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The reachability problem for timed automata asks if a given automaton has a run leading to an accepting state,
and the liveness problem asks if the automaton has an infinite run which visits accepting states infinitely often.
Both these problems are known to be Pspace-complete.

We show that if P≠Pspace, the liveness problem is more difficult than the reachability problem; in other
words we exhibit a family of automata for which solving the reachability problem with the standard algorithm
is in P but solving the liveness problem is Pspace-hard. This leads us to revisit the algorithmics for the liveness
problem. We propose a notion of a witness for the fact that a timed automaton violates a liveness property.
We give an algorithm for computing such a witness and compare it with existing solutions.
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1 INTRODUCTION
Timed automata [1] are one of the standard models for timed systems. There has been an extensive
body of work on the verification of reachability/safety properties of timed automata. In contrast,
advances on verification of liveness properties are much less spectacular. For verification of liveness
properties expressed in a logic like Linear Temporal Logic, it is best to consider a slightly more
general problem of verification of Büchi properties. This means verifying if in a given timed
automaton there is an infinite path passing through an accepting state infinitely often.

Testing Büchi properties of timed systems can be surprisingly useful. We give an example in Sec-
tion 6 where we describe how with a simple liveness test one can discover a typo in the benchmark
CSMA/CD model [16, 18]. This typo removes practically all the interesting behaviours from the
model. Yet the CSMA/CD benchmark has been extensively used for evaluating verification tools,
and nothing unusual has been observed. Therefore, even if one is interested solely in verification
of safety properties, it is important to “test” the model under consideration, and for this Büchi
properties are very useful.
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Verification of reachability properties of timed automata is known to be Pspace-complete [1].
In practice, reachability analysis is possible thanks to the so-called zones and their abstractions
[3, 4, 10, 12]. Roughly, the standard approach used nowadays for reachability/safety properties
performs a breadth first search (BFS) over the set of pairs (state, zone) reachable in the automaton,
storing only pairs with the maximal abstracted zones (with respect to inclusion, called subsumption
in this context). In jargon: the algorithm constructs a zone graph with subsumption.

Verifying Büchi properties for timed automata is also known to be Pspace-complete [1]. In this
paper, we give strong evidence that verification of Büchi properties is inherently more difficult
than verification of reachability properties. For a long time it has been understood that for liveness
checking, there is a problem with the approach outlined above - keeping only the maximal zones
with respect to inclusion (i.e. zone graph with subsumption) is no longer sound [13, 15]. It is possible
to use the zone graph without subsumption, but this one is almost always too big to handle. One
could however hope that some modification of the notion of zone graph with subsumption can
give an algorithm for Büchi properties that is provably not much more costly than the algorithm
for reachability properties. We show that this is unlikely. We present a family of automata for
which the size of the zone graph with subsumption is linear in the size of the automata and hence
reachability can be decided in P; however deciding existence of a Büchi accepting run for these
automata amounts to solving the halting problem for Linear Bounded Automata. This proves
that unless P=Pspace, there is no hope of obtaining an algorithm for Büchi properties that has
provably similar complexity to the standard reachability algorithm (which constructs zone graph
with subsumption).

Our goal in this paper is to rethink the foundations of verification of Büchi properties for timed
automata, and propose some algorithmic solutions. The first question we address is this: what can
be a witness to the fact that an automaton has no Büchi accepting run? As we have mentioned
above, for reachability properties such a witness is a zone graph with subsumption. We propose
a similar notion of a witness for Büchi properties that allows only “safe” subsumptions. As the
next contribution, we give an algorithm for computing such a witness. Due to the hardness result
mentioned above, we cannot hope to have as efficient an algorithm as for reachability. We propose
an algorithm that will iteratively apply the reachability algorithm. It will first construct the zone
graph with subsumption, stopping if it finds a Büchi run. If all subsumptions in this graph are
safe according to our definition then this graph forms a witness for non-existence of a Büchi run.
Otherwise the algorithm recursively refines strongly connected components of the graph with
unsafe subsumptions. This algorithm computes the zone graph without subsumption in the worst
case - this as we show is anyway the best that can be done in some cases. The expected advantage
is that in many cases our algorithm can stop sooner. We have implemented our algorithm and
tested it on a set of benchmarks from [13]. The results show that indeed the algorithm mostly stops
after the first iteration, and constructs witnesses of size very close to those for safety.

A preliminary version of this work appears in [7], where we first prove that if P≠ NP, liveness is
more difficult than reachability for timed automata and then give an iterative algorithm to compute
a witness for a Büchi accepting run. Here we strengthen the complexity result: if P≠ Pspace,
liveness is more difficult than reachability. We also give a modified iterative algorithm for witness
detection and compare its performance with the earlier version.

Related work: Verification of Büchi properties is decidable thanks to the region construction [1].
The use of zones and certain abstractions for this problem was developed in [15]. Later Li [14] has
shown that existence of a Büchi run is preserved by every abstraction based on simulation relations.
In particular, this is the case for the 𝔞≼𝐿𝑈 abstraction [3], which is the coarsest abstraction depending
only on lower and upper bounds in clock guards (LU-bounds) [8]. Thanks to these results liveness
checking can be done on an abstract zone graph using 𝔞≼𝐿𝑈 abstraction (but without subsumption).
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The question of whether subsumption can be used to improve the liveness verification was raised
in [15]. Laarman et al. [13] recently proposed a nested DFS based algorithm for checking Büchi
properties of timed automata. They study in depth when it is sound to use subsumption in the
nested DFS algorithm. Our conditions on the use of subsumption are expressed in terms of zone
graphs and are independent of a particular algorithm. This allows us to focus on the task of finding
a witness graph efficiently; in particular we can use BFS based algorithms for the task. We give a
more detailed comparison of the two algorithms in Section 6.

Organization of the paper: In the next section we present the basic definitions, as well as the
algorithms for constructing the abstract zone graph, and the abstract zone graph with subsumption.
We also describe the nested DFS algorithm from [13]. In Section 3 we give our notion of a witness
for non-existence of a Büchi run in a given automaton. Section 4 presents a theorem which exhibits
the above stated algorithmic difference between verification of liveness and reachability properties.
In Section 5 we give an algorithm for finding witnesses for non-existence of a Büchi run. In Section 6
we report on some experimental results.

2 PRELIMINARIES
In this section we present the definitions of timed Büchi automata, the Büchi non-emptiness problem
and the abstract zone graphs used for deciding non-emptiness. We also describe the subsumption
optimization and the standard algorithm for constructing an abstract zone graph with subsumption.
This can be used to answer reachability properties. We finish this section with the nested DFS
algorithm for Büchi properties [13].

2.1 Timed Büchi automata
Let R≥0 denote the set of non-negative reals. A clock is a variable that ranges over R≥0. Let
𝑋 = {𝑥1, . . . , 𝑥𝑛} be a set of clocks. A valuation is a function 𝑣 : 𝑋 → R≥0. The set of all clock
valuations is denoted by R𝑋≥0. We denote by 0 the valuation that associates 0 to every clock in 𝑋 . A
clock constraint 𝜙 is a conjunction of constraints of the form 𝑥 ∼ 𝑐 where 𝑥 ∈ 𝑋 , ∼∈ {<, ≤,=, ≥, >}
and 𝑐 ∈ N. Let Φ(𝑋 ) denote the set of clock constraints over the set of clocks 𝑋 . A valuation 𝑣 is
said to satisfy a constraint 𝜙 , written as 𝑣 ⊨ 𝜙 , when every constraint in 𝜙 holds after replacing
every 𝑥 by 𝑣 (𝑥). For 𝛿 ∈ R≥0, let 𝑣 + 𝛿 be the valuation that associates 𝑣 (𝑥) + 𝛿 to every clock 𝑥 .
For 𝑅 ⊆ 𝑋 , let [𝑅]𝑣 be the valuation that sets 𝑥 to 0 if 𝑥 ∈ 𝑅, and that sets 𝑥 to 𝑣 (𝑥) otherwise.

Definition 2.1 (Timed Büchi Automata (TBA) [1]). A Timed Büchi Automaton is a tuple A =

(𝑄,𝑞0, 𝑋,𝑇 , 𝐹 ) in which 𝑄 is a finite set of states, 𝑞0 is the initial state, 𝑋 is a finite set of clocks,
𝐹 ⊆ 𝑄 is a set of accepting states, and 𝑇 ⊆ 𝑄 × Φ(𝑋 ) × 2𝑋 ×𝑄 is a finite set of transitions of the
form (𝑞,𝑔, 𝑅, 𝑞′) where 𝑔 is a clock constraint called the guard, and 𝑅 is a set of clocks that are reset
on the transition from 𝑞 to 𝑞′.

The semantics of a TBA A = (𝑄,𝑞0, 𝑋,𝑇 , 𝐹 ) is given by a transition system of its configurations.
A configuration of A is a pair (𝑞, 𝑣) ∈ 𝑄 × R𝑋≥0, with (𝑞0, 0) being the initial configuration. There
are two kinds of transitions:

• delay: (𝑞, 𝑣) →𝛿 (𝑞, 𝑣 + 𝛿) for 𝛿 ∈ R≥0;
• action: (𝑞, 𝑣) →𝑡 (𝑞′, 𝑣 ′) for 𝑡 = (𝑞,𝑔, 𝑅, 𝑞′) ∈ 𝑇 such that 𝑣 ⊨ 𝑔 and 𝑣 ′ = [𝑅]𝑣 .

A run of A is a (finite or infinite) sequence of transitions starting from the initial configuration:
(𝑞0, 0)

𝛿0,𝑡0−−−→ (𝑞1, 𝑣1)
𝛿1,𝑡1−−−→ · · · , where (𝑞, 𝑣) 𝛿,𝑡−−→ (𝑞′, 𝑣 ′) denotes a delay 𝛿 followed by action 𝑡

starting from (𝑞, 𝑣 + 𝛿). A configuration (𝑞, 𝑣) is said to be accepting if 𝑞 ∈ 𝐹 . An infinite run
satisfies the Büchi condition if it visits accepting configurations infinitely often. The run is Zeno if its
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accumulated duration is finite, i.e.,
∑
𝑖≥0 𝛿𝑖 ≤ 𝑐 for some 𝑐 ∈ R≥0. Else it is non-Zeno. The problem

we are interested in is termed the Büchi non-emptiness problem.

Definition 2.2. The Büchi non-emptiness problem for TBA is to decide if a given TBA A has a
non-Zeno run satisfying the Büchi condition.

Example 2.3. Figure 1 gives an example of a TBA A1 which has a Büchi accepting run: for
instance the run which leaves state 0 and reaches state 1 at time unit 1, after which the loop
transition at state 1 is taken at intervals of 1 time unit. Figure 4 gives a TBA A2 for which there is
no Büchi accepting run. The reset of 𝑥 and the guard 𝑥 ≥ 1 imply that between two consecutive
visits to state 1, at least 1 time unit should have elapsed. Since 𝑦 is never reset, the value of 𝑦 keeps
increasing by at least 1 unit at each arrival to state 1. Once 𝑦 becomes > 100, the guard 𝑦 ≤ 100
disables the transition from 1 to 0.

The Büchi non-emptiness problem is known to be Pspace-complete [1]. Standard solutions to
this problem use regions or zones: they construct an untimed Büchi automaton and check for its
emptiness. There are various methods to handle the non-Zeno requirement [9, 17].

Remark 1. In this paper, we will assume that the automata are strongly non-Zeno [15], that is,
every infinite accepting run is non-Zeno. It is possible to convert every TBA into a strongly non-Zeno
TBA. This strongly non-Zeno construction could lead to an exponential blowup [6, 9] to the abstract
zone graph (which is defined below), but we prefer to employ this commonly used assumption in order
not to divert from the main subject.

We will now describe a translation which reduces the Büchi non-emptiness problem to checking
non-emptiness of an untimed Büchi automaton.

2.2 Abstract zone graphs
As the semantics of a TBA is an infinite transition system, algorithms for TBA consider special
sets of valuations called zones. A zone is a set of valuations described by a conjunction of two
kinds of constraints: either 𝑥𝑖 ∼ 𝑐 or 𝑥𝑖 − 𝑥 𝑗 ∼ 𝑐 where 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 , 𝑐 ∈ Z and ∼∈ {<, ≤,=, >, ≥}.
For example (𝑥1 > 3 ∧ 𝑥2 − 𝑥1 ≤ −4) is a zone. Zones can be efficiently represented by Difference
Bound Matrices (DBMs) [5].

The zone graph 𝑍𝐺 (A) of a TBA A = (𝑄,𝑞0, 𝑋,𝑇 , 𝐹 ) is a directed graph whose nodes are pairs
of the form (𝑞, 𝑍 ) consisting of a state 𝑞 of A and a zone 𝑍 . The initial node is (𝑞0, 𝑍0) with
𝑍0 = {0 + 𝛿 | 𝛿 ∈ R≥0}. For every transition 𝑡 = (𝑞,𝑔, 𝑅, 𝑞′) ∈ 𝑇 , and every set of valuations
𝑊 , we define the transition ⇒𝑡 as: (𝑞,𝑊 ) ⇒𝑡 (𝑞′,𝑊 ′) where𝑊 ′ = {𝑣 ′ | ∃𝑣 ∈ 𝑊, ∃𝛿 ∈ R≥0 :
(𝑞, 𝑣) →𝑡→𝛿 (𝑞′, 𝑣 ′)}. In other words,𝑊 ′ is obtained by first computing the →𝑡 successors of𝑊 ,
followed by all time successors. It can be shown that if𝑊 is a zone, then so is𝑊 ′. In the zone graph,
from every node (𝑞, 𝑍 ) there is a transition (𝑞, 𝑍 ) ⇒𝑡 (𝑞′, 𝑍 ′) corresponding to the transitions 𝑡
from 𝑞. The transition relation ⇒ is the union of⇒𝑡 over all 𝑡 ∈ 𝑇 .

