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Abstract Given a boolean predicate on labeled net-

works (e.g., the network is acyclic, or the network is

properly colored, etc.), deciding in a distributed man-

ner whether a given labeled network satisfies that pred-

icate typically consists, in the standard setting, of every

node inspecting its close neighborhood, and outputting
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a boolean verdict, such that the network satisfies the

predicate if and only if all nodes output true. In this pa-

per, we investigate a more general notion of distributed

decision in which every node is allowed to output a

constant number b ≥ 1 of bits, which are gathered by

a central authority emitting a global boolean verdict

based on these outputs, such that the network satisfies

the predicate if and only if this global verdict equals

true. We analyze the power and limitations of this ex-

tended notion of distributed decision.

Keywords Distributed decision · Distributed verifica-

tion · Locality · Network

1 Introduction

1.1 Context and objective

In the framework of distributed computing in large scale

networks, faults of various kinds inherently occur. It is

therefore of the utmost importance that the system be

able to detect the presence of these faults when they

occur, for taking appropriate actions aiming at fixing

the errors. This paper focuses solely on the detection of

faults, that is, on the design of mechanisms allowing the

nodes in the network to check whether the system is in a

legal state or not. For this purpose, we classically model

networks as labeled graphs. A labeled graph is a pair

(G, x) where G = (V,E) is a connected simple graph,

and x : V → {0, 1}∗ is a function assigning a label x(v)

to every node v of G. For instance, these labels can be

viewed as the outputs of previous computations, and

we aim at checking the correctness of these outputs.

A distributed language is a (Turing decidable) family

L of labeled graphs. Typical examples of distributed
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languages are

is-properly-colored = {(G, x) : ∀{u, v} ∈ E,
x(u) 6= x(v)}

and

cycle-freeness = {(G, x) : G has no cycles}.

Note that in this latter case the language does not ac-

tually rely on the labels.

1.1.1 Distributed decision

The standard mechanism for distributed decision works

as follows [32]. A decision algorithm for a distributed

language L is a distributed algorithm performed at ev-

ery node, allowing each node of any given graph G

whose nodes are labeled by x to emit a verdict about

whether (G, x) ∈ L or not, after having exchanged in-

formation with nodes in its vicinity (e.g., its t-neighbor-

hood, i.e., all nodes at distance at most t in the graph,

for some t ≥ 0). This verdict is a boolean value, and,

for the algorithm deciding L to be correct, it is required

that, for every labeled graph (G, x),

(G, x) ∈ L ⇐⇒
∧
v∈V

out(v) = true,

where out(v) ∈ {true, false} is the verdict outputted

by node v of G. The logical conjunction operator ap-

plied to the individual outputs for defining the correct-

ness condition is motivated by different aspects of dis-

tributed computing. In particular, a node outputting

false in (G, x) can raise an alarm, or launch a recovery

procedure aiming at moving the system back to a le-
gal configuration, that is, aiming at computing another

labeling function x′ such that (G, x′) ∈ L.

Nevertheless, there are distributed settings in which

other operators, different from the logical conjunction,

may well be more appropriate. In these settings, even

limiting the verdicts to be a single bit, true or false, is

not mandatory. An example of such settings is sensor

networks [25] in which the individual outputs of sensors

or of motes are gathered at a gateaway node. Another

example is distributed runtime monitoring, in which a

collection of monitors observe the behavior of a sys-

tem at run time, produce their individual verdicts, and

transmit these verdicts to a central monitor (see [10]

and the references therein). In any case, the central au-

thority applies some boolean function f on the multi-set

formed by the collection of individual verdicts, and, for

the algorithm deciding L to be correct, it is required

that, for every labeled graph (G, x),

(G, x) ∈ L ⇐⇒ f({out(v), v ∈ V }) = true. (1)

Yet, in this context, it is desirable that decision algo-

rithms produce individual verdicts on as few bits as pos-

sible, for at least two reasons. The first reason is concep-

tual, as the problem becomes trivial if one allows large

verdicts. In particular, if every node has a unique identi-

fier and is allowed to produce a verdict on O(n log n+k)

bits in n-node graphs labeled by k-bit labels, then every

node can send its identity, its label, and the list of its

neighbors’ identities to the central authority. This al-

lows that central authority to reconstruct the entire in-

stance (G, x), and to decide locally whether (G, x) ∈ L
or not. (Recall that all distributed languages are sup-

posed to be Turing decidable). More importantly, as

far as practical applications might be concerned, the

communication channel between the central authority

and the system may be of limited capacity. This would

typically be the case of a distributed system embed-

ded onboard a satellite, or in any environment that is

difficult to access, enforcing the central monitor to be

remote. In this paper we investigate the power and lim-

itations of such decision mechanisms where, for every

node v, |out(v)| = O(1). That is, the verdict emitted

by every node should be stored in a constant number

of bits, independently of the network size (i.e., its num-

ber of nodes), and independently of the length of the

labels (i.e., their number of bits). It follows that the

number of bits transferred from the system to the cen-

tral authority remains limited to O(n) bits in n-node

networks.

We believe that limiting the size of the output to a

constant, rather than to O(log n), increases the appli-

cability of our model for large sensor networks, in cases

when transmitting output bits to the central author-

ity is costly. This is particularly significant in the case

when this constant can be made very small, e.g., 2, as

we do for monitoring cycle-freeness.

1.1.2 Distributed verification

We also investigate distributed verification in the same

framework. Distributed verification can be viewed as a

non-deterministic version of distributed decision. In its

abstract form, it assumes the presence of a prover, that

is, an oracle assigning a certificate y(v) ∈ {0, 1}∗ to

every node, based on the current labeled graph (G, x).

For every legal instance (G, x), these certificates should

be forged to collectively form a global proof y that

(G, x) ∈ L. A distributed verification algorithm run-

ning at node v does not only take the label x(v) of v

as input, but also the certificate y(v) assigned to v by

the oracle. In the same spirit as for the class NP, for a

verification algorithm to be correct, it is required that,
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for every labeled graph (G, x),

(G, x) ∈ L ⇐⇒

∃y : V → {0, 1}∗ :
∧
v∈V

out(v) = true. (2)

In other words, if (G, x) /∈ L, then the verification al-

gorithm cannot be fooled in the sense that, for every

certificate assignment y, the labeled graph (G, x) will

be rejected by at least one node.

Note that this form of non-deterministic decision

mechanism is of practical relevance. In particular, an

algorithm in charge of computing a labeling function x

for every graph G such that (G, x) ∈ L may as well si-

multaneously compute a certificate function y enabling

to easily verify (G, x) ∈ L. In fact, this mechanism is

frequently used for the design of self-stabilizing algo-

rithms [1,6,12,28].

In this paper, we generalize this approach to the

context in which, for a verification algorithm to be cor-

rect, it is required that, for every labeled graph (G, x),

(G, x) ∈ L ⇐⇒
∃y : V → {0, 1}∗ : f({out(v), v ∈ V }) = true. (3)

As far as practical applications to fault-tolerance are

concerned, this mechanism would simply require that

the central authority inform one or few nodes of the

presence of an error in case f would return false on the

multiset {out(v), v ∈ V } of outputs.

1.1.3 Complexity classes

Two important complexity classes have been defined

and analyzed in [21]. For every integer t ≥ 0, let LD(t)

(respectively, NLD(t)) be the set of all distributed lan-

guages that can be decided (respectively, verified) by

having each node inspecting its t-neighborhood only,

and let

LD = ∪t≥0LD(t), and NLD = ∪t≥0NLD(t).

For instance, is-properly-colored ∈ LD as it is sufficient

that every node consults the colors of its neighbors

to check whether the graph is properly colored. Also,

cycle-freeness ∈ NLD, as follows. In a cycle-free graph,

the prover selects a node as the root, and assigns to ev-

ery node a certificate equal to its distance to the root.

Every node with given certificate d > 0, checks that

it has exactly one neighbor with certificate d − 1, and

all other neighbors with certificate d + 1. A node with

certificate d = 0 checks that all its neighbors have cer-

tificate d = 1. At every node, if these tests are passed,

then the node outputs true, otherwise it outputs false.

One can easily check that there is no way of fooling this

verification mechanism by assigning fake certificates to

the nodes of a graph containing a cycle. More generally,

it has been shown that NLD coincides with the set of

distributed languages closed under lift (see Lemma 1),

i.e., the set of languages L such that if (G, x) ∈ L then,

for every lift (G′, x′) of (G, x), we have (G′, x′) ∈ L.

We refer to Section 2 for the formal definition of lifts,

a.k.a., coverings, but, in essence, a configuration (G′, x′)

is a lift of a configuration (G, x) if there is an input-

preserving map ϕ : V (G′)→ V (G) that induces a local

isomorphism between the neighborhood of every vertex

v′ ∈ V (G′) and the neighborhood of ϕ(v′) ∈ V (G). In

other words, (G, x) and (G′, x′) “look the same” locally.

