1} δ(q2, a) = {q1, q2} δ(q1, b) = ∅ δ(q2, b) = q2

The ranks of states are indicated by their subscripts. Starting with state q2,
the automaton only accepts sequences that contain infinitely many b’s. So our
goal is to derive ` (Y F.N)a ≥ q2. First observe that from the definition of the
transitions of the automaton we get axioms:

` a ≥ q1 → q1 ` a ≥ {q1, q2} → q2 ` b ≥ ∅ → q1 ` b ≥ q2 → q2

Looking at the typings of a, we can see that we will get our desired judgment
from the application rule if we prove:

` Y F.N ≥ S where S is {q1 → q1, {q1, q2} → q2} → q2.

To this end, we apply subsumption rule and the greatest fixpoint rule:

` λF.N ≥ (S ∪ T)→ S ` Y F.N ≥ T
Y even

` Y F.N ≥ S ∪ T

` Y F.N ≥ S

where T = {(q1 → q1)→ q1}

The derivation of the top right judgment uses the least fixpoint rule:

g ≥ q1 → q1 ` g ≥ q1 → q1 g ≥ q1 → q1 ` b(F (λx.g(g x))) ≥ q1

g ≥ q1 → q1 ` g(b(F (λx.g(g x)))) ≥ q1

` λFλg.g(b(F (λx.g(g x)))) ≥ ∅ → (q1 → q1)→ q1
Y odd

` Y F.N ≥ (q1 → q1)→ q1

We have displayed only one of the two premises of the Y odd rule since the
other is of the form ≥ ∅ so it is vacuously true. The top right judgment is
derivable directly from the axiom on b. The derivation of the remaining judgment
` λF.N ≥ (S ∪ T)→ S is as follows.

9

Γ ` g ≥ {q1, q2} → q2 Γ ` b(F (λx.g(g x))) ≥ q1, q2

Γ ` g(b(F (λx.g(g x)))) ≥ q2

` λFλg.g(b(F (λx.g(g x)))) ≥ (S ∪ T)→ S

where Γ is F ≥ S∪T, g ≥ {q1 → q1, {q1, q2} → q2}. So the upper left judgment is
an axiom. The other judgment on the top is an abbreviation of two judgments:
one to show ≥ q1 and the other one to show ≥ q2. These two judgments are
proven directly using application and intersection rules.

4 Models for weak automata

This section presents the model that captures wMSO properties. We assume
basic knowledge about domain theory. More specifically, we shall work with
(finite) complete lattices and with monotone functions between complete lattices.
Given two complete lattices L1 and L2 we write mon[L1 7→ L2] for the complete
lattice of monotone functions between L1 and L2. We construct a model that
captures the language defined by a weak automaton: this model depends only on
the states of the automaton and their ranks. The transitions of the automaton
will be encoded in the interpretation of constants.

The challenge in this construction comes from the fact that simply using the
least or greatest fixpoints is not sufficient. Indeed, we have shown in [29] that
extremal fixpoints in finitary models of λY -calculus capture precisely boolean
combinations of properties expressed by automata with trivial acceptance con-
ditions. The structure of a weak automaton will help us here. For the sake of the
discussion let us fix an automaton A, and let A≤k stand for A restricted to states
of rank at most k. Ranks stratify the automaton: transitions for states of rank
k depend only on states of rank at most k. We will find this stratification in our
model too. The interpretation of a term at stratum k will give us the complete
information about the behaviour of the term with respect to A≤k. Stratum k+1
will refine this information. Since in a run the ranks cannot increase, the infor-
mation calculated at stratum k+1 does not change what we already know about
A≤k. Abstract interpretation tells us that refinements of models are obtained via
Galois connections which are instrumental in our construction. In our model, ev-
ery element in the stratum k is refined into a complete lattice in the stratum
k + 1 (cf. Figure 3). Therefore we will be able to define the interpretations of
fixpoints by taking at stratum k the least or the greatest fixpoint depending on
the parity of k. In the whole model, the fixpoint computation will perform a sort
of zig-zag as represented in Figure 4.

