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Abstract. We study deterministic broadcasting in radio networks in
the recently introduced framework of network algorithms with advice.
We concentrate on the problem of trade-offs between the number of bits
of information (size of advice) available to nodes and the time in which
broadcasting can be accomplished. In particular, we ask what is the mini-
mum number of bits of information that must be available to nodes of the
network, in order to broadcast very fast. For networks in which constant
time broadcast is possible under complete knowledge of the network we
give a tight answer to the above question: O(n) bits of advice are suf-
ficient but o(n) bits are not, in order to achieve constant broadcasting
time in all these networks. This is in sharp contrast with geometric radio
networks of constant broadcasting time: we show that in these networks
a constant number of bits suffices to broadcast in constant time. For ar-
bitrary radio networks we present a broadcasting algorithm whose time
is inverse-proportional to the size of advice.
Key words: radio network, distributed algorithm, deterministic broad-
casting, advice

1 Introduction

The Framework and the Problem.

We study deterministic broadcasting in radio networks in the recently intro-
duced [17] framework of network algorithms with advice. This paradigm permits
to investigate the minimum amount of information (size of advice) that nodes
of the network have to be given in order to accomplish some distributed task
with a given efficiency. In our present context the task is broadcasting in radio
networks and the measure of efficiency is time.

A radio network is a collection of sites (stations) equipped with wireless
transmission and receiving capabilities, with a distinguished node s called the
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of Ottawa, as a postdoctoral fellow.

⋆⋆ Research partially supported by NSERC discovery grant and by the Research Chair
in Distributed Computing at the Université du Québec en Outaouais.



source. The topology of a radio network is modeled as a directed graph G =
(V,E), where nodes in V represent sites of the network and oriented edges in E
correspond to wireless connections. It is assumed that there is a directed path
from the source to every other node. The existence of an edge (u, v) means
that v is within the reach of u. We say that u is an in-neighbor of v and v
is an out-neighbor of u. Nodes that are not neighbors must communicate via
intermediate (relaying) nodes. Similarly as in most papers in the literature on
radio networks, we assume that communication is synchronous, i.e., all nodes
have internal clocks that tick at the same rate, measuring consecutive time steps,
referred to as rounds. All clocks show the same round number at any given time.

At any round every node can be either in the transmitting or in the receiving
mode, i.e., a node cannot transmit and receive messages during the same round.
When a node v transmits in round i, its message is delivered during this round
to all out-neighbors of v. However, if w is an out-neighbor of v, this message
is heard by w, i.e., w receives the message correctly, if and only if the node v
is the only in-neighbor of w that transmits during the round i. Otherwise a
collision occurs at w and the message is not heard. An important property of
radio networks is the collision detection capability, i.e., the ability of a node to
differentiate collision from silence in a given round. All our results hold both
with this assumption and without it. Indeed, our positive results (algorithms)
are valid even without collision detection, and our impossibility results are valid
even assuming this capability.

Among the large class of (arbitrary) radio networks, an important subclass
consists of geometric radio networks (GRN). In the case of an approximately
flat region without large obstacles, nodes that can be reached from u are those
within a circle of radius r centered at u, and the positive real r, called the
range of u, depends on the power of the transmitter located at u. Reachability
graphs corresponding to such radio networks are called geometric radio networks.
More precisely, they are defined as follows. We assume that there is a constant
number ρ of possible powers of transmitters, thus we fix a set R = {r1, ..., rρ} of
positive reals, r1 < ... < rρ, called ranges. Let C be a set of points in the plane
with a distinguished source. Points of C are nodes of the graph (representing
radio stations). Each point u ∈ C is assigned a range r(u) ∈ R and a directed
edge (u, v) exists in the graph, if and only if the Euclidean distance between u
and v does not exceed r(u).

The number of nodes of a radio network is denoted by n, and the eccentricity
of the source (the maximum length of all shortest paths in the graph from the
source to all other nodes) is denoted by D. Throughout the paper, log denotes
the logarithm with base 2 and ln denotes the natural logarithm. Nodes of a
radio network have distinct labels from the set {1, . . . , N}, where N ∈ O(n).
Moreover, nodes of a geometric radio network have also their (x, y) coordinates.
A priori, each node of a (general) radio network knows only its own label, and
each node of a GRN knows only its own label and its (x, y) coordinates, as well
as the set R of available ranges (which has constant size). All other information
about the network must be given to nodes as advice, to be defined below.