Observe that there is a slight difference in the definition of transitions in the automaton (𝑞, 𝑣) 𝛿,𝑡−−→
(𝑞′, 𝑣 ′) where we first have a delay 𝛿 , followed by a transition 𝑡 , and the definition of transitions
in the zone graph: (𝑞,𝑊 ) ⇒𝑡 (𝑞′,𝑊 ′) where𝑊 ′ is the set of valuations obtained from𝑊 by
first taking transition 𝑡 , and then doing a delay. The two definitions match since the initial zone
encompasses an initial delay from the initial valuation 0.
Although the zone graph 𝑍𝐺 (A) groups together valuations, the number of zones is still infi-

nite [4]. Figure 1 shows an example of a TBA whose zone graph consists of infinitely many nodes
reachable from the initial node. For effectiveness, zones are further abstracted. Let us write P(𝑆)
for the set of subsets of 𝑆 . An abstraction operator is a function 𝔞 : P(R |𝑋 |

≥0 ) → P(R |𝑋 |
≥0 ) such that
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0 1
𝑦 ≤ 100

{𝑥 }

𝑥 ≥ 1
{𝑥 }

Automaton A1

0, 0 = 𝑥 = 𝑦 1, 0 ≤ 𝑦 − 𝑥 ≤ 100 1, 1 ≤ 𝑦 − 𝑥 ≤ 101 1, 2 ≤ 𝑦 − 𝑥 ≤ 102 · · ·

Zone graph 𝑍𝐺 (A1)

0, 0 = 𝑥 = 𝑦 1, 0 ≤ 𝑦 − 𝑥 ≤ 100 1, 1 ≤ 𝑦 − 𝑥 ≤ 101 1, 101 ≤ 𝑦 − 𝑥 ≤ 201· · ·

Abstract zone graph 𝑍𝐺𝔞≼𝐿𝑈 (A1)

0, 0 = 𝑥 = 𝑦 1, 0 ≤ 𝑦 − 𝑥 ≤ 100 1, 1 ≤ 𝑦 − 𝑥 ≤ 101

𝑍𝐺𝔞≼𝐿𝑈 (A1) with subsumption

Fig. 1. Example of an automaton whose zone graph is infinite. The abstract zone graph is computed with
𝔞≼𝐿𝑈 abstraction, taking 𝐿(𝑥) = 1,𝑈 (𝑥) = −∞, 𝐿(𝑦) = −∞,𝑈 (𝑦) = 100. It contains 103 nodes. The zone graph
with subsumption contains only 3 nodes. The “squiggly” edge denotes the subsumption: 𝔞≼𝐿𝑈 (1 ≤ 𝑦 − 𝑥 ≤
101) ⊆ 𝔞≼𝐿𝑈 (0 ≤ 𝑦 − 𝑥 ≤ 100).

𝑊 ⊆ 𝔞(𝑊 ) and 𝔞(𝔞(𝑊 )) = 𝔞(𝑊 ) for every set of valuations𝑊 ∈ P(R |𝑋 |
≥0 ). The abstraction is finite

if 𝔞 has a finite range. An abstraction operator defines an abstract symbolic semantics defined by:
(𝑞,𝑊 ) ⇒𝑡

𝔞 (𝑞′, 𝔞(𝑊 ′)) when 𝔞(𝑊 ) =𝑊 and (𝑞,𝑊 ) ⇒𝑡 (𝑞′,𝑊 ′). Essentially, each time a successor
𝑊 ′ is computed, it is abstracted to 𝔞(𝑊 ′). We define a transition relation⇒𝔞 to be the union of⇒𝑡

𝔞

over all transitions 𝑡 . For a finite abstraction operator 𝔞, the abstract zone graph 𝑍𝐺𝔞 (A) consists
of node pairs (𝑞,𝑊 ) of the form𝑊 = 𝔞(𝑊 ). The initial node is (𝑞0, 𝔞(𝑍0)) where (𝑞0, 𝑍0) is the
initial node of 𝑍𝐺 (A). Transitions are given by the ⇒𝔞 relation. Such a graph 𝑍𝐺𝔞 (A) can be
seen as a Büchi automaton with the accepting states (𝑞,𝑊 ) for 𝑞 ∈ 𝐹 .

2.2.1 The 𝔞≼𝐿𝑈 abstraction. Abstractions for timed automata are typically parameterized by the
maximum of constants appearing in the guards of the automaton. The structure of the automaton
determines two functions 𝐿 : 𝑋 ↦→ N ∪ {−∞} and 𝑈 : 𝑋 ↦→ N ∪ {−∞}. For a clock 𝑥 , the value
𝐿(𝑥) denotes the maximum constant occurring in guards of the form 𝑥 ≥ 𝑐 or 𝑥 > 𝑐; if no such
guard exists then 𝐿(𝑥) = −∞. The value𝑈 (𝑥) denotes the maximum constant occurring in guards
𝑥 ≤ 𝑐 or 𝑥 < 𝑐 ; if no such guard exists then𝑈 (𝑥) = −∞. This can be further refined by considering
𝐿𝑈 bounds for each state of the automaton [2]. In this paper we will use the abstraction operator
𝔞≼𝐿𝑈 [3] and the abstract zone graph 𝑍𝐺𝔞≼𝐿𝑈 (A) induced by it. Another abstraction operator
Extra+

𝐿𝑈
is commonly used in timed automata tools [3]. However, it is known that 𝔞≼𝐿𝑈 is a coarser

abstraction than Extra+
𝐿𝑈

and hence it could potentially lead to smaller abstract zone graphs [3].
We will therefore stick to 𝔞≼𝐿𝑈 abstraction in this document. In order to define 𝔞≼𝐿𝑈 , we need to
first define a simulation pre-order on valuations.

Definition 2.4 (LU-preorder [3]). Let 𝐿,𝑈 : 𝑋 ↦→ N ∪ {−∞} be two bound functions. For a pair of
valuations we set 𝑣 ≼𝐿𝑈 𝑣

′ if for every clock 𝑥 :
• if 𝑣 ′(𝑥) < 𝑣 (𝑥) then 𝑣 ′(𝑥) > 𝐿(𝑥), and
• if 𝑣 ′(𝑥) > 𝑣 (𝑥) then 𝑣 (𝑥) > 𝑈 (𝑥).
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𝑥

𝑦

𝑈 (𝑥) 𝐿 (𝑥)

𝐿 (𝑦)

𝑈 (𝑦)

•
𝑣′

•
𝑢

•
𝑤

•
𝑟

𝑍 :

𝔞≼𝐿𝑈 (𝑍 ) : ∪

Fig. 2. The dark gray portion shows a zone 𝑍 . The light gray shows the valuations added in the 𝔞≼𝐿𝑈

abstraction of 𝑍 , with respect to the 𝐿𝑈 bounds marked in the picture. Each valuation in the light gray zone
is simulated by a valuation in the zone 𝑍 w.r.t. ≼𝐿𝑈 . The abstraction 𝔞≼𝐿𝑈 (𝑍 ) is given by the union of the
shaded portions. The picture illustrates a valuation 𝑣 ′ such that 𝑟 ≼𝐿𝑈 𝑣 ′, 𝑢 ≼𝐿𝑈 𝑣 ′ and𝑤 ≼𝐿𝑈 𝑣 ′.

The 𝔞≼𝐿𝑈 abstraction is based on this relation.

Definition 2.5 (𝔞≼𝐿𝑈 -abstraction [3]). Given 𝐿 and 𝑈 bound functions, for a set of valuations𝑊
we define:

𝔞≼𝐿𝑈 (𝑊 ) = {𝑣 | ∃𝑣 ′ ∈𝑊 . 𝑣 ≼𝐿𝑈 𝑣
′}.

Figure 2 gives an example of a zone 𝑍 and its abstraction 𝔞≼𝐿𝑈 (𝑍 ). Consider the valuation 𝑣 ′ in
the figure. Note that𝑈 (𝑥) < 𝐿(𝑥) < 𝑣 ′(𝑥), and 𝐿(𝑦) < 𝑣 ′(𝑦) < 𝑈 (𝑦). Hence, for a valuation 𝑣 to be
simulated by 𝑣 ′, i.e. for 𝑣 ≼𝐿𝑈 𝑣

′ in the definition above, we need 𝑈 (𝑥) < 𝑣 (𝑥), and 𝑣 ′(𝑦) ≤ 𝑣 (𝑦).
We cannot have 𝑣 ′(𝑦) > 𝑣 (𝑦) as this requires 𝑣 (𝑦) > 𝑈 (𝑦), that is impossible due to 𝑣 ′(𝑦) < 𝑈 (𝑦).
Valuations 𝑟 , 𝑢 and 𝑤 in the figure satisfy these criteria. In fact, 𝔞≼𝐿𝑈 (𝑣 ′) is the set of valuations
given by 𝑥 > 𝑈 (𝑥) and 𝑦 ≥ 𝑣 ′(𝑦).
Figures 1 and 4 give examples of abstract zone graphs obtained using 𝔞≼𝐿𝑈 abstraction. It was

shown in [8] that the 𝔞≼𝐿𝑈 abstraction induces the smallest zone graphs, for a given bound function
𝐿𝑈 . Moreover, we know from [14] that 𝑍𝐺𝔞≼𝐿𝑈 (A) is sound and complete for Büchi non-emptiness:

Theorem 2.6. [14] A TBA A has a run satisfying the Büchi condition iff the abstract zone graph
𝑍𝐺𝔞≼𝐿𝑈 (A) has a run satisfying the Büchi condition.

This gives an algorithm for the Büchi non-emptiness problem: given a TBA A, compute the
(finite) Büchi automaton 𝑍𝐺𝔞≼𝐿𝑈 (A) and check for its emptiness. There is however a challenge due
to the use of the 𝔞≼𝐿𝑈 abstraction. There are zones 𝑍 for which 𝔞≼𝐿𝑈 (𝑍 ) is non-convex (c.f. Figure 2)
and hence it is better to avoid storing 𝔞≼𝐿𝑈 (𝑍 ). Therefore, the solution to compute 𝑍𝐺𝔞≼𝐿𝑈 (A)
works with a graph consisting of (state, zone) pairs and uses the 𝔞≼𝐿𝑈 abstraction indirectly [8]. The
algorithm for computing 𝑍𝐺𝔞≼𝐿𝑈 (A) is shown in Figure 3. We will denote the transition relation
⇒ by → for convenience, as shown by the edge relation in Figure 3.

We now state a lemma which makes the optimization described in the next section possible.

Lemma 2.7 (Simulation property of 𝔞≼𝐿𝑈 -abstraction). Let A be a TBA, and 𝐿𝑈 be bound
functions computed from guards of A. For every pair of nodes (𝑞, 𝑍 ) and (𝑞, 𝑍 ′) of 𝑍𝐺𝔞≼𝐿𝑈 (A): if
𝔞≼𝐿𝑈 (𝑍 ) ⊆ 𝔞≼𝐿𝑈 (𝑍 ′), then for every transition (𝑞, 𝑍 ) → (𝑞1, 𝑍1), there exists (𝑞, 𝑍 ′) → (𝑞1, 𝑍 ′

1) such
that 𝔞≼𝐿𝑈 (𝑍1) ⊆ 𝔞≼𝐿𝑈 (𝑍 ′

1).
We refer the reader to [3] and [12] for a proof of the above lemma, and a more detailed account of

the 𝔞≼𝐿𝑈 abstraction (both of which are not required for the rest of this paper). We however present
a brief intuition about why this property holds. Roughly, we want a relation between valuations 𝑣
and 𝑣 ′ which ensures that whenever 𝑣 satisfies a guard 𝑔, valuation 𝑣 ′ also satisfies 𝑔 (and hence
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1 procedure abstract_zone_graph(A)
2 𝑉 := {(𝑞0, 𝑍0) }, Waiting := {(𝑞0, 𝑍0) }
3 → := ∅ // edge relation
4 while (Waiting ≠ ∅)
5 take and remove (𝑞,𝑍 ) from Waiting
6 for each 𝑡 = (𝑞,𝑔, 𝑅,𝑞′) ∈ A
7 compute (𝑞,𝑍 ) ⇒𝑡 (𝑞′, 𝑍 ′)
8 if ∃(𝑞′, 𝑍1) ∈ 𝑉 s.t 𝔞≼𝐿𝑈 (𝑍 ′) = 𝔞≼𝐿𝑈 (𝑍1)
9 add (𝑞,𝑍 ) → (𝑞′, 𝑍1)
10 else

11 add (𝑞′, 𝑍 ′) to𝑉 and Waiting
12 add (𝑞,𝑍 ) → (𝑞′, 𝑍 ′)
13 return (𝑉 ,→)
14

15

16

17

18

19 procedure subsumption_graph(A)
20 𝑉 := {(𝑞0, 𝑍0) }, Waiting := {(𝑞0, 𝑍0) }
21 → := ∅ // edge relation
22 ⇝ := ∅ // subsumption relation
23 while (Waiting ≠ ∅)
24 take and remove (𝑞,𝑍 ) from Waiting
25 for each 𝑡 = (𝑞,𝑔, 𝑅,𝑞′) ∈ A
26 compute (𝑞,𝑍 ) ⇒𝑡 (𝑞′, 𝑍 ′)
27 if ∃(𝑞′, 𝑍1) ∈ 𝑉 s.t 𝔞≼𝐿𝑈 (𝑍 ′) = 𝔞≼𝐿𝑈 (𝑍1)
28 add (𝑞,𝑍 ) → (𝑞′, 𝑍1)
29 else if ∃(𝑞′, 𝑍1) ∈ 𝑉 s.t. 𝔞≼𝐿𝑈 (𝑍 ′) ⊆ 𝔞≼𝐿𝑈 (𝑍1)
30 add (𝑞′, 𝑍 ′) to𝑉
31 add (𝑞,𝑍 ) → (𝑞′, 𝑍 ′) and (𝑞′, 𝑍 ′) ⇝ (𝑞′, 𝑍1)
32 else

33 add (𝑞′, 𝑍 ′) to𝑉 and Waiting
34 add (𝑞,𝑍 ) → (𝑞′, 𝑍 ′)
35 return (𝑉 ,→,⇝)

Fig. 3. Algorithm on the left computes 𝑍𝐺𝔞≼𝐿𝑈 (A). The test 𝔞≼𝐿𝑈 (𝑍 ′) = 𝔞≼𝐿𝑈 (𝑍1) can be done using the
method in [8]. On the right is an algorithm which uses subsumption.

runs from 𝑣 can be simulated by runs from 𝑣 ′). The 𝐿𝑈 bound functions say that all lower bound
guards 𝑥 ≥ 𝑐, 𝑥 > 𝑐 have 𝑐 ≤ 𝐿(𝑥) and all upper bound guards 𝑥 ≤ 𝑐, 𝑥 < 𝑐 have 𝑐 ≤ 𝑈 (𝑥). Hence,
when 𝑣 ′(𝑥) < 𝑣 (𝑥), a problem arises when a lower bound guard 𝑔 is of the form 𝑥 ≥ 𝑐 or 𝑥 > 𝑐

with 𝑣 ′(𝑥) ≤ 𝑐 ≤ 𝑣 (𝑥) as this will lead to 𝑣 satisfying 𝑔, but 𝑣 ′ violating 𝑔; in this case 𝑣 ′ cannot
simulate 𝑣 . This motivates the first condition in the definition: if 𝑣 ′(𝑥) < 𝑣 (𝑥) then 𝑣 ′(𝑥) > 𝐿(𝑥).
Similar reasoning holds for the symmetric case.
For a node 𝑛 ∈ 𝑍𝐺𝔞≼𝐿𝑈 (A) we write 𝑛.𝑞 and 𝑛.𝑍 for the state and zone present in node 𝑛

respectively.

