
Beachcombing on Strips and Islands⋆

Evangelos Bampas1, Jurek Czyzowicz2, David Ilcinkas1, and Ralf Klasing1

1 LaBRI, CNRS and University of Bordeaux, France
{evangelos.bampas,david.ilcinkas,ralf.klasing}@labri.fr

2 Département d’informatique, Université du Québec en Outaouais, Canada
Jurek.Czyzowicz@uqo.ca

Abstract. A group of mobile robots (beachcombers) have to search col-
lectively every point of a given domain. At any given moment, each robot
can be in walking mode or in searching mode. It is assumed that each
robot’s maximum allowed searching speed is strictly smaller than its
maximum allowed walking speed. A point of the domain is searched if at
least one of the robots visits it in searching mode. The Beachcombers’
Problem consists in developing efficient schedules (algorithms) for the
robots which collectively search all the points of the given domain as
fast as possible.

We first consider the online Beachcombers’ Problem, where the robots
are initially collocated at the origin of a semi-infinite line. It is sought to
design a schedule A with maximum speed S, defined as S = infℓ

ℓ

tA(ℓ)
,

where tA(ℓ) denotes the time when the search of the segment [0, ℓ] is
completed under A. We consider a discrete and a continuous version of
the problem, depending on whether the infimum is taken over ℓ ∈ N

∗

or ℓ ≥ 1. We prove that the LeapFrog algorithm, which was proposed
in [Czyzowicz et al., SIROCCO 2014, LNCS 8576, pp. 23–36 (2014)],
is in fact optimal in the discrete case. This settles in the affirmative a
conjecture from that paper. We also show how to extend this result to
the more general continuous online setting.

For the offline version of the Beachcombers’ Problem, we consider the
single-source Beachcombers’ Problem on the cycle, as well as the multi-

source Beachcombers’ Problem on the cycle and on the finite segment.
For the single-source Beachcombers’ Problem on the cycle, we show that
the structure of the optimal solutions is identical to the structure of
the optimal solutions to the two-source Beachcombers’ Problem on a
finite segment. In consequence, by using results from [Czyzowicz et al.,
ALGOSENSORS 2014, LNCS 8847, pp. 3–21 (2014)], we prove that the
single-source Beachcombers’ Problem on the cycle is NP-hard, and we
derive approximation algorithms for the problem. For the multi-source

variant of the Beachcombers’ Problem on the cycle and on the finite
segment, we obtain efficient approximation algorithms.

⋆ Part of this work was done while Jurek Czyzowicz was visiting the LaBRI as a
guest professor of the University of Bordeaux. This work was partially funded by
the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been carried
out in the frame of “the Investments for the future” Programme IdEx Bordeaux –
CPU (ANR-10-IDEX-03-02).

1



One important contribution of our work is that, in all variants of the
offline Beachcombers’ Problem that we discuss, we allow the robots to
change direction of movement and search points of the domain on both
sides of their respective starting positions. This represents a significant
generalization compared to the model considered in [Czyzowicz et al.,
ALGOSENSORS 2014, LNCS 8847, pp. 3–21 (2014)], in which each robot
had a fixed direction of movement that was specified as part of the so-
lution to the problem. We manage to prove that changes of direction do
not help the robots achieve optimality.

1 Introduction

A group of n mobile robots have to explore collectively a given one-dimensional
domain. The robots may be initially collocated or dispersed in the domain. At
every moment of time, a robot can be either in walking mode or in searching
mode. A robot in walking mode traverses the domain with a speed not exceeding
its maximal walking speed. A robot in searching state can travel using at most
its maximal searching speed, which is strictly smaller than its walking speed,
reflecting the fact that a searching activity is more time-consuming. Different
robots may have distinct maximal walking and searching speeds. A robot can
change mode, speed, and direction of movement instantaneously. There is no
communication between the robots during the execution of the algorithm. In
the Beachcombers’ Problem, the goal is to design a schedule for the movement
of all robots so that the domain is searched as fast as possible. A domain is said
to be searched under a given schedule, if every point of the domain is visited by
at least one robot in searching mode.