One of the most studied communication primitives in networks is broadcast-
ing, also known as one-to-all communication. The source has a message that
should be distributed to all other nodes in the network. The time of a determin-
istic broadcasting algorithm is the number of rounds in which all the nodes get
the source message. With every radio network G we associate its optimal broad-
casting time Opt(G). This is the minimum time in which broadcasting in this
network can be accomplished, if nodes have full information about the network.
Establishing optimal broadcasting time for a given radio network is an NP-hard
problem [5].

It remains to formalize the framework of advice (cf. [17]) in our present con-
text. All additional knowledge available to the nodes of the network (in particular
knowledge concerning the rest of the network), is modeled by an oracle providing
advice. An oracle is a function O whose arguments are labeled networks (in the
case of geometric radio networks these arguments are actual sets of points in the
plane, together with the assigned ranges and labels), and the value O(G), for a
network G = (V,E), called the advice provided by the oracle to this network,
is in turn a function f : V → {0, 1}∗ assigning a binary string to every node v
of the network. Intuitively, the oracle looks at the entire labeled network and
assigns to every node some information, encoded as a string of bits. The size of
the advice given by the oracle to a given network G is the sum of the lengths of
all the strings it assigns to nodes. Hence this size is a measure of the amount of
information about the network, available to its nodes. Solving the broadcasting
problem in radio networks using advice provided by oracle O consists in design-
ing an algorithm that is unaware of the network G at hand but accomplishes
broadcasting in it, as long as every node v of the network G is provided with
the string of bits (advice) f(v), where f = O(G).

The main interest of this framework is the significance of lower bounds on
the size of advice. If we have a broadcasting algorithm using some advice of size
O(g(n)) and achieving time O(T (n)), in n-node networks, and at the same time
we prove that Ω(g(n)) is the lower bound on the size of advice needed to achieve
time O(T (n)), this implies optimality in a very strong sense: smaller amount
of information of any type cannot help to achieve broadcasting time O(T (n))
using any algorithm. In other words, changing the type of information provided
to nodes cannot help to achieve the same efficiency of broadcasting at lower
information cost.

This paper is the first to consider communication in radio networks in the
framework of algorithms with advice. Our research is motivated by the following
problems:

– What is the minimum size of advice permitting to achieve broadcasting time
O(Opt(G)) for a radio network G?

– What are the trade-offs between the size of advice and the time of broad-
casting in radio networks?

Our Results.

Our main focus is on radio networks with constant optimal broadcasting time,
i.e., on networks in which deterministic broadcast in constant time is possible



under complete knowledge of the network. For this class of networks we establish
the minimum size of advice sufficient to achieve constant broadcasting time. We
show that O(n) bits of advice are sufficient and o(n) bits are not sufficient, in
order to achieve constant broadcasting time in all these networks. The main
contribution of this part of the paper is the above tight lower bound on the size
of advice. This is in sharp contrast with geometric radio networks of constant
broadcasting time: we show that in these networks a constant number of bits of
advice suffices to broadcast in constant time.

For arbitrary radio networks we show a trade-off between the size of advice
and the time of deterministic broadcasting, by presenting a broadcasting algo-
rithm whose time is inverse-proportional to the size of advice. More precisely,
for any q ∈ O(n) we show an oracle which gives advice of size q to the nodes
of a network, and an algorithm using this advice, which performs broadcasting
in time O(nD

q log3 n) in any n-node network with source eccentricity D. As a
corollary we get that for “short” networks, i.e., with D polylogarithmic in n, an
advice of sublinear size suffices to achieve polylogarithmic broadcasting time.

Related Work.

The paradigm of distributed computing with advice has been recently in-
troduced in [17] and used there to study the task of broadcasting with a linear
number of messages, in the message passing model. Subsequently, this approach
has been used in [18] to study efficient exploration of networks by mobile agents,
in [19] to study distributed graph coloring, in [20] to study the distributed min-
imum spanning tree construction, and in [30] to study graph searching.

Broadcasting in radio networks is a topic extensively studied in the last
twenty years. Most of the papers represented radio networks as arbitrary (undi-
rected or directed) graphs. Models used in the literature about algorithmic as-
pects of radio communication, starting from the paper [5], differ mostly in the
amount of information about the network that is assumed available to nodes.
However, assumptions about this knowledge concern particular items of infor-
mation, such as the knowledge of the size of the network, its diameter, maximum
degree, or some neighborhood around the nodes, rather than limiting the total
number of bits available to nodes, regardless of their meaning, as is the case with
the advice approach.

