Euler Tour Lock-in Problem in the Rotor-Router Model

I choose pointers and you choose port numbers

Evangelos Bampas^{1,3} Leszek Gasieniec² Nicolas Hanusse³ David Ilcinkas³ Ralf Klasing³ Adrian Kosowski^{3,4}

¹National Technical University of Athens, Greece
 ²University of Liverpool, UK
 ³CNRS / INRIA / Univ. of Bordeaux, France
 ⁴Gdańsk University of Technology, Poland

ANR Aladdin meeting
November 27th, 2009

Definitions

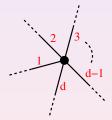
Anonymous graphs / networks

- No (used) node labeling
- Local port numbering at node v from 1 to deg(v)

Definitions

Anonymous graphs / networks

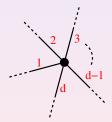
- No (used) node labeling
- Local port numbering at node v from 1 to deg(v)



Definitions

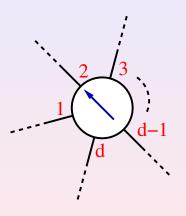
Anonymous graphs / networks

- No (used) node labeling
- Local port numbering at node v from 1 to deg(v)



Mobile agent / robot / message / anything

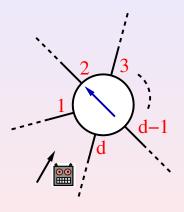
Follows the rotor-router mechanism



Very simple mechanism:

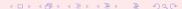
Each node has a pointer /

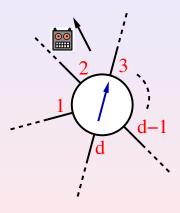
Other names: Propp machine, Next-Port, Edge Ant Walker



Very simple mechanism:

- Each node has a pointer /
- The agent follows the pointer

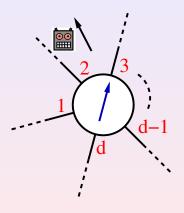




Very simple mechanism:

- Each node has a pointer /
- The agent follows the pointer and "increments" it with respect to the cyclic ordering (induced by the port numbering)

Other names: Propp machine, Next-Port, Edge Ant Walk



Very simple mechanism:

- Each node has a pointer /
- The agent follows the pointer and "increments" it with respect to the cyclic ordering (induced by the port numbering)

Other names: Propp machine, Next-Port, Edge Ant Walk

Known results

- The agent eventually traverses each edge
 - traversed once in each direction within a period
- θ Lock-III tillie. $\Theta(III \cdot D)$ (III. # edges, D. dialileter)
- a Craph evaluation (by a software exect / robot)
 - Mutual exclusion
 - Stabilisation of distributed processes
 - Work and load balancing problems
- 4 D > 4 A > 4 B > 4 B > B 9 9 0

Known results

- The agent eventually traverses each edge
- The traversal stabilizes into an Euler tour: each edge is traversed once in each direction within a period

- Graph exploration (by a software agent / robot)
- Mutual exclusion
- Stabilisation of distributed processes
- Work and load balancing problems
- etc.

Context

Known results

- The agent eventually traverses each edge
- The traversal stabilizes into an Euler tour: each edge is traversed once in each direction within a period
- Lock-in time: $\Theta(m \cdot D)$ (m: # edges, D: diameter)

Known results

- The agent eventually traverses each edge
- The traversal stabilizes into an Euler tour: each edge is traversed once in each direction within a period
- Lock-in time: $\Theta(m \cdot D)$ (m: # edges, D: diameter)

Motivations / Applications

- Graph exploration (by a software agent / robot)
- Mutual exclusion
- Stabilisation of distributed processes
- Work and load balancing problems
- etc.

Related work

- Y. Afek and E. Gafni, SIAM Journal on Computing, 1994.
- S. Bhatt, S. Even, D. Greenberg, and R. Tayar, Journal of Graph Algorithms and Applications, 2002.
- J.N. Cooper and J. Spencer, *Combinatorics, Probability and Computing*, 2006.
- B. Doerr and T. Friedrich, Combinatorics, Probability and Computing, 2009.
- A.S. Fraenkel, Mathematics Magazine, 1970.
- L. Gasieniec and T. Radzik, Proc. WG, 2008.
- V.B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, *Physics Review Letters*, 1996.
- S. Tixeuil, *Proc. WSS*, 2001.
- V. Yanovski, I.A. Wagner, and A.M. Bruckstein, Algorithmica, 2003.