As pointed out in [11], where the Beachcombers’ Problem was introduced,
there are numerous examples in quite diverse domains in which exploration us-
ing two-speed robots arises as a natural model for the underlying processes. For
example, foraging or harvesting a field may take longer than inadvertent walk-
ing. In computer science, web page indexing or code inspection require a more
involved investigation. A common feature of these examples is that the activity
of searching, or other action to be performed on the territory, takes more time
than casual territory traversal. The analogy to beachcombers has been introduced
in [11] to bring out that, e.g., a beachcomber looking for things of value per-
forms a meticulous search of the beach, which takes significantly more time than
simply walking from one point of the beach to another. Further motivation for
the two-speed model can be found in [11, 12].

Preliminaries and notation. We consider searching schedules using two-speed
robots in the following one-dimensional geometric domains: the cycle of a known
circumference L, the finite straight line segment of a known length L, and on
the semi-infinite line [0; +∞). The efficiency of the search in the first two cases
is expressed in terms of the time tf when the search of the cycle is completed
or, equivalently, the speed L/tf of the process. However, in the latter case, the
schedule efficiency is better expressed by the speed of the search, represented by

2



infℓ
ℓ

tA(ℓ) where tA(ℓ) denotes the time when the search of the segment [0; ℓ] is

completed. In the discrete version of the problem, the infimum infℓ
ℓ

tA(ℓ) is over

ℓ ∈ N
∗. On the other hand, in the continuous setting, the infimum infℓ

ℓ
tA(ℓ) is

taken over ℓ ≥ 1.
A schedule for the robots is defined by a strictly increasing sequence of times

t0, t1, · · · , as well as, for every robot i and every interval [tj , tj+1], for j ≥ 0,
a mode (walking or searching), a speed (respecting the maximum speed of the
chosen mode), and a direction of movement. A schedule is correct if, for every
point p of the domain, there exists a time moment at which p is visited by a robot
in searching mode. For any fixed robot i, we refer to the individual schedule of
robot i as the trajectory of robot i. Clearly, this sequence of intervals is finite in
the offline case and infinite in the online setting.

Observe that while the model allows to use any speed not exceeding the
maximal speed given for the robot’s mode, we can restrict consideration only to
using its maximal searching and walking speeds. Also notice that any searching
schedule may be converted to another one, which has the property that all sub-
segments which were being searched have pairwise disjoint interiors. Therefore,
when looking for the optimal searching schedule, it is sufficient to restrict con-
sideration to schedules whose searched sub-segments may only intersect at their
endpoints.

Previous work. The Beachcombers’ Problem was introduced and studied in [11].
An optimal (offline) algorithm was presented for the problem in which all robots
are initially located on one endpoint of a finite segment of known length. Fur-
thermore, a 2-competitive (online) algorithm was presented for the case where
all robots are initally collocated on the origin of a semi-infinite line. In [12], the
Beachcombers’ Problem was studied for the case of more than one starting po-
sitions on a finite segment of known length. For a fixed number t ≥ 2 of starting
positions, the t-source Beachcombers’ Problem on a finite segment asks to find
t starting points on the segment, an assignment of the robots to the starting
points, and a search schedule which concludes the search of the finite segment as
quickly as possible. It was shown in [12] that this problem is NP-hard for t = 2,
even when all robots have the same walking speed, that the optimal solution can
be computed efficiently when all robots have the same searching speed, and that
there exist a deterministic approximation algorithm for t = 2 and a randomized
approximation algorithm for general t.

Our contributions. In Section 2, we study the online Beachcombers’ Problem
on the semi-line [0; +∞). We prove that the LeapFrog algorithm, which was
proposed in [11], is in fact optimal in the discrete case. This settles in the af-
firmative a conjecture from [11]. We also show how to extend this result to the
more general continuous online setting.

As regards the offline Beachcombers’ Problem, we consider in Section 3 the
single-source Beachcombers’ Problem on the cycle. We show that the structure
of the optimal solutions to the single-source Beachcombers’ Problem on a cycle

3



is identical to the structure of the optimal solutions to the two-source Beach-
combers’ Problem on a finite segment, as defined in [12]. This implies that the
results from [12] for the case of two distinct sources are carried over to the case
of the cycle, yielding an NP-hardness result as well as the existence of efficient
approximation algorithms for the problem. In particular, the NP-hardness of
the single-source Beachcombers’ Problem on the cycle seems at first somewhat
surprising, in view of the existence of an efficient algorithm generating optimal
schedules for the single-source problem on a finite segment.

