Distributedly Testing Cycle-Freeness

Heger Arfaoui¹ Pierre Fraigniaud¹ David Ilcinkas² Fabien Mathieu³

¹CNRS & Université Paris Diderot (LIAFA)
 ²CNRS & Université de Bordeaux (LaBRI)
 ³Alcatel-Lucent Bell Labs (LINCS)

GT Algorithmique Distribuée January 12, 2015

(ロ) (同) (E) (E)

H. Arfaoui, P. Fraigniaud, <u>D. Ilcinkas</u>, and F. Mathieu Distributedly Testing Cycle-Freeness

Objective

Monitoring properties in large-scale distributed networks:

- Some nodes (possibly all) are queri
- Queried nodes execute a O(1)-round local distributed algorithm, producing a (small) local output
- A central authority gathers these local outputs and takes a global decision

(ロ) (同) (E) (E) (E)

Lontexts of use

- Sensor networks with a base station
- Complexity theory in distributed computing

Objective

Monitoring properties in large-scale distributed networks:

• Some nodes (possibly all) are queried

 Queried nodes execute a O(1)-round local distributed algorithm, producing a (small) local output

 A central authority gathers these local outputs and takes a global decision

Lontexts of use

- Sensor networks with a base station
- Complexity theory in distributed computing

Objective

Monitoring properties in large-scale distributed networks:

- Some nodes (possibly all) are queried
- Queried nodes execute a O(1)-round local distributed algorithm, producing a (small) local output

A central authority gathers these local outputs and takes a global decision

(日) (四) (三) (三)

Contexts of use

- Sensor networks with a base station
- Complexity theory in distributed computing

Objective

Monitoring properties in large-scale distributed networks:

- Some nodes (possibly all) are queried
- Queried nodes execute a O(1)-round local distributed algorithm, producing a (small) local output
- A central authority gathers these local outputs and takes a global decision

(日) (四) (三) (三)

Lontexts of use

- Sensor networks with a base station
- Complexity theory in distributed computing

Objective

Monitoring properties in large-scale distributed networks:

- Some nodes (possibly all) are queried
- Queried nodes execute a O(1)-round local distributed algorithm, producing a (small) local output
- A central authority gathers these local outputs and takes a global decision

() < </p>

Contexts of use

- Sensor networks with a base station
- Complexity theory in distributed computing

Property / Distributed language

We consider:

Properties

- Graph properties: large expansion, cycle-freeness
- Properties on labels: existence of a unique leader
- Mixed properties: $(\Delta + 1)$ -coloring, existence of a spanning tree

More formally, distributed languages

A distributed language L is a set of labeled graphs (G, ℓ)
G is a connected undirected graph
ℓ : V(G) → {0,1}* is a function that labels each node v with the label ℓ(v).

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・

Property / Distributed language

We consider:

Properties

- Graph properties: large expansion, cycle-freeness
- Properties on labels: existence of a unique leader
- Mixed properties: $(\Delta + 1)$ -coloring, existence of a spanning tree

More formally, distributed languages

A distributed language L is a set of labeled graphs (G, ℓ)

• G is a connected undirected graph

• ℓ : $V(G) \rightarrow \{0,1\}^*$ is a function that labels each node v with the label $\ell(v)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Precisions on the model

Local algorithms

Use of the \mathcal{LOCAL} model:

- Distinct IDs
- Synchronous rounds, simultaneous start
- No failures, no dynamicity
- No congestion: unbounded message to each neighbor

Central algorithm

The central authority

 receives as input the multiset of the local outputs computed by the nodes

・ロト ・四ト ・ヨト ・ヨト

runs a deterministic algorithm.

Precisions on the model

Local algorithms

Use of the \mathcal{LOCAL} model:

- Distinct IDs
- Synchronous rounds, simultaneous start
- No failures, no dynamicity
- No congestion: unbounded message to each neighbor

Central algorithm

The central authority

• receives as input the multiset of the local outputs computed by the nodes

・ロン ・四マ ・ヨン ・ヨン

• runs a deterministic algorithm.