2.3 Using subsumption to compute smaller graphs
Although 𝑍𝐺𝔞≼𝐿𝑈 (A) is the smallest abstract zone graph for a given 𝐿𝑈 , its size could be (and
usually is) exponential in the size of A. An essential optimization that makes analysis of timed
automata feasible is the use of subsumption. For two nodes 𝑡 and 𝑠 of 𝑍𝐺𝔞≼𝐿𝑈 (A) we say 𝑡 is
subsumed by 𝑠 , written as 𝑡 ⊑ 𝑠 , if 𝑡 .𝑞 = 𝑠 .𝑞 and 𝔞≼𝐿𝑈 (𝑡 .𝑍 ) ⊆ 𝔞≼𝐿𝑈 (𝑠 .𝑍 ). When 𝑡 ⊑ 𝑠 , the node
𝑠 simulates 𝑡 . Hence, at least for testing reachability, it is enough to keep in the graph only the
maximal nodes with respect to subsumption. The algorithm incorporating subsumption is shown
in the right hand side of Figure 3.

Subsumption optimization is known to give substantial gains for the reachability problem [11].
However, subsumption is not a priori correct for liveness: in Figure 1, the zone graph with subsump-
tion contains no cycle consisting entirely of→ edges but the zone graph has one. Admitting cycles
with subsumption edges is not sound either: Figure 4 illustrates an example of an automaton whose
zone graph has no cycles, but zone graph with subsumption has a cycle consisting of→ and⇝
edges. Therefore, it is not immediately clear how to decide Büchi non-emptiness from subsumption
graphs (in other words, zone graphs with subsumption edges). The question of how subsumption
graphs can be used for Büchi non-emptiness was raised in [15]. An algorithm proposed in [13]
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0 1

𝑦 ≤ 100

𝑥 ≥ 1, {𝑥 }

Automaton A2

0, 0 = 𝑦 − 𝑥 1, 1 ≤ 𝑦 − 𝑥 0, 1 ≤ 𝑦 − 𝑥 ≤ 100 1, 2 ≤ 𝑦 − 𝑥 ≤ 101 1, 101 ≤ 𝑦 − 𝑥· · ·

Abstract Zone graph 𝑍𝐺 (A2)

0, 0 = 𝑥 = 𝑦 1, 1 ≤ 𝑦 − 𝑥 0, 1 ≤ 𝑦 − 𝑥 ≤ 100

𝑍𝐺𝔞≼𝐿𝑈 (A2) with subsumption

Fig. 4. Example of an automaton with no Büchi accepting run. Abstract zone graph is computed with
𝐿(𝑥) = 1,𝑈 (𝑥) = −∞, 𝐿(𝑦) = −∞,𝑈 (𝑦) = 100. There are no cycles in abstract zone graph. Allowing
subsumption gives a smaller graph. However the graph with subsumption has an infinite path that does not
correspond to any run of A2. In general, counting subsumption edge as part of cycles is incorrect for Büchi
emptiness.

1 procedure ndfs()
2 Cyan := Blue := Red := ∅
3 dfsBlue(𝑠0)
4 report no cycle
5

6 procedure dfsRed(𝑠)
7 Red := Red ∪ {𝑠 }
8 for all 𝑠 → 𝑡 do

9 if (Cyan ⊑ 𝑡 ) then report cycle
10 if (𝑡 ̸⊑ Red) then dfsRed(𝑡 )

11

12 procedure dfsBlue(𝑠)
13 Cyan := Cyan ∪ {𝑠 }
14 for all 𝑠 → 𝑡 do

15 if (𝑡 ∉ Blue ∪ Cyan and 𝑡 ̸⊑ Red)
16 then dfsBlue(𝑡 )
17 if (𝑠 ∈ 𝐹 ) then
18 dfsRed(𝑠)
19 Blue := Blue ∪ {𝑠 }
20 Cyan := Cyan \{𝑠 }

Fig. 5. Nested DFS algorithm with subsumption [13] to compute a subgraph of 𝑍𝐺𝔞≼𝐿𝑈 (A)

(illustrated in Figure 5) gives a restricted way of using subsumption in a nested DFS algorithm
for detecting accepting cycles. It exploits the following property: if we know that from a node
𝑠 there is no reachable accepting cycle, then no node 𝑡 ⊑ 𝑠 needs to be explored. The red nodes
in the nested DFS algorithm play the role of node 𝑠 (c.f. Lines 10 and 15 in algorithm). Another
optimization occurs in Line 9 - if there is a path from a node 𝑡 to node 𝑠 subsuming it, then a cycle
can be concluded.

The goal of this paper is to find subsumption graphs of 𝑍𝐺𝔞≼𝐿𝑈 (A) that are sound and complete
for liveness, and to design efficient algorithms to compute them.

3 LIVENESS COMPATIBLE SUBSUMPTIONS
In this section, we are interested in understanding generic conditions for subsumption to be correct
for liveness analysis. We start with an example. Consider the TBA A3 and 𝑍𝐺𝔞≼𝐿𝑈 (A3) illustrated
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𝑞

𝑟 𝑠

𝑡

Automaton A3

{𝑥 } {𝑥 }

𝑥 ≥ 1
{𝑥 }

𝑦 ≤ 100𝑥 ≥ 1
{𝑥 }

(𝑞, 𝑥 = 𝑦 ≥ 0)
(𝑟, 0 ≤ 𝑦 − 𝑥)

(𝑟, 1 ≤ 𝑦 − 𝑥)

(𝑟, 2 ≤ 𝑦 − 𝑥)

(𝑟, 100 ≤ 𝑦 − 𝑥)

(𝑟, 101 ≤ 𝑦 − 𝑥)

(𝑠, 0 ≤ 𝑦 − 𝑥)

(𝑡, 0 ≤ 𝑦 − 𝑥 ≤ 100)

(𝑠, 1 ≤ 𝑦 − 𝑥 ≤ 101)

(𝑡, 1 ≤ 𝑦 − 𝑥 ≤ 100)

(𝑡, 𝑦 − 𝑥 = 100)

(𝑠, 𝑦 − 𝑥 = 101)

...

...

Fig. 6. On the left is a TBA A3; on the right the graph obtained by removing the two squiggly edges is
𝑍𝐺𝔞≼𝐿𝑈 (A3). Assume that 𝐿 = 𝑈 = 100 at every state. This can be achieved by adding more transitions on
each state (which are not shown for clarity). Squiggly edges show subsumptions. The part of 𝑍𝐺𝔞≼𝐿𝑈 (A3)
restricted to white nodes and squiggly edges is the zone graph with subsumption. In this graph there is no
accepting cycle consisting only of → edges. Removing the squiggly edge on the node (𝑟, 1 ≤ 𝑦 − 𝑥) and
adding the grey nodes having state 𝑟 identifies the accepting cycle.

in Figure 6 - which is given by the graph without the two squiggly edges. The zone graph has
an accepting cycle on the node (𝑟, 101 ≤ 𝑦 − 𝑥). For each of the states 𝑟, 𝑠 and 𝑡 of the TBA,
there are at least 100 nodes in the zone graph. Note that (𝑟, 1 ≤ 𝑦 − 𝑥) ⊑ (𝑟, 0 ≤ 𝑦 − 𝑥) and
(𝑠, 1 ≤ 𝑦 − 𝑥 ≤ 101) ⊑ (𝑠, 0 ≤ 𝑦 − 𝑥). If we allowed the luxury to use subsumptions freely, we
would get the graph consisting only of the white nodes in the figure and the two squiggly edges
denoting subsumption. However, in this graph there is no accepting cycle made uniquely of →
edges. There are cycles containing subsumption edges but, as we have seen in Figure 4, it is not
sound to take such cycles as witnesses for the existence of an accepting computation in general.
Hence, the subsumption on (𝑟, 1 ≤ 𝑦 − 𝑥) should not be used to detect accepting cycles. On the
other hand, the graph of white nodes with no subsumption edge is not complete for liveness as it
has no accepting run. Observe that using subsumption on the node (𝑠, 1 ≤ 𝑦 − 𝑥 ≤ 101) would do
no harm, as further exploration would not lead to accepting cycles anyway. This subsumption gives
already a significant gain. In fact, the zone graph restricted to the white and grey nodes, along with
the subsumption edge on the right is a liveness complete graph according to our definition below.
Algorithm in Figure 5 does not detect this possibility and explores the whole graph.

Our goal is to make use of subsumption as much as possible, subject to the restriction that the
resulting graph contains an accepting cycle of→ edges iff𝑍𝐺𝔞≼𝐿𝑈 (A) contains one. Since including
subsumption edges as part of a cycle is not sound in general, we will avoid using subsumption
edges in cycles that contain accepting states. Therefore, in the graphs that we construct, cycles with
accepting states will be actual cycles in 𝑍𝐺𝔞≼𝐿𝑈 (A) - so every such cycle will give an accepting
computation. The challenge is to decide what are the subsumptions that are safe and can be left in
the graph. We first make precise the notion of a graph with subsumptions, and then follow up with
a condition that makes a zone graph with subsumption complete for liveness.

Definition 3.1 (Subsumption graph). Let𝐺 be a graph consisting of a subset of nodes and edges of
𝑍𝐺𝔞≼𝐿𝑈 (A) together with new edges called subsumption edges. Each node is labeled either covered
or uncovered. Such a graph is called a subsumption graph if it satisfies the following conditions:

C1 the initial node of 𝑍𝐺𝔞≼𝐿𝑈 (A) belongs to 𝐺 and is labeled uncovered,
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C2 for every uncovered node 𝑠 , all its successor transitions 𝑠 −→ 𝑠 ′ occurring in 𝑍𝐺𝔞≼𝐿𝑈 (A)
should be present in 𝐺 ,

C3 for every covered node 𝑡 ∈ 𝐺 there is an uncovered node 𝑠 ∈ 𝐺 such that 𝑡 ⊑ 𝑠; moreover
there is an explicit subsumption edge 𝑡 ⇝ 𝑠 in 𝐺 ,

C4 there is a path of −→ edges from the initial node to every other node.

A path in a subsumption graph is made of both→ and⇝ edges. We write 𝑠1 d∗ 𝑠2 to denote
that there is a path from 𝑠1 to 𝑠2 in the subsumption graph. We now describe the relation between
paths in a zone graph and in a subsumption graph. For the rest of this section, we fix an automaton
A and a subsumption graph 𝐺 for A.

Lemma 3.2. For every (finite or infinite) path 𝑠0 → 𝑠1 → 𝑠2 → · · · in 𝑍𝐺𝔞≼𝐿𝑈 (A) there is a path
𝑠 ′0 d

∗ 𝑠 ′1 d
∗ 𝑠 ′2 d

∗ · · · in 𝐺 such that for each 𝑖 , 𝑠𝑖 ⊑ 𝑠 ′𝑖 and 𝑠 ′𝑖 is uncovered.

Proof. Proof proceeds by induction. FromC1, the initial node 𝑠0 is present in𝐺 and is uncovered.
Suppose we have constructed 𝑠 ′0 d

∗ 𝑠 ′1 d
∗ · · · 𝑠 ′𝑛 . Since 𝑠𝑛 ⊑ 𝑠 ′𝑛 , there is a transition 𝑠 ′𝑛 → 𝑠 ′𝑛+1

such that 𝑠𝑛+1 ⊑ 𝑠 ′𝑛+1 in 𝑍𝐺𝔞≼𝐿𝑈 (A) (c.f. Lemma 2.7). As 𝑠 ′𝑛 is uncovered, this transition is present
in𝐺 (C2). If 𝑠 ′𝑛+1 is uncovered in𝐺 , we are done. Otherwise, there is an edge 𝑠 ′𝑛+1 ⇝ 𝑠 ′′𝑛+1 in𝐺 with
𝑠 ′𝑛+1 ⊑ 𝑠 ′′𝑛+1 (C3). This gives 𝑠 ′𝑛 d∗ 𝑠 ′′𝑛+1 as required. □

Lemma 3.2 along with condition C4 says that if there is a path 𝑠0 →∗ 𝑠 in 𝑍𝐺𝔞≼𝐿𝑈 (A), there is a
path 𝑠0 →∗ 𝑠 ′ with 𝑠 ⊑ 𝑠 ′ in the subsumption graph 𝐺 . This shows that subsumption graphs are
complete for reachability. However, these conditions are not sufficient for liveness - for a cycle of
→ edges in the zone graph, we may not get a corresponding cycle of → edges in the subsumption
graph (c.f. Figures 4 and 6). We now give an extra criterion.

Definition 3.3 (Liveness compatible subsumption graph). A subsumption graph 𝐺 is said to be
liveness compatible if it additionally satisfies the following condition:

C5 there is no cycle containing both an accepting node and a subsumption edge.

In Figure 6, the zone graph restricted to white nodes and the squiggly edges is not liveness
compatible. There is a cycle containing an accepting node (𝑟, 1 ≤ 𝑦 − 𝑥) and a subsumption edge
from this node. However, removing this subsumption edge and adding the grey nodes makes it
liveness compatible. The only remaining subsumption edge is from (𝑠, 1 ≤ 𝑦 −𝑥 ≤ 101) and it is not
part of a cycle containing an accepting node. Intuitively, when we add a subsumption edge 𝑡 ′⇝ 𝑠 ′,
we know that paths in 𝑍𝐺𝔞≼𝐿𝑈 (A) starting from 𝑡 ′ can be simulated from 𝑠 ′ in the subsumption
graph. But if there is a cycle containing 𝑡 ′⇝ 𝑠 ′ in the subsumption graph, this would mean that
the simulation from 𝑠 ′ can bring us back to 𝑡 ′. Hence some accepting runs from 𝑡 ′ in 𝑍𝐺𝔞≼𝐿𝑈 (A)
could be lost in the subsumption graph. We show that condition C5 above makes such a situation
impossible.

