Beachcombing on Strips and Islands

Evangelos Bampas¹ <u>David Ilcinkas</u>¹

Jurek Czyzowicz² Ralf Klasing¹

() < </p>

¹CNRS & Univ. Bordeaux (LaBRI), France ²Université du Québec en Outaouais, Canada

> ALGOSENSORS September 18, 2015

Setting

- Need to search every point of a given domain
- Group of robots with different maximum searching speeds s_i and maximum walking speeds w_i > s_i

Motivation: Careful searching (or some other action) takes more time than casual traversal of the domain.

Goal

Setting

- Need to search every point of a given domain
- Group of robots with different maximum searching speeds s_i and maximum walking speeds w_i > s_i

Motivation: Careful searching (or some other action) takes more time than casual traversal of the domain.

Goal

Setting

- Need to search every point of a given domain
- Group of robots with different maximum searching speeds s_i and maximum walking speeds w_i > s_i

・ロン ・回 と ・ヨン ・ヨン

Motivation: Careful searching (or some other action) takes more time than casual traversal of the domain.

Goal

Setting

- Need to search every point of a given domain
- Group of robots with different maximum searching speeds s_i and maximum walking speeds w_i > s_i

(a)

Motivation: Careful searching (or some other action) takes more time than casual traversal of the domain.

Setting

- Need to search every point of a given domain
- Group of robots with different maximum searching speeds s_i and maximum walking speeds w_i > s_i

・ロン ・回 と ・ ヨ と ・ ヨ と …

Motivation: Careful searching (or some other action) takes more time than casual traversal of the domain.

Goal

Minimize the time taken until all points of the domain have been searched.

E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing

Beachcombing on Strips and Islands

Applications

Searching type

- Beachcombing (beach looking for things of value)
- Looking for leaks/corrosion on pipelines
- Searching the lost Teddy bear after a family excursion
- :
- Processing type
 - Harvesting a field
 - Snow removal and de-icing of roads
 - Web page indexing

・ロン ・日ン ・ヨン ・ヨン

3

Applications

Searching type

- Beachcombing (beach looking for things of value)
- Looking for leaks/corrosion on pipelines
- Searching the lost Teddy bear after a family excursion
- -

Processing type

- Harvesting a field
- Snow removal and de-icing of roads
- Web page indexing

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Basic model

Input

Set of robots with

- A maximum walking speed w_i
- A maximum searching speed *s_i* < *w_i*
- A domain: so far, the line segment

Additional assumptions

- No communication
- No cost for changing speed, mode, direction

Output

A schedule such that every point of the domain is searched

・ロン ・回 と ・ ヨ と ・ ヨ と

Basic model

Input

- Set of robots with
 - A maximum walking speed w_i
 - A maximum searching speed *s_i* < *w_i*
- A domain: so far, the line segment

Additional assumptions

- No communication
- No cost for changing speed, mode, direction

A schedule such that every point of the domain is searched

Basic model

Input

Set of robots with

- A maximum walking speed w_i
- A maximum searching speed $s_i < w_i$
- A domain: so far, the line segment

Additional assumptions

- No communication
- No cost for changing speed, mode, direction

Output

A schedule such that every point of the domain is searched

・ロン ・回 と ・ ヨ と ・ ヨ と

A schedule

Combing a segment of known length from one endpoint

distance **Optimal** solution: (computable in polynomial time) time Algorithm COMB [Czyzowicz et al., SIROCCO 2014]

E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing

Beachcombing on Strips and Islands

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

<u>Online version</u>: the length of the segment is not known Alternatively: the domain is a semi-infinite line

 The segment length is an integer
Goal: maximizing infℓ∈N* length ℓ time of A over segment [0;ℓ

Continuous Online Beachcombers' problem

- The segment length is a real (at least 1)
- <u>Goal:</u> maximizing inf_{l≥1} time of A over segment 10:ℓl

・ロット (雪) (目) (日)

<u>Online version</u>: the length of the segment is not known Alternatively: the domain is a semi-infinite line

Discrete Online Beachcombers' problem

- The segment length is an integer
- <u>Goal:</u> maximizing $\inf_{\ell \in \mathbb{N}^*} \frac{\text{length } \ell}{\text{time of } A \text{ over segment } [0;\ell]}$

Continuous Online Beachcombers' problem

- The segment length is a real (at least 1)
- Goal: maximizing inf_{ℓ≥1} length ℓ time of A over segment 10:ℓ1

・ロシ ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

<u>Online version</u>: the length of the segment is not known Alternatively: the domain is a semi-infinite line

Discrete Online Beachcombers' problem

- The segment length is an integer
- <u>Goal:</u> maximizing $\inf_{\ell \in \mathbb{N}^*} \frac{\operatorname{length} \ell}{\operatorname{time of } A \text{ over segment } [0;\ell]}$

Continuous Online Beachcombers' problem

- The segment length is a real (at least 1)
- <u>Goal</u>: maximizing $\inf_{\ell \ge 1} \frac{\text{length } \ell}{\text{time of } A \text{ over segment } [0;\ell]}$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Another schedule

Combing a segment of unknown length from one endpoint

distance Algorithm LEAPFROG [Czyzowicz et al., SIROCCO 2014] time

Conjectured to be optimal in the discrete online setting

E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing

Beachcombing on Strips and Islands

白 ト イヨト イヨト

Introduced in [Czyzowicz et al., ALGOSENSORS 2014]

t-source Beachcombers' problem (*t*-SBP)