We fix a finite set of states Q and a ranking function ρ : Q → N. Let m be
the maximal rank, i.e., the maximal value ρ takes on Q. Recall that for every
0 ≤ k ≤ m we let Qk = {q ∈ Q : ρ(q) = k} and Q≤k = {q ∈ Q : ρ(q) ≤ k}.

We define by induction on k ≤ m an applicative structure Dk = (DkA)A∈types
and a logical relation Lk (for 0 < k) between Dk−1 and Dk. For k = 0, the
model D0 is just the model of monotone functions over the powerset of Q0 with

10

D0
o = P(Q0) and D0

A→B = mon[D0
A 7→ D0

B]. For k > 0, we define Dk by means
of Dk−1 and a logical relation Lk:

Dko =P(Q≤k) Lko = {(R,P) ∈ Dk−1o ×Dko : R = P ∩Q≤(k−1)},
LkA→B ={(f1, f2) ∈ Dk−1A→B ×mon[DkA 7→ DkB] :

∀(g1, g2) ∈ LkA. (f1(g1), f2(g2)) ∈ LkB}
DkA→B ={f2 : ∃f1 ∈ Dk−1A→B . (f1, f2) ∈ LkA→B}

Observe that DkA is defined by a double induction: the outermost on k and the
auxiliary induction on the size of the type. Since Lk is a logical relation between
Dk−1 and Dk, each Dk is an applicative structure. As Dk−1o = P(Q≤(k−1)), the

refinements of elements R in Dk−1o are simply the sets P in P(Q≤k) so that
R = P ∩ Q≤(k−1). This explains the definition of Lko . For higher types, Lk is

defined as it is usual for logical relations. Notice that DkA→B is the subset of
the monotone functions e from DkA to DkB for which there exist an element d in
Dk−1A→B so that (d, e) is in LkA→B ; that is we only keep those monotone functions

that correspond to refinements of elements in Dk−1A→B .
Remarkably this construction puts a lot of structure on DkA. The first thing

to notice is that for each type A, DkA is a complete lattice. Given d in Dk−1A ,
we write LkA(d) for the set {e ∈ DkA : (d, e) ∈ LkA}. For each d, we have that
LkA(d) is a complete lattice and that moreover, for d1 and d2 in Dk−1A , LkA(d1)
and LkA(d2) are isomorphic complete lattices. We write d↑∨ and d↑∧ respectively
for the greatest and the least elements of LkA(d). Finally, for each element e in
DkA, there is a unique d so that (d, e) is in LkA, we write e↓ for that element.
Figure 3 represents schematically the essential properties of DkA.

The formalization of the intuition that DkA is a refinement of Dk−1A is given
by the fact that the mappings (·)↓ and (·)↑∨ form a Galois connection between
DkA and Dk−1A and that (·)↓ and (·)↑∧ form a Galois connection between Dk−1A

and DkA.

Fig. 3. Relation between models Dk−1 and Dk. Every element in Dk−1 is related
to a sub-lattice of elements in Dk.

We can now define fixpoint operators in every applicative structure Dk.

11

Definition 1. For f ∈ D0
A→A we define fix0

A(f) =
∧
{fn(>0) : n ≥ 0}. For

0 < 2k ≤ m and f ∈ D2k
A→A we define

fix2k
A (f) =

∧
{fn(e) : n ≥ 0} where e = (fix2k−1

A (f↓))↑∨

For 0 < 2k + 1 ≤ m and f ∈ D2k+1
A→A we define

fix2k+1
A (f) =

∨
{fn(d) : n ≥ 0} where d = (fix2k

A (f↓))↑∧

Observe that, for even k, e is obtained with (·)↑∨ ; while for odd k, (·)↑∧ is used.
The intuitive idea behind the definition of the fixpoint is presented in Fig-

ure 4. On stratum 0 it is just the greatest fixpoint. Then this greatest fixpoint
is lifted to stratum 1, and the least fixpoint computation is started from it. The
result is then lifted to stratum 2, and once again the greatest fixpoint compu-
tation is started, and so on. The Galois connections between strata guarantee
that this process makes sense.

Fig. 4. A computation of a fixpoint: it starts in D0, and then the least and the
greatest fixpoints alternate.