Theorem 3.4. 𝑍𝐺𝔞≼𝐿𝑈 (A) has an infinite accepting path iff a liveness compatible subsumption
graph has an infinite accepting path consisting of → edges.

Proof. Let 𝐺 be a liveness compatible subsumption graph. Since all the −→ edges in 𝐺 come
from the zone graph, a cycle of −→ edges in 𝐺 implies such a cycle in the zone graph. This shows
the direction from right to left. Suppose 𝑍𝐺𝔞≼𝐿𝑈 (A) has an accepting run 𝜌 : 𝑠0 −→ 𝑠1 −→ · · · . From
Lemma 3.2, we have a path 𝜌 ′ in 𝐺 of the form: 𝑠 ′0 d

∗ 𝑠 ′1 d
∗ 𝑠 ′2 d

∗ · · · such that each 𝑠𝑖 ⊑ 𝑠 ′𝑖 .
Since 𝜌 is an accepting run, some accepting node 𝑠 repeats infinitely often in 𝜌 . Corresponding
positions in 𝜌 ′ contain nodes which subsume 𝑠 . Since there are finitely many nodes in 𝐺 , there
should be some accepting node 𝑠 ′ which occurs infinitely often in 𝜌 ′. Therefore there is a cycle
containing 𝑠 ′ in 𝐺 . By liveness compatibility criterion C5 this cycle should be made of only −→
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edges. From condition C4, there should be a path consisting of −→ edges from the initial node of 𝐺
till 𝑠 ′. This gives an infinite path in 𝐺 made of→ edges that visits an accepting node 𝑠 ′ infinitely
often. □

The above theorem gives a characterization for the use of subsumption to decide liveness. It now
remains to design an algorithm that computes such graphs. Before we give an algorithm, we make
an observation about the complexity of computing liveness compatible subsumption graphs. Note
that these liveness compatible subsumption graphs have more nodes than subsumption graphs
used for reachability. In the next section, we show that liveness compatible graphs can be much
larger than subsumption graphs, and there is an intrinsic difficulty in inferring liveness from plain
subsumption graphs (which are sound and complete for reachability).

4 DECIDING LIVENESS FROM SUBSUMPTION GRAPHS IS PSPACE-COMPLETE
In order to understand the overhead created due to the liveness compatibility condition, we consider
a variant of the non-emptiness problem for TBA (Definition 2.2) where a subsumption graph of
the automaton is also given as input. A subsumption graph 𝐺 of a TBA A is minimal if for every
two nodes 𝑠 and 𝑡 , if 𝑠 ⊑ 𝑡 then 𝑠 = 𝑡 or 𝑠 is the initial node of 𝑍𝐺𝔞≼𝐿𝑈 (A). In other words, 𝐺 only
contains incomparable nodes w.r.t. ⊑, except for the initial node that may not be maximal in 𝐺
w.r.t. ⊑. We show that the emptiness problem for TBA remains Pspace-complete even with 𝐺 as
the input. This contrasts with the reachability problem that can be solved in polynomial time from
𝐺 . We first formalize the problem under consideration. The Büchi non-emptiness problem with
subsumption graph (EMPTY-SUB) is defined by:

INPUT: A TBA A and a minimal subsumption graph 𝐺 for A
OUTPUT: “Yes” if A has a Büchi accepting run, “No” otherwise.

Theorem 4.1. The problem EMPTY-SUB is Pspace-complete.

The upper bound follows since determining Büchi non-emptiness from the automaton can be
done in Pspace. For the Pspace-hardness, we give a reduction from the membership problem for
Linear Bounded Automata (LBA). Recall that an LBA is a Turing machine whose tape is restricted
to the part on which the input word is written. The membership problem for LBAs asks whether
the accepting state is reachable from the initial state and initial tape content 𝑤 . This problem is
known to be Pspace-complete, even for deterministic LBAs over a binary alphabet. Without loss
of generality, we consider a deterministic LBA B, over the binary alphabet {0, 1} with initial tape
content 𝑤 ∈ {0, 1}𝑁 , and hence tape of size 𝑁 . We describe a construction of a TBA AB,𝑤 such
that:
(1) it has a Büchi accepting run iff B has an accepting run starting with𝑤 on the tape;
(2) AB,𝑤 has a unique minimal subsumption graph 𝐺 which has size polynomial w.r.t. the size

of B and𝑤 ;
(3) there is a polynomial time algorithm that given B and𝑤 , constructs AB,𝑤 and 𝐺 .

This gives a polynomial-time reduction from the membership problem of LBAs to EMPTY-SUB,
thus proving Theorem 4.1.
We proceed in two steps: first we describe a TBA A ′

B,𝑤 which satisfies requirement 1 given
above; following this, to satisfy requirement 2, we make some modifications to A ′

B,𝑤 to get the
final automaton AB,𝑤 .

4.1 Building TBA A ′
B,𝑤 that simulates the LBA

The main point is to encode the tape of B. Each cell 𝑖 ∈ [1;𝑁 ] of the tape is represented in A ′
B,𝑤

by a clock 𝑥𝑖 such that 𝑥𝑖 = 2𝑖 when cell 𝑖 contains a 0, and 𝑥𝑖 = 2𝑖 + 1 when it contains a 1. To
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12 F. Herbreteau, B. Srivathsan, T.T. Tran, I. Walukiewicz

simplify the construction, we introduce an extra clock 𝑦. We let 𝑋 = {𝑥1, . . . , 𝑥𝑁 , 𝑦} denote the
set of clocks of A ′

B,𝑤 . A clock valuation 𝑣 encodes a tape content𝑤 ∈ {0, 1}𝑁 when 𝑣 (𝑦) = 0 and
𝑣 (𝑥𝑖 ) = 2𝑖 +𝑤𝑖 for every 𝑖 ∈ [1;𝑁 ] (where𝑤𝑖 denotes the content of the 𝑖𝑡ℎ cell). We write enc(𝑤)
for the valuation that encodes𝑤 .
For every state 𝑞 of B, we have a state 𝑞𝑖, ·,𝑁 in A ′

B,𝑤 where 𝑖 ∈ [1;𝑁 ] encodes the position of
the tape head. The transitions of B are encoded by sequences of transitions in A ′

B,𝑤 . We introduce
intermediate states in A ′

B,𝑤 of the form 𝑞𝑖,𝑡,𝑘 where 𝑞 is a state in B, 𝑖 ∈ [1;𝑁 ] is the position
of the tape head, 𝑡 is the transition in B that is simulated in A ′

B,𝑤 , and 𝑘 ∈ [0;𝑁 ] is an index

pointing to a cell that is being processed in our simulation. Let 𝑡 be a transition 𝑞
𝛼,𝛽,Δ
−−−−→ 𝑞′ in B

with 𝛼, 𝛽 ∈ {0, 1} and Δ ∈ {−1, 0, 1}: when B is at 𝑞 and the tape head points to a cell with letter 𝛼 ,
the LBA overwrites it with 𝛽 , moves the tape head according to Δ and changes its state to 𝑞′. This
transition 𝑡 is simulated by the following sequence in A ′

B,𝑤 :

𝑞𝑖, ·,𝑁
(𝑦=0)∧(𝑥𝑖=2𝑖+𝛼)−−−−−−−−−−−−−→𝑞𝑖,𝑡,𝑁

𝑥𝑁 =2(𝑁+1)
−−−−−−−−−→

{𝑥𝑁 }
𝑞𝑖,𝑡,𝑁−1

𝑥𝑁−1=2(𝑁+1)
−−−−−−−−−−→

{𝑥𝑁−1 }
· · ·

· · ·𝑞𝑖,𝑡,𝑖
𝑥𝑖=2(𝑁+1)+𝛼−𝛽
−−−−−−−−−−−−→

{𝑥𝑖 }
· · · (1)

· · ·𝑞𝑖,𝑡,1
𝑥1=2(𝑁+1)
−−−−−−−−→

{𝑥1 }
𝑞𝑖,𝑡,0

𝑦=2(𝑁+1)
−−−−−−−−→

{𝑦 }
𝑞′𝑖+Δ, ·,𝑁

Except for the names of the states, the only elements in (1) parameterized by 𝑡 and 𝑖 are the guard
of the first transition 𝑥𝑖 = 2𝑖 + 𝛼 and the guard from the middle transition 𝑥𝑖 = 2(𝑁 + 1) + 𝛼 − 𝛽 . In
particular, all sequences have the same last transition that checks 𝑦 = 2(𝑁 + 1) and that resets 𝑦.
Clock 𝑦 ensures that the duration of sequence (1) is exactly 2(𝑁 + 1), and that time does not elapse
in states of the form 𝑞𝑖, ·,𝑁 thanks to the first guard 𝑦 = 0.
The first transition checks that cell 𝑖 contains 𝛼 by testing if 𝑥𝑖 = 2𝑖 + 𝛼 . Then, subsequent

transitions simulate a sequential access to the tape, from its last cell, encoded by 𝑥𝑛 , to its first cell,
encoded by 𝑥1. The value of any clock 𝑥 𝑗 ≠ 𝑥𝑖 is left unchanged by (1). Indeed, if 𝑣 is the value of

𝑥 𝑗 in 𝑞𝑖, ·,𝑁 , then 2(𝑁 + 1) − 𝑣 time units must elapse before the transition
𝑥 𝑗=2(𝑁+1)
−−−−−−−−→

{𝑥 𝑗 }
is taken, and

𝑣 time units elapse after the transition since the total delay on the sequence is 2(𝑁 + 1). Hence
𝑥 𝑗 = 𝑣 in 𝑞′𝑖+Δ, ·,𝑁 . The transition

𝑥𝑖=2(𝑁+1)+𝛼−𝛽
−−−−−−−−−−−−→

{𝑥𝑖 }
updates the value of the clock 𝑥𝑖 . Due to the first

transition in the sequence, we know that 𝑥𝑖 = 2𝑖 + 𝛼 in 𝑞𝑖, ·,𝑁 . Then, 2(𝑁 + 1) − (2𝑖 + 𝛽) time units
elapse before the transition is taken, and we delay 2𝑖 + 𝛽 after this transition to reach a total delay
of 2(𝑁 + 1) along the sequence. Hence 𝑥𝑖 = 2𝑖 + 𝛽 in 𝑞′

𝑖+Δ, ·,𝑁 , thereby encoding the new value 𝛽 of
cell 𝑖 . Observe that every transition on (1), except the first one, is enabled since for every 𝑘 ∈ [1;𝑁 ],
𝑥𝑘 ≤ 2𝑁 + 1 when 𝑞𝑖,𝑡,𝑘 is reached, and 𝑦 ≤ 2𝑁 + 1 when 𝑞𝑖,𝑡,0 is reached. Finally, the automaton
reaches state 𝑞′

𝑖+Δ, ·,𝑁 hence simulating a move to state 𝑞′ with tape head on cell 𝑖 + Δ in B.
A ′

B,𝑤 has an initialisation sequence that encodes the initial word𝑤 in the clocks:

𝑞1, ·,𝑁
𝑥𝑁 =2+(𝑤𝑁 −𝑤𝑁−1)−−−−−−−−−−−−−−→

{𝑥𝑁−1 }
· · ·𝑞1, ·,𝑖

𝑥𝑖=2+(𝑤𝑖−𝑤𝑖−1)−−−−−−−−−−−−→
{𝑥𝑖−1 }

𝑞1, ·,𝑖−1 · · ·𝑞1, ·,1
𝑥1=2+𝑤1−−−−−−→

{𝑦 }
𝑞01, ·,𝑁 (2)

where 𝑞0 is the initial state of B and 𝑞1, ·,𝑘 are new intermediate states with 𝑘 ∈ [1;𝑁 ] and 𝑞 is
distinct from all states in B. Starting with all clocks equal to 0, the automaton reaches 𝑞01, ·,𝑁 with
𝑦 = 0 and 𝑥𝑖 = 2𝑖 +𝑤𝑖 for all 𝑖 ∈ [1;𝑁 ], hence valuation enc(𝑤).
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A configuration of B is a triple (𝑞, 𝑖,𝑢) where 𝑞 is a state of B, 𝑖 ∈ [1;𝑁 ] is the position of the
tape head, and 𝑢 ∈ {0, 1}𝑁 is the content of the tape. From the construction above, we get that
LBAs can be simulated by TBAs:

Lemma 4.2. A configuration (𝑞, 𝑖,𝑢) is reachable in an LBA B started on an input word𝑤 if and
only if the configuration (𝑞𝑖, ·,𝑁 , enc(𝑢)) is reachable in A ′

B,𝑤 from the initial state 𝑞1, ·,𝑁 .

The above lemma talks only about reachability while requirement 1 above talks about a Büchi
run. The last step in our construction of A ′

B,𝑤 is to cater to this. Without loss of generality, we can
assume that B has a unique accepting state 𝑞 𝑓 with no outgoing transition. We make every state of
the form 𝑞

𝑓

𝑖, ·,𝑁 with 𝑖 ∈ [1;𝑁 ] as accepting in A ′
B,𝑤 . For every tape head position 𝑖 ∈ [1;𝑛], we add

an extra edge:
𝑞
𝑓

𝑖, ·,𝑁 −−−−−−−−−−→
{𝑥1, · · · ,𝑥𝑁 ,𝑦 }

𝑞1, ·,𝑁 (3)

that restarts A ′
B,𝑤 in its initial configuration once an accepting state has been reached. From

Lemma 4.2 we get that:

Corollary 4.3. B has a finite accepting run on input word𝑤 iff A ′
B,𝑤 has a Büchi accepting run

with initial state 𝑞1, ·,𝑁 .