Furthermore, in Section 4, we explain how to modify the arguments from
Section 3 so as to obtain approximation algorithms for the multi-source variant
of the Beachcombers’ Problem on the cycle and on the finite segment. Our results
for the cycle topology provide a partial answer to an open question posed in [11]
and [12], concerning the study of the problem in different domain topologies.

One further important contribution of our work is that, in all variants of the
offline Beachcombers’ Problem that we discuss, we allow the robots to change
direction of movement and search points of the domain on both sides of their
respective starting positions. This represents a significant generalization com-
pared to the model considered in [12], in which each robot had a fixed direction
of movement that was specified as part of the solution to the problem. On an
intuitive level, allowing the robots to zigzag should not result in a faster sched-
ule. However, no proof of this intuition had been found until now. We manage
to prove that changes of direction do not help the robots achieve optimality.

Due to lack of space, proofs are omitted.

Related work. Searching and exploration have been studied in numerous papers
considering graphs or geometric environments (e.g. [1, 4, 5, 7, 8, 14, 17, 18, 16, 21]).
The performance of the searching or exploration is typically expressed by the
trajectory length or the time used by the mobile agent.

Many searching and exploration algorithms are studied in the online setting,
i.e., the target position or sometimes other parameters of the environment are a
priori unknown (cf. [2, 3, 9, 14, 16, 19, 20]). Efficiency of such algorithms is typi-
cally measured by the competitive ratio, i.e., the ratio of the time spent by the
online algorithm with respect to the time of the optimal offline algorithm.

Most of the papers studying searching and exploration concern single robots.
Sets of collaborating mobile robots were studied, e.g., in [10, 15, 22, 23]. Tradeoffs
between the number of robots and the time of exploration were derived in [19].

The majority of the research on mobile robots concerns robots having the
same mobile speed. Robots with distinct speeds were considered in the context of
sensor energy efficiency [25], for designing fast converging population protocols
[6], and for patrolling the boundary of an environment [13, 24].

2 The Online Beachcombers’ Problem on the Semi-Line

In this section, we consider two variants of the online beachcombers’ problem on
the semi-line. The first one corresponds to the online problem presented in [11].

4



Definition 1 (Discrete Online Beachcombers’ problem). Given n robots
with walking speeds wi and searching speeds si < wi, for 1 ≤ i ≤ n, initially
collocated at the origin of a semi-line [0; +∞), the problem consists in finding
a correct schedule for this semi-line. The discrete online speed of a schedule A
is defined as infℓ∈N∗

ℓ
tA(ℓ) , where tA(ℓ) denotes the time when the search of the

segment [0; ℓ] is completed.

Definition 2 (Continuous Online Beachcombers’ problem). Given n robots
with walking speeds wi and searching speeds si < wi, for 1 ≤ i ≤ n, initially col-
located at the origin of a semi-line [0; +∞), the problem consists in finding a
correct schedule for this semi-line. The continuous online speed of a schedule A
is defined as infℓ≥1

ℓ
tA(ℓ) , where tA(ℓ) denotes the time when the search of the

segment [0; ℓ] is completed.

The idea of the LeapFrog algorithm is to make all sufficiently fast robots,
forming the so-called swarm of the algorithm, meet at some regular intervals.
For this purpose, each robot of the swarm is assigned a specific fraction of such
regular interval that it has to search (the robot walks the rest of the interval). For
each robot, the assigned searching subinterval is calculated as a function of the
walking and searching speeds of all the robots participating in the swarm. The
robots repeat the same behavior in each interval, always all of them meeting at its
extremities. Although all robots are always used in the optimal offline algorithm
presented in [11], some robots whose walking speeds are too slow (informally, not
larger than the average speed of the swarm) may not participate in the swarm
and thus may be never used in the online LeapFrog algorithm.

The main purpose of this section is to prove the optimality of the Algorithm
LeapFrog described in [11]. Our first step toward this goal is to restrict ourselves
to particular schedules, which are much simpler to analyze but are nevertheless
at least as efficient (in terms of online speeds) as general ones. The following
simple lemma holds both for the discrete and the continuous cases.