Equipped with the interpretation of fixpoints given by Definition 1 the ap-
plicative structure Dk is a model of the λY -calculus. In particular, two terms
that are βδ-convertible have the same interpretation in that model. A constant
c in Σ(i), is then interpreted as the function fk,c of Dkoi→o so that for every
S1, . . . , Si ⊆ Dko , fk,c(S1, . . . , Si) = {q ∈ Dko : (S1, . . . , Si) ∈ δ(c, q)}. Observe
that the identity (fk+1,c)

↓ = fk,c holds. Moreover if we let A(M) = {q ∈ Q :
A accepts BT (M) from q} be the set of states from which A accepts the tree
BT (M), then we have that:

Theorem 2. For every closed term M of type 0, and for every 0 ≤ k ≤ m we
have: [[M]]

k
= A(M) ∩Q≤k.

The two directions of Theorem 2 are proved using different techniques. The left
to right inclusion uses a rather simple unrolling. The other inclusion is proved
using a standard technique based on logical relations.

12

5 From models to type systems

We are now in a position to show that our type system from Figure 2 can reason
about the values of λY -terms in a stratified model (Theorem 3). Thanks to
Theorem 2 this means that the type system can talk about the acceptance of the
Böhm tree of a term by the automaton. This implies soundness and completeness
of our type system, Theorem 1.

Throughout this section we work with a fixed signature Σ and a fixed weak
alternating automaton A = 〈Q,Σ, q0, δo, δo2→o, ρ〉. As in the previous section,
for simplicity of notations we will assume that the constants in the signature are
of type o or o→ o→ o. We will also prefer the notation Y x.M to Y (λx.M).

The arrow constructor in types will be interpreted as a step function in the
model. Step functions are particular monotone functions from a lattice L1 to a
lattice L2. For d in L1 and e in L2, the step function d ⇁ e is defined by:

(d ⇁ e)(h) = e when d ≤ h ⊥ otherwise

Types can be meaningfully interpreted at every level of the model. So [[t]]
l

will
denote the interpretation of t in Dl defined as follows.

[[q]]
l

= {q} if ρ(q) ≤ l, ∅ otherwise

[[S]]
l

=
∨
{[[t]]l : t ∈ S} for S ⊆ TypesA

[[T → s]]
l

= [[T]]
l
⇁ [[s]]

l
for (T → s) ∈ TypesA

Actually every element ofDl is the image of some type via [[·]]l: types are syntactic
representations of the model. The next theorem is the main technical result of
the paper. It says that the type system can derive all lower-approximations of
the meanings of terms in the model. For an environment Γ , we write [[Γ]]

k
for

the valuation such that [[Γ]]
k
(x) = [[Γ (x)]]

k
.

Theorem 3. For k = 0, . . . ,m and S ⊆ Typesk: [[M]]
k
[[Γ]]k ≥ [[S]]

k
iff Γ `M ≥

S is derivable.

The above theorem implies Theorem 1 stating soundness and completeness
of the type system. Indeed, let us take a closed term M of type o, and a state q
of our fixed automaton A. Theorem 2 tells us that [[M]] = A(M); where A(M)
is the set of states from which A accepts BT (M). So ` M ≥ q is derivable iff
[[M]] ⊇ {q} iff q ∈ A(M).

One may ask if it is also possible to reason about over-approximations of
the value of a term, i.e. about statements of the form [[M]]

k
[[Γ]]k ≤ d. This is

indeed possible thanks to the dualities of the model. It is enough to dualize the
type system: restricting the rule for greatest fixpoint on odd ranks instead of
even ones, taking the dual subsumption order for the types, and typing constant
with the transitions of the dual weak alternating automaton. This dual system
is presented in the appendix. It derives judgments of the form: Γ ` M � S
since the interpretation of S is also dualized. Without going into details of this
dualization we can state the following theorem.

13

Theorem 4. For every closed term M of type o and every state q of A: the
judgment `M � q is derivable iff A does not accept BT (M) from q.

Together the type system and its dual give a precise characterization of
[[M]] = L(A) that is the set of states from which our fixed automaton A ac-
cepts BT (M).

Corollary 1. For a closed term M of type o, [[M]] = [[S]] iff both `M ≥ S and
`M � (Q− S).