Deterministic centralized broadcasting assuming complete knowledge of the
network was considered, e.g., in [6], where a polynomial-time algorithm con-
structing a O(D log2 n)-time broadcasting scheme was given for all n-node net-
works of radius D. Subsequent improvements by many authors [15, 21, 22] were
followed by the polynomial-time algorithm from [27] constructing a O(D +
log2 n)-time broadcasting scheme, which is optimal. On the other hand, in [1]
the authors proved the existence of a family of n-node networks of radius 2, for
which any broadcast requires time Ω(log2 n).

One of the first papers to study deterministic distributed broadcasting in
radio networks whose nodes have only limited knowledge of the topology, was [2].
The authors assumed that nodes know only their own label and labels of their
neighbors. Many authors [4, 7, 8, 10] studied deterministic distributed broadcast-



ing in radio networks under the assumption that nodes know only their own label
(but not labels of their neighbors). Increasingly faster broadcasting algorithms
working on arbitrary radio networks were constructed, the currently fastest being
the O(n log2 D)-time algorithm from [11] and the O(n log n log log n) algorithm
from [12]. On the other hand, in [10] a lower bound Ω(n log D) on broadcasting
time was proved for n-node networks of radius D.

Randomized broadcasting algorithms in radio networks were studied, e.g.,
in [2, 28, 26]. For these algorithms, no topological knowledge of the network and
no distinct identities of nodes were supposed.

Broadcasting in geometric radio networks and some of their variations was
considered, e.g., in [13, 14, 29]. In [29] the authors proved that scheduling opti-
mal broadcasting is NP-hard even when restricted to such graphs, and gave an
O(n log n) algorithm to schedule an optimal broadcast when nodes are situated
on a line. In [14] broadcasting with restricted knowledge was considered but
the authors studied only the special case of nodes situated on the line. In [13],
the authors investigated the impact of the size of the part of the geometric
radio network known to nodes, on the efficiency of broadcasting. In particular
they showed that with the full knowledge of the network broadcasting can be
accomplished in (optimal) time O(D), and if all nodes know only their own
label, range and coordinates, broadcasting in time O(n) is possible. For sym-
metric geometric radio networks, time O(D + log n) was proved optimal under
this restricted knowledge, if collision detection is available. If it is not, the same
broadcasting time was achieved if nodes know positions, labels and ranges of
all nodes within a constant (arbitrarily small) positive radius. In a recent pa-
per [16] the authors considered broadcasting in radio networks represented by
unit disk graphs. They compared broadcasting time in two models: the model
allowing spontaneous transmissions of nodes that have not yet gotten the source
message, and the model in which only nodes that already obtained the source
message can transmit.

2 Broadcasting in Constant Time

In this section we focus on radio networks with constant optimal broadcast-
ing time, i.e., on the class of networks in which broadcasting in constant time
is possible if nodes have complete knowledge of the network. Such networks
must of course have bounded source eccentricity D. However, this is not a suffi-
cient condition. Indeed, there are n-node networks with D = 2, whose minimum
broadcasting time is Ω(log2 n), even if the network is completely known to all
nodes (cf. [1]).

Networks with constant optimal broadcasting time may require a very long
broadcasting time if their topology is unknown and in the absence of any advice.
In [25] a family of such n-node networks was proved to require time Ω(n). In
fact, even for the more restricted class of geometric radio networks, strong lower
bounds of this type can be proven. Using techniques from [16] a class of geometric
radio networks with constant optimal broadcasting time can be shown to require



time Ω(
√

n), if nodes know only their own label and coordinates. Therefore
it is natural to ask how sensitive to advice is broadcasting time in networks
(geometric or not) with constant optimal broadcasting time. More precisely, how
much advice is needed to achieve constant broadcasting time in such networks.

First observe that for networks of the considered class, O(n) bits of advice
are sufficient in order to achieve constant broadcasting time.

Proposition 1. For any positive constant c let C be the class of n-node radio
networks whose optimal broadcasting time is at most c. There exists an oracle
which gives advice of size O(n) to the nodes of networks of class C and an
algorithm using this advice, which performs broadcast in time at most c, for any
network in class C.

Proof. Fix a network C ∈ C and consider an algorithm having complete knowl-
edge of the network and broadcasting in time at most c. For any fixed node v
of C, let t1, . . . , tk be numbers of rounds in which v has to transmit, according
to this algorithm. The oracle gives this information, encoded as a string of bits
of bounded length, to node v. Hence the total size of advice is O(n). Now the
broadcasting algorithm simply makes node v transmit in rounds t1, . . . , tk. ⊓⊔

2.1 Lower Bounds

The main result of this section shows that the above upper bound on the size of
advice needed to achieve constant broadcasting time is tight, i.e., that o(n) bits
of advice are not sufficient to broadcast in constant time.