By relaxing the decision rule, from the logical con-

junction of boolean outputs to any function applied to

outputs on O(1) bits, as specified in Eq. (1) and (3),

we define XLD(t) and XNLD(t) similarly to LD(t) and

NLD(t), respectively, and

XLD = ∪t≥0XLD(t), and XNLD = ∪t≥0XNLD(t),

where “X” stands for “extended”. By definition, we

have LD ⊆ XLD, and NLD ⊆ XNLD. Our objective

is to identify the power and limitations of our extended

form of distributed decision and verification. That is, we

address questions like: Is XLD much larger than LD? Is

XNLD much larger than NLD? How do XLD and NLD

differ? Etc.

1.2 Our results

We first show that the extended classes XLD and XNLD

are significantly larger than their respective base classes

LD and NLD. In particular, we prove that:

– XLD contains distributed languages that are not

even in NLD, and

– XNLD contains all distributed languages.

In general, we prove a collection of separation results,

summarized in Figure 1.

In the second part of the paper, we turn our at-

tention to the extensively studied problem of check-

ing whether a given graph is cycle-free. (Recall the

promise that all considered graphs are connected). It

is known [12,24,28] that

cycle-freeness ∈ NLD \ LD

with certificates of non-constant size, Θ(log n) bits in

n-node networks. This result holds even in graphs of

bounded degree. Regarding deciding cycle-freeness, it

still holds that

cycle-freeness /∈ XLD.
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XNLD = all

XLD NLD

LD

is-properly
-colored

leader containment

miss

even-size

Fig. 1: Four distributed decision and verification classes,

with representatives

However, as opposed to classical distributed decision

with the logical conjunction operator, cycle-freeness ∈
XLD whenever restricted to graphs of bounded degree.

More precisely, we prove:

– cycle-freeness ∈ XLD in (connected) graphs with

maximum degree d requires to output at least log d−
1 bits at some node.

That is, the trivial zero-round algorithm consisting of

(1) asking every node to output its degree, and (2)

checking whether the sum of these degrees is equal to

twice the number of nodes minus one is essentially op-

timal. Also, we show that

– cycle-freeness ∈ XNLD with certificates of size O(1)

bits, and 2-bit output per node.

This is in contrast with the Ω(log n)-bit certificates re-

quired to place cycle-freeness in NLD. These results are

summarized in Table 1.

The paper is structured as follows. In Section 2, we

present the model and some already known results that

we will use in the paper. Section 3 proves all the in-

clusion and separation results summarized in Table 1.

Section 4 shows that the size of the certificates to prove

that a language is in XNLD may be large. The next

two sections are devoted to the cycle-freeness problem,

with Section 5 focusing on verification while Section 6

concerns deciding cycle-freeness.

1.3 Used techniques

In terms of techniques, several of our separation re-

sults regarding the classes XLD, NLD, and XNLD use

reduction to communication-complexity problems. Es-

tablishing that deciding cycle-freeness implies to output

dlog de − 1 bits at some node requires to combine sev-

eral techniques. First, we show that one can reduce our

concern to order-invariant algorithms, that is, roughly,

to algorithms whose output at a node does not depend

on the actual value of the identities of the nodes in

its vicinity, but solely on the relative order of these val-

ues. The celebrated result by Naor and Stockmeyer [32]

enabling to reduce the study of certain kinds of algo-

rithms to order-invariant algorithms cannot be applied

in our context because our instances are not necessarily

in the class LCL of so-called locally checkable languages.

Nevertheless, we were able to provide a novel reduction,

that does not require LCL membership, by using the in-

finite version of Ramsey’s Theorem. Our second main

technique is the construction, for every order-invariant

algorithm supposed to decide cycle-freeness with too

small output at each node, of two explicit instances,

one with a cycle, and one without, that cannot be dis-

tinguished by the algorithm. This construction is diffi-

cult because cycle-freeness can be distributedly decided

with just 2-bit output per node in subdivided graphs1.

Nevertheless, by an appropriate use of the known fact

that every free group can be linearly ordered, we were

able to construct legal and illegal instances that cannot

be distinguished locally by the assumed order-invariant

distributed algorithm.

1.4 Related work

There has been an enormous amount of work on dis-

tributed decision and verification during the last few

years. In this section, we shall mention the most rele-

vant results, and we refer to the survey [16] for a more

complete account.

Distributed decision was first mentioned in [32]

where the class of locally checkable labelings (LCL)

is introduced, as a crucial tool for analyzing local al-

gorithms, including the ability to derandomize algo-

rithms for LCL tasks running in a constant number of

rounds. Local decision was later revisited in [21], where

the classes LD and NLD are defined and analyzed. The

same paper also defines the class BPLD, the proba-

bilistic version of LD. Interestingly, [15] proved that the

same derandomization result as in [32] also holds for the

class BPLD (which strictly includes LCL), whenever we

1 A subdivided graph [2] is a graph in which no two nodes
of degree different from 2 are adjacent. In such graphs with
n ≥ 3, the following algorithm works, with only four different
kinds of outputs (i.e., 2-bit outputs): a node with degree 6=
2 outputs 0, and a node with degree 2 outputs 2, 3 or 4
depending on whether it is adjacent to 0, 1 or 2 nodes with
degree 6= 2, respectively. The central authority then accepts
if and only if the sum of the outputs equals 2(n− 1).
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output size (#bits) comments
distributed decision [folklore] 1 impossible with conjunction
extended distributed decision [this paper] log d±Θ(1) sum of degrees is optimal
distributed verification [12,24,28] 1 Θ(logn)-bit certificates
extended distributed verification [this paper] 2 O(1)-bit certificates

Table 1: Monitoring cycle-freeness in n-node max-degree-d (connected) graphs

restrict ourselves to graphs with degrees upper bounded

by a constant, and labels of constant size. The impact

of identifiers in local decision was analyzed in [17,19],

which demonstrate that, perhaps surprisingly, identi-

fiers help local decision even if such tasks do not re-

quire symmetry breaking. Randomized distributed de-

cision was extensively studied in [20], where it is shown

that, as opposed to the sequential setting, the proba-

bility of success for the randomized decision algorithm

cannot be boosted. Note another important difference

between sequential and distributed decision: checking

the optimality of a given solution may be more difficult

than constructing an optimal solution (see., e.g., [11]).

Distributed property testing is a recent variant of ran-

domized distributed decision (see [14] and the references

therein). In this framework, the algorithm must decide

if the current instance is legal or “far from” being le-

gal, which enables to decide more properties in constant

time.

Different mechanisms for distributed verification,

where certificates are provided to the nodes by an ora-

cle, were presented in the context of fault-tolerant com-

puting, including self-stabilization [1,12,24,26]. Dis-

tributed verification per se was explicitly studied in [28],

which introduced proof-labeling schemes (PLS). These

schemes were generalized in [23] by considering locally

checkable proofs (LCP). The difference between PLS

and LCP is twofold: first, in proof-labeling schemes,

the verification algorithms should run in a single round,

while locally checkable proofs allow verification al-

gorithms running in an arbitrary (constant) number

of rounds; second, proof-labeling schemes exchange

only certificates between nodes, while locally checkable

proofs allow the nodes to exchange their whole states,

including their certificates. In both cases, the certifi-

cates can be assigned by the prover, after the nodes have

been provided with their identities. That is, the certifi-

cate function y in Eq. (2) can depend on the identities

assigned to the nodes. This property has an important

consequence: all distributed languages belong to both

PLS and LCP, with certificates on O(n2+kn) bits in n-

node graphs with k-bit labels [28]. This certificate size

is optimal, in the sense that there are distributed lan-

guages requiring proofs with certificates on Ω(n2 + kn)

bits [23]. In contrast, the aforementioned class NLD de-

fined in [21] requires that the certificate function y do

not depend on the identity assignment to the nodes,

but only on the given labeled graph (G, x). It follows

that there are distributed languages outside NLD. In

fact, NLD has been characterized in [18] as the set of

distributed languages closed under lift (see Lemma 1

in the next section). On the other hand, NLD can be

viewed as ΣLD
1 in a “local hierarchy” mimicking the

polynomial hierarchy in the local distributed decision

setting2. In fact, [7] recently showed that this hierarchy

collapses at the second level, as ΠLD
2 = all. To sum up,

it is known that

PLS = LCP = ΠLD

2 = all,

while

NLD
def
= ΣLD

1 = {L closed under lift},

and, in particular, we shall show in this paper that

XNLD
def
= ΣXLD

1 = all.

It is worth noticing that our model bears similar-

ities with the shared whiteboard model, as studied

in [8,9]. In this model, all nodes share a whiteboard

with read/write accesses to it, and each outputs ac-

cording to its state, and to the content of the white-

board. However, the network is not the communication

medium, and all communications occur via the shared

whiteboard. As a consequence, even if the communica-

tions between the nodes and the whiteboard can poten-

tially be somehow limited (e.g., to O(log n) bits at each

round), every node become aware of information from

nodes far away in the network. In contrast, we consider

here the LOCAL model (see below), in which nodes have

only access to information from their vicinity.