6 Conclusions

We have shown how to construct a model for a given weak alternating tree
automaton so that the value of a term in the model determines if the Böhm
tree of the term is accepted by the automaton. Our construction builds on ideas
from [29] but requires to bring out the modular structure of the model. This
structure is very rich, as testified by Galois connections. This structure allows
us to derive type systems for wMSO properties following the “domains in logical
form” approach.

The type systems are relatively streamlined: the novelty is the stratification
of types used to restrict applicability of the greatest fixpoint rule. In comparison,
Kobayashi and Ong [19] use a type system only as an intermediate formalism to
obtain a game whose solution answers the model-checking problem. Their type
system handles only closed terms of type o. It does not have a rule for lambda-
abstraction, nor for fixpoints (that are handled via games). Tsukada and Ong
have recently proposed a higher-order analogue of this system [33]. Even in
this new approach the fixpoint is still handled by games, and the algorithmic
properties of the model behind their system are not investigated. While our
approach applies only to wMSO, our model is simply based on functions over
finite sets with standard application operation.

Typing in our system is decidable, actually the height of the derivation is
bounded by the size of the term. Yet the width can be large, that is unavoidable
given that the typability is n-Exptime hard for terms of order n [31]. Due to
the correspondence of the typing with semantics, every term has a “best” type.

While the paper focuses on typing, our model construction can be also used in
other contexts. It allows us to immediately deduce reflection [8] and transfer [28]
theorems for wMSO. Our techniques used to construct models and prove their
correctness rely on usual techniques of domain theory [3], offering an alternative,
and arguably simpler, point of view to techniques based on unrolling.

The idea behind the reflection construction is to transform a given term so
that at every moment of its evaluation every subterm “knows” its meaning in
the model. In [8] this property is formulated slightly differently and is proved
using a detour to higher-order pushdown automata. Recently Haddad [13] has
given a direct proof for all MSO properties. The proof is based on some notion
of applicative structure that is less constrained than a model of the λY -calculus.
One could apply his construction, or take the one from [29].

14

The transfer theorem says that for a fixed finite vocabulary of terms, an
MSOL formula ϕ can be effectively transformed into an MSOL formula ϕ̂ such
that for every term M of type 0 over the fixed vocabulary: M satisfies ϕ̂ iff the
Böhm tree of M satisfies ϕ. Since the MSO theory of a term, that is a finite
graph, is decidable, the transfer theorem implies decidability of MSO theory of
Böhm trees of λY -terms. As shown in [28] it gives also a number of other results.

A transfer theorem for wMSO can be deduced from our model construction.
For every wMSO formula ϕ we need to find a formula ϕ̂ as above. For this we
transform ϕ into a weak alternating automaton A, and construct a model Dϕ
based on A. Thanks to the restriction on the vocabulary, it is quite easy to write
for every element d of the model Dϕ a wMSO formula αd such that for every

term M of type 0 in the restricted vocabulary: M � αd iff [[M]]
Dϕ = d. The

formula ϕ̂ is then just a disjunction
∨
d∈F αd, where F is the set elements of Dϕ

characterizing terms whose Böhm tree satisfies ϕ.
The fixpoints in our models are non-extremal: they are neither the least nor

the greatest fixpoints. From [29] we know that this is unavoidable. We are aware
of very few works considering such cases. Our models are an instance of carte-
sian closed categories with internal fixpoint operation as studied by Bloom and
Esik [6]. Our model satisfies not only Conway identities but also a generaliza-
tion of the commutative axioms of iteration theories [5]. Thus it is possible to
give semantics to the infinitary λ-calculus in our models. It is an essential step
towards obtaining an algebraic framework for weak regular languages [7].

References

1. S. Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic, 51(1-2):1–77,
1991.

2. K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science, 3(1):1–23, 2007.

3. R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi, volume 46 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
1998.

4. H. Barendregt, M. Coppo, and M .Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. J. Symb. Log., 4:931–940, 1983.

5. S. L. Bloom and Z. Ésik. Iteration Theories: The Equational Logic of Iterative
Processes. EATCS Monographs in Theoretical Computer Science. Springer, 1993.