	#queried	type of	decision	gap	error	certificates
	nodes	output	mechanism			
property testing	o(n)	$O(\log n)$ bits	algorithm	ϵ -far	yes	no
dist. decision	n	yes/no	∀ yes / ∃ no	none	no	no
dist. testing	n	$O(\log n)$ bits	algorithm	none	no	no
dist. verification	n	yes/no	∀ yes / ∃ no	none	no	yes
dist. certification	п	$O(\log n)$ bits	algorithm	none	no	yes

(ロ) (四) (E) (E) (E) (E)

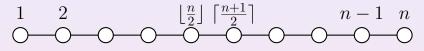
H. Arfaoui, P. Fraigniaud, D. Ilcinkas, and F. Mathieu Distributedly Testing Cycle-Freeness

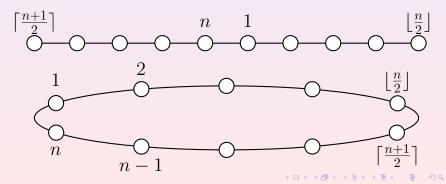
	#queried nodes	type of output	decision mechanism	success probability	certificates
dist. decision	n	yes/no	\forall yes / \exists no	impossible	no

・ロト ・日ト ・ヨト ・ヨト

크

	#queried nodes	type of output	decision mechanism	success probability	certificates
dist. decision	n	yes/no	\forall yes / \exists no	impossible	no





H. Arfaoui, P. Fraigniaud, D. Ilcinkas, and F. Mathieu

Distributedly Testing Cycle-Freeness

	#queried	type of	decision	success	certificates
	nodes	output	mechanism	probability	
dist. testing	n	$\leq \lceil \log \Delta \rceil$ bits	algorithm	deterministic	no

Local algorithm:

outputs the degree of the node.

Decision mechanism:

• YES $\iff \sum \text{outputs} = 2n - 2$

Main question answered by this work

Are log Δ bits really necessary?

The answer is essentially "yes".

H. Arfaoui, P. Fraigniaud, <u>D. Ilcinkas</u>, and F. Mathieu Distributedly Testing Cycle-Freeness

(ロ) (同) (E) (E) (E)

	#queried	type of	decision	success	certificates
	nodes	output	mechanism	probability	
dist. testing	n	$\leq \lceil \log \Delta \rceil$ bits	algorithm	deterministic	no

Local algorithm:

• outputs the degree of the node

Decision mechanism:

• YES
$$\iff \sum \text{outputs} = 2n - 2$$

Main question answered by this work

Are log Δ bits really necessary?

The answer is essentially "yes".

・ロト ・日ト ・ヨト ・ヨト

	#queried	type of	decision	success	certificates
	nodes	output	mechanism	probability	
dist. testing	n	$\leq \lceil \log \Delta \rceil$ bits	algorithm	deterministic	no

Local algorithm:

• outputs the degree of the node

Decision mechanism:

• YES
$$\iff \sum \text{outputs} = 2n - 2$$

Main question answered by this work

Are $\log \Delta$ bits really necessary?

he answer is essentially "yes"

・ロン ・回 と ・ ヨ と ・ ヨ と

	#queried	type of	decision	success	certificates
	nodes	output	mechanism	probability	
dist. testing	n	$\leq \lceil \log \Delta \rceil$ bits	algorithm	deterministic	no

Local algorithm:

• outputs the degree of the node

Decision mechanism:

• YES
$$\iff \sum \text{outputs} = 2n - 2$$

Main question answered by this work

Are $\log \Delta$ bits really necessary?

(The answer is essentially "yes".)

(4月) (日) (日)

	#queried	type of	decision	success	certificates
	nodes	output	mechanism	probability	
dist. verification	n	yes/no	\forall yes / \exists no	deterministic	$\Theta(\log n)$ bits

Certificates:

- choose an arbitrary node r
- node v's certificate is its distance to r
- Local algorithm:
 - YES \iff both are true
 - if cert. = 0, then all neighbors have cert. 1
 - if cert. is $x \neq 0$, then exactly one neighbor has cert.

(日) (四) (三) (三) (三) (三)

x-1 and all others have cert. x+1

	#queried	type of	decision	success	certificates
	nodes	output	mechanism	probability	
dist. verification	n	yes/no	\forall yes / \exists no	deterministic	$\Theta(\log n)$ bits

Certificates:

- choose an arbitrary node r
- node v's certificate is its distance to r

Local algorithm:

- YES \iff both are true
 - if cert. = 0, then all neighbors have cert. 1
 if cert. is x ≠ 0, then exactly one neighbor has cert x − 1 and all others have cert. x + 1

(ロ) (同) (E) (E) (E)

	#queried		decision	success	certificates
	nodes	output	mechanism	probability	
dist. verification	n	yes/no	\forall yes / \exists no	deterministic	$\Theta(\log n)$ bits

Certificates:

- choose an arbitrary node r
- node v's certificate is its distance to r

Local algorithm:

- YES \iff both are true
 - if cert. = 0, then all neighbors have cert. 1
 - if cert. is $x \neq 0$, then exactly one neighbor has cert.