Finally, we are stressing the fact that a new direc-

tion of research related to the theory of distributed de-

cision has been investigated recently, namely distributed

interactive proofs [27]. In this context, a centralized

2 We have adopted the notation ΣLD
1 , ΠLD

2 , etc., to mimic
the standard notation for the existential/universal definition
of the polynomial hierarchy, where P = ΣP

0 = ΠP
0 , NP = ΣP

1 ,
etc. The P in exponent in the polynomial hierarchy refers to
polynomial time, while LD in exponent refers to local decision,
and XLD to extended local decision.
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prover (Merlin) is interacting with a distributed ran-

domized verifier (Arthur) for a finite number of times,

before a local verification phase is performed among the

nodes. In the paper introducing the model [27], as well

as in the follow up contributions [22,31], the power of

such interactive protocols is investigated regarding de-

ciding classical problems (symmetry, isomorphism, di-

ameter, etc.), as well as comparing the complexity of in-

teractive proofs with the one of locally checkable proofs.

2 The model

We consider networks modeled as simple connected

graphs, whose vertices model the computing nodes, and

edges model the communication links. The computa-

tional model considered in this paper is the classic LO-
CAL model [34], which is a standard distributed com-

puting model capturing the essence of locality. In this

model, each node has an identity that is unique in the

network, i.e., distinct from all other identities in the net-

work. The identity of a node v is a non negative integer,

denoted by id(v) ∈ N. All nodes are woken up simulta-

neously, and execute the same algorithm. Computation

proceeds in fault-free synchronous rounds during which

every node

1. sends a message of unlimited size to each of its

neighbors in the underlying network,

2. receives the messages sent by its neighbors, and

3. performs arbitrary individual computations on its

data.

The running time of an algorithm is defined as the max-

imum number of rounds it takes to terminate at all

nodes, over all possible networks, and all possible iden-

tity assignments to the nodes in these networks. Simi-

larly to [32], we are interested in algorithms whose run-

ning times are independent of the size of the network,

and independent of the size of the identities. That is,

we are focusing on algorithms that run in a constant

number of rounds.

Besides its identity id(v), every node v has a la-

bel x(v) ∈ {0, 1}∗, and we are interested in deciding

whether a given pair (G, x) satisfies some given boolean

predicate, that is, whether (G, x) belongs to some given

distributed language L. Here, the pair (G, x) denotes

the graph G whose every node v is labeled by the bi-

nary string x(v). Let outA(G, x, id, v) denote the output

of node v ∈ V (G) running Algorithm A in the labeled

graph (G, x) with identity assignment id. We denote by

outA(G, x, id) the global output, that is,

outA(G, x, id) = {outA(G, x, id, v), v ∈ V (G)}

is the multiset of all individual outputs (the same

individual output may appear more than once in

outA(G, x, id)).

Definition 1 Let f be a boolean function taking as

input any multi-set with elements taken from {0, 1}b,
for b ≥ 1. Algorithm A decides the distributed lan-

guage L, with b-bit outputs, and using interpretation f

if, for every n-node labeled graph (G, x), and for ev-

ery identity assignment id to the nodes of G, we have

outA(G, x, id, v) ∈ {0, 1}b for every node v ∈ V (G), and

(G, x) ∈ L ⇐⇒ f(outA(G, x, id)) = true.

We denote by XLD (for extended local decision)

the class of distributed languages for which there exists

a constant time decision algorithm, that is, for which

there exist t ≥ 0, a boolean function f taking as input

any multi-set with elements taken from {0, 1}b for some

b ≥ 1, and a t-round algorithm A that decides L, with

b-bit outputs, and using interpretation f .

Definition 2 Let f be a boolean function taking as in-

put any multi-set with elements taken from {0, 1}b, for

some fixed b ≥ 1. Algorithm A verifies the distributed

language L, with b-bit outputs, and using interpretation

f if, for every n-node labeled graph (G, x), we have
(G, x) ∈ L =⇒ ∃y : V (G)→ {0, 1}∗,∀id : V (G)→ N,

f(outA(G, x, y, id)) = true

(G, x) /∈ L =⇒ ∀y : V (G)→ {0, 1}∗,∀id : V (G)→ N,
f(outA(G, x, y, id)) = false

where outA(G, x, y, id, v) ∈ {0, 1}b for every node v ∈
V (G).

There are significant differences between distributed

decision and distributed verification. The function y :

V (G) → {0, 1}∗ in Definition 2 is called a certificate

function. It assigns to every node a certificate y(v).

Of course, the certificates depend on the labeled graph

(G, x), and on the considered distributed language L.

Alternatively, one can view the certificates as assigned

by a powerful prover, which aims at helping the al-

gorithm (which can be viewed as a verifier) to check

whether (G, x) ∈ L. Note that the algorithm in Defini-

tion 1 takes only the identity id(v) and the label x(v) as

input at every node v. Instead, the algorithm in Defini-

tion 2 takes also the certificate y(v) as input at node v.

Finally, note that the certificate function y depends on

the given labeled graph (G, x), but not on the identity

assignment to the nodes.

We denote by XNLD (for extended non-

deterministic local decision) the class of distributed

languages for which there exists a constant time verifi-

cation algorithm, that is, for which there exist t ≥ 0,
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a boolean function f taking as input any multi-set

with elements taken from {0, 1}b for some b ≥ 1, and a

t-round algorithm A that verifies L, with b-bit outputs,

and using interpretation f .

Finally, we use the notion of t-lifts, sometimes also

called t-coverings (or simply coverings when t = 1), see

[3,30]. For t ≥ 1, a t-lift of a labeled graph (G, x) is a

labeled graph (G′, x′) such that there exists a graph ho-

momorphism ϕ : V (G′) → V (G) with x′(v) = x(ϕ(v))

for every v ∈ V (G′), and ϕ induces a graph isomor-

phism between t-neighborhoods, i.e., between BG′(v, t)

and BG(ϕ(v), t) for every node v of G′, where BG′(v, t)

is the open ball of radius t around v in G′, that is,

the graph defined as the union of all paths of length at

most t starting from v in G′. The t-lift is called strict

if (G′, x′) is not isomorphic to (G, x).

Example: Let us consider the n-node cycles Cn =

(v0, . . . , vn−1), for different values of n. The labeled

graph (C8, x) with x(vi) = i mod 4 is a 1-lift of the

labeled graph (C4, x). The lift is ϕ : V (C8) → V (C4)

defined by φ(vi) = vi mod 4. Similarly, (C16, x) is a 2-lift

of (C8, x). By contrast, (C8, x) is not a 2-lift of (C4, x)

because any ball of radius 2 in (C8, x) includes five dif-

ferent nodes, while any ball of radius 2 in (C4, x) in-

cludes four nodes.

The main property of t-lifts that we will use in the

paper is the following folklore observation.

Fact 1 For any t-lift (G′, x′) of (G, x) by ϕ : V (G′)→
V (G), the size |ϕ−1(v)| of the pre-image ϕ−1(v) of v is

the same for any node v ∈ V (G) (and this size is larger

than 1 in the case of a strict t-lift).

Proof If two nodes v and w of G satisfy |ϕ−1(v)| >
|ϕ−1(w)|, then this also holds for two adjacent nodes

v and w. Thus, since ϕ induces an isomorphism be-

tween balls of radius t, it induces an isomorphism be-

tweenBG′(v′, t) and BG(v, t), for every v′ ∈ ϕ−1(v). Let

ϕ−1(v) = {v′1, . . . , v′k}. To the edge {v, w} in G corre-

sponds a collection {v′i, w′i}, i = 1, . . . , k, of edges in G′

where w′i is the image of w by the isomorphism ϕ−1

between BG(v, t) and BG′(v′i, t). Since |ϕ−1(w)| < k, it

must be the case that w′i = w′j for some i 6= j. This

contradicts the fact that ϕ induces an isomorphism be-

tween BG′(w′i, t) and BG(w, t), as the two neighbors v′i
and v′j of w′j are mapped to the same node v. This con-

tradiction establishes Fact 1. ut

The following result will also be used throughout

the paper.

Lemma 1 (Lemmas 1 and 2 in [18])

Let L be a distributed language. L ∈ NLD if and only

if there exists t ≥ 1 such that L is closed under t-lift.

3 Classification and separation

Recall that the classes LD and NLD, defined in [21], are

the respective restrictions of XLD and XNLD to the set-

ting in which each node can output a single bit, and the

interpretation is the result of the conjunction operator

on these outputs. Hence, by definition, LD ⊆ XLD, and

NLD ⊆ XNLD. Also, by definition, XLD ⊆ XNLD. The

purpose of this section is to show that these inclusions

are strict (the strict inclusion LD ⊂ NLD is established

in [21]), and to study the relationship between XLD and

NLD. The following result is illustrated in Figure 1.

Theorem 1 XLD \NLD 6= ∅, NLD \XLD 6= ∅, and

LD ⊂ (XLD ∩NLD) ⊂ (XLD ∪NLD) ⊂ XNLD = All.

The proof of the above theorem is direct by com-

bining the following five lemmas, including Lemma 4

which, in addition, provides an upper bound on the

size of the certificates enabling to place every language

in XNLD. As it will become clear from the proof of

these lemmas, the extra power of XNLD compared to

NLD allows us to distinguish whether a configuration

(G′, x′) is isomorphic to a configuration (G, x), or is a

strict 1-lift of that configuration.