6. Stephen L. Bloom and Zoltàn Ésik. Fixed-point operations on CCC’s. part I.
Theoretical Computer Science, 155:1–38, 1996.

7. A. Blumensath. An algebraic proof of Rabin’s tree theorem. Theor. Comput. Sci.,
478:1–21, 2013.

8. C. Broadbent, A. Carayol, L. Ong, and O. Serre. Recursion schemes and logical
reflection. In LICS, pages 120–129, 2010.

9. C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. C-shore: a collapsible
approach to higher-order verification. In ICFP, pages 13–24. ACM, 2013.

10. C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-
order recursion schemes. In CSL, volume 23 of LIPIcs, pages 129–148. Schloss
Dagstuhl, 2013.

15

11. W. Chen and M. Hofmann. Buchi abstraction. In LICS, 2014. To appear.
12. R. Grabowski, M. Hofmann, and K. Li. Type-based enforcement of secure pro-

gramming guidelines - code injection prevention at SAP. In Formal Aspects in
Security and Trust, volume 7140 of LNCS, pages 182–197, 2011.

13. A. Haddad. Model checking and functional program transformations. In FSTTCS,
volume 24 of LIPIcs, pages 115–126, 2013.

14. M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown
automata and recursion schemes. In LICS, pages 452–461. IEEE Computer Society,
2008.

15. A. S. A. Jeffrey. LTL types FRP: Linear-time Temporal Logic propositions as
types, proofs as functional reactive programs. In ACM Workshop Programming
Languages meets Program Verification, 2012.

16. A. S. A. Jeffrey. Functional reactive types. In LICS, 2014. to appear.
17. N. Kobayashi. Types and higher-order recursion schemes for verification of higher-

order programs. In POPL, pages 416–428, 2009.
18. N. Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20–89, 2013.
19. N. Kobayashi and L. Ong. A type system equivalent to modal mu-calculus model

checking of recursion schemes. In LICS, pages 179–188, 2009.
20. N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-parameter tree trans-

ducers and recursion schemes for program verification. In POPL, pages 495–508,
2010.

21. M. Naik and J. Palsberg. A type system equivalent to a model checker. ACM
Trans. Program. Lang. Syst., 30(5), 2008.

22. F. Nielson and H. R. Nielson. Type and effect systems. In Correct System Design:
Recent Insight and Advances, volume 1710 of LNCS, pages 114–136. Springer-
Verlag, 1999.

23. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In LICS, pages 81–90, 2006.

24. C.-H. L. Ong and S. Ramsay. Verifying higher-order programs with pattern-
matching algebraic data types. In POPL, pages 587–598, 2011.

25. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the AMS, 141:1–23, 1969.

26. S. J. Ramsay, R. P. Neatherway, and C.-H. L. Ong. A type-directed abstraction
refinement approach to higher-order model checking. In POPL, pages 61–72. ACM,
2014.

27. S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In
ICALP, volume 6756 of LNCS, pages 162–173, 2011.

28. S. Salvati and I. Walukiewicz. Evaluation is MSOL-compatible. In FSTTCS,
volume 24 of LIPIcs, pages 103–114, 2013.

29. S. Salvati and I. Walukiewicz. Using models to model-check recursive schemes. In
TLCA, volume 7941 of LNCS, pages 189–204, 2013.

30. Sylvain Salvati and Igor Walukiewicz. Typing weak MSOL properties.
https://hal.archives-ouvertes.fr/hal-01061202, 2014.

31. K. Terui. Semantic evaluation, intersection types and complexity of simply typed
lambda calculus. In RTA, volume 15 of LIPIcs, pages 323–338. Schloss Dagstuhl,
2012.

32. Y. Tobita, T. Tsukada, and N. Kobayashi. Exact flow analysis by higher-order
model checking. In FLOPS, volume 7294 of LNCS, pages 275–289, 2012.

33. T. Tsukada and C.-H. L. Ong. Compositional higher-order model checking via
ω-regular games over Böhm trees. In LICS, 2014. To appear.