Main modifications:

- The robots cannot change direction
- Additional outputs
 - A partition of the robots in at most *t* groups
 - A source and a direction of move for each of the groups

(a)

Their hardness result

2-BSP is NP-hard, even with uniform walking speeds

Introduced in [Czyzowicz et al., ALGOSENSORS 2014]

t-source Beachcombers' problem (*t*-SBP)

Main modifications:

- The robots cannot change direction
- Additional outputs
 - A partition of the robots in at most *t* groups
 - A source and a direction of move for each of the groups

Their hardness result

2-BSP is NP-hard, even with uniform walking speeds

Previous work (summary)

Only studied on the segment

[Czyzowicz et al., SIROCCO 2014]

- Offline COMB algorithm: proved optimal
- Online LEAPFROG algorithm: 2-competitive

[Czyzowicz et al., ALGOSENSORS 2014]

- 2-BSP is NP-hard, even with uniform walking speeds
- 0.5 and 0.56 approximation algorithms for 2-BSP
- Poly-time algo for t-BSP with uniform searching speeds

・ロン ・回 と ・ ヨ と ・ ヨ と

• Randomized algorithm for *t*-SBP with expected approximation ratio $1 - (1 - 1/t)^t$

Our results

Online Beachcombers' Problem on the segment

Algo LEAPFROG is optimal, even for the continuous variant

Offline Beachcombers' Problem on the cycle

- Equivalent to 2-SBP, thus NP-hard
- Efficient algorithms (from [Czyzowicz et al., ALGOSENSORS)

Offline Multi-source Beachcombers' Problem with zigzags

(ロ) (同) (E) (E) (E)

- Zigzags do not help (both in segments and cycles)
- Generalization of the results from [Czyzowicz et al., ALGOSENSORS 2014

Our results

Online Beachcombers' Problem on the segment

Algo LEAPFROG is optimal, even for the continuous variant

Offline Beachcombers' Problem on the cycle

- Equivalent to 2-SBP, thus NP-hard
- Efficient algorithms (from [Czyzowicz et al., ALGOSENSORS 2014])

Offline Multi-source Beachcombers' Problem with zigzags

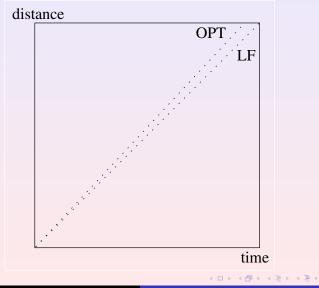
- Zigzags do not help (both in segments and cycles)
- Generalization of the results from

[Czyzowicz et al., ALGOSENSORS 2014]

Our results

Online Beachcombers' Problem on the **segment**

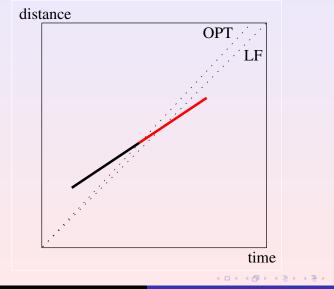
Algo LEAPFROG is optimal, even for the continuous variant


Offline Beachcombers' Problem on the cycle

- Equivalent to 2-SBP, thus NP-hard
- Efficient algorithms (from [Czyzowicz et al., ALGOSENSORS 2014])

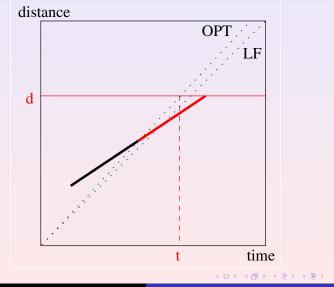
Offline Multi-source Beachcombers' Problem with zigzags

・ロン ・回 と ・ ヨ と ・ ヨ と


- Zigzags do not help (both in segments and cycles)
- Generalization of the results from [Czyzowicz et al., ALGOSENSORS 2014]

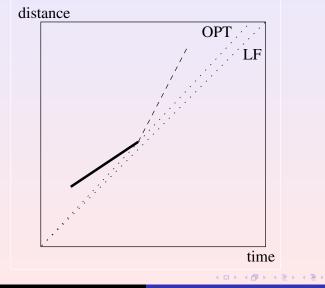
E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing

Beachcombing on Strips and Islands

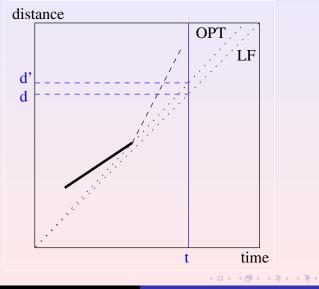

臣

E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing

Beachcombing on Strips and Islands


臣

E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing


Beachcombing on Strips and Islands

臣

E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing

Beachcombing on Strips and Islands

E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing

Beachcombing on Strips and Islands

Many natural extensions are worth being looked at:

- Different domains
- Robots have to return to their starting position
- Online version with communication (adaptive schedule)

(4月) (4日) (4日)

- Fault-tolerance
- 1
- 1

Thank you for your attention

・ロト ・回ト ・ヨト ・ヨト

E. Bampas, J. Czyzowicz, D. Ilcinkas, and R. Klasing Beachcombing on Strips and Islands