Lemma 1. For every correct schedule S, there exists a correct schedule S′ whose
both online speeds are not smaller than the respective ones of S, and such that
every moving agent always moves in the initial direction at the full speed permit-
ted by its current mode. Moreover, the interiors of the segments searched by the
different robots do not overlap.

Let LF be the discrete online speed of Algorithm LeapFrog. Before proving
that Algorithm LeapFrog is optimal in terms of discrete online speed, we prove
the slightly weaker result that no correct schedule can have a continuous online
speed larger than LF.

Lemma 2. The continuous online speed of any correct schedule is at most LF.

Theorem 1. The discrete online speed of any correct schedule is at most LF.

Concerning the continuous online speed metrics, it is possible to obtain a
slightly more precise result than the one of Lemma 2.

5



Lemma 3. If there are at least two robots and Algorithm LeapFrog uses all the
robots, then any continuous online speed of any correct schedule is less than LF.

It turns out that simple variations of Algorithm LeapFrog can match the
bounds given in Lemmas 2 and 3.

In Algorithm LeapFrog, all agents participating in the swarm are synchro-
nized at every integer point, that is, they all arrive at the same time at every
integer point. For any positive integer N , we denote by LeapFrogN the variant of
LeapFrog for which the agents participating in the swarm synchronize every 1/N
units of distance, instead of every unit as in the original Algorithm LeapFrog. It
is easy to check that the continuous online speed of Algorithm LeapFrogN tends
to LF as N tends toward infinity. The family of algorithms {LeapFrogN}N∈N∗ is
thus optimal in the case when there at least two robots and Algorithm LeapFrog

uses all the robots (cf. Lemma 3).
If there is only one robot, then the only reasonable algorithm is the one in

which the single robot always searches at its maximal speed. This algorithm
is in fact Algorithm LeapFrog, and its continuous online speed is equal, in this
special case, to its discrete online speed LF. Lemma 2 thus shows that Algorithm
LeapFrog is optimal also in this case.

The remaining case is when there are at least two robots, but the swarm
of Algorithm LeapFrog does not use all the robots. In this particular case, we
consider the following adaptation LeapFrog′ of Algorithm LeapFrog. Let r, with
searching speed s, be some robot not participating in the swarm in Algorithm
LeapFrog. In our adaptation LeapFrog′, this robot r searches the semi-line from
its beginning at its maximum searching speed s during 1/LF time units before
stopping forever. Let p be the point at which r stops. All the robots of the swarm
walk at the walking speed of the slowest walker among them until reaching
point p. (Note that this walking speed is larger than LF by construction of the
swarm.) At this point, all swarm robots execute Algorithm LeapFrogN as if
p was the origin of the semi-line, with N defined as follows. The integer N is
chosen sufficiently large so that, at any time at least 1/LF, the swarm has always
searched one segment of length 1/N ahead of the normal Algorithm LeapFrogN .
One can prove that the continuous online speed of Algorithm LeapFrog′ is equal
to LF, which is optimal by Lemma 2.

3 Single-Source Beachcombers on the Cycle

The purpose of this section is to show that the structure of the optimal solutions
to the offline Beachcombers’ Problem on the cycle is identical to the structure
of the optimal solutions to the two-source Beachcombers’ Problem on a finite
segment, as defined in [12]. This implies that the results from [12] for the case of
two distinct sources are carried over to the case of the cycle, even if the agents
are allowed to zigzag. The (offline) single-source Beachcombers’ Problem on the
cycle is defined as follows:

Definition 3 (BPC – Beachcombers’ Problem on the Cycle). Consider a
cycle CL of circumference L and n robots r1, r2, . . . , rn, initially placed at point

6



0 of the cycle, each robot ri having searching speed si and walking speed wi, such
that si < wi. The Beachcombers’ Problem consists in finding an efficient correct
searching schedule A of CL. The speed SA of the solution to the Beachcombers’
Problem equals SA = L/tf , where tf is the finishing time of A.