16

A Example of a weak alternating automaton

Consider a weak alternating automaton A defining the property “action b ap-
pears infinitely often”. The automaton has states Q = {q1, q2}, and the signature
Σ = {a, b} consisting of two constants of type o → o. Over this signature, the
Böhm trees are just sequences. The transitions of A are:

δ(q1, a) = {q1} δ(q2, a) = {q1, q2}δ(q1, b) = ∅ δ(q2, b) = q2

The ranks of states are indicated by their subscripts. When started in q2 the
automaton spawns a run from q1 each time it sees letter a. The spawned runs
must stop in order to accept, and they stop when they see letter b. So every a
must be eventually followed by b.

Fig. 5. A run of an alternating automaton on a . . . ab . . .

B Dual type system

The dual type system is presented on figure 6. This system is obtained from the
one presented in Section 3 and Figure 2 in several way:

– the subsumption order on types is dual to the one used in the type system
of Figure 2,

– the greatest fixpoint rule is restricted to apply only for the odd ranks instead
of the even ranks as in the type system of Figure 2,

– the types of the constants are induced by the behavior of the automaton
that is dual to the one used in the type system of Figure 2.

A last difference is that the notation S(T) now refers to the set {s : U → s ∈
S ∧ U w T}.

We are now going to explain how the dual type system is related to the
model Dk. As we have seen, the applicative structure DkA is a lattice, therefore
each construction can be dualized: in Abramsky’s methodology, this consists in
considering ∧-prime elements of the models, meets and co-step functions instead
of ∨-primes, joins and step functions. It is worth noticing that dualizing at the
level of the model amounts to dualizing the automaton. So, in particular, we can

17

define a system so that BT (M) is not accepted by A from state q iff Γ `M � q
is derivable. While the first typing system establishes positive facts about the
semantics, the second one refutes them. For this, we use the same syntax to
denote types, but we give types a different semantics that is dual to the first
semantics we have used.

For the dual system we will need co-step functions. For comparison we recall
also step functions. Step and co-step functions are particular monotone functions
from a lattice L1 to a lattice L2. For d in L1 and e in L2, the step function d ⇁ e
and the co-step function d ⇀ g are defined by:

(d ⇁ e)(h) =

{
e when d ≤ h
⊥ otherwise

(d ⇀ e)(h) =

{
e when h ≤ d
> otherwise .

To emphasize that we work in Dl we will write d ⇁l e and d ⇀l e.
Co-step functions help us to give an alternate dual interpretation of types in

the models.

〈〈q〉〉k = Q≤k − {q}, 〈〈S → f〉〉k =
(∧
{〈〈g〉〉k : g ∈ S}

)
⇀k 〈〈f〉〉k .

Similarly to the definition of [[·]]k, we write 〈〈S〉〉k for
∧
{〈〈s〉〉k : s ∈ S} and we

also have that 〈〈T → S〉〉k = 〈〈T 〉〉k ⇀k 〈〈S〉〉k.
We then obtain a theorem that is dual to Theorem 3.

Theorem 5. For S ⊆ Typesk: Γ `M � S is derivable iff [[M]]
k
[[Γ]]k ≤ 〈〈S〉〉k.

S ⊆ T ⊆ Q

S w0 T

∀s ∈ S,∃t ∈ T, s wA t

S wA T

T wA S s wB t

S → s wA→B T → t

Γ, x � S ` x � S

Γ `M � S Γ `M � T

Γ `M � S ∪ T

Γ `M � S T w S

Γ `M � T

Γ ` c � {q : δo(q, c) does not hold}
∀(S1, S2) ∈ δ(a, q), (T1 ∩ S1) ∪ (T2 ∩ S2) 6= ∅

Γ ` a � T1 → T2 → q

Γ `M � S Γ ` N � T

Γ `MN � S(T)

S ∈ Typesk, T ⊆ typesk Γ, x � S `M � T

Γ ` λx.M � S → T

S ⊆ types2k+1
A , T ∈ Types2kA , Γ ` λx.M � (S ∪ T)→ S Γ ` Y x.M � T

Y odd
Γ ` Y x.M � S ∪ T

Γ ` (λx.M) � S Γ ` (Y x.M) � T
Y even

Γ ` Y x.M � S(T)

Fig. 6. Dual type system

	Typing weak MSOL properties
	Sylvain Salvati and Igor Walukiewicz