4.2 Small Subsumption Graph for A ′
B,𝑤

A crucial point for our proof of Theorem 4.1 is to get a small minimal subsumption graph 𝐺 for
A ′

B,𝑤 . More precisely the size of 𝐺 should be polynomial w.r.t. the size of B and𝑤 . To get this, we
will add some states and edges to A ′

B,𝑤 .
A clock order is a total order on the set 𝑋 of clocks of A ′

B,𝑤 . Let 𝑖 be an integer between 0 and
𝑁 . We denote ⊴𝑖 the clock order 𝑥𝑖+1 ⊴𝑖 · · · ⊴𝑖 𝑥𝑁 ⊴𝑖 𝑦 ⊴𝑖 𝑥1 ⊴𝑖 · · · ⊴𝑖 𝑥𝑖 . A valuation 𝑣 satisfies a
clock order ⊴𝑖 if for all clocks 𝑧, 𝑧 ′ ∈ 𝑋 we have 𝑣 (𝑧) ≤ 𝑣 (𝑧 ′) ⇔ 𝑧 ⊴𝑖 𝑧

′. A set 𝑆 of clock valuations
satisfies ⊴𝑖 if all clock valuations 𝑣 ∈ 𝑆 satisfy ⊴𝑖 . Sequences (1) and (2), reset the clocks in the same
order: first 𝑥𝑁 , then 𝑥𝑁−1, . . . , then 𝑥1, and finally 𝑦. The initial clock valuation, where all clocks
have value 0, obviously satisfies ⊴𝑁 . Then, by construction of A ′

B,𝑤 , we get that:

Lemma 4.4. For every configuration (𝑞𝑖,𝑡,𝑘 , 𝑣) reachable in A ′
B,𝑤 from the initial state 𝑞1, ·,𝑁 , the

valuation 𝑣 satisfies ⊴𝑘 .

All the reachable zones in the (unabstracted) zone graph ofA ′
B,𝑤 are sets of reachable valuations.

Hence, from Lemma 4.4, we have that in every reachable node (𝑞𝑖,𝑡,𝑘 , 𝑍 ) in the zone graph of A ′
B,𝑤 ,

𝑍 satisfies ⊴𝑘 . We now use this observation to modify A ′
B,𝑤 to get a small minimal subsumption

graph. Let 𝑍⊴𝑘 = {𝑣 ∈ R𝑁+1
≥0 | 𝑣 satisfies ⊴𝑘 } be the set of valuations that satisfy ⊴𝑘 . Observe that

𝑍⊴𝑘 is a zone. The next step of the construction consists in modifying A ′
B,𝑤 in such a way that

its zone graph contains nodes (𝑞𝑖,𝑡,𝑘 , 𝑍⊴𝑘 ) for every state 𝑞𝑖,𝑡,𝑘 in the automaton. From Lemma 4.4,
these zones are maximal w.r.t. zone inclusion, and subsume every other reachable zone. This way
we will ensure that (1) the minimal subsumption graph is unique, and (2) it does not depend on
A ′

B,𝑤 , except for the names of states, and from this we will get an easy bound on its size.
We add a new initial state 𝜄, and sequences from 𝜄 producing the zones 𝑍⊴𝑘 . For all 𝑘, 𝑗 ∈ [0;𝑁 ],

we introduce intermediate states 𝜄𝑘,𝑗 and transitions:

𝜄 −−−→
{𝑥𝑘 }

𝜄𝑘,𝑁 · · · −−−→
{𝑥1 }

𝜄𝑘,𝑁−𝑘+1 −−−→
{𝑦 }

𝜄𝑘,𝑁−𝑘 −−−−→
{𝑥𝑁 }

· · · 𝜄𝑘,1 −−−−−→
{𝑥𝑘+1 }

𝜄𝑘,0 (4)

Starting from 𝜄, every valuation obtained in 𝜄𝑘,0 satisfies ⊴𝑘 . Moreover, the zone that is reachable
in 𝜄𝑘,0 is precisely 𝑍⊴𝑘 . Notice that there is a linear number of sequences (4). We then connect these
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14 F. Herbreteau, B. Srivathsan, T.T. Tran, I. Walukiewicz

sequences to all relevant states ofA ′
B,𝑤 with the effect that every state is reachable with a maximal

zone:

𝜄𝑁,0 → 𝑞𝑖, ·,𝑁 for every 𝑖 ∈ [1;𝑁 ] (5)
𝜄𝑘,0 → 𝑞𝑖,𝑡,𝑘 for every 𝑖 ∈ [1;𝑁 ], 𝑡 ∈ 𝑇, 𝑘 ∈ [0;𝑁 ] (6)
𝜄𝑘,0 → 𝑞1, ·,𝑘 for every 𝑘 ∈ [1;𝑁 ] (7)

We are now ready to formally define AB,𝑤 .

Definition 4.5. Let B be a deterministic LBA (𝑄,𝑞0, 𝑞𝑓 , {0, 1},𝑇 , 𝑁 ) such that the accepting state
𝑞𝑓 has no outgoing transitions. Let𝑤 ∈ {0, 1}𝑁 be an initial tape content of B of length 𝑁 ≥ 0. We
define the TBA AB,𝑤 = (𝑆, 𝜄, 𝐹 , 𝑋,→) by:

• 𝑆 = {𝑞𝑖, ·,𝑁 | 𝑞 ∈ 𝑄, 𝑖 ∈ [1;𝑁 ]} ∪ {𝑞𝑖,𝑡,𝑘 | 𝑞 ∈ 𝑄, 𝑖 ∈ [1;𝑁 ], 𝑡 ∈ 𝑇, 𝑘 ∈ [0;𝑁 ]} ∪ {𝑞1, ·,𝑘 | 𝑘 ∈
[1;𝑁 ]} ∪ {𝜄} ∪ {𝜄𝑖,𝑘 | 𝑖, 𝑘 ∈ [0;𝑁 ]} is the set of states,

• 𝜄 ∈ 𝑄 is the initial state,
• 𝐹 = {𝑞 𝑓

𝑖, ·,𝑁 | 𝑖 ∈ [1;𝑁 ]} is the set of final states,
• 𝑋 = {𝑥1, . . . , 𝑥𝑁 , 𝑦} is the set of clocks,
• → is the transition relation defined by:
– for every transition 𝑡 ∈ 𝑇 and every tape head position 𝑖 ∈ [1;𝑁 ], there are simulation
transitions as in (1);

– there are initialisation transitions as in sequence (2);
– for every tape head position 𝑖 ∈ [1;𝑁 ], there is a restart transition (3);
– for every 𝑘 ∈ [0;𝑁 ], there are reset sequences as (4);
– and for every 𝑖 ∈ [1;𝑁 ], every 𝑡 ∈ 𝑇 , and every 𝑘 ∈ [0;𝑁 ] there are maximal zone
transitions as in (5), (6), and (7).

We first state the reduction of the membership problem for Linear Bounded Automata to the
emptiness for Timed Büchi Automata.

Lemma 4.6. A deterministic LBA B accepts a word𝑤 iff AB,𝑤 has a Büchi accepting run.

This result follows from Corollary 4.3. Observe that on an accepting Büchi run, A ′
B,𝑤 visits an

accepting state infinitely many times. Each time it enters an accepting state it is re-initialised. In
AB,𝑤 the first part of the run may be perturbed because of maximal zone generation sequences (4),
(5), (6) and (7). Nevertheless, after reaching an accepting state for the first time, the state of, AB,𝑤
is reset and it works the same way as A ′

B,𝑤 .
As a result of adding sequences (4), (5), (6) and (7) that first generate maximal zones, the minimal

subsumption graph for AB,𝑤 is small.

Lemma 4.7. Let B be an LBA,𝑤 be a word over {0, 1} and let AB,𝑤 be the corresponding LBA. The
automaton AB,𝑤 and its minimal subsumption graph have a size polynomial in the size of B and𝑤 .

Proof. Observe from Definition 4.5 that AB,𝑤 is itself of size polynomial in the size of B and𝑤 .
Let 𝐺 be the minimal subsumption graph for AB,𝑤 . We show that it is linear in the size of AB,𝑤 .
The bound on the size of 𝐺 follows from the observation that there is at most one node in 𝐺 for
every state in AB,𝑤 . This can be seen from Figure 7. The states 𝜄 and 𝜄𝑘,𝑗 with 𝑘, 𝑗 ∈ [0;𝑁 ] can
only be reached once following sequences (4). Now, transitions (5), (6) and (7) generate zones 𝑍⊴𝑁
for states 𝑞𝑖, ·,𝑁 , and 𝑍⊴𝑘 for states 𝑞𝑖,𝑡,𝑘 and 𝑞1, ·,𝑘 . Taking one more transition from these nodes by
following sequences (1), (2) or (3) yield new nodes which are covered by the maximal zones 𝑍⊴𝑖 at
the previous level thanks to Lemma 4.4. □
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(𝜄, 𝑍0)

(𝜄0,0, 𝑍⊴0 ) . . . (𝜄𝑁−1,0, 𝑍⊴𝑁−1 ) (𝜄𝑁,0, 𝑍⊴𝑁 )

(𝑞1,𝑡1,0, 𝑍⊴0 ) . . . (𝑞𝑁,𝑡𝑀 ,0, 𝑍⊴0 ) . . . (𝑞1,·,𝑁 , 𝑍⊴𝑁 ) . . . (𝑞𝑁,·,𝑁 , 𝑍⊴𝑁 ) . . . (𝑞𝑁,𝑡𝑀 ,𝑁 , 𝑍⊴𝑁 ) (𝑞1,·,𝑁 , 𝑍⊴𝑁 )

• • • • • •

(4)

(5)
(6)
(7)

(1)
(2)
(3)

Fig. 7. The minimal subsumption graph for AB,𝑤 . The first level depicted as dotted lines represents the
sequences of transitions and nodes corresponding to (4). The second level are the nodes generated by
transitions (5), (6) and (7). The third level are nodes generated by one transition of (1), (2) and (3). The nodes
reached after these transitions, denoted • in the picture, are subsummed by the nodes at the previous level,
as shown by the squiggly edges.

4.3 Polynomial-time reduction for EMPTY-SUB
To finish the proof of Theorem 4.1, it remains to show that requirement 3 is satisfied by our
construction: namely, the minimal subsumption graph of AB,𝑤 can be computed in polynomial
time. Let us recall what we have done till now. Given an LBA B and an input word 𝑤 , we have
shown how to construct in polynomial time automaton AB,𝑤 . Lemma 4.7 shows that the minimal
subsumption graph 𝐺 for AB,𝑤 has polynomial size. To construct 𝐺 in polynomial time we can
simply run a breadth-first search on the unabstracted zone graph 𝑍𝐺 (AB,𝑤) as illustrated in
Figure 7. Starting from (𝜄, 𝑍0) where 𝑍0 is the zone consisting of valuations in which all clocks are
equal, one follows sequences (4). From the structure of AB,𝑤 , this computes all nodes (𝜄𝜅,0, 𝑍⊴𝑘 ). In
the next step following transitions (5), (6) and (7), all states of A ′

B,𝑤 will be visited along with their
maximal zones 𝑍⊴𝑖 . Therefore, at depth 𝑁 + 2, the BFS generates exactly one node for each state
in AB,𝑤 containing the associated maximal zone. This takes polynomial time since up to depth
𝑁 + 1 the automaton consists just of a linear number of sequences as in (5), (6), and (7). Then, due
to subsumption, BFS stops at depth 𝑁 + 3 after one transition from (1), (2) or (3). The number of
nodes at level 𝑁 + 3 is bounded by the maximal out degree of the states in AB,𝑤 times the number
of nodes in 𝐺 . This is again of polynomial size w.r.t. B and𝑤 . Hence we get:

Lemma 4.8. There is a polynomial time algorithm constructing the minimal subsumption graph of
AB,𝑤 when given B and𝑤 .

This completes the polynomial reduction and thus proves Theorem 4.1.
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Initial
Subsumption

graph

SCC analysis:

Identify Unsafe and Safe SCCs
Remove subsumptions from
nodes within unsafe SCCs

Extend graph:

New subsumptions only to
safe or fresh nodes (squiggly edges)

Accepting cycle
or no unsafe SCC

Fig. 8. Illustration of the iterative algorithm to construct liveness compatible subsumption graphs.

5 A NEW ALGORITHM FOR LIVENESS
We now consider the algorithmic problem of computing a liveness compatible subsumption graph
for a given automaton. Section 3 says that such a graph allows us to determine if the automaton
has a Büchi run. Section 4 indicated that computing such a graph may be much more complex than
just computing the subsumption graph using the algorithm in the right of Figure 3. The objective
is of course to compute a small graph, as otherwise we could just compute the entire abstract zone
graph without subsumption using the algorithm from the left of Figure 3. A better solution is the
nested DFS algorithm in Figure 5 - indeed the final graph computed by it is a liveness compatible
subsumption graph. In this section, we present a different algorithm, and compare its performance
with the nested DFS approach. Our algorithm iterates between a reachability computation and an
SCC analysis of the computed graph to find cycles violating condition C5 in Definition 3.3. Recall
that a cycle violates C5 if it contains both an accepting state and a subsumption edge; we will call
such cycles unsafe in the rest of this section.

Figure 8 illustrates the idea of the algorithm. It starts with an initial subsumption graph obtained
by a reachability analysis. This subsumption graph may potentially contain unsafe cycles. The
algorithm proceeds by performing an SCC decomposition of the graph by considering → ∪⇝ as
the edge relation (shown by the left figure, with each bubble denoting an SCC). An SCC is marked
Unsafe (black bubble) if it contains an accepting state and a subsumption edge (with both ends
in the same SCC). An SCC is marked Safe (grey bubble) if it cannot reach an unsafe SCC. If an
accepting cycle (consisting only of→ edges) is found during this analysis, the algorithm terminates
saying that the automaton has a Büchi accepting run. Otherwise, the algorithm proceeds to the
next step. The SCC analysis guarantees that the grey part is liveness compatible and exploration-
complete, whereas the remaining part is not yet liveness compatible. Subsumption edges from
nodes within unsafe SCCs are removed. This opens nodes for exploration (shown in the middle
picture as dots in the black bubbles). A subsumption graph construction is started from the grey
dots with subsumption restricted to the previously found safe nodes or the fresh nodes which
appear in the new exploration (shown by the squiggly edges in the picture on the right). This
restriction is imposed in order to avoid falling repeatedly into the same bad cycle: the grey nodes
were subsumed by nodes in their inhabiting black SCCs, and hence the successors of grey nodes
will also be subsumed by the corresponding successors in the black SCCs. So such subsumptions
would stop the new exploration in one step. Even with this restricted subsumption, it is still possible
that new unsafe cycles are formed. Therefore, once the new exploration terminates, the obtained
subsumption graph is passed on for the SCC analysis. This process is iterated till either the SCC
analysis identifies an accepting cycle, or there are no more unsafe SCCs. The latter case gives a
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liveness compatible subsumption graph with no accepting cycles and hence the algorithm can
terminate saying that the automaton has no Büchi run. The algorithm needs to handle an extra
detail: the removal of subsumption edges after the SCC analysis could lead to dangling nodes that
are not→ reachable from the initial node. All such nodes are removed before the next subsumption
graph computation (in the picture on the right).
The algorithm can be viewed as an iterative refinement of the initial subsumption graph till a

liveness compatible graph is obtained. To achieve the behavior of restricted subsumption, a level
field is added to each node and subsumption is allowed only between nodes of the same level, or to
nodes in the previous levels that do not reach unsafe cycles (nodes in grey SCCs).
We will now give a more detailed description of the algorithm. We will say that a node 𝑠 is

covered if it has an outgoing subsumption edge 𝑠 ⇝ 𝑠 ′, for some 𝑠 ′, otherwise 𝑠 is uncovered.