The (offline) t-source Beachcombers’ Problem on the segment was defined
in [12] as follows:

Definition 4 (t-SBP – t-Source Beachcombers’ Problem [12]). Consider
an interval IL = [0, L] and n robots r1, . . . , rn, each robot ri having searching
speed si and walking speed wi, such that si < wi. The t-Source Beachcombers’
Problem consists in finding an efficient correct searching schedule A of IL, in
which the robots are divided into at most t groups with each group being ini-
tially placed on a particular point of the segment (the source) and having a fixed
direction of movement. The speed SA of the solution to the Beachcombers’ Prob-
lem equals SA = L/tf , where tf is the finishing time of A.

Note that the model of [12] precludes by definition any change of direction
of movement for the robots, since each group of robots has a fixed direction of
movement which is specified as part of the solution to the t-SBP problem. On
the other hand, in our model for BPC, no such restriction is imposed but we are
able to prove that changing directions does not help the robots.

In the following propositions and lemmas, we will refer to schedules for BPC,
unless it is explicitly stated otherwise.

Proposition 1. For every correct schedule S, there exists a correct schedule S ′

whose completion time is not greater than that of S and which additionally sat-
isfies the following properties:

1. Every pair of arcs searched by the robots under S ′ have disjoint interiors.
2. During every time interval of S ′, every robot i is either stopped or it moves

at the maximum speed wi or si, according to its chosen mode during that
interval.

In view of Proposition 1, we will assume in the following that the trajectory of
each robot i is characterized by a sequence of arcs (Ai,j)0≤j≤σi

and, for each arc,
a mode (searching or walking) and a direction (clockwise or counterclockwise),
such that in each arc the robot is moving at the maximum allowed speed. Note
that an arc Ai,j may correspond to one or more consecutive time intervals of the
schedule.

Lemma 4. For every correct schedule S, there exists a correct schedule S ′ whose
completion time is not greater than that of S and in which the trajectory of every
robot in S ′ satisfies the following:

– It either stops at the origin at time 0, or it searches a sequence of arcs in
clockwise (resp. counterclockwise) direction, in order of increasing clockwise
(resp. counterclockwise) distance from the origin, and then it either stops or

7



it moves counterclockwise (resp. clockwise) to the origin and then searches a
sequence of arcs in counterclockwise (resp. clockwise) direction, in order of
increasing counterclockwise (resp. clockwise) distance from the origin.

– In between arcs that the robot searches clockwise (resp. counterclockwise),
it walks clockwise (resp. counterclockwise) straight from the end of the last
searched arc to the beginning of the next one.

– The robot stops at the moment when it searches a non-empty arc for the last
time.

– Traversing the circle clockwise from the origin, we first encounter all the arcs
that are searched by the robot in the clockwise direction and, subsequently, we
encounter all the arcs that are searched by the robot in the counterclockwise
direction.

Lemma 5. For every correct schedule S, there exists a correct schedule S ′ whose
completion time is not greater than that of S and in which, while moving from the
origin in a clockwise direction, one first encounters all the arcs that are searched
by some robot moving in clockwise direction under S ′, and then one encounters
all the arcs searched by some robot moving in counterclockwise direction under S ′.

We call a schedule that satisfies the properties guaranteed by Proposition 1,
Lemma 4, and Lemma 5 normal :

Definition 5 (Normal schedules). A schedule is called normal if every robot’s
trajectory is either empty (the robot stops at time 0), or it consists of one clock-
wise or counterclockwise leg, as defined below, or it consists of two legs in op-
posite directions, such that after the first leg the robot returns to the origin by
walking at full speed backwards over the first leg.

A clockwise (resp. counterclockwise) leg is a part of a robot’s trajectory that
starts at the origin and consists of searching at full speed a sequence of arcs in
order of increasing clockwise (resp. counterclockwise) distance from the origin.
In between searched arcs, the robot walks at full speed in the clockwise (resp.
counterclockwise) direction from the end of the last searched arc to the beginning
of the next one.

In addition, a normal schedule satisfies the following properties:

1. Every pair of searched arcs (not necessarily by the same robot) have disjoint
interiors.

2. For every robot, each of its legs corresponds to at most one loop around the
circle and, if its trajectory has two legs, they do not overlap.

3. While moving from the origin in a clockwise direction, one first encounters
all the searched arcs that belong to clockwise legs, and then one encounters
all the searched arcs that belong to counterclockwise legs.