Lemma 2 XLD \NLD 6= ∅.

Proof To establish XLD \NLD 6= ∅, let

leader = {(G, x) : ∀u ∈ V (G), x(u) ∈ {0, 1},

and
∑

u∈V (G)

x(u) = 1},

i.e., the set of labeled graphs (G, x) such that x(u) ∈
{0, 1} equals 0 for all nodes except exactly one (the

leader). We have leader /∈ NLD because this language

is not closed under lift (cf. Lemma 1). Indeed, no strict

lift of an element of leader is in leader itself (by Fact 1,

a legal configuration with one leader is lifted to a con-

figuration with at least two leaders, which is illegal).

To establish that leader ∈ XLD, we describe a local dis-

tributed algorithm enabling each node to output a con-

stant number of bits, with the associated interpretation.

The algorithm runs in zero rounds: every node u simply

returns the single bit bu = x(u). The decision is then

made according to the collection {bi ∈ {0, 1}, i ∈ [n]}
of outputs3, by applying the logical operator

f({bi ∈ {0, 1}, i ∈ [n]}) =

n∨
i=1

(
bi ∧

∧
j 6=i

bj

)
3 The indices i = 1, . . . , n are only for the purpose of nota-

tion. The decision is taken based on an unordered multiset of
outputs.
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which is true if and only if there is a unique bi equal to 1.

Hence, the input configuration is accepted if and only

if there is a unique node u with x(u) = 1, as desired.

This proves that XLD \NLD 6= ∅. ut

Lemma 3 LD ⊂ XLD ∩NLD.

Proof We have LD ⊆ XLD ∩ NLD by definition. To

establish the strict inclusion LD ⊂ XLD ∩NLD, let

even-size = {(G, x) : G has an even number of nodes}.

This language is in NLD because it is closed under lift

(cf. Lemma 1). Indeed, by Fact 1, the number of nodes

of a lift is a multiple of the number of nodes of the lifted

graph. To show that it also belongs to XLD, consider

the algorithm running in zero rounds consisting, for ev-

ery node u, of outputting the single bit bu = 1. The

decision is then made by applying the operator

f({bi ∈ {0, 1}, i ∈ [n]}) = 1−
n⊕
i=1

bi

to the multi-set {bi ∈ {0, 1}, i ∈ [n]} of output bits,

where ⊕ denotes the exclusive-disjunctive (XOR) op-

erator. The value of f is equal to 1 if and only if the

graph has an even number of nodes. Finally, we have

even-size /∈ LD. This is because if some node u outputs 0

in an odd cycle C with some identity assignment (there

must be such a node so that C be rejected by the con-

junction operator), then it also outputs 0 in some even

cycle, causing this latter legal instance to be wrongly

rejected. (Take the same cycle C with the same identity

assignment, and insert one node between the two nodes

at distance bn/2c from u, with some arbitrary identity

distinct from the existing ones: node u still outputs 0

in this cycle).

This completes the proof of LD ⊂ XLD ∩NLD. ut

Lemma 4 Every (Turing decidable) distributed lan-

guage is in XNLD. Moreover, the verification of lan-

guages on n-node networks with k-bit labels per node

can be achieved using O(n2 + kn)-bit certificates, by

having each node inspecting its 1-hop neighborhood with

2-bit outputs, or in 2 rounds with 1-bit outputs.

Proof Let L be a language. We describe a 1-round ver-

ification protocol for L. The certificate y of an instance

(G, x) ∈ L is an n× n adjacency matrix M of G, with

nodes indexed arbitrarily by distinct integers in [1, n],

plus an n-dimensional array L where Li is the label of

node i ∈ [1, n]. In addition, every node v receives the in-

dex λ(v) ∈ [1, n] corresponding to v in M and L. More

formally, the certificate at node v is

y(v) = ((G′, x′), i),

where G′ is an isomorphic copy of G with nodes labeled

by λ from 1 to n, x′ is an n-dimensional vector such

that x′(λ(u)) = x(u) for every node u, and i = λ(v).

In n-node networks with k-bit input per node, such a

certificate is on O(n2 + kn) bits.

Let us first describe an algorithm using two bits au
and bu of output at every node u, and then we will show

how to reduce these two bits to just one bit, at the cost

of an extra round of communication. Every node u with

index λ(u) = 1 sets au = 1. All other nodes set au = 0.

For computing bu, every node u performs a single round

of communication, sending its input x(u) and its cer-

tificate y(u) to all its neighbors. Each node then uses

its input, its certificate, and the received information

from its neighbors to check that (1) they all got the

same graph G′ and the same label x′ in their certifi-

cates, and (2) its actual neighborhood corresponds to

its neighborhood in the certificate (isomorphism of the

neighborhoods preserving the input x and the label λ).

If some inconsistency is detected by a node u, then this

node sets bu = 0. At this point, each node u that has

not yet set the variable bu sets it to 1 if (G′, x′) ∈ L, and

to 0 otherwise. (Recall that a distributed language is,

by definition, Turing decidable). Every node u outputs

the pair (au, bu). The decision is then made according

to the multiset {(ai, bi) ∈ {0, 1}2, i ∈ [n]} of outputs,

by applying

f({(ai, bi) ∈ {0, 1}2, i ∈ [n]}) =( n∨
i=1

(
ai ∧

∧
j 6=i

aj

))
∧
( n∧
i=1

bi

)
.

To see why f = 1 if and only if (G, x) ∈ L, ob-

serve that if every node u passes the tests regarding

the certificates, without setting bu to 0, then all nodes

agree on the graph G′ and on the input vector x′, and

(G′, x′) ∈ L. Moreover, they know that their respective

neighborhood in G fits with the corresponding one in

G′. Therefore, if every node u passes the tests regard-

ing the certificates without setting bu to 0, then (G, x)

is either identical (up to isomorphism) to (G′, x′) or to

a strict 1-lift of it4. It follows that, if all bits bu are 1,

then (G′, x′) = (G, x) if and only if there exists exactly

one node v ∈ G, with index λ(v) = 1. This is precisely

the leader problem, which is decided using the outputs

in {au, u ∈ V (G)}.
Now, we reduce the two bits au and bu to just one

bit cu. This is done using an extra round of communi-

cation, in which each node u sends its value bu to all its

neighbors. If any received bit is 0, then node u sets bu

4 Recall that a graph H is a 1-lift of a graph G if there exists
a homomorphism from H to G preserving the neighborhood
of each node.
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to 0. Otherwise, the bit bu is kept unchanged. Observe

that now, thanks to this extra round of communication,

if any node u detects some inconsistencies in the first

round, then all its neighbors are also aware of the issue.

As a consequence, if some node “raises an alarm” (i.e.,

sets bu = 0), then at least another node does the same.

Thus, every node u sets

cu = au ∨ bu,

and outputs cu. The decision is then made according

to the collection {ci ∈ {0, 1}, i ∈ [n]} of outputs, by

applying the operator

f({ci ∈ {0, 1}, i ∈ [n]}) =

n∨
i=1

(
ci ∧

∧
j 6=i

cj

)
which is 1 if and only if (G, x) ∈ L. Indeed, cu = 1

if and only if u detects some issue (i.e., bu = 0) or

λ(u) = 1 (i.e., au = 1). However, if u has detected some

issue, then one of its neighbors u′ has also detected some

issue, which guarantees cu′ = 1 for u′ as well. Thus,

f = 0 if (G, x) /∈ L. (The case where G is reduced to

a single node is an exception: in this case, the unique

node u sets cu = au∧bu). This completes the proof that

XNLD = All. ut

In the following, we use a classical result from

communication complexity. In this field introduced by

Yao [36], two players called Alice and Bob each receives

an n-bit string, respectively α and β. They must com-

pute the value f(α, β), where f is some given boolean

function, by communicating one bit at a time to each

other. The communication complexity of a function f

is defined as the minimum number of bits exchanged

by Alice and Bob in the worst case in order to compute

the function f . The next two lemmas use the following

classical lower bound.

Theorem 2 ([36], see also [29]) The communication

complexity of the identity function equality on n-bit

strings is at least n.

Lemma 5 XLD ∪NLD ⊂ XNLD.

Proof We use a language, called miss, introduced in [7],

and we show that miss /∈ XLD ∪ NLD. In miss, every

node u of a labeled graph (G, x) is given a family F(u)

of labeled graphs, each described by an adjacency ma-

trix representing the graph, and a 1-dimensional array

representing the labeling of the nodes of that graph.

In addition, every node u of (G, x) is given a binary

string x′(u) ∈ {0, 1}∗. Hence, (G, x′) is also a labeled

graph. The actual configuration (G, x) is legal if and

only if (G, x′) is missing in all families F(u) for every

u ∈ V (G), i.e., (G, x′) /∈ F where F = ∪u∈V (G)F(u).