Theorem 1. For every integer function k∗ ∈ o(n) there exist an integer func-
tion c∗ such that c∗(n) → ∞ and a family of n-node networks with constant
optimal broadcasting time, such that every algorithm using at most k∗(n) bits of
advice requires time c∗(n) on some of them, for sufficiently large n.

We will use the following lemmas whose proofs are omitted.

Lemma 1. If k∗ ∈ o(k) then for any integer 0 ≤ ℓ ≤ k∗ and for sufficiently
large k

(

k

k∗ − ℓ

)

≤ e−2ℓ ·
(

ke

k∗

)k∗

.

Lemma 2. Let x, x1, . . . , xa be non-negative integers satisfying x ≥ x1 ≥ . . . ≥
xa ≥ 0 and x1 + . . . + xa = 2x, where 2 ≤ a ≤ x. The number of permutations
of the set X = {1, . . . , 2x} satisfying the following condition:

for any 1 ≤ i ≤ a and 1 ≤ j ≤ x, no two elements from the interval
Xi = [1 +

∑i−1
i′=1 xi′ ,

∑i
i′=1 xi′ ] are placed in positions 2j − 1, 2j (called

group j)

is at most
β(2x, a) =

√
2 · (2x)! · e2a2 ln(2ex/a)−x/a .
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Fig. 1. (a) Example of the network in the class used in the proof of Theorem 1, for
n = 11 and k = 3; (b) Example of the network in the class used in the proof of
Theorem 2, for n = 10, n′ = 3, k = 2, S1 = {2} ⊆ {1, 2, 3} and S2 = {4, 6} ⊆ {4, 5, 6}

Proof of Theorem 1. Fix n. Consider the following family C of n-node directed
networks, see Fig. 1(a). Let k = ⌊(n − 1)/3⌋. (We omit parameter n from the
arguments of functions k, k∗, c∗ since it is known from the context.) Each network
in C is composed of three layers. Layer L0 consists of the source with label 0.
Layer L1 consists of 2k nodes with labels from {1, . . . , 2k}, partitioned into k
disjoint groups of size 2, and of n−(3k+1) nodes with labels from {3k+1, . . . , n}.
Layer L2 consists of k nodes with labels from {2k+1, . . . , 3k}. All nodes of layer
L1 are out-neighbors of the source, and each node 2k+i from layer L2 is the out-
neighbor of both nodes from the ith group. There are no other edges in networks
from C. There are α = (2k)!/2k different networks in this family. The optimal
broadcasting time of any network from C is clearly 2. Let c∗ = log k−k∗

2k∗ log(ke/k∗) .

Clearly, c∗ ∈ ω(1) for k∗ ∈ o(k). In view of k = ⌊(n−1)/3⌋, it is enough to prove
that every algorithm using at most k∗ ∈ o(k) bits of advice requires time larger
than c∗ on some network in C. We fix n such that k is sufficiently large for the
purpose of Lemma 1 and Fact 1, and assume that k∗ ∈ o(k) and k∗ ∈ ω(k4/5)
(if we show that the time is ω(1) for functions k∗ ∈ ω(k4/5), the same remains
true also for all smaller functions k∗).

The proof is by contradiction. Fix an oracle giving advice of size at most k∗ to
networks from the family C, and an algorithm using this oracle and completing
the broadcast in all these networks in time at most c∗. Let C(ℓ) be the subfamily
of C for which the oracle gives ℓ bits of advice to the source, for 0 ≤ ℓ ≤ k∗, and
gives the remaining bits to some other nodes of the network. For a sequence ŷ
of ℓ bits, let C(ℓ)ŷ be the subfamily of C(ℓ) containing those networks for which
the oracle gives the advice ŷ to the source.

Fix 0 ≤ ℓ ≤ k∗. There are 2ℓ possible advice sequences in the source, and at
least k−k∗ + ℓ groups none of whose nodes has any advice. We call these groups
blind groups. Fix a sequence ŷ of ℓ bits of advice in the source and consider the
transmission sequence of length at most c∗ for each node in {1, . . . , 2k} assuming



that it has no bit of advice and that the source has the advice ŷ. Formally, the
transmission sequences can be longer, but it is sufficient to consider only prefixes
of length at most c∗ for the purpose of proving the lower bound. Under this
assumption, each node in L1 without any advice has a fixed 0-1 transmission
sequence of length c∗, since no feedback is possible, due to the absence of directed
cycles in the graph. (In a transmission sequence, 0 in position i means that the
node does not transmit in round i, and 1 means that it transmits.) This yields a
partition of nodes {1, . . . , 2k} into at most a = 2c∗ = k−k∗