Related work

- Y. Afek and E. Gafni, SIAM Journal on Computing, 1994.
- S. Bhatt, S. Even, D. Greenberg, and R. Tayar, Journal of Graph Algorithms and Applications, 2002.
- J.N. Cooper and J. Spencer, *Combinatorics, Probability and Computing*, 2006.
- B. Doerr and T. Friedrich, Combinatorics, Probability and Computing, 2009.
- A.S. Fraenkel, Mathematics Magazine, 1970.
- L. Gasieniec and T. Radzik, Proc. WG, 2008.
- V.B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, *Physics Review Letters*, 1996.
- S. Tixeuil, *Proc. WSS*, 2001.
- V. Yanovski, I.A. Wagner, and A.M. Bruckstein, Algorithmica, 2003.

Introduction Some cases Conclusion The problem Related work Our results

Our results

Problem

How does the lock-in time depend on the initial configuration of the ports \circlearrowright and pointers \nearrow ?

Our results

Problem

How does the lock-in time depend on the initial configuration of the ports \circlearrowright and pointers \nearrow ?

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{P}(\nearrow)\mathcal{A}(\circlearrowright)$	$\Theta(m \cdot \min\{\log m, D\})$	$\Theta(m)$
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$
Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$	$\Theta(m \cdot D)$	$\Theta(m)$ for $D \leq \sqrt{n}$
Case <i>A</i> -all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

$$\mathcal{P}$$
=Player, \mathcal{A} =Adversary

Our results

Problem

How does the lock-in time depend on the initial configuration of the ports \circlearrowright and pointers \nearrow ?

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{P}(\nearrow)\mathcal{A}(\circlearrowright)$	$\Theta(m \cdot \min\{\log m, D\})$	$\Theta(m)$
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$
Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$	$\Theta(m \cdot D)$	$\Theta(m)$ for $D \leq \sqrt{n}$
Case <i>A</i> -all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

$$\mathcal{P}$$
=Player, \mathcal{A} =Adversary

(Subtitle: I choose pointers and you choose port numbers)

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$

- Consider any choice of ports (*) and pointers
 - Run virtually the agent for $\Theta(m \cdot D)$ steps
 - ullet The pointers \nearrow are now correctly set again by ${\mathcal P}$

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$

Very simple algorithm

Consider any choice of ports
 on and pointers /

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$

Very simple algorithm

- Consider any choice of ports \(\) and pointers \(/ \)
- Run virtually the agent for $\Theta(m \cdot D)$ steps

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$

Very simple algorithm

- Consider any choice of ports
 and pointers
 /
- Run virtually the agent for $\Theta(m \cdot D)$ steps
- The pointers \nearrow are now correctly set again by \nearrow

Definitions

Phase: Interval between two traversals of the first edge

- $G_i \subseteq G_{i+1}$
- If $v \in G_i$, then v is saturated
- $\bullet \Rightarrow G_{i+1} \supseteq \text{neighborhood}(G_i)$

Definitions

- Phase: Interval between two traversals of the first edge
- G: Graph induced by the edges traversed in Phase i

- Each arc is traversed at mos once during a phase
- $G_i \subseteq G_{i+1}$
- If $v \in G_i$, then v is saturated in G_{i+1}
- $\bullet \Rightarrow G_{i+1} \supseteq \text{neighborhood}(G_i)$

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

- $G_i \subseteq G_{i+1}$
- If $v \in G_i$, then v is saturated
- $\bullet \Rightarrow G_{i+1} \supseteq \text{neighborhood}(G_i)$

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

(Known) Properties

 Each arc is traversed at most once during a phase

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

(Known) Properties

- Each arc is traversed at most once during a phase
- $G_i \subset G_{i+1}$

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

(Known) Properties

- Each arc is traversed at most. once during a phase
- \bullet $G_i \subset G_{i+1}$
- If $v \in G_i$, then v is saturated in G_{i+1}

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

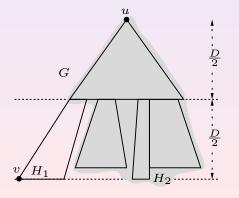
(Known) Properties

- Each arc is traversed at most. once during a phase
- \bullet $G_i \subset G_{i+1}$
- If $v \in G_i$, then v is saturated in G_{i+1}
- $\bullet \Rightarrow G_{i+1} \supseteq \text{neighborhood}(G_i)$