In short, we consider the language

miss = {(G, x) : ∀u ∈ V (G), x(u) = (F(u), x′(u))

and (G, x′) /∈ F = ∪u∈V (G)F(u)}.

Note that miss /∈ NLD because it is not closed under

lift (as it may be the case that (G, x′) /∈ F but a lift of

(G, x′) is in F), cf. Lemma 1.

We prove that miss /∈ XLD by contradiction, us-

ing arguments from communication complexity. As-

sume that there exists a t-round algorithm A and an

interpretation f of individual b-bit outputs produced

by A enabling to decide miss. In particular, the combi-

nation of A with f must decide the restricted version

of miss, defined on paths P = (v1, . . . , vn), defined as

follows. Let k > (t + 1)b. We set x′(v1) = α ∈ {0, 1}k,

x′(vn) = β ∈ {0, 1}k, and, for every node vi, 1 < i < n,

we set x′(vi) as k consecutive zeros. For every node vi,

1 ≤ i ≤ n, we set

F(vi) = {(G, x) : G = P and x(vj) ∈ {0, 1}k

with x(v1) 6= x(vn)}.

From this setting, it follows that

(P, (F , x′)) ∈ miss ⇐⇒ α = β.

We show that, using A and f , one could solve the com-

munication complexity problem equality between Al-

ice and Bob, by exchanging fewer than k bits, which

contradicts the well known lower bound k from Theo-

rem 2. Given α as input, Alice simulates the algorithm

A applied at the n− t− 1 nodes v1, . . . , vn−t−1, while,

given β as input, Bob simulates A applied to the t+ 1

nodes vn−t, . . . , vn. Since A produces b bits of output at

each node, the simulation of A allows Alice to compute

(n− t− 1)b bits, i.e., the n− t− 1 outputs of the nodes

v1, . . . , vn−t−1. Similarly, Bob computes (t+1)b bits. It

is thus sufficient for Bob to send these (t + 1)b bits to

Alice so that she can apply f on these bits together with

her own (n − t + 1)b bits to determine whether α = β

or not. This holds for any α, β ∈ {0, 1}k. This is a con-

tradiction, whenever k > (t + 1)b. Hence miss /∈ XLD,

which completes the proof. ut

Lemma 6 NLD \XLD 6= ∅.

Proof Let us consider the following language defined

in [21]. Every node v is given an element x(v) of a

ground set U , and a collection S(v) of subsets of U .

containment = {(G, (x,S)) : ∃v ∈ V (G), ∃S ∈ S(v)

with {x(u) : u ∈ V (G)} ⊆ S}.
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We have containment ∈ NLD because it is closed under

lift (the set of node labels is preserved under lift). Now,

by the same arguments as for proving miss /∈ XLD in

Lemma 5, one can show containment /∈ XLD as well.

More precisely, we also focus on the paths P =

(v1, . . . , vn) where the only differences between the in-

stances are restricted to the input labels of the two

extremities. The internal nodes of the paths receive the

same x = x0, where x0 is some fixed element of the

ground set U . For the extremities, we set x(v1) = α and

x(vn) = β, where α and β are not necessarily distinct

elements of U that are nevertheless both different from

x0. Finally, for each node v of the path (including its ex-

tremities), we set S(v) as the set of all unordered pairs

of elements of U . Similarly as in the proof of Lemma 5,

we have that (P, (x,S)) ∈ containment ⇐⇒ α = β.

By choosing a set U of size 2k + 1, with k > (t + 1)b,

the same communication complexity arguments lead to

a contradiction, proving the lemma. ut

Remark. Lemma 4 states that all distributed lan-

guages are verifiable using certificates of O(n2 + kn)

bits, which is the same upper bound as for proof-

labeling schemes [28]. However, while proof-labeling

schemes allow certificates to depend on the identity

assignment, our verification algorithm uses certificates

that are independent of the identity assignment. On the

other hand though, our verification algorithm is not re-

stricted to use the conjunction operator for interpreting

the multiset of local outputs.

4 Minimum certificate size for universal

verification

By Lemma 4, we know that every TM-decidable dis-

tributed language with k-bit inputs is locally verifi-

able by providing nodes with certificates of O(n2 + kn)

bits in n-node networks. Moreover, the verification

is performed in one round with 2-bit outputs, or in

two rounds with 1-bit outputs. The following theorem

proves that this bound is tight, in the sense that, for

every integers k, t, b ≥ 1, there exist languages with k-

bit inputs which require certificates of size Ω(n2 + nk)

bits to be verified in t rounds with b-bit outputs at each

node.

Theorem 3 For any integers k ≥ 0, t ≥ 0, and b ≥ 1,

there exist languages with k-bit labels that require cer-

tificates of size Ω(n2 + nk) bits in n-node networks to

be verified locally in t rounds using b-bit outputs (i.e.,

to be placed in XNLD(t)).

Proof We define the language symmetry as follows.

Given a graph G with k-bit label x(u) at every node

u, a label-preserving automorphism φ of G is an auto-

morphism satisfying x(u) = x(φ(u)) for every node u.

Let

symmetry = {(G, x) : there is a non-trivial

label-preserving automorphism for G},

where, by non-trivial, we mean distinct from the iden-

tity mapping (φ(v) = v, for every node v). Note that

most (unlabeled) graphs are asymmetric. More pre-

cisely, Erdős and Rényi [13] showed that there are

(1− o(1))2(n
2) asymmetric graphs with n nodes.

The proof that symmetry requires Ω(n2+nk) bits to

be verified in n-node networks with k-bit labels is based

on a construction used in [23] to prove a lower bound on

the size of the certificates when using the conjunction

operator. We show that the arguments from [23] can

be extended to apply to languages on labeled graphs

(i.e., not only to graph properties), and extended to

apply to all possible operators f for interpreting b-bit

outputs (i.e., not only to the conjunction operator for

1-bit outputs). So, let k ≥ 0, t ≥ 0, and b ≥ 1 be three

integers.

Let Fn,k be the family of labeled graphs (G, x)

where G is a non-symmetric graph with n-nodes, and

|x(u)| = k for every node u of G. More precisely, by

enumerating the nodes of G from 1 to n in an arbi-

trary manner, we select a unique (labeled) instance of

each non-symmetric graph with n nodes, to be placed

in Fn,k. It results from the same analysis as in [23] that

|Fn,k| = 2kn
(1− o(1))2(n

2)

n!

and thus log |Fn,k| = Θ(n2 + nk). Now, for every two

labeled graphs (F1, x1) and (F2, x2) in Fn,k, let (G, x) =

(F1, x1)+(F2, x2) be the labeled graph formed by a copy

of F1 together with its labels x1, a copy of F2 together

with its labels x2, and a path P of 4t+1 nodes (all with

label 0k), connecting node 1 in F1 to node 1 in F2. The

number of nodes in G is therefore 2n+ 4t+ 1 = Θ(n).

Let

C = {(G, x) = (F1, x1) + (F2, x2) : (F1, x1) ∈ Fn,k
and (F2, x2) ∈ Fn,k}.

We show that even verifying symmetry-membership for

labeled graphs in C requires Ω(n2 +nk)-bit certificates.

Since all graphs in Fn,k are non-symmetric, we get that,

for any (G, x) ∈ C, we have (G, x) ∈ symmetry if and

only if (F1, x1) = (F2, x2). (Recall that the graphs in

Fn,k are labeled, and thus equality here means the exis-

tence of a label-preserving isomorphism between F1 and
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(F1, x′1) (F1, x′1)

path P

(G1, x1)

(F2, x′2) (F2, x′2)

path P

(G2, x2)

(F1, x′1) (F2, x′2)

path P

(G, x)

Fig. 2: Illustration of the “cutting and gluing” construction of (G, x) from (G1, x1) and (G2, x2).

F2). Let Csym be the subset of C consisting of symmetric

graphs in C, i.e.,

Csym = C ∩ symmetry.

We have:

Csym = {(G, x) = (F, x′) + (F, x′) : (F, x′) ∈ Fn,k}.

Note that |Csym| = |Fn,k|. Also note that |Fn,k| ≥
2c(n

2+nk) for some constant c > 0, and for large enough

values of n. Assume now, for the sake of contradiction,

that one can verify symmetry in t rounds with certifi-

cates of size s ≤ c
8t+2 (n2 + nk) bits per node, using

algorithm A with global interpretation f on b-bit out-

puts. Then, for every configuration in C, the path P

includes 4t+ 1 certificates, for a total of (4t+ 1)s bits,

that is at most c
2 (n2 +nk) bits. Therefore, there are at

least

R = 2
c
2 (n

2+nk)

graphs in Csym that have the same collection of certifi-

cates on their respective paths P . On the other hand,

for an (n+t)-node graph with b bits of output per node,

the total number of possible multi-sets the verification

algorithm A can produce on this graph is

N =

((
2b

n+ t

))
=

(
2b + n+ t− 1

n+ t

)
=

(
2b + n+ t− 1

2b − 1

)
where

((
x
y

))
denotes the multiset coefficient “x multi-

choose y”. Therefore,

N =
(n+ t+ 1)(n+ t+ 2) · · · (n+ t+ 2b − 1)

(2b − 1)!
= O(n2

b

).