2k∗ log(ke/k∗) colors, where

all nodes of the same color follow the same transmission pattern during the first
c∗ rounds. Note that a4 ∈ o(k∗), by the assumption k∗ ∈ ω(k4/5). In every
network in C(ℓ)ŷ, nodes of every blind group must have different colors, because
otherwise both nodes would follow the same pattern of transmissions and their
out-neighbor would not receive the source message by round c∗. Therefore, the
number of networks in class C(ℓ)ŷ is at most

(

k

k∗ − ℓ

)(

2k

2(k∗ − ℓ)

)

(2k∗ − 2ℓ)!

2k∗−ℓ
· 2−(k−k∗+ℓ) · β(2k − 2k∗ + 2ℓ, a) ,

where β(2x, a) is the upper bound from Lemma 2. In the above formula the
first factor corresponds to the number of choices of non-blind groups (and pos-
sibly some blind ones, since the number of non-blind groups is at most k∗ − ℓ)
among all groups. The second factor corresponds to the number of choices of
the 2(k∗ − ℓ) elements to be allocated to the above groups. The third factor
corresponds to the number of ways of allocating these elements to these groups.
The last two factors form an upper bound on the number of different configu-
rations of the remaining nodes such that the remaining (blind) groups are not
monochromatic (i.e., the number of permutations without remaining monochro-
matic blind groups, divided by the number of possible flips of elements inside
those groups—there are 2k−k∗+ℓ such flips).

Using Lemma 2 and the properties k∗ ∈ ω(k4/5) and a4 ∈ o(k∗), we get the
following fact whose proof is omitted.

Fact 1. For sufficiently large k,

|C(ℓ)ŷ| ≤
(

k

k∗ − ℓ

)

· α · e−k∗ log(ke/k∗)−1 .

Finally, using Fact 1 and Lemma 1, we can bound

|C| =

k∗

∑

ℓ=0

∑

ŷ

|C(ℓ)ŷ| ≤
k∗

∑

ℓ=0

∑

ŷ

(

α ·
(

k

k∗ − ℓ

)

· e−k∗ log(ke/k∗)−1

)

≤
k∗

∑

ℓ=0

(

2ℓ · α · e−2ℓ · ek∗ ln(ke/k∗) · e−k∗ log(ke/k∗)−1
)

≤ (α/e) ·
k∗

∑

ℓ=0

e−ℓ < α ,



for sufficiently large k. This is a contradiction which completes the proof of
Theorem 1. ⊓⊔

Our next result shows that if the advice is of sublogarithmic size then the
time required for broadcasting is not only unbounded but sometimes quite large.

Theorem 2. Fix any constant δ < 1. There exists a constant c > 0 such that,
for sufficiently large n, there exists a family of n-node networks with constant
optimal broadcasting time, for which every algorithm using at most c log n bits
of advice requires time at least nδ on some of them.

Proof. Fix any 0 < δ < 1. For a positive integer n, we set n′ = ⌈nδ⌉ and
k = ⌊ n−1

n′+1⌋. For n large enough, there exists 0 < ǫ < 1 such that k ≥ nǫ. For
any k-tuple S = (S1, S2, . . . , Sk), where each Si, 1 ≤ i ≤ k, is an arbitrary non-
empty subset of {1, . . . , n′}, we define the directed graph GS as follows. The
source is node 0. It has directed edges to k · n′ nodes labelled from 1 to k · n′.
For any 1 ≤ i ≤ k, if j ∈ Si then node (i − 1)n′ + j has a directed edge to node
k ·n′ + i. Finally, in order to have exactly n nodes, the source has directed edges
to the nodes from k(n′ + 1) + 1 to n − 1, if any. Hence the graph has k disjoint
(n′ + 1)-node subgraphs H1, . . . ,Hk, attached to the source. More precisely, the
subgraph Hi is induced by the nodes (i−1)n′+1, . . . , i ·n′, k ·n′+i. The directed
edges inside a subgraph Hi are determined by the set Si. The set of graphs GS ,
for all possible S, is denoted G. See Fig. 1(b).