It follows from the proofs of Proposition 1, Lemma 4, and Lemma 5 that,
for every correct schedule S that is not normal, there exists a correct normal
schedule S ′ that has smaller or equal completion time. In other words, we can
guarantee all of the properties ensured by Proposition 1, Lemma 4, and Lemma 5

8



simultaneously. In the following, we will assume normal schedules without loss
of generality. In fact, a careful examination of the proofs reveals that, in all
cases, the modification of S to S ′ strictly decreases the completion time of at
least one robot. This is less obvious in Lemma 5, but it suffices to apply the
modification described in the proof for a pair of arcs a, b, such that one of them
is the last searched arc in some robot’s clockwise leg or the last searched arc in
some robot’s counterclockwise leg. It is easy to check that if S does not satisfy
the property in the statement of Lemma 5, then there exists at least one such
pair of searched arcs. We thus have the following:

Lemma 6. For every non-normal correct schedule S, there exists a normal cor-
rect schedule S ′ whose completion time is not greater than that of S and in which
at least one robot requires strictly less time to complete its trajectory.

With every fixed normal schedule S, we associate the corresponding partition
of the circle into pairwise interior-disjoint arcs, each of which is searched by a
single robot that is moving in the same direction over a continuous time interval.
In view of Lemma 4, we may assume that the origin is not in the interior of any
of the arcs.

Definition 6. Let S be a normal schedule. We denote by A+
S (resp. A−

S ) the set
of searched arcs that belong to clockwise (resp. counterclockwise) legs of robots.
For a, b ∈ A+

S ∪ A−
S , we write a ≺ b if a clockwise traversal starting from the

origin encounters arc a before arc b.

For the purpose of stating the next lemma, given a normal schedule S with
completion time T , we will denote by I(S) the inclusion-maximal set of searched
arcs that satisfies the following property: Each arc in I(S) is searched by a robot
that stops strictly earlier than T and

⋃

I∈I(S) I is a continuous arc that contains

the origin. We will denote by R(S) the number of distinct robots that search the
arcs in I(S).

Lemma 7. Let S be a normal correct schedule with completion time T , such
that there exists ǫ > 0 and at least one robot that stops at time T − ǫ. Then,
there exists a normal correct schedule S ′ with completion time at most T and
R(S ′) > R(S).

Repeated applications of Lemma 7 yield Corollary 1, from which Corollaries 2
and 3 follow immediately:

Corollary 1. In every optimal and normal schedule, all robots terminate their
trajectories simultaneously.

Corollary 2. Every optimal schedule is normal.

Corollary 3. In every optimal schedule, the trajectory of each robot contains at
least one leg.

9



We are now ready to further restrict the structure of optimal schedules. We
first show that each robot searches only one arc per leg (Lemma 8), then that
there are no crossing robots (Lemma 9, cf. Definition 7), and then that each
robot performs only one leg (Lemma 10).

Lemma 8. In every optimal schedule, each leg of the trajectory of each robot
contains exactly one searched arc.

Definition 7 (Crossing robots). Let S be a normal schedule. We say that a
pair of robots i, j cross under S if robot i searches arcs a+i ∈ A+

S and a−i ∈ A−
S ,

robot j searches arcs a+j ∈ A+
S and a−j ∈ A−

S , and a+i ≺ a+j ≺ a−i ≺ a−j .

Lemma 9. No optimal schedule contains a pair of crossing robots.

Lemma 10. In every optimal schedule, the trajectory of each robot contains
exactly one leg.

Lemma 10 is the main technical tool for connecting the optimal schedules for
BPC instances to the optimal schedules for 2-SBP instances.

Lemma 11. Let I be an instance of 2-SBP on an interval of length L and let J
be an instance of BPC with the same set of robots on a circle of circumference L.
The completion time of the optimal schedule is the same in both instances.

We obtain now, as immediate corollaries of Lemma 11 and the results in [12],
the NP-hardness of BPC, as well as the existence of deterministic and randomized
approximation algorithms for BPC.

Theorem 2. BPC is NP-hard, even when all robots have the same walking speed.

Theorem 3. BPC admits a 0.5568-approximation algorithm that runs in O(n log n)
time.