So, let us assign identities to every graph (G, x) =

(F, x′) + (F, x′) in Csym as follows. One copy of (F, x′)

is given identities from 1 to n, while the other copy

of (F, x′) is given identities from n + 1 to 2n. In both

copies, the identity assignment is set with respect to

the enumeration of the nodes in F , i.e., the i-th node

receives identity i in one copy, and identity n+ i in the

other copy. Nodes in the path P connecting the two

graphs are given identities from 2n+ 1 to 2n+ 4t+ 1.

We now use the family of all these graphs (G, x) =

(F, x′)+(F, x′) similarly as a fooling set is used in com-

munication complexity.

Since R is very large compared to N2, there exist

two configurations

(G1, x1) = (F1, x
′
1) + (F1, x

′
1)

and

(G2, x2) = (F2, x
′
2) + (F2, x

′
2)

in Csym that receive the same collection of certificates on

their respective path P , and for which A produces the

same multi-set M1 of outputs in the copies of (F1, x
′
1)

and (F2, x
′
2) connected to the nodes with identities 2n+

1, . . . , 2n+t on P , and the same multi-set M2 of outputs

in the copies of (F1, x
′
1) and (F2, x

′
2) connected to the

nodes with identities 2n+ 3t+ 2, . . . , 2n+ 4t+ 1 on P .

Let us denote by M0 the multi-set of outputs produced

by A on the 2t + 1 nodes at the middle of P in both

configuration (G1, x1) and (G2, x2).

Now, consider the following configuration (G, x)

formed by “cutting and gluing” (G1, x1) and (G2, x2)

as shown in Figure 2. More precisely, (G, x) is formed

by connecting (F1, x
′
1), (P, 0k), and (F2, x

′
2), with iden-

tities in [1, n] for F1, in [n + 1, 2n] for F2, and in

[2n+1, 2n+4t+1] for P . Let us provide these nodes with

the certificates inherited from these respective copies

of (F1, x
′
1) in (G1, x1), and (F2, x

′
2) in (G2, x2). Each

node with identity in {1, . . . , n} ∪ {2n + 1, . . . , 2n + t}
(resp., with identity in {n + 1, . . . , 2n} ∪ {2n + 3t +

2, . . . , 2n + 4t + 1}) has the same local view of radius

t in (G, x) as in (G1, x1) (resp., (G2, x2)). Moreover,

nodes in the middle part of the path, with identities in

[2n + t + 1, 2n + 3t + 1] have the same view in (G, x)

as in (G1, x1) and (G2, x2). Therefore, the verification

algorithm A outputs the same multi-set M0 ∪M1 ∪M2

for the illegal configuration (G, x), as it does for the

legal configurations (G1, x1) and (G2, x2), yielding the

desired contradiction. ut

Remark. By inspecting R and N in the proof of Theo-

rem 3, we can notice that the theorem holds even if the

number of output bits per node is up to c′ log(n2 +nk),

for c′ < 1.
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5 Verifying cycle-freeness with constant-size

certificates

In this section, we show that, for languages in NLD, re-

stricting the interpretation to the use of the conjunctive

operator may have a significant cost in terms of certifi-

cate size. For instance, it is known [28] that verifying

cycle-freeness using the conjunction operator requires

Ω(log n)-bit certificates for n-node graphs. (Recall that

the considered graphs are always assumed to be con-

nected). This holds even if the certificates can depend

on the identity assignment, and even if the verification

can take an arbitrarily large (but constant) number of

rounds. In contrast, we show that using both the con-

junction and the disjunction operators simultaneously,

on 2-bit outputs, enables to verify cycle-freeness in a

single round, using certificates of only O(1) bits. More-

over, as we can see in the proof of this result, the deci-

sion is made by applying a 2-bit logical operator that

is idempotent, commutative, and associative, and thus

with all the desirable properties to be used in environ-

ments supporting gossip protocols, as well as in com-

puting models restricting the bandwidth of the links.

Theorem 4 Cycle-freeness can be distributedly veri-

fied in one round, with certificates of constant size, and

two output bits per node.

Proof To establish the theorem, we first describe the

collection of O(1)-bit certificates assigned to the nodes

in the case of a valid instance, i.e., for a tree T . The cer-

tificate assigned to node v is a pair y(v) = (r(v), d(v)),

where r(v) is on one bit, and d(v) is on two bits. Every

certificate is thus encoded using three bits. To define
the assignment of these bits at node v, let us pick an

arbitrary node u of T , and set u as the root of T . Set

r(u) = 1, and r(v) = 0 for every node v 6= u. For

every v ∈ V (T ), let d(v) = distT (v, u) mod 3, where

distT (x, y) denotes the distance in T between nodes x

and y, i.e., the minimum number of edges of a path

from x to y in T .

We now describe the verification algorithm. It runs

in a single round, during which every node v sends its

certificate y(v) to all its neighbors, and receives all the

certificates of its neighbors. Given its own certificate,

and the certificates of its neighbors, every node v then

computes a pair of bits (av, bv) as follows. First, every

node v checks whether it has at most one neighbor w

with d(w) = d(v) − 1 (mod 3). Node w is called the

parent of v. More precisely, if r(v) = 1 then there must

be no parent for v, and, if r(v) = 0 then there must be

exactly one parent for v. Similarly, v checks whether all

its neighbors w different from its parent satisfy d(w) =

d(v)+1 (mod 3). All such nodes are called the children

of v. If any of these tests is not passed, then v aborts,

and outputs (0, 0). If node v has not aborted, then it has

identified its parent, and its children (apart from the

root which has no parent), and it outputs (1, r(v)). This

completes the description of the verification algorithm.

We now describe the interpretation of the collection

of 2-bit outputs {(ai, bi), i = 1, . . . , n}. It is the result

of the following operator:

f({(ai, bi), i = 1, . . . , n}) =
( n∧
i=1

ai

)
∧
( n∨
i=1

bi

)
.

By construction, if T is a tree, then f = 1. Indeed,

all tests are passed successfully, and thus the (unique)

node u with r(u) = 1 returns (1, 1) while all the other

nodes return (1, 0). Establishing that f = 0 whenever

T is not a tree, independently of the certificates given

to the nodes, is based on the fact that, if all tests are

passed (i.e., if
∧n
i=1 ai = 1) then there cannot be a

node v with r(v) = 1, and therefore
∨n
i=1 bi = 0, yield-

ing f = 0. To see why this is indeed the case, assume

that the given (connected) graph G is not a tree. As-

sume moreover that the verification algorithm returns a

set {(ai, bi), i = 1, . . . , n} such that
∧n
i=1 ai = 1. (Note

that if this is not the case, then f = 0, and we are

done). Since
∧n
i=1 ai = 1, every edge of G is given an

orientation, from child to parent, and this orientation is

locally consistent. That is, every node has exactly one

outgoing edge, and a (potentially empty) set of incom-

ing edges, apart from nodes marked r(v) = 1, if any,

which may have no outgoing edges. Therefore, G has

at most n edges. Since G is connected and not a tree,

every node must have exactly one outgoing edge, and

thus there cannot be a root node in G, i.e., a node v

with r(v) = 1. Thus, bi = 0 for all i, yielding f = 0,
which completes the proof of the theorem.

Note nevertheless that certificates could be encoded

with only two bits, because only four certificates could

actually be used: (1, 0), (0, 0), (0, 1), and (0, 2). Simi-

larly, note that although the output is on two bits, only

three different outputs are actually used: (0, 0), (1, 0),

and (1, 1). ut

6 Deciding cycle-freeness requires

logarithmic-size outputs

In this section, we show that, for any positive even in-

teger d, every distributed decision algorithm for cycle-

freeness in connected graphs with maximum degree at

most d requires outputs of size at least dlog de − 1

bits. To establish this result, we revisit the classical no-

tion of order-invariance introduced by Naor and Stock-

meyer [32], and extend their reduction result to dis-

tributed languages that are not locally checkable.
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6.1 Order-invariance revisited

In this section, we show that, without loss of generality,

one can consider only order-invariant distributed deci-

sion algorithms when considering graphs with constant

maximum degree. Recall that an order-invariant dis-

tributed algorithm is a distributed algorithm for which

the output at any given node does not depend on the

actual values of the identities of the nodes in its vicin-

ity, but only on the relative order of these identities.

More precisely, let BG(v, t) be the open ball of radius t

around node v in graph G, that is, BG(v, t) is the sub-

graph of G induced by all nodes at distance at most t

from v, excluding the edges between the nodes at dis-

tance exactly t from v.

Definition 3 A t-round algorithm A is order-invariant

if the following holds: for every graph G, for every node

v of G, and for every two identity assignments id and

id′ of the nodes in G, if the ordering of the nodes in

BG(v, t) induced by id is identical to the one induced

by id′, then the output of A at node v is the same in

both (G, id) and (G, id′).