Iterative SCC based algorithm with subsumption:

Phase 0 (Initialize). Let 𝑆𝑖𝑛𝑖𝑡 and 𝑆 be the singleton sets containing the initial node which is
the initial (state, zone) pair. Set the level of this node to 1. Let 𝐾 = 1.

Phase 1 (Construct level 𝐾 subsumption graph). Construct a subsumption graph fromnodes
in 𝑆𝑖𝑛𝑖𝑡 in the following manner. Set the pool of nodes to be explored to be equal to 𝑆𝑖𝑛𝑖𝑡 .
Every node added in this phase will have level field set to 𝐾 . Repeatedly, pick a node (𝑞, 𝑍 )
from the pool (and remove it from the pool). For every edge (𝑞, 𝑍 ) ⇒ (𝑞′, 𝑍 ′), check if there
is already a node (𝑞′, 𝑍1) ∈ 𝑆 for which one of the conditions below holds:
1.1 𝔞≼𝐿𝑈 (𝑍 ′) = 𝔞≼𝐿𝑈 (𝑍1), or
1.2 𝔞≼𝐿𝑈 (𝑍 ′) ⊂ 𝔞≼𝐿𝑈 (𝑍1), node (𝑞′, 𝑍1) is uncovered and has the level 𝐾 or ∞.
If there is no such node, then add the node (𝑞′, 𝑍 ′) to the pool as well as to 𝑆 , and add the
edge (𝑞, 𝑍 ) → (𝑞′, 𝑍 ′) to 𝑆 . Moreover, for every uncovered (and not initial) node (𝑞′, 𝑍2) of
level 𝐾 with 𝔞≼𝐿𝑈 (𝑍2) ⊂ 𝔞≼𝐿𝑈 (𝑍 ′): add (𝑞′, 𝑍2) ⇝ (𝑞′, 𝑍 ′) and remove all other edges from
(𝑞′, 𝑍2).
If there is (𝑞′, 𝑍1) satisfying the condition 1.1, add the edge (𝑞, 𝑍 ) → (𝑞′, 𝑍1) to 𝑆 . If condition
1.2 is satisfied, choose one such node (𝑞′, 𝑍1), with preference given to level∞ nodes; then
add the node (𝑞′, 𝑍 ′) and the edges (𝑞, 𝑍 ) → (𝑞′, 𝑍 ′), (𝑞′, 𝑍 ′) ⇝ (𝑞′, 𝑍1) to 𝑆 .
By the end of this phase, graph 𝑆 is extended with some nodes of level 𝐾 .

Phase 2 (Check for good and bad cycles). Consider the subgraph𝐺𝐾 of 𝑆 induced by nodes
of level ≤ 𝐾 , and containing all the→ and⇝ edges between these nodes. Decompose 𝐺𝐾
into maximal SCCs by considering both → and⇝ as the same kind of edges. We single out
two types of maximal SCCs:
• accepting: when it contains an accepting state and no subsumption edges with both ends
in the SCC;

• unsafe: when it contains an accepting state and a subsumption edge with both ends of the
edge in the SCC.

If there is an accepting SCC in𝐺𝐾 then stop, and return non-empty. Otherwise, identify nodes
in 𝐺𝐾 which cannot reach an unsafe SCC. Change the level of all such nodes to ∞.

Phase 3 (Remove potentially unsafe subsumptions). Let 𝑆 ′
𝐾
be the set of nodes which are

subsumed (that is the only edge out of them is a subsumption edge) that still have level 𝐾 .
Remove subsumption edges with source in 𝑆 ′

𝐾
. Remove, from 𝑆 and from 𝑆 ′

𝐾
, all nodes that

are not→ reachable from the initial node of the graph (the node created in Phase 0). Set 𝑆𝑖𝑛𝑖𝑡
to 𝑆 ′

𝐾
, and set level 𝐾 + 1 to all nodes in 𝑆𝑖𝑛𝑖𝑡 . Set 𝐾 := 𝐾 + 1.

Repeat or stop If 𝑆𝑖𝑛𝑖𝑡 is non-empty, restart from Phase 1; otherwise return empty, and stop.
Before we give the invariants and prove correctness of this algorithm, we illustrate this algorithm

on an example.
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Fig. 9. The top figure shows an automaton with clocks {𝑥1, 𝑦1, 𝑥2, 𝑦2}. Clock 𝑦1 does not appear in the
transitions for clarity. We also assume that 𝐿 = 𝑈 = 100 for each clock. The white state is an accepting state.
The figures below describe subsumption graphs obtained after two refinements of the initial subsumption
graph. We do not show the exact zones. The squiggly edges illustrate subsumptions.

Example 5.1. Consider the automaton A4 shown in Figure 9. We assume that it has 4 clocks
{𝑥1, 𝑦1, 𝑥2, 𝑦2}. We can also assume that the bounds 𝐿 and𝑈 are 100 for each clock. The additional
guards that can achieve these bounds have not been illustrated. The white state is an accepting state.
The transitions 𝑎 and 𝑏 are similar to the left hand side of the automaton A3 (states 𝑞, 𝑟 ) in Figure 6
for clocks 𝑥1 and 𝑦1. Repeated application of the loop 𝑏 gives zones (𝑦1 − 𝑥1 ≥ 0), (𝑦1 − 𝑥1 ≥ 1) and
so on till (𝑦1 − 𝑥1 ≥ 101). In all these zones, we will have 𝑥2 = 𝑦2 = 𝑦1. The transitions 𝑐, 𝑑, 𝑒 and 𝑓
behave like the right hand side of A3 (states 𝑞, 𝑠, 𝑡 ) for clocks 𝑥2 and 𝑦2. Repeated application of the
loop 𝑒 𝑓 generates zones 1 ≤ 𝑦2 − 𝑥2 ≤ 101, 2 ≤ 𝑦2 − 𝑥2 ≤ 101 and so on. When this computation
happens, the value of 𝑦1 − 𝑥1 remains unchanged. Moreover, due to the resets in 𝑐 , we will have
that both 𝑦1 and 𝑥1 are bigger than 𝑦2.
In the discussion below we denote 𝑛𝜎 the node reached after the sequence of transitions 𝜎 .

If subsumptions are not used, then zones in nodes 𝑛𝑎𝑏𝑖𝑐𝑑 (𝑒 𝑓 ) 𝑗 reached after sequence 𝑎𝑏𝑖𝑐𝑑 (𝑒 𝑓 ) 𝑗
will all be different for each 𝑖 ∈ {1, . . . , 100}, 𝑗 ∈ {1, . . . , 100}: the constraint between 𝑥1 and 𝑦1
distinguishes zones reached by different 𝑏𝑖 and the constraint between 𝑥2 and 𝑦2 distinguishes
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the zones reached from different (𝑒 𝑓 ) 𝑗 . Termination occurs after loops 𝑏𝑖 and (𝑒 𝑓 ) 𝑗 take at least
100 steps. Therefore the number of zones is bigger than 100 × 100. If we were allowed to use
subsumptions freely, we would not need to explore each loop more than once. This is shown by the
illustration of the initial subsumption graph in Figure 9. This initial subsumption graph is sound
and complete for reachability. However, this graph is not liveness compatible since there is a cycle
containing a subsumption edge and accepting nodes 𝑛𝑎 and 𝑛𝑎𝑏 . Of course, if we had a mechanism
to check whether iterating edge 𝑏 indeed corresponds to an infinite run of A4, we could stop. This
kind of “loop acceleration” is not our focus here.1 The purpose of this example is to illustrate the
gains of using the iterative algorithm where a restricted amount of subsumption is allowed.
Let us get back to the initial subsumption graph. The SCC analysis on this graph will reveal

that the nodes {𝑛𝑎𝑐 , 𝑛𝑎𝑐𝑑 , 𝑛𝑎𝑐𝑑𝑒 , 𝑛𝑎𝑐𝑑𝑒 𝑓 } are all safe, and hence will have level ∞. This is because
none of these nodes can reach the unsafe cycle formed by 𝑛𝑎 and 𝑛𝑎𝑏 . For the next iteration, the
subsumption edge 𝑛𝑎𝑏 ⇝ 𝑛𝑏 in this unsafe cycle will be removed and an exploration started
from the opened state 𝑛𝑎𝑏 . In this new iteration, the already inferred safe nodes can be used for
subsumption. Therefore, the node 𝑛𝑎𝑏𝑐 will be subsumed by 𝑛𝑎𝑐 . The node 𝑛𝑎𝑏𝑏 will be subsumed
by 𝑛𝑎𝑏 as it is in the same level. This will now form the unsafe cycle 𝑛𝑎𝑏 → 𝑛𝑎𝑏𝑏 ⇝ 𝑛𝑎𝑏 , and hence
𝑛𝑎𝑏𝑏 will be opened again for exploration. This process continues till 𝑏 is iterated 101 times when
an equality edge 𝑛𝑎𝑏101 → 𝑛𝑎𝑏101 would be obtained (as in Figure 6), which means we will have
𝐾 = 101 in the end. In each iteration 𝑗 , we get 2 new nodes 𝑛𝑎𝑏 𝑗𝑏 and 𝑛𝑎𝑏 𝑗𝑐 . The 𝑒 𝑓 loop is never
reached in the new iterations.

This example points out an advantage of using the iterative method: subsumptions can be used
to cut out “non-accepting” parts of the graph. These are the parts in the graph from which a witness
for Büchi non-emptiness cannot be obtained. The nested DFS algorithm adds a subsumption edge
𝑥 ⇝ 𝑦 only if the currently explored part of the graph proves that there is no witness from 𝑦. In
our iterative method, we are less restrictive about this. We allow to use subsumptions 𝑥 ⇝ 𝑦 even
if 𝑦 has not been completely explored yet, and subsequently remove unsafe subsumptions in an
iterative manner. This mechanism could potentially give rise to more nodes 𝑦 that end up being
safe for subsumption. This is exemplified by the behaviour of the algorithm on the automaton
A4. Indeed for this example, the nested DFS algorithm computes the entire zone graph without
subsumption: the node 𝑛𝑎𝑐𝑑 becomes ready for subsumption (that is, its colour is red) only after
node 𝑛𝑎 is completely explored (which is when red DFS is started from 𝑛𝑎). Hence the subsumptions
on the right which cut out the 𝑒 𝑓 loops cannot be made by the nested DFS.

A more detailed comparison of the iterative algorithm and the nested DFS approach is given in
the Section 6.

We will now prove correctness of the iterative algorithm.

Theorem 5.2. A strongly non-Zeno TBA A has a run satisfying the Büchi condition iff the iterative
SCC based algorithm with subsumption returns non-empty.

Proof. We will show that the invariants listed below hold after Phase 3 of the 𝐾𝑡ℎ iteration.
Invariants I1, I3, I5, I7 imply that the graph 𝑆 computed by the iterative algorithm is liveness
compatible if 𝑆𝑖𝑛𝑖𝑡 is empty. The conclusion then follows from Theorem 3.4 saying that in this case
there is no Büchi cycle in the zone graph, and Theorem 2.6 saying that then the automaton does
not have a run satisfying the Büchi condition.

I1 the set of nodes in 𝑆 is a subset of nodes in 𝑍𝐺𝔞≼𝐿𝑈 (A);
I2 each node in 𝑆 has a level between 1 and 𝐾 , or level ∞; all nodes in 𝑆𝑖𝑛𝑖𝑡 have level 𝐾 ,

1Note that the hardness result of Section 4 is independent of the underlying algorithm. Therefore no acceleration method
can be both complete and efficient.
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I3 for every uncovered node in 𝑆 \ 𝑆𝑖𝑛𝑖𝑡 all its successors are present in 𝑆 ;
I4 every→ or⇝ edge out of a level∞ node leads to a level∞ node.
I5 There is no cycle containing both an accepting node and a subsumption edge.
I6 Every covered node has level ∞.
I7 There is a path of −→ edges from the initial node to every node.

We will prove the above invariants by induction on 𝐾 . Let us denote by 𝑆𝑖 and 𝑆𝑖𝑖𝑛𝑖𝑡 the sets 𝑆
and 𝑆𝑖𝑛𝑖𝑡 obtained after the execution of Phase 3 of the algorithm in the 𝑖𝑡ℎ iteration. Let 𝑆0 and
𝑆0𝑖𝑛𝑖𝑡 be the respective sets before the first execution of Phase 1.

From Phase 0 of the algorithm, the sets 𝑆0𝑖𝑛𝑖𝑡 and 𝑆
0 contain only the initial node of 𝑍𝐺𝔞≼𝐿𝑈 (A).

This node is uncovered and its level is 1. All the invariants mentioned above are clearly true.
Assume that the sets 𝑆𝐾−1 and 𝑆𝐾−1𝑖𝑛𝑖𝑡 satisfy the above invariants. If 𝑆𝐾−1𝑖𝑛𝑖𝑡 is empty, the above

invariants ensure that conditions C1-C5 for liveness compatibility are satisfied. Hence the graph
𝑆𝐾−1 is sound and complete for liveness. We will now consider the case when 𝑆𝐾−1𝑖𝑛𝑖𝑡 is non-empty.
In this case, the 𝐾𝑡ℎ execution of Phase 1 is started.

Invariants after Phase 1: From the algorithm, we can infer that all new nodes of the 𝐾𝑡ℎ
iteration are added only during Phase 1. The remaining two phases just change levels of nodes
and remove some nodes and subsumption edges. Since the added nodes are obtained during a
subsumption graph computation starting from 𝑆𝐾−1𝑖𝑛𝑖𝑡 , which is contained in 𝑍𝐺𝔞≼𝐿𝑈 (A), the new
nodes added in 𝑆𝐾 will belong to the zone graph 𝑍𝐺𝔞≼𝐿𝑈 (A). This gives us invariant I1. Invariant
I2 follows from the fact that we add only nodes of level 𝐾 . Invariant I3 is due to the fact that the
algorithm does exhaustive exploration.