Theorem 4. BPC instances in which all robots have the same search speed can
be solved optimally in time O(n log n).

Theorem 5. BPC admits a randomized algorithm which achieves an expected
approximation ratio of 3

4 , needs O(n) random bits, and runs in O(n logn) time.

4 Multi-Source Beachcombers on the Line and Cycle

We now leverage our techniques from the previous section to obtain results for
the multi-source version of the beachcombers’ problem on the line and on the
cycle, while allowing changes of direction as in BPC (Definition 3). We define
the problem t-SBPLz:

10



Definition 8 (t-SBPLz – t-Source Beachcombers’ Problem on the Line
with zigzags). Consider a line segment of length L and n robots r1, . . . , rn, each
robot ri having searching speed si and walking speed wi > si. Find an efficient
correct searching schedule A of the segment, in which the robots are divided into
at most t groups with each group being initially placed on a particular point of
the segment (the source). The speed SA of the solution equals SA = L/tf , where
tf is the finishing time of A.

Similarly, we define t-SBPCz (t-Source Beachcombers’ Problem on the Cycle
with zigzags), where, instead of a segment of length L, the robots have to search
a cycle of circumference L. Note that, in contrast to t-SBP (Definition 4), the
robots are allowed to change direction of movement and, in particular, to search
segments on both sides of their respective starting points.

By following the arguments for BPC from Section 3 and modifying the proofs
as necessary, we can prove that, for a fixed choice of starting points and a fixed
allocation of the robots to those starting points, the equivalents of Lemma 6 and
Corollaries 1–3 hold for t-SBPLz as well, with the only difference that a normal
schedule for t-SBPLz is defined as follows:

Definition 9 (Normal schedules for t-SBPLz). Given a fixed choice of t
starting points and a fixed allocation of the robots to those starting points, a
schedule for t-SBPLz is called normal if every robot’s trajectory is either empty
(the robot stops at time 0), or it consists of one leftward or rightward leg, as
defined below, or it consists of two legs in opposite directions, such that after the
first leg the robot returns to the origin by walking at full speed backwards over
the first leg.

A rightward (resp. leftward) leg is a part of a robot’s trajectory that starts at
its assigned source and consists of searching at full speed a sequence of segments
toward the right (resp. left) in order of increasing distance from the source. In
between searched segments, the robot walks at full speed to the right (resp. left)
from the end of the last searched arc to the beginning of the next one.

In addition, a normal schedule satisfies the following properties:

1. Every pair of searched segments (not necessarily by the same robot) have
disjoint interiors.

2. The given segment of length L is partitioned into t regions, such that each
region is associated with exactly one starting point, and the robots originating
from the associated starting point are confined within that region.

Subsequently, we obtain the following lemma, which corresponds to Lemma 10.

Lemma 12. Given a fixed choice of t starting points and a fixed allocation of the
robots to those starting points, in every optimal t-SBPLz schedule, the trajectory
of each robot contains exactly one leg.

The following Lemma connects the optimal schedules for t-SBPLz instances
to the optimal schedules for 2t-SBP instances.

11



Lemma 13. Let I be an instance of 2t-SBP on a segment of length L and let J
be an instance of t-SBPLz with the same set of robots on a segment of length L.
The completion time of the optimal schedule is the same in both instances.

We thus obtain, in view of the results for t-SBP [12], the following results for
t-SBPLz:

Theorem 6. t-SBPLz instances in which all robots have the same search speed
can be solved optimally in time O(n logn).

Theorem 7. t-SBPLz admits a randomized algorithm which achieves an ex-

pected approximation ratio of 1 −
(

1− 1
2t

)2t
, needs O(n log t) random bits, and

runs in O(n logn) time.

Finally, we prove that the optimal solution to a t-SBPCz instance with a given
swarm on a cycle of circumference L shares its structure with the optimal solution
to a t-SBPLz instance with the same swarm on a segment of length L. Indeed,
the normal schedules for t-SBPCz are essentially the same as those for t-SBPLz,
except that the region associated with each starting point is now an arc of the
cycle.

Lemma 14. Given a fixed choice of t starting points and a fixed allocation of the
robots to those starting points, in every optimal t-SBPCz schedule, the trajectory
of each robot contains exactly one leg.