The construction task defined by a distributed lan-

guage L consists, for every node v of every graph G, of

computing x(v) = out(v) such that (G, x) ∈ L. More

generally, every node v may be given some input in(v),

and the objective of every node v is then to compute

out(v) so that x = (in, out) satisfies (G, x) ∈ L. In

their seminal paper, Naor and Stockmeyer [32] consider

the subclass LCL of locally checkable labelings, where

LCL is a class of distributed languages that are defined

on graph families with constant maximum degree, and
with constant label size. Let us rephrase this definition

using the terminology of this paper.

Definition 4 Let k be a non-negative integer. Let

LCL(k) =
{
L ∈ LD : ∀(G, x) ∈ L, max

v∈V (G)
deg(v) ≤ k

and x : V (G) → {0, 1}k
}
.

That is, LCL(k) is LD restricted to distributed lan-

guages on labeled graphs with maximum degree at most

k, and with labels on at most k bits. By definition:

LCL =
⋃
k≥0

LCL(k).

Note that it follows from the definition that, for every

distributed language L whose labels are composed of

input-output pairs x = (in, out), if L ∈ LCL(k) then

both the inputs and the outputs are on at most k bits.

Theorem 3.3 in [32] establishes that, for every language

L ∈ LCL, if there exists a construction algorithm for L
running in t = O(1) rounds, then there exists an order-

invariant construction algorithm for L running in O(1)

rounds. In the context of this paper, the distributed

language corresponding to deciding a given distributed

language L = {(G, x)} using a function f to interpret

the outputs of the nodes is

L̂f = {(G, (x, out)) : (G, x) ∈ L ⇐⇒ f(out) = true}.

That is, given a labeled graph (G, x), the algorithm

produces individual outputs out that are globally inter-

preted by f as true if (G, x) ∈ L, and as false otherwise.

In particular, the language corresponding to deciding

cycle-freeness using the logical conjunction operator is

L̂∧ = {(G, out) : G is cycle-free ⇐⇒∧
v∈V (G)

out(v) = true}.

Similarly, the language corresponding to deciding cycle-

freeness by summing up the nodes’ degrees is

L̂Σ = {(G, out) : G is cycle-free ⇐⇒∑
v∈V (G)

out(v) = 2(n − 1)}.

In both cases, the input x plays no role, and is omit-

ted. However, the input x may play a role for some

other tasks, like computing a MIS of maximum weight,

with x(v) equal to the weight of node v. Observe that

such languages L̂f are not necessarily locally checkable,

even for input graphs of bounded degrees. For instance,

neither L̂∧ nor L̂Σ belong to LCL. Hence, Theorem 3.3

in [32] does not apply to our setting. We extend this lat-

ter theorem to non locally checkable languages, i.e., the

prerequisite of our theorem does not assume L ∈ LCL.

Our proof uses the infinite version of Ramsey’s Theo-

rem, that we recall here.

Theorem 5 ([35]) For any (finite or infinite) set X,

and any positive integer r, let us denote by X(r) the set

of all subsets of X with size exactly r. Let X be a count-

ably infinite set, let r and s be two positive integers, and

let c : X(r) → {0, . . . , s − 1} be a coloring of each set

in X(r) by an integer between 0 and s − 1. Then there

exists an infinite set Y ⊆ X such that the image by c of

Y (r) is a singleton (that is, all sets in Y (r) are colored

the same by c).

Both the proof of Theorem 3.3 in [32] and our proof

of Theorem 6 below show, using some version of Ram-

sey’s Theorem, that there exists a sufficiently large

set U of identifiers such that a given t-round construc-

tion algorithm A is order-invariant when the identities
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are restricted to the set U . Then, again in both proofs,

the sought t-round construction algorithm A′ that is

order-invariant for any identities is defined as A exe-

cuted on the gathered local information where nodes

are virtually assigned new identities from U , typically

the smallest ones. Therefore, different nodes may use

the same virtual identities from the set U , which means

that the correctness of A′ is not a direct consequence

of the correctness of A. In the proof of Theorem 3.3

in [32], the set U is finite but sufficiently large to pro-

vide identities to constant-radius but rather large balls

around any node of the graph. Thanks to the restriction

to LCL languages, this is sufficient to prove the overall

correctness of A′. In our case however, when languages

are not restricted to LCL languages, such a finite set U

is not sufficient because graphs in the language can be

arbitrarily large. This is why we use the infinite version

of Ramsey’s Theorem, which allows us to exhibit an in-

finite set U from which enough identities for the whole

graph can be taken.

Theorem 6 For every non-negative integers k, t, d,

and every distributed language L defined on connected

labeled graphs with maximum degree d, and k-bit labels,

if there exists a t-round construction algorithm A for L,

then there exists a t-round order-invariant construction

algorithm A′ for L.

Proof Let us consider the collection of all graphs iso-

morphic to some ball BG(v, t) of radius t, centered at

some node v in some graph G with maximum degree d.

Let B be the collection of all such balls BG(v, t) with

nodes labeled by k-bit labels. There is a finite number β

of distinct labeled balls in B, i.e., either non-isomorphic

balls, or isomorphic balls but labeled differently.

We enumerate these labeled balls from 1 to β ar-

bitrarily, and we let ni be the number of nodes in

the i-th ball, for i = 1, . . . , β. For every i, the nodes

of the i-th labeled ball can be ordered in ni! differ-

ent manners, corresponding to the ni! permutations in

Σni
, the set of permutations of ni elements. We con-

sider the N =
∑β
i=1 ni! ordered labeled balls Bi,σ, for

i = 1, . . . , β, and σ ∈ Σni
, and we enumerate these or-

dered labeled balls as B1, . . . ,BN in an arbitrary order.

Note that each labeled ordered ball Bi has an implicit

ordering σi associated to it. Using these ordered labeled

balls, we define an infinite set I of identities as follows.

Let X0 = N, and assume that we have already

secured the existence of a sequence of infinite sets

X0 ⊇ X1 ⊇ · · · ⊇ Xj , 0 ≤ j < N , such that, for

every i, 1 ≤ i ≤ j the output of the construction algo-

rithm A at the center of Bi is the same for all possible

identity assignments to the nodes in Bi with values in

Xi respecting the ordering σi of the nodes in Bi.

Let r be the number of nodes in Bj+1. We define

the coloring

c : X
(r)
j → {0, . . . , 2k − 1}

as follows. For each r-element set I ∈ X
(r)
j , assign r

pairwise distinct identities to the nodes of Bj+1 us-

ing the r values in I, and respecting the order σj+1

of the nodes in Bj+1. Then, define c(I) as the output

of Algorithm A at the center of Bj+1 under this iden-

tity assignment to the nodes of Bj+1. By Theorem 5,

there exists an infinite set Yj ⊆ Xj such that all r-

element sets I ∈ Y (r)
j are given the same color. We set

Xj+1 = Yj . We proceed that way until we exhaust all

balls Bi, i = 1, . . . , N , and we set I = XN .

By construction, the set I satisfies that, for every

ball Bi,σ, for i = 1, . . . , β, and σ ∈ Σni
, the output

of A at the center of Bi,σ is the same for all identity

assignments to the nodes of Bi,σ with identities taken

from I and assigned to the nodes in the order σ.

We now define the order-invariant algorithm A′ as

follows. Every node v inspects its radius-t ball BG(v, t)

around it in the actual graph G. In particular, it collects

the inputs to the nodes, if any, and the identities of the

nodes in that ball. Let σ be the ordering of the nodes in

BG(v, t) induced by their identities. Node v simulates A
by reassigning identities to the nodes of BG(v, t) using

the r = |BG(v, t)| smallest values in I, in the order

specified by σ, and outputs what would have outputted

A if nodes were given these identities.

A′ is well defined, as nodes can be provided with

the ν =
∑t
i=0 d

i smallest integers in the set I. (That

is, nodes do not need to know the entire set I, but only a

finite number of values in I). Also, by construction, A′
is order-invariant. To establish that A′ is correct, let

us consider some n-node input labeled graph (G, x′),

with nodes provided with pairwise distinct identities.

Now rename the nodes of G by taking pairwise distinct

identities only in I, conserving the same order of the

nodes induced by the original identifiers, and let x′′ =

{x′′(v), v ∈ V (G)} be the output of A in this context.

This output is precisely the multi-set outputted by A′
in G with the original identities. Indeed, every node v

relabels its radius-t ball with the smallest identities in

I, respecting the order induced by the global identities

in I, and I is precisely defined so that the output of

v will be the same in both cases. In other words, the

output of A′ is precisely the output of A if nodes were

assigned identities restricted to be in I. Hence, since A
is correct, it follows that A′ is correct as well. ut

In the next subsection, we show that deciding cycle-

freeness in bounded degree graphs requires outputs on
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lots of bits, namely outputs on a number of bits loga-

rithmic in the (maximum) degree. The proof uses order-

invariance.

6.2 Deciding cycle-freeness

In this section, we prove that cycle-freeness /∈ XLD,

as cycle-freeness requires outputs on Ω(log n) bits to

be decided. To establish this result, we show that, on

graphs with maximum degree d, outputs on dlog de − 1

bits are required.