Scenario	Worst case	Best case
Case <i>A-all</i>	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

- a Let [u v] he a
- Make G₁ be the
- Make $G_{i+1} =$ neighborhood(G_i)

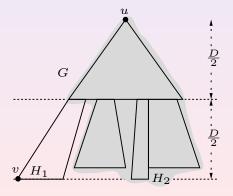
Scenario	Worst case	Best case
Case <i>A-all</i>	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$



(Sketch of the) Proof

• Let [u, v] be a diameter

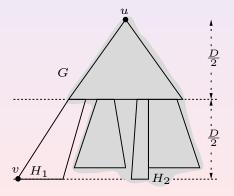
Scenario	Worst case	Best case
Case <i>A-all</i>	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$



(Sketch of the) Proof

- Let [u, v] be a diameter
- Make G_1 be the larger of H_1 and H_2

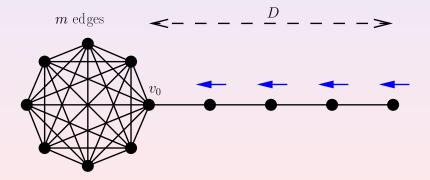
Scenario	Worst case	Best case
Case <i>A-all</i>	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$



(Sketch of the) Proof

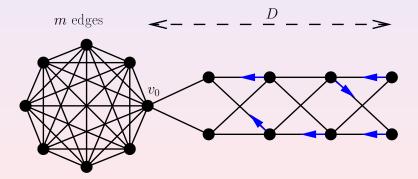
- Let [u, v] be a diameter
- Make G_1 be the larger of H_1 and H_2
- Make $G_{i+1} =$ neighborhood(G_i)

Scenario	Worst case	Best case
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$

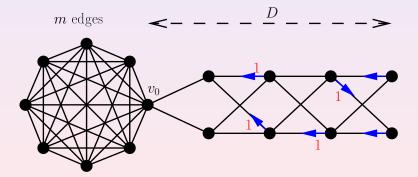


Case $\mathcal{A}(\nearrow)\mathcal{P}(\bigcirc)$

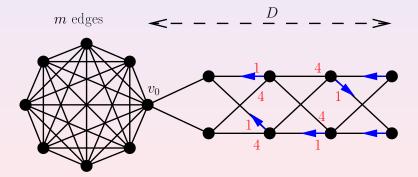
Scenario	Worst case	Best case
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$



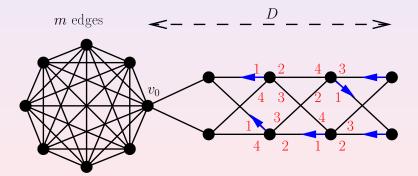
Scenario	Worst case	Best case
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$



Scenario	Worst case	Best case
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$

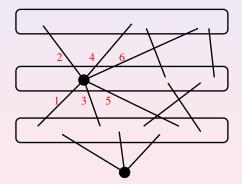


Scenario	Worst case	Best case
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$



Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$

Scenario	Worst case	Best case
Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$	$\Theta(m \cdot D)$	$\Theta(m)$ for $D \leq \sqrt{n}$



Conclusion and perspectives

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{P}(\nearrow)\mathcal{A}(\circlearrowright)$	$\Theta(m \cdot \min\{\log m, D\})$	$\Theta(m)$
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$
Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$	$\Theta(m \cdot D)$	$\Theta(m)$ for $D \leq \sqrt{n}$
Case A-all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

Open problem

• Does there exist any graph of large diameter with lock-in time O(m) in Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$?

Conclusion and perspectives

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{P}(\nearrow)\mathcal{A}(\circlearrowright)$	$\Theta(m \cdot \min\{\log m, D\})$	$\Theta(m)$
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$
Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$	$\Theta(m \cdot D)$	$\Theta(m)$ for $D \leq \sqrt{n}$
Case A-all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

Open problem

- Does there exist any graph of large diameter with lock-in time O(m) in Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$?
- What if ports \(^{\cup}\) and/or pointers \(^{\cup}\) are set uniformly at random?

Thank You for your attention