(D) (A) (A) (A) (A)

x-1 and all others have cert. x+1

	#queried nodes	51	decision mechanism	success probability	certificates
dist. certification	n	2 bits	algorithm	deterministic	2 bits

(ロ) (同) (E) (E) (E)

	#queried nodes	51		success probability	certificates
dist. certification	n	2 bits	algorithm	deterministic	2 bits

Certificates:

- choose an arbitrary node r; node v's certificate is
 - if v = r, then 3
 - if $v \neq r$, then its distance to r modulo 3

• outputs the pair (b, b') who

- if cert. = 3, then b = 1 and, b' = 1 iff all neighbors have cert. 1
 - if cert. is x ≠ 3, then b = 0 and, b' = 1 iff exactly one neighbor has cert. x − 1 and all others have cert. x + 1

< □ > < □ > < □ > < □ > < Ξ > = Ξ

Decision mechanism:

	#queried nodes	type of output		success probability	certificates
dist. certification	п	2 bits	algorithm	deterministic	2 bits

Certificates:

- choose an arbitrary node r; node v's certificate is
 - if v = r, then 3
 - if $v \neq r$, then its distance to r modulo 3

Local algorithm:

- outputs the pair (b, b') where
 - if cert. = 3, then b = 1 and, b' = 1 iff all neighbors have cert. 1
 - if cert. is x ≠ 3, then b = 0 and, b' = 1 iff exactly one neighbor has cert. x − 1 and all others have cert. x + 1

・ロト ・ 同ト ・ ヨト ・ ヨト

	#queried nodes	type of output		success probability	certificates
dist. certification	п	2 bits	algorithm	deterministic	2 bits

Certificates:

• choose an arbitrary node r; node v's certificate is

• if *v* = *r*, then 3

• if $v \neq r$, then its distance to r modulo 3

Local algorithm:

- outputs the pair (b, b') where
 - if cert. = 3, then b = 1 and, b' = 1 iff all neighbors have cert. 1
 - if cert. is x ≠ 3, then b = 0 and, b' = 1 iff exactly one neighbor has cert. x 1 and all others have cert. x + 1

() < </p>

Decision mechanism:

• YES
$$\iff \sum b = 1 \text{ and } \bigwedge b' = 1$$

For the cycle-freeness decision problem:

	#queried	type of	decision	success	certificates
	nodes	output	mechanism	probability	
dist. decision	п	yes/no	∀ yes / ∃ no	impossible	no
dist. testing	п	$\leq \lceil \log \Delta \rceil$ bits	algorithm	deterministic	no
dist. verification	п	yes/no	∀ yes / ∃ no	deterministic	$\Theta(\log n)$ bits
dist. certification	n	2 bits	algorithm	deterministic	2 bits
dist. testing	5	$\geq \lceil \log \Delta ceil - 1$	algorithm	deterministic	20
[this paper]	n	bits	algorithm	deterministic	no

・ロン ・日ン ・日ン ・日ン

E

Model

\mathcal{LOCAL} model

- Pairwise distincts IDs
- Synchronous fault-free rounds (& simultaneous wake-up)
- Messages of unlimited size

Distributed testing

- All nodes execute a *t*-round local distributed algorithm, producing a local output (*t* is a constant)
- A central authority gathers the outputs as a multiset to produce a global decision

Theorem to be proved

Every distributed tester for cycle-freeness in connected max.-degree- Δ graphs has output size at least [log Δ] – 1

Model

\mathcal{LOCAL} model

- Pairwise distincts IDs
- Synchronous fault-free rounds (& simultaneous wake-up)
- Messages of unlimited size

Distributed testing

- All nodes execute a *t*-round local distributed algorithm, producing a local output (*t* is a constant)
- A central authority gathers the outputs as a multiset to produce a global decision

Every distributed tester for cycle-freeness in connected max.-degree- Δ graphs has output size at least [log Δ] –

Model

\mathcal{LOCAL} model

- Pairwise distincts IDs
- Synchronous fault-free rounds (& simultaneous wake-up)
- Messages of unlimited size

Distributed testing

- All nodes execute a *t*-round local distributed algorithm, producing a local output (*t* is a constant)
- A central authority gathers the outputs as a multiset to produce a global decision

Theorem to be proved

Every distributed tester for cycle-freeness in connected max.-degree- Δ graphs has output size at least $\lceil \log \Delta \rceil - 1$ bits.

Usefulness of the identifiers