We prove that there is no algorithm using advice of size q ≤ 1
2 log k that

achieves broadcast in the family G in time smaller than n′. Fix an algorithm using
advice of size q ≤ 1

2 log k. Let s1, . . . , sQ, for Q = 2q+1 − 1 be an enumeration of
all binary sequences of length at most q (including the empty sequence). First
note that Q ·(q+1) ≤ k, for sufficiently large n. Consider the following property:

For any 1 ≤ i ≤ Q · (q + 1), there exists a non-empty subset Si of
{1, . . . , n′} such that for any k-tuple S containing Si as the i-th element
we have that, in the graph GS , either

(1) the source has advice different from sj , where j = ⌊ i−1
q+1⌋, or

(2) at least one node of the subgraph Hi receives at least one bit of
advice.

This implies that for a k-tuple S such that the Q · (q + 1) first elements are
the above mentioned sets Si, there exist at least q + 1 different subgraphs Hi

receiving at least one bit. Indeed, if the advice given to the source is sj , each of
the graphs Hi, for i = (j − 1)(q + 1) + 1, . . . , j(q + 1), gets at least one bit. This
contradicts the fact that the total size of advice is at most q.

Therefore, the property does not hold. This means that there exists an in-
teger i ≤ k such that for any non-empty subset Si of {1, . . . , n′}, there exists
a k-tuple S containing Si as the i-th element such that, in the graph GS , the
source has advice sj , where j = ⌊ i−1

q+1⌋, and the subgraph Hi receives no bit of

advice. In other words, there exists an index i and a subfamily G′ of G such
that for each graph in G′ the source always receives the same string while the



subgraph Hi never receives any advice from the oracle; moreover, for any non-
empty subset Si of {1, . . . , n′}, there exists a graph in G′ where the graph Hi is
constructed from Si. Therefore, for this subgraph Hi, the situation is identical
as if it were alone (the graph is directed) and as if there were no oracle. Since
there are no directed cycles in the graph, no node can receive any feedback, and
hence any broadcasting algorithm in such a graph is oblivious. Therefore, using
the argument from the proof of Theorem 2.2. in [23], for some graph Hi the time
of informing node k · n′ + i is at least n′. This implies that there exists a graph
in G′ in which the algorithm does not achieve broadcast in time less than n′.
Since n′ ≥ nδ and 1

2 log k ≥ c log n, for c = ǫ/2, this proves the theorem. ⊓⊔

2.2 Geometric Radio Networks

We finally show that the large advice requirements established in the previous
section do not hold in the more restricted class of geometric radio networks. In-
deed, for these networks we have the following result which should be contrasted
with Theorems 1 and 2.

Theorem 3. For any positive constant c let G be the class of geometric radio
networks whose optimal broadcasting time is at most c. There exists an oracle
which gives advice of constant size to the nodes of networks of class G and an
algorithm using this advice, which performs broadcast in constant time c′, for
any network in class G.

To prove Theorem 3 we will use the following construction. Fix the ranges
r1 < ... < rρ. (Recall that both the number ρ of ranges and the ranges themselves
are constants.) Partition the plane into a mesh of squares of side z = r1/

√
2,

called tiles, with the bottom-left corner of one of them in (0, 0). Include the
left and bottom sides and exclude the top and right sides from every square.
Knowing its position, every node knows to which tile it belongs. The tile to
which the source belongs is called central. Observe that any two nodes belonging
to the same tile are within each other’s range. For any positive integer x, the
x-block is a square consisting of B(x) = (2x + 1)2 tiles with the central tile in
the center of this square.

A configuration of points in the plane yielding a geometric radio network
with optimal broadcasting time at most c must have the property that the most
distant points are at distance at most 2crρ and hence all points are contained in
a d-block, for some positive constant d. Take the smallest such integer d. Order
all the B(d) tiles of the d-block in a fixed way, giving them indices 1, . . . , B(d)
and then order the p(d) = B(d)(B(d) − 1) ordered pairs of these indices in a
fixed way, giving them indices 1, . . . , p(d). Let λ(a, b) denote the index of the
pair (a, b), where a, b are (indices of) distinct tiles.

Advice. We now describe the oracle, called Geometric Oracle in the sequel.
Consider an ordered pair (a, b) of distinct tiles of the d-block. If there is a pair
(u, v) of nodes in tiles a and b, respectively, such that v is in the range of u,



choose one such a pair. The oracle gives advice (λ(a, b), out) to u and advice
(λ(a, b), in) to v. Clearly, the same node can get many pieces of advice, however,
for constant d, the total number of bits of advice is constant. Moreover, any node
that received the above advice, gets additionally the integer d.

We now describe the algorithm using the advice obtained from Geometric
Oracle. It uses global round numbers which are transmitted from node to node
appended to the source message.