Theorem 7 For any positive even integer d, every dis-

tributed decision algorithm for cycle-freeness in con-

nected graphs with maximum degree d has to generate

outputs of size at least dlog de − 1 bits.

The rest of the section is entirely dedicated to prove

this result. The proof is by contradiction. Let t and d

be two positive integers, and assume that d is even. We

assume the existence of a t-round distributed decision

algorithm A for cycle-freeness in connected graphs with

maximum degree d, which outputs at most dlog de − 2

bits at each node. We first start by shrinking the set of

candidate algorithmsA. Indeed, as a direct consequence

of Theorem 6, we get the following:

Corollary 1 If there exists a t-round distributed deci-

sion algorithm A for cycle-freeness with b-bit outputs

in connected graphs with maximum degree d, then there

is an order-invariant t-round distributed decision algo-

rithm A for cycle-freeness with b-bit outputs.

Based on this latter result, we now show that every
order-invariant decision algorithm A for cycle-freeness

in connected graphs with maximum degree at most d

has output size at least dlog de − 1 bits. The intuition

is as follows. We will focus our attention on so-called

type-i nodes, with i being an even integer between

2 and d. Intuitively, such nodes are defined as nodes

of degree i that only “see” a tree of nodes with de-

gree i in their t-neighborhood, with a particular or-

dering of their identities. We will construct two (con-

nected) graphs, with their corresponding identity as-

signments, such that only one of these two graphs is

a tree, while the multi-set of the local views gathered

by the nodes in the two graphs will only differ by their

numbers of type-i and type-j nodes, for some i 6= j. Any

decision algorithm for cycle-freeness has to distinguish

the two graphs, and has thus to return different output

values to type-i and type-j nodes. This will prove that

any distributed tester for cycle-freeness must have at

least d/2 different output values, establishing the theo-

rem.

We now define formally two families of trees, which

will be used as building blocks in our constructions.

Examples of such trees are given in Figure 3.

Let i, 2 ≤ i ≤ d, be an even integer. We define the

trees Ti and T ′i as follows. For Ti (resp. T ′i ), we first

build a rooted tree of height t + 1 (resp. t + 2) where

all internal nodes have degree i and all leaves are at the

same distance from the root. In Ti, the root is called

a downtown node, while in T ′i , the i + 1 most central

nodes (i.e., the root and its i neighbors) are the down-

town nodes. In both cases, all the other internal nodes

are called suburb nodes. Note that the downtown node

closest to a leaf is at distance exactly t+1 from that leaf.

For ease of description of our constructions, and for sim-

plifying our arguments, we assign port numbers to the

edges incident to the internal nodes of these two trees.

More specifically, for each internal node v, a distinct

port number between 1 and deg(v) is assigned to every

edge e incident to v. The port numbers are assigned in

such a way that, for every edge e whose extremities are

two nodes with the same degree i, if p ∈ [1, i] is one of

the two port numbers assigned to e, then i − p + 1 is

the other port number assigned to e. Then, we apply

another transformation, which consists of replacing ev-

ery leaf of these two trees by an extremity of a path of

length 2t+1. The trees Ti and T ′i are the trees resulting

from this second transformation. In these two trees, all

the nodes that are neither downtown nodes, nor sub-

urb nodes, are called countryside nodes. Note that all

countryside nodes are of degree 2 or 1.

Before describing the identity assignments for these

trees, let us make the following observations. An infi-

nite regular tree of degree i can be viewed as the Cayley

graph of the free group of rank i/2. More precisely, let

{a1, a2, . . . , ai/2} be the set of the i/2 generators of the

free group (F, ?) of rank i/2. The Cayley graph associ-

ated to this group is a directed arc-labeled graph with

the following properties: the set of nodes is the set F ,

and there is an arc with label ap, 1 ≤ p ≤ i/2, from

node g to node g′ if and only if g′ = g ?ap. By replacing

each arc (g, g′) with label ap by an (undirected) edge

{u, v} with port number p at u and port number i−p+1

at v, we get the infinite regular tree of degree i with a

port-numbering similar to the one we have described

for Ti and T ′i . More precisely, for each node in this in-

finite tree, the edges incident to it are assigned a port

number from 1 to i such that if p is one of the port

numbers assigned to some edge, then i − p + 1 is the

other port number assigned to that same edge. Besides,

it is known since at least the 1940’s (see [33]) that any

finitely generated free group is bi-ordered, i.e., it admits

a total order � such that, for any three elements a, b,
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Fig. 3: Examples of Ti and T ′i . The downtown, suburb, and countryside nodes are depicted as black, grey, and

white nodes respectively. Port numbers are only indicated for the downtown nodes. The other port numbers can

be inferred using the same cyclic ordering of port numbers around the nodes.

and c of the group,

a � b =⇒ a ? c � b ? c and c ? a � c ? b.

In other words, the total order � is stable by transla-

tion. In the infinite regular tree of degree i, it means

that if, for some node u and some sequence of port

numbers s, the node v accessible from u by following

the sequence s satisfies u � v, then for any node u′, the

node v′ accessible from u′ by following the sequence s
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satisfies u′ � v′. This implies that, for any positive inte-

ger t, the relative order of the nodes in a t-neighborhood

around some node u does not depend on the choice of u

but only on the relative positions of the nodes, that is

on the sequences of port numbers on the paths between

these nodes.

Let us now describe the identity assignment for each

of the trees Ti and T ′i . The construction is similar for

both cases. The countryside nodes receive the small-

est identities, while the suburb and downtown nodes

receive the largest identities. More specifically, to ev-

ery countryside node u, we associate its distance j to

its closest leaf, and the sequence s of the first t + 1

port numbers describing the path going from the clos-

est downtown node to u. The countryside nodes are

assigned identities respecting the lexicographic order of

their pair (s, j), with ties broken arbitrarily. The sub-

urb and downtown nodes are assigned identities that are

compatible with the total order � of the corresponding

free group. See Figure 3 for examples of these identity

assignments.

Notation. A node having the same t-neighborhood as

the t-neighborhood of the unique downtown node of Ti,

except for actual identity values, but respecting the or-

der of these identities, is called a type-i node.

By construction and due to the properties of the

total order �, all downtown nodes in Ti and T ′i are

type-i nodes. For the same reasons, countryside nodes

sharing the same pair (s, j) have the same relative order

of identities in their t-neighborhood. The situation is

similar for suburb nodes, except that the sequence s in

the pair (s, j) is defined in this case as the sequence of

port numbers leading to the closest downtown node.

For the purpose of contradiction, assume that there

exists an order-invariant distributed decision algorithm

for cycle-freeness using fewer than d/2 output val-

ues. Under this assumption, by the pigeonhole princi-

ple, there must exist two even integers i and j, with

2 ≤ i < j ≤ d, such that the algorithm outputs the

same value for type-i and type-j nodes. Hence, let G′1
be the graph formed by the disjoint union of one copy of

T ′i , with j−1 copies of Tj , using disjoint ranges of iden-

tity values assigned to the nodes in these copies. Con-

nect j − 1 disjoint pairs of leaves by an edge to make

the graph connected. We denote by G1 the resulting

graph. Note that G1 is a tree. Similarly, let G′2 be the

graph formed by the disjoint union of i− 1 copies of Ti
with one copy of T ′j , using disjoint ranges of identities

assigned to the nodes in these copies. Connect i−1 dis-

joint pairs of leaves by as many edges to make the graph

connected. Further, connect j − i other pairs of leaves

to create cycles. We denote by G2 the resulting graph.

Note that G2 is connected but is not a tree. Figure 4

shows the shape of G1 and G2 for t = 1, i = 4, j = 6.

It follows from the construction that, in G1, there

are exactly i+ 1 downtown nodes of degree i, and j− 1

downtown nodes of degree j. On the other hand, G2

contains exactly i− 1 downtown nodes of degree i, and

j+1 downtown nodes of degree j. However, concerning

the suburb nodes adjacent to a downtown node, both

graphs contain i(i−1) such nodes of degree i and j(j−1)

such nodes of degree j.

More generally, ignoring the identities assigned to

the nodes, but taking into account their relative order,

the t-neighborhoods are identical in both graphs G1

and G2, with the only exception that G1 has two type-

i nodes more compared to G2, and two type-j nodes less

than G2. The distributed algorithm A will thus output

the same, resulting in the same decision taken by the

interpretation f for both graphs, which contradicts the

fact that the algorithm is correct. This contradiction

completes the proof of the theorem. ut

7 Conclusion

In this paper, we have defined and analyzed a gener-

alized version of distributed decision and verification,

where the nodes are allowed, after O(1) rounds, to out-

put O(1) bits collected by a central authority which

emits a global verdict (true or false) as a function of the

collection of individual outputs. We have defined the

related classes XLD and XNLD, and established sep-

aration results summarized in Figure 1 between these

classes, and between them and the “standard” classes

LD and NLD.

At this stage of our current understanding of dis-

tributed decision and verification, it would be of in-

terest to determine whether there exist languages that

are complete for XLD and XNLD with respect to local

reduction, in the same way miss and its variant miss↑

were shown to be complete for NLD#nodes and NLD,

respectively, in [7].
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