Lemma 15. Let I be an instance of t-SBPLz on a segment of length L and
let J be an instance of t-SBPCz with the same set of robots on a cycle of cir-
cumference L. The completion time of the optimal schedule is the same in both
instances.

In view of Theorems 6 and 7, we obtain the following results for t-SBPCz:

Theorem 8. t-SBPCz instances in which all robots have the same search speed
can be solved optimally in time O(n logn).

Theorem 9. t-SBPCz admits a randomized algorithm which achieves an ex-

pected approximation ratio of 1 −
(

1− 1
2t

)2t
, needs O(n log t) random bits, and

runs in O(n logn) time.

5 Concluding Remarks

There are several directions in which the study of the search and exploration
using two-speed robots may continue. An obvious one is to improve the approxi-
mation ratio for the versions of the problem that are NP-hard. In this respect, we
should investigate whether zigzags may help to obtain approximate solutions, at
least for particular combinations of searching and walking speeds of the robots
(note that we know from the present paper that zigzags never help to obtain
optimal solutions). Another direction is to study the configurations of robots’
speeds and/or environments for which optimal solutions can be computed effi-
ciently. Finally, it is worthwhile to consider different and more general search
domains, such as non-simple closed or open curves.

12



References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000)

2. Albers, S.: Online algorithms: a survey. Math. Program. 97(1-2), 3–26 (2003)
3. Albers, S., Schmelzer, S.: Online algorithms - what is it worth to know the future?

In: Algorithms Unplugged, pp. 361–366. Springer (2011)
4. Alpern, S., Gal, S.: The theory of search games and rendezvous, vol. 55. Kluwer

Academic Publishers (2002)
5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. In-

formation and Computation 106, 234–234 (1993)
6. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks

of mobile agents. In: ACM SIGACT-SIGOPS 2010, pp. 305–314. ACM (2010)
7. Beck, A.: on the linear search problem. Israel Journal of Mathematics 2(4), 221–228

(1964)
8. Bellman, R.: An optimal search problem. Bull. Am. Math. Soc. p. 270 (1963)
9. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G. (eds.)

Online Algorithms The State of the Art, pp. 232–241. Springer (1998)
10. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent

and oblivious robots. In: Graph-Theoretic Concepts in Computer Science, WG
2010, LNCS 6410, pp. 208–219. Springer (2010)

11. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The
beachcombers’ problem: Walking and searching with mobile robots. In: Structural
Information and Communication Complexity, SIROCCO 2014, LNCS 8576, pp.
23–36. Springer (2014)

12. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The
multi-source beachcombers’ problem. In: Algorithms for Sensor Systems, ALGO-
SENSORS 2014, Revised Selected Papers, LNCS 8847, pp. 3–21. Springer (2014)

13. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by
mobile agents with distinct maximal speeds. In: Algorithms, ESA 2011, LNCS
6942, pp. 701–712. Springer (2011)

14. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Worst-case optimal exploration
of terrains with obstacles. Inf. Comput. 225, 16–28 (2013)

15. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1-3), 34–48 (2007)

16. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoretical
Computer Science 361(2), 342–355 (2006)

17. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Foundations of
Computer Science, FOCS 1990, pp. 355–361. IEEE (1990)

18. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environ-
ment (extended abstract). In: Foundations of Computer Science, FOCS 1991, pp.
298–303. IEEE (1991)

19. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collab-
orative graph exploration. In: Automata, Languages, and Programming, ICALP
2013, LNCS 7966, pp. 520–532. Springer (2013)

20. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive
online approximation of the optimal search ratio. SIAM J. Comput. 38(3), 881–898
(2008)

21. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

13



22. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

23. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online graph exploration
algorithms for cycles and trees by multiple searchers. J. Comb. Optim. (2012)

24. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. In: Algorithms and Computation, ISAAC 2012, LNCS 7676, pp. 598–608.
Springer (2012)

25. Wang, G., Irwin, M.J., Fu, H., Berman, P., Zhang, W., Porta, T.L.: Optimizing
sensor movement planning for energy efficiency. ACM Transactions on Sensor Net-
works 7(4), 33 (2011)

14