Algorithm GRN-Broadcasting-with-Advice. The algorithm lasts 1 + 2p(d)B(d)
rounds. After round 1 it is divided into B(d) identical stages, each lasting p(d)
2-round periods. The pseudo-code follows:

in round 1 the source transmits;
starting in round 2, repeat B(d) times procedure Stage

where Stage is the following subroutine:

if u has advice (i, out), for 1 ≤ i ≤ p(d), and got the source message
then it transmits in the first round of period i of this stage

if v has advice (i, in), for 1 ≤ i ≤ p(d), and got the source message
then it transmits in the second round of period i of this stage

Theorem 3 follows from the following lemma whose proof is omitted.

Lemma 3. Algorithm GRN-Broadcasting-with-Advice, using the Geometric Or-
acle, is correct and has constant running time.

3 The General Algorithm

In this section we design and analyze a broadcasting algorithm working for ar-
bitrary radio networks, whose running time is inverse-proportional to the size of
advice given to nodes. We prove the following theorem.

Theorem 4. For any q ∈ O(n) there exists an oracle which gives advice of size q
to the nodes of a network and an algorithm using this advice, which performs
broadcast in time O(nD

q log3 n) in any n-node network with source eccentricity D.

We prove Theorem 4 by constructing an appropriate oracle and algorithm.
First assume that q ∈ O(D log n+log2 n). In this case we can use the broadcast-
ing algorithm from [11] running in time O(n log2 D) without using any advice,
since O(n log2 D) ⊆ O(nD

q log3 n), for this range of q. Therefore, in the sequel,

we can assume q ≥ 6(D log n + log2 n).
Given the directed graph G = (V,E) with source s, let L1, . . . , LD be BFS

layers in G, i.e., sets of nodes at distance exactly i from the source, for 1 ≤ i ≤ D.
Let T be the smallest power of 2 greater or equal to 1152n

q log2 n. For each

1 ≤ i ≤ D−1 we will need sets Li(j) ⊆ Li, for j = log T, log T +1, . . . , ⌊log |Li|⌋,
such that for every such j the following properties hold:



(i) every node in Li+1 having at least 2j and less than 2j+1 neighbors in Li, has
at least 1 and at most 144 log n neighbors in Li(j);

(ii) |Li(j)| < 144|Li| log n/2j .

The following lemma justifies the existence of such sets (the proof is omitted).

Lemma 4. There exist sets Li(j) ⊆ Li, for j = log T, log T + 1, . . . , ⌊log |Li|⌋
with the above properties.

Advice. We now describe the advice given by the oracle. The advice given to the
source consists of integers N,n, q and of the sizes of layers L1, . . . , LD. This can
be encoded using 3D log n ≤ q/2 bits of advice. Moreover, to every node in set
Li(j), for 1 ≤ i ≤ D − 1 and log T ≤ j ≤ log |Li|, the oracle gives the integer j.
(Note that, since sets Li(j) are not necessarily disjoint, a node may get several
integers as advice.) This costs a total of at most

2 ·
D−1
∑

i=1

⌊log |Li|⌋
∑

j=log T

(144|Li| log n/2j · log j) ≤ 4 · 144 · (n/T ) log2 n ≤ q/2

bits, by property (ii) of sets Li(j). Hence the total size of advice is at most q.

Algorithm Radio-Broadcasting-with-Advice. We now describe the algorithm us-
ing the above advice. It uses global round numbers which are transmitted from
node to node appended to the source message. First we define the additional
information attached to the source message. We will use the notion of a (N,x)-
selective family. This is a family F of subsets of {1, ..., N}, such that, for any set
X ⊆ {1, ..., N} of size at most x, there exists a set F ∈ F , for which |F ∩X| = 1.
For any x, fix a (N,x)-selective family S(N,x) of size s(N,x). By [10] there exist
(N,x)-selective families of size O(x log(N/x)) ⊆ O(x log n), thus we can assume
that s(N,x) ≤ b · x log n for some constant b > 0. Fix an order (F1, . . . , Fs(N,x))
of the family S(N,x). Knowing T , sizes |Li| of layers and the constant b, the
source computes the sequence of rounds t1 < . . . < tD−1 recursively as follows:

t0 = 0, ti+1 = ti + s(N,T ) + (log |Li| − log T + 1) · s(N, ⌈144 log n⌉), for
1 ≤ i ≤ D − 1.