During this phase we have also an additional invariant

J1 There are no edges from level∞ nodes in 𝑆𝐾−1 to nodes in 𝑆𝐾 \ 𝑆𝐾−1.

At the beginning of Phase 1 we have edges from 𝑆𝐾−1 nodes to 𝑆𝐾 , namely those to 𝑆𝐾𝑖𝑛𝑖𝑡 . These
edges go from nodes of level 𝐾 − 1. Note that new→ edges start in level 𝐾 and end in level ≤ 𝐾

(the level can be smaller because of case 1.1); all new⇝ edges have level 𝐾 nodes as a source.
Invariants after Phase 2: At the end of Phase 2 of 𝐾𝑡ℎ iteration, some nodes in 𝑆𝐾 are marked

∞. This does not influence invariants I1-I3. Invariant I4 follows from invariant J1, and the code of
Phase 2 since if a node from 𝑆𝐾 has its level changed to ∞ then all its successors also have its level
changed to∞, or already have level∞. Invariant I5 holds because the algorithm did not stop, so
there is no accepting SCC in the part of the graph consisting of nodes of level ≤ 𝐾 . By invariant I4,
such a cycle should have been contained completely in nodes of level∞. But this is impossible by
J1, and I5 from the previous phase.

Invariants after Phase 3: At Phase 3 we consider the set 𝑆 ′
𝐾
of nodes of level 𝐾 with outgoing

covering edges: we remove those edges. This way we satisfy I6. Invariant I3 still holds because all
new uncovered nodes are put in 𝑆𝑖𝑛𝑖𝑡 . We also remove from 𝑆𝐾 and 𝑆 ′

𝐾
all nodes that are not →

reachable from the initial node of the graph. This does not falsify invariants I1-I6, and makes I7
true. Finally, 𝐾 is increased and the levels of nodes in 𝑆 ′

𝐾
are increased too in order to reestablish

invariant I2.
Termination: We have now proved the invariants. Since from invariant I1, the obtained graph

is always a subset of 𝑍𝐺𝔞≼𝐿𝑈 (A), the algorithm terminates after some finite number of iterations as
each level is non-empty. The number of iterations is bounded by the number of nodes in𝑍𝐺𝔞≼𝐿𝑈 (A).
This proves that after some number 𝑛 of iterations, we would have 𝑆𝑛𝑖𝑛𝑖𝑡 to be empty, and the

corresponding graph 𝑆𝑛 would be liveness compatible. If the algorithm has not stopped in Phase 2,
then the invariant I4 says that there is no accepting cycle made of −→ edges in this graph; so it is
correct to report empty. □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: March 2021.



Why liveness for timed automata is hard, and what we can do about it 21

The algorithm from this section starts from the zone graph with subsumption and iteratively
expands it till it becomes liveness compatible. From Section 4 we know that there exist cases
when this process is long because of the conditional complexity bounds. But one can hope that on
many examples the algorithm terminates after a couple of iterations. The next section presents an
evaluation of the performance of this algorithm.

6 EXPERIMENTS
We first present a comparison of three algorithms. The nested depth-first search algorithm with
subsumption presented in [13] (denoted “Nested DFS” hereafter), the iterative algorithm in [7]
(refered to as “Iterative level-SCC” in the sequel) and our algorithm described in page 17 (named
“Iterative full-SCC” from now on). The Iterative level-SCC algorithm [7] is a variant of the Iterative
full-SCC algorithm (page 17) where the SCC decomposition of the graph in Phase 2 is done only
on current level 𝐾 instead of the whole subsumption graph. This guarantees that each node is
visited at most once during Phase 2. In order to ensure correctness of the algorithm, every SCC
within level 𝐾 that can reach a node with level less than 𝐾 is considered violating. This prevents
the construction of bad cycles across levels that would not be detected in Phase 2. Finally, accepting
runs that span accross levels would not be detected in Phase 2 since SCC decomposition is only
performed on current level 𝐾 . A last SCC decomposition is thus required upon termination of the
main loop (i.e. when 𝑆𝑖𝑛𝑖𝑡 becomes empty) in order to detect accepting runs. We refer the reader
to [7] for further details.
All three algorithms have been implemented in our tool TChecker. Our implementation uses

a slightly different representation of the subsumption graph in order to avoid storing covered
nodes and as a result we obtain smaller subsumption graphs. More precisely, when we have an
edge (𝑞, 𝑍 ) → (𝑞′, 𝑍 ′) and there exists a node (𝑞′, 𝑍1) such that 𝔞≼𝐿𝑈 (𝑍 ′) ⊂ 𝔞≼𝐿𝑈 (𝑍1), then our
algorithm from p. 17 adds an edge (𝑞′, 𝑍 ′) ⇝ (𝑞′, 𝑍1). Instead, our implementation removes the
node (𝑞′, 𝑍 ′) and adds an edge (𝑞, 𝑍 ) ⇝ (𝑞′, 𝑍1). When the covering edge (𝑞, 𝑍 ) ⇝ (𝑞′, 𝑍1) is
deemed inconsistent, the node (𝑞′, 𝑍 ′) as well as the edge (𝑞, 𝑍 ) → (𝑞′, 𝑍 ′) are added back to the
subsumption graph.
We have conducted experiments on the classical benchmarks for Timed Automata, that we

describe below. The first six examples have been proposed in [13]. The others are meant to exhibit
strengths and weaknesses of the three algorithms. Our testing scheme is as follows: we verify
properties given by Büchi automata on these standard models. To do this, we take the product of
the model with a property automaton, and check for Büchi non-emptiness on this product.
The results are shown in Table 1. The first column lists the models and properties that were

considered (see description below). The black dots • indicate models with an accepting run. Com-
parison in these cases is difficult since performance depends very much on the order of exploration.
Other models do not have accepting runs. As a result, the algorithms have to compute an invariant
to prove non-existence of an accepting run in these models. We report the number of visited
nodes (“Visited”), the number of nodes in the final invariants (“Size”), the running time (“sec.”) as
well as the maximum level (“K”) for iterative algorithms. The last two columns report the size of
subsumption graphs (Definition 3.1) produced by our implementation of UPPAAL’s reachability
algorithm, and the time needed to compute them. The size of the subsumption graph gives a lower
bound on the size of liveness compatible subsumption graphs computed by Iterative algorithms.
Both Iterative algorithms and the reachability algorithm explore the state-space of the automata
using an optimized search order, called topological search proposed in [11]

The first six models and properties are taken from [13]. Fischer’s protocol is a mutual-exclusion
protocol based on real-time constraints. Let 𝑐 denote the number of processes in the critical section.
We checked properties (fi1) G(𝑐 ≤ 1) mutual exclusion; (fi2) GF(𝑐 = 0) ∧ GF(𝑐 = 1) non-blocking
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from [14]; and (fi3) G(𝑟𝑒𝑞1 =⇒ F𝑐𝑠1) every request of process 1 is eventually satisfied. FDDI is a
token ring protocol where the communication can be synchronous or asynchronous. We checked
property (FD1) FG(𝑎𝑠𝑦𝑛𝑐1) process 1 eventually communicates asynchronously. Finally, CSMA/CD
is a protocol to detect and solve message collisions that is used for communications over Ethernet
networks. We checked two properties (CC1)G(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =⇒ F𝑎𝑐𝑡𝑖𝑣𝑒) after a collision, the network
becomes active again; and (CC2) FG(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =⇒ G¬𝑠𝑒𝑛𝑡) after some collisions, no message can
ever be sent. We consider instances of the three models with 7 processes and standard parameter
values from the literature.

The results show that our Iterative full-SCC algorithm computes liveness invariants that are
significantly smaller that those computed by the Nested DFS algorithm and the Iterative level-SCC
algorithm. Indeed, for all 6 examples, the reachability invariants are liveness compatible as shown
by the comparison to the reachability algorithm. It also visits less nodes on the first 5 examples.
Our algorithm stops immediately after Phase 1 for (fi1) and (cc2) that have no reachable accepting
state. Models (fi2), (fd1) and (cc1) have reachable accepting states, but no bad SCC. As a result,
our algorithm stops after Phase 2 and skips Phase 3. Finally, (fi3) has an accepting run that is
found during Phase 2. Examples (cc2) and (cc3) have accepting runs that can be detected early by
the nested DFS algorithm. Both Iterative algorithms first entirely compute a subsumption graph
(Phase 1) before detecting the accepting runs (in Phase 2). As a result, they visit and store more
nodes. This is expected since these algorithms are specialized to compute small subsumption graphs
in the absence of accepting runs.
The last five models and properties have been tailored to exhibit strengths and weaknesses

of each algorithm. To enable this, we consider timed properties since adding new clocks yields
complex zones and makes covering harder. These examples are built from the CSMA/CD model
(cc) and the Fischer model (fi) described above. Property (cc3) is depicted in Figure 10 (right). The
automaton checks that station 1 tries to transmit fast enough, and that it often achieves successful
transmissions. Property (cc4) is a variation of (cc3) where cycles can be iterated only a bounded
number of times. This is achieved by adding a new clock 𝑡4 that is never reset, and an invariant
𝑡4 ≤ 𝑀 to the accepting state (for some constant 𝑀). Property (cc5) checks that if collisions are
infrequent and station 1 tries to send infinitely often, then it effectively sends messages infinitely
often. Property (fi4) expresses that if process 1 can infinitely often access the critical section for
𝑀 time units, then it enters the critical section infinitely often. Finally, property (fi5) checks that
process 1 requests access to the critical section frequently, but is only granted access in a certain
time window. As for (cc4), the cycles in (fi5) can be iterated only a bounded number of times.
Property (cc4) with bounded number of iterations of cycles is difficult for Iterative algorithms.

This example generates many bad SCCs and hence many refinements, as seen in column 𝐾 . At level
1, Iterative algorithms unfold the cycle once. This leads to a bad SCC that is refined at the next
iteration. The next iteration unfolds the cycle for the second time, building a bad SCC again. This
goes on until the cycle has been unfolded enough times to detect that it cannot be iterated anymore.
Nested DFS algorithm outperforms both Iterative algorithms on this example. We observe however
that full-SCC decomposition has an edge over level-SCC decomposition in the number of stored
nodes, number of refinements and the running time, at the expense of visiting significantly more
nodes. Property (cc5) exhibits the same situation but with a different outcome. Indeed, the full-SCC
decomposition turns out to be very effective. It generates many level-∞ nodes that can be used for
covering. The liveness compatible subsumption graph produced by the Iterative full-SCC algorithm
is several orders of magnitude smaller that those generated by both the nested DFS algorithm
and the Iterative level-SCC algorithm. Notice also that the Iterative full-SCC algorithm performed
only 1 refinement (i.e. 𝐾 = 2) instead of 59 for the Iterative level-SCC algorithm. Both Iterative
algorithms outperfom Nested DFS algorithm on (fi4). In this case, the subsumption graph obtained
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Model Nested DFS [13] Iterative level-SCC [7] Iterative full-SCC (p. 17) Reachability
Visited Size sec. Visited Size K sec. Visited Size K sec. Size sec.

fi1 26651 26651 0.51 7737 7737 1 0.23 7737 7737 1 0.23 7737 0.25
fi2 205051 132808 2.87 114714 38238 1 1.34 114714 38238 1 1.33 38238 1.27
fi3 • 45749 26679 0.51 29190 20768 1 0.67 29190 20768 1 0.66 20768 0.67
fd1 21160 18246 0.33 2285 705 1 0.03 2285 705 1 0.02 705 0.08
cc1 41386 26878 0.52 50049 16683 1 0.41 50049 16683 1 0.41 16683 0.34
cc2 • 57 56 0.00 21640 14397 1 0.71 21640 14397 1 0.72 14397 0.55
cc3 • 16185 16184 0.09 1598686 970387 2 76.00 1768310 970387 2 75.94 205656 10.94
cc4 44873 35787 1.33 745259 150078 282 170.76 12228757 85894 157 85.23 365 0.01
cc5 240011 237458 3.21 821845 201424 60 202.56 7109 1562 2 0.04 772 0.01
fi4 466572 382936 9.06 232281 77427 1 3.39 232281 77427 1 3.40 77427 3.55
fi5 48299 24979 0.72 126932 29686 17 1.26 310918 11769 12 0.88 704 0.01

Table 1. Comparison of the size of liveness invariants, number of visited nodes, number of levels (K) and running time for three algorithms: nested DFS
algorithm with subsumption [13], Iterative algorithm with level-by-level SCC decomposition [7] and Iterative algorithm with SCC decomposition of the
full graph (p. 17). The last two columns show the size of the reachability subsumption graph and the time required to compute it. Iterative algorithms and
reachability algorithms run a topological search [11]. The first 6 examples are from [13]. Black dots • mark models that have an accepting run. The tests have
been run on a MacBook Pro with an Intel Core i5 2.4 GHz processeor and 16Gb of memory.
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at level 1 is liveness compatible. In contrast, Nested DFS algorithm can only use for covering the
nodes that have been visited during the red search (see Figure 5). We thus suspect that the nodes
that are marked red are mostly “small” nodes, hence limiting the use of covering. Finally, on the last
example (fi5), the Iterative full-SCC algorithm yields a smaller liveness compatible subsumption
graph than the other two algorithms. Applying the SCC decomposition on the full graph allows to
close more SCCs. As a result, the algorithm produces more level-∞ nodes that can later be used for
covering.

Extending the benefits of full-SCC decomposition. Let us examine more closely the adavantages of
full-SCC decomposition. This discussion will lead to one more optimization that further improves
the algorithm.

