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Graph algorithms

Centralized case

1 process/algorithm

Complete knowledge of the instance/graph

Distributed case

n processes (one per vertex) cooperating in a graph

Partial (initial) knowledge of the instance/graph
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Types of knowledge

Local knowledge

2
1

4
3

ID

Global knowledge

number n of vertices

diameter

maximum degree

genus, girth, treewidth, etc.
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Knowledge and performance

Observation

The existence/quality of the algorithmic solutions often
depends on the availability of global knowledge about the
network.

[Lynch, PODC 1989]: A hundred impossibility proofs for
distributed computing.

[Fich, Ruppert, Distributed Computing, 2003]: Hundreds
of impossibility results for distributed computing.
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Some examples

Synchronous deterministic broadcast in n-node radio networks
of diameter D

Time Ω(n logD) if no information
[Clementi, Monti, Silvestri, TCS 2003]

Time O(D + log2 n) if complete knowledge
[Kowalski, Pelc, Distributed Computing 2006]

Wakeup in arbitrary networks

[Awerbuch, Goldreich, Peleg, Vainish, J. of ACM, 1990]
Initial knowledge of the topology within radius ρ

Θ(n1+Θ(1)/ρ) messages of bounded length
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On the need of a priori knowledge

[A. Korman, J.-S. Sereni and L.Viennot. Toward more
Localized Local Algorithms: Removing Assumptions
concerning Global Knowledge. PODC’2011]

Result

A rather general method to transform an algorithm so that it
does not need initial global knowledge anymore.

the transformed algorithm has, up to a small constant,
the same time complexity

the method applies to a wide family of both deterministic
and randomized algorithms; in particular most of those
for MIS, Maximal Matching, coloring...
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Case study: graph exploration with termination

Graph exploration...

A mobile entity (robot/agent) must visit at least once each
vertex of an anonymous graph.

...with termination

The mobile entity must stop after finite time, i.e. detect
termination.

Anonymous :

vertices with no IDs

local labeling of the edges (port numbers)
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Example of an anonymous graph
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Agent’s model
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Positive result

Theorem

There exists an agent able to solve the graph exploration with
termination problem if it knows an upper bound n̂ on the
number n of nodes of the to-be-explored graph.

Proof

Explore all paths of length n̂ coming out of the starting vertex,
and then stop.

Corollary

The knowledge of an upper bound on n is sufficient to solve
graph exploration with termination.

Is this knowledge necessary?
David Ilcinkas Initial knowledge in distributed computing
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Negative result

Theorem

The knowledge of an upper bound on n is necessary to solve
graph exploration with termination.

Proof

Assume there exists an agent exploring without the
knowledge of an upper bound on n.

Agent on a triangle: termination at time k

Agent on a cycle C2k : termination before exploration

Are you convinced?
Is it a satisfactory proof? No: parity of n.
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Attempt to formalize

A priori knowledge / advice

The agent has to explore graph G .

At the beginning of the algorithm’s execution, the agent
is provided an advice (a priori knowledge) from an oracle
O as a binary string O(G ).

O induces a partition (F0,F1, · · · ) of the graph family G :
Fi = {G ∈ G|O(G ) = i}

To know an upper bound on n

∀i ∃n̂i ∀G ∈ Fi n(G ) ≤ n̂i
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Negative result (bis)

Theorem

An agent without the knowledge of an upper bound on n
cannot explore all cycles.

Reminder: to know upper bound: ∀i ∃n̂i ∀G ∈ Fi n(G ) ≤ n̂i

Proof

Assume there exists an agent exploring without the
knowledge of an upper bound on n.

∃i ∀N ∃G (i)
N ∈ Fi n(G

(i)
N ) > N

Agent on G
(i)
1 : termination at time k

Agent on G
(i)
k : termination before exploration
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End of story?

Set of all cycles ⊂ set of all graphs

Corollary

The knowledge of an upper bound on n is also necessary to
explore all graphs.

WRONG!
It is not monotonic...
O(G ) = 0 if G is a path and O(G ) = n(G ) otherwise
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Comparison between oracles

Idea: concentrate on the information that the agent cannot
compute alone

Definition: O � O′

There exists a mobile agent algorithm A such that
O + A can simulate the output of O′.

[Chandra, Toueg, JACM 1996], [Godard, Métivier, ToCS 2003]

Theorem (new try)

For every O permitting to solve the exploration in all graphs,
there exists O′ giving an upper bound, such that O � O′.

Proof

O and the corresponding exploration algorithm AO give an
upper bound on the size of G : the stopping time of AO.
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End of story? (bis)

Corollary

The equivalence class of every oracle giving an upper bound
on n is minimal for the problem of exploring all graphs.

“Problem” 1: Can several minimal classes exist?

“Problem” 2

The equivalence class of every oracle giving an upper bound
on n is minimal for the problem of exploring all paths.
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Back to the starting point

Theorem

The empty/neutral oracle is strictly weaker than every
exploration oracle for the family of all graphs.

Proof

Agent on an triangle: termination at time k

Agent on a cycle C2k : termination before exploration

Can’t we say anything more?

Theorem

Every oracle inducing a finite number of parts Fi is strictly
weaker than every exploration oracle for the family of all
graphs.
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Precise characterisation

Definition

The graph H is a quasi-covering of radius r of the graph G if
there exists a vertex u of H such that the ball in H centered at
u and of radius r is indistinguishable from G .

See [J. Chalopin, E. Godard and Y. Métivier. Local
Terminations and Distributed Computability in Anonymous
Networks. Distributed Computing 2008]
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Precise characterisation

Definition

The graph H is a quasi-covering of radius r of the graph G if
there exists a vertex u of H such that the ball in H centered at
u and of radius r is indistinguishable from G .

Characterisation

An oracle allows an agent to solve exploration in a family F
if and only if there exists no part Fi of F containing
quasi-coverings of unbounded radius of a common graph
G ∈ Fi .
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Global knowledge given by an oracle

General framework in distributed computing:
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Distributed computing with advice

Design of two elements

the oracle O
takes the whole graph G as input

returns advice O(G , x) to every node (or agent) x

the algorithm A
executed locally by every node (or agent)

using the pieces of advice given by the oracle
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Qualitative and quantitative approaches

Drawback of the qualitative approach

Difficult to compare

Algorithm knowing n

Algorithm knowing D

Algorithm knowing the neighborhood

Quantitative approach

What is the minimum size of advice permitting to solve
problem P?

Quantitative questions about the required knowledge,
regardless of what kind of knowledge is supplied.
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One possible application

Two fundamental tasks

Disseminating a message M from a source to all the nodes of
a network

Wakeup: a node cannot communicate before it has
received the message M

Broadcast: a node can communicate at any time

Problem

Achieving these tasks using a number of messages linear in n
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Results

[P. Fraigniaud, D. Ilcinkas, and A. Pelc. Communication
algorithms with advice. JCSS 2010]

Wakeup

Minimum oracle size is Θ(n log n) bits.

Broadcast

Minimum oracle size is Θ(n) bits.

Permits to clearly distinguish the two problems.
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Another possible point of view

Performance

Information
sensitive

Information

Full
solution

sensitivein

complexity
"Standard"

Size of advice
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Two things to remember

Proving that some initial knowledge is necessary must be
done with extra care.

The advice/oracle point of view can be insightful.
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Thank you

for your attention
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