Then the source broadcasts the source message together with the sequence
t1, . . . , tD−1 and |L1|, . . . , |LD−1| in round 0. A node that receives this message
for the first time in round t, where ti−1 < t ≤ ti for some 1 ≤ i ≤ D − 1, waits
till round ti and starts transmitting according to the (N,T )-selective family
S(N,T ), starting in round ti +1 until round ti + s(N,T ). More precisely, a node
with label u transmits in round ti + y, if u is in Fy, where Fy is the y-th set of
the family S(N,T ). Additionally, if a node has the integer j in its advice string
then it transmits according to the family S(N, ⌈144 log n⌉) in the time interval
from ti + s(N,T ) + (j − log T ) · s(N, ⌈144 log n⌉) + 1 to ti + s(N,T ) + (j + 1 −
log T ) · s(N, ⌈144 log n⌉), for any log T ≤ j ≤ log |Li+1|. A node without the
integer j in its advice string waits during this period. A node that receives the
source message for the first time in round at most ti does not transmit in rounds
beyond ti+1. We omit the proof of the following lemma.



Lemma 5. Assume q ∈ O(n) and q ≥ 6(D log n + log2 n). Our algorithm
Radio-Broadcasting-with-Advice performs broadcasting in any n-node network
with source eccentricity D in time O(nD

q log3 n) using at most q bits of advice.

Since, as we noticed before, for q ∈ O(D log n+log2 n), the time O(nD
q log3 n)

of broadcasting can be achieved even without advice, Lemma 5 concludes the
proof of Theorem 4.

Corollary 1. For n-node networks with source eccentricity D polylogarithmic
in n, there exists advice of size o(n) sufficient to achieve polylog(n) broadcasting
time.

The above corollary should be contrasted with the lower bound from [10],
were it is shown that (without advice) some n-node networks with source eccen-
tricity D require time Ω(n log D).

4 Conclusion

We studied the impact of the size of information (advice) given to nodes of
a radio network on the time of broadcasting. Our approach was quantitative,
i.e., we were concerned with the total number of bits, as opposed to particular
items of information, such as the knowledge of neighborhood, or of the size of
the network, whose impact on broadcasting time was previously studied in the
literature. While our algorithm is a first step towards grasping the trade-off
between the size of advice and the time of broadcasting, establishing the exact
trade-offs, for any number of bits of advice, remains an open problem. Its general
formulation is: What is the minimum time to broadcast in radio networks, with
advice of size q? A more specific question is: What is the minimum size of advice
permitting to achieve broadcasting time O(Opt(G)) for any radio network G.
We answered this question for networks with constant optimal time.

Establishing trade-offs between the size of advice and broadcasting time is
also open for geometric radio networks. For these networks time O(D), where D
is the eccentricity of the source, is optimal under full knowledge of the network.
It is easy to show that O(min(n,D2)) bits of advice are sufficient to achieve this
time. Is this size of advice also necessary?

Another interesting problem is to compare the size of arbitrary advice per-
mitting given broadcasting time with the size of advice of given type, e.g., con-
cerning the immediate neighborhood. It was proved in [24] that giving to all
nodes information about their immediate neighborhood (a total of Θ(|E| log n)
bits) permits broadcasting in time O(n2/3 log n) in networks with source eccen-
tricity 2. In [3] it was proved that time Ω(

√
n) is necessary for these networks

with this information. This should be contrasted with the algorithm from the
present paper which, e.g., permits broadcasting in these networks in the same
time O(n2/3 log n) using only O(n1/3 polylog(n)) bits of advice, provided that
the advice is of non-restricted type. On the other hand, O(

√
n polylog(n)) bits

of advice suffice to beat time Θ(
√

n) for these networks. These examples suggest



that using advice of non-restricted type may be much more efficient than that
of a particular type.

The paradigm of radio broadcasting with advice also suggests related prob-
lems for randomized algorithms: What is the minimum number of random bits
provided to the nodes of a radio network of unknown topology that is sufficient
to achieve randomized broadcasting in optimal expected time? The lower bound
on the expected broadcasting time obtained by Kushilevitz and Mansour [28]
can be directly applied to the class of graphs G defined as follows: G consists
of three layers, the only directed connections are from a layer to the subsequent
layer, the first layer consists of the source, and each node in the middle layer
has at most one out-neighbor in the last layer. In view of the result from [28],
the number of random bits provided to the system must be Ω(n log n) in order
to guarantee O(log n) expected time. By contrast, O(n) bits of advice suffice
to achieve constant deterministic broadcast time for these networks. This means
that randomization is sometimes more costly than advice by a logarithmic factor,
in terms of the number of bits. The precise trade-off between randomized broad-
casting time and the number of random bits used by a distributed randomized
broadcasting algorithm remains open.
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