As we have seen from Table 1, full-SCC decomposition yields smaller subsumption graphs than
level-SCC decomposition (when the graph has more than one level), at the cost of visiting more
nodes. For instance, the Iterative level-SCC algorithm visits 745259 nodes on (cc4) whereas the
Iterative full-SCC algorithm visits 12228757 nodes. Yet, the latter algorithm is twice as fast as the
former. This can be explained in two ways. First, the Iterative full-SCC algorithm stores less nodes,
so searching for a covering node is faster. Second, and more importantly, the exploration of the
zone graph in Phase 1 is much more expensive than all other explorations in subsequent phases.
Indeed, computing an edge (𝑞, 𝑍 ) → (𝑞′, 𝑍 ′) in Phase 1 costs O(𝑛3) where 𝑛 is the number of
clocks. This is the time required to compute the zone 𝑍 ′. Once the edge is generated and stored
in memory, the cost of traversing the edge is O(1). As a result, the extra visits in Phase 2 and 3
are relatively cheap. Thus, bigger number of visits to nodes in Phase 2 by the Iterative full-SCC
algorithm has a very limited impact on the running time. The difference in running times among
the two Iterative algorithms on (cc4) comes from the lower number of calls in Phase 1: 157 for the
full-SCC algorithm vs. 282 for the level-SCC algorithm. The advantage of full-SCC decomposition
over level-SCC decomposition is that the former produces more level-∞ nodes, as it is able to close
SCCs more often.
We now discuss how we can improve covering and produce even smaller liveness compatible

subsumption graphs. First observe that nodes are marked∞ during Phase 2 (see p. 17). These nodes
can be later used for covering during Phase 1 to discard new nodes that are constructed. This means
that when a node 𝑛 gets level ∞ in Phase 2, it can only be used to cover nodes that will be visited
during subsequent runs of Phase 1. Our algorithm will never try to cover by 𝑛, the nodes that have
been created before 𝑛 got level ∞.
We have thus implemented a variant of the Iterative full-SCC algorithm that tries to cover

existing nodes when a node gets level ∞. Notice that to fullfil Definition 3.1, when a node 𝑛 is
covered by a level-∞ node 𝑛′, we need to remove all outgoing edges from 𝑛, then add an edge
𝑛⇝ 𝑛′. As a result, the successor nodes of 𝑛 in the subsumption graph may become unreachable.
Hence, this extra optimization is applied in the middle of Phase 3. The resulting modified phase is:

(Phase3’) Let 𝑆 ′
𝐾
be the set of nodes which are subsumed (that is the only edge out of them is

a subsumption edge) that still have level 𝐾 . Remove subsumption edges with source in 𝑆 ′
𝐾
.

(Extended covering) for every node (𝑞, 𝑍 ) that has been marked level ∞ during Phase 2, and
for every node (𝑞, 𝑍 ′) such that 𝔞≼𝐿𝑈 (𝑍 ′) ⊂ 𝔞≼𝐿𝑈 (𝑍 ), remove all outgoing edges from (𝑞, 𝑍 ′),
and add an edge (𝑞, 𝑍 ′) ⇝ (𝑞, 𝑍 ).
Remove, from 𝑆 and 𝑆 ′

𝐾
, all nodes that are not→ reachable from the initial node of the graph

(the node created in Phase 0). Set 𝑆𝑖𝑛𝑖𝑡 to 𝑆 ′𝐾 , and set level 𝐾 + 1 to all nodes in 𝑆𝑖𝑛𝑖𝑡 . Set
𝐾 := 𝐾 + 1.

At the same time it removes all inaccessible nodes as discussed above, since the covering relation is
a simulation. We stress that this optimization may produce graphs that are not liveness compatible
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as required in Definition 3.3 because as a side effect of freely covering among ∞ nodes we may
get accepting cycles with subsumption edges between ∞ nodes. It is correct to ignore such cycles
because thanks to Theorems 3.4 and 5.2 we know that there cannot be an accepting run from an ∞
node.
Notice that this optimization requires at most 2 extra traversals of the graph: one to detect

covered nodes, and an other one to detect reachable nodes2.
Table 2 shows the effect of extended covering for the Iterative full-SCC algorithm on the same

set of examples as before. We compare three algorithms: Iterative level-SCC algorithm [7], Iterative
full-SCC algorithm (p. 17) and “Iterative full-SCC + Ext. covering” that adds extended covering to
the Iterative full-SCC algorithm. The last two columns in the table give the size of subsumption
graphs generated by our implementation of UPPAAL’s algorithm and the time required to compute
it. Extended covering can also be implemented on top of the Iterative level-SCC algorithm. We do
not report results here because it has very limited impact. The only example where it provides a
significant gain is (cc3) where it generates the same subsumption graph as the full-SCC algorithm.
We observe a minor gain (less that 1%) on examples (cc4), (cc5) and (fi5), and no gain at all on
other examples. This is because applying SCC decomposition level by level does not generate many
level-∞ nodes.
Extended covering significantly improves Iterative full-SCC algorithm. Since this algorithm

generates many level-∞ nodes, we observe a significant gain on most examples. The size of the
liveness compatible subsumption graphs is close to the size of the subsumption graphs generated by
UPPAAL’s reachability algorithm. Moreover, the costs of detecting covered nodes and unreachable
nodes have no significant impact on running time. As explained above the state-space explorations
are inexpensive compared to Phase 1. Moreover, the small number of stored nodes eases the
detection of covered nodes. As a result adding extended covering has a positive impact on both
stored nodes and running time.

On the importance of Büchi verification for Timed Automata. Finally, the case of CSMA/CD gives
an interesting motivation for testing Büchi properties. Indeed property (cc2) holds for the CSMA/CD
model. As a result, the model is not correct since communications should be enabled after a collision.
It turns out that a transition is missing in the widely used model [16, 18]. In consequence, in this
model there is no execution with infinitely many collisions and completed transmissions. Even
more, once some process enters into a collision, no process can send a message afterwards. The
model can be fixed by allowing the 𝑏𝑢𝑠𝑦 action in state 𝑅𝐸𝑇𝑅𝑌 as shown in Figure 10.
This example confirms once more that timed models are compact descriptions of complicated

behaviors due to both parallelism and interaction between clocks. Büchi properties can be extremely
useful in making sure that a model works as intended: the missing behaviors can be detected by
checking if there is a run where every collision is followed by a transmission. Adding the missing
transition enables interesting behaviors where the stations have collisions and then they restart
sending messages.

7 CONCLUSION
As we show in this paper, the liveness problem for timed automata is substantially more difficult
algorithmically than the reachability problem.
The abstract zone graph with subsumption is a standard invariant for reachability properties.

We have given examples where even knowing this graph upfront keeps the liveness problem
Pspace-hard. This partly explains why very little progress has been made in verification of liveness
2Detection of reachable nodes can be achieved during Phase 2 when this optimization is not used. When the optimization is
used, it has to be done after applying extended covering. Hence an extra traversal of the graph is needed.
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𝑊𝐴𝐼𝑇
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(𝑥𝑖 < 2𝑆)

𝑐𝑑𝑖 , {𝑥𝑖 }

𝑏𝑒𝑔𝑖𝑛𝑖 , {𝑥𝑖 }

𝑏𝑢𝑠𝑦𝑖
{𝑥𝑖 }

𝑐𝑑𝑖 , {𝑥𝑖 }

𝑐𝑑𝑖 , {𝑥𝑖 } busyi, {xi }

𝑏𝑒𝑔𝑖𝑛𝑖
{𝑥𝑖 }

(𝑥𝑖 < 𝑆)
𝑐𝑑𝑖
{𝑥𝑖 }

(𝑥𝑖 = 𝐿), 𝑒𝑛𝑑𝑖 , {𝑥𝑖 }

𝐼𝐷𝐿𝐸 𝐵𝑈𝑆𝑌

𝐶𝑂𝐿𝐿.
(𝑦 < 𝑆)

𝑏𝑒𝑔𝑖𝑛𝑖 , {𝑦 }

(𝑦 ≥ 𝑆), 𝑏𝑢𝑠𝑦𝑖

𝑒𝑛𝑑𝑖 , {𝑦 }

(𝑦 < 𝑆)
𝑏𝑒𝑔𝑖𝑛𝑖
{𝑦 }

(𝑦 < 𝑆)
{𝑐𝑑1, . . . , 𝑐𝑑𝑁 }
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(𝑡1 ≤ 3𝑆)

(𝑡1 < 3𝑆), 𝑏𝑒𝑔𝑖𝑛1, {𝑡1 }

(𝑡2 < 2𝐿)
𝑒𝑛𝑑1
{𝑡2 }

(𝑡3 ≥ 𝑆)
𝑏𝑢𝑠𝑦𝑖
{𝑡3 }

(𝑡2 ≥ 2𝐿)
𝑒𝑛𝑑1

Fig. 10. Model of CSMA/CD: station (left) and bus (middle); property (CC3) (right). The dashed edge on state
“RETRY” of the station should be added to the model to allow proper communication after a collision.
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Model Iterative level-SCC [7] Iterative full-SCC (p. 17) Iterative full-SCC + Ext. covering Reachability
Visited Size K sec. Visited Size K sec. Visited Size K sec. Size sec.

fi1 7737 7737 1 0.23 7737 7737 1 0.23 7737 7737 1 0.23 7737 0.25
fi2 114714 38238 1 1.34 114714 38238 1 1.33 237890 38238 1 1.36 38238 1.27
fi3 • 29190 20768 1 0.67 29190 20768 1 0.66 29190 20768 1 0.66 20768 0.67
fd1 2285 705 1 0.03 2285 705 1 0.02 4482 705 1 0.02 705 0.08
cc1 50049 16683 1 0.41 50049 16683 1 0.41 100593 16683 1 0.42 16683 0.34
cc2 • 21640 14397 1 0.71 21640 14397 1 0.72 21640 14397 1 0.71 14397 0.55
cc3 • 1598686 970387 2 76.00 1768310 970387 2 75.94 2407176 875444 2 52.30 205656 10.94
cc4 745259 150078 282 170.76 12228757 85894 157 85.23 23208607 608 157 64.55 365 0.01
cc5 821845 201424 60 202.56 7109 1562 2 0.04 13181 1204 2 0.05 772 0.01
fi4 232281 77427 1 3.39 232281 77427 1 3.40 475411 77427 1 3.45 77427 3.55
fi5 126932 29686 17 1.26 310918 11769 12 0.88 457625 2639 11 0.88 704 0.01

Table 2. Comparison of the size of liveness invariants, number of visited nodes, number of levels (K) and running time for three variants of the iterative
algorithm: Iterative algorithm with level-by-level SCC decomposition [7], Iterative algorithm with SCC decomposition of the full graph (p. 17) and Iterative
algorithm with full-SCC decomposition and extended covering. The last two columns show the size of the reachability subsumption graph and the time
required to compute it. All four algorithms run a topological search [11]. The first 6 examples are from [13]. Black dots • mark models that have an accepting
run. The tests have been run on a MacBook Pro with an Intel Core i5 2.4 GHz processeor and 16Gb of memory.
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properties, since the hope was that the liveness problem can be solved almost as efficiently as
reachability. In the light of the above hardness result, this is impossible modulo complexity theoretic
assumptions.
We have defined a notion of an invariant for liveness properties: a graph proving that the

property does not hold. We have also proposed a high-level algorithm for constructing such an
invariant. Finally, we have reported on some experiments with a preliminary implementation of
this algorithm. Further work will be required to understand the relation between sizes of liveness
and safety invariants, as well as to develop better algorithms for constructing liveness invariants.
While some results of these experiments are very interesting, the others show that our imple-

mentation is far from optimal. Finding better algorithms for constructing liveness invariants is
certainly the most important direction for further work.

ACKNOWLEDGMENTS
Research has been conducted within the context of the Joint targeted Program in Information and
Communication Science and Technology- ICST, supported by CNRS, Inria, and DST. Author B
Srivathsan is partially funded by grants from Infosys Foundation, India, Tata Consultancy Services,
India and the MATRICS project of the Science and Education Research Board, India.

REFERENCES
[1] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.
[2] G. Behrmann, P. Bouyer, E. Fleury, and K.G Larsen. Static guard analysis in timed automata verification. In International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 254–270. Springer, 2003.
[3] G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek. Lower and upper bounds in zone-based abstractions of timed

automata. STTT, 8(3):204–215, 2006.
[4] C. Daws and S. Tripakis. Model checking of real-time reachability properties using abstractions. In TACAS, volume

1384 of LNCS, pages 313–329, 1998.
[5] D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Automatic Verification Methods

for Finite State Systems, pages 197–212, 1989.
[6] F. Herbreteau and B Srivathsan. Coarse abstractions make zeno behaviours difficult to detect. Logical Methods in

Computer Science, 9, 2013.
[7] F. Herbreteau, B. Srivathsan, T.-T. Tran, and I. Walukiewicz. Why liveness for timed automata is hard, and what we

can do about it. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 48:1–48:14, 2016.

[8] F. Herbreteau, B Srivathsan, and I. Walukiewicz. Better abstractions for timed automata. In LICS, pages 375–384. IEEE
Computer Society, 2012.

[9] F. Herbreteau, B. Srivathsan, and I. Walukiewicz. Efficient emptiness check for timed Büchi automata. Formal Methods
in System Design, 40(2):122–146, 2012.

[10] F. Herbreteau, B. Srivathsan, and I. Walukiewicz. Lazy abstractions for timed automata. In CAV, volume 8044 of LNCS,
pages 990–1005, 2013.

[11] F. Herbreteau and T.-T. Tran. Improving search order for reachability testing in timed automata. In FORMATS, pages
124–139. Springer, 2015.

[12] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed automata. Information and
Computation, 251:67–90, 2016.

[13] A. Laarman, Olesen M. C., Dalsgaard A. E., Larsen K. G., and J. van de Pol. Multi-core emptiness checking of timed
Büchi automata using inclusion abstraction. In CAV, volume 8044 of LNCS, pages 968–983, 2013.

[14] G. Li. Checking timed Büchi automata emptiness using LU-abstractions. In FORMATS, pages 228–242, 2009.
[15] S. Tripakis. Checking timed büchi automata emptiness on simulation graphs. ACM Transactions on Computational

Logic (TOCL), 10(3):15, 2009.
[16] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimulations. Formal Methods in System

Design, 18(1):25–68, 2001.
[17] S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata emptiness efficiently. Formal Methods in

System Design, 26(3):267–292, 2005.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: March 2021.



Why liveness for timed automata is hard, and what we can do about it 29

[18] UPPAAL CSMA/CD model. http://www.it.uu.se/research/group/darts/uppaal/benchmarks/genCSMA_CD.awk. Ac-
cessed: 2014-10-08.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: March 2021.

http://www.it.uu.se/research/group/darts/uppaal/benchmarks/genCSMA_CD.awk

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Timed Büchi automata
	2.2 Abstract zone graphs
	2.3 Using subsumption to compute smaller graphs

	3 Liveness compatible subsumptions
	4 Deciding liveness from subsumption graphs is Pspace-complete
	4.1 Building TBA A'B,w that simulates the LBA
	4.2 Small Subsumption Graph for A'B,w
	4.3 Polynomial-time reduction for EMPTY-SUB

	5 A new algorithm for liveness
	6 Experiments
	7 Conclusion
	Acknowledgments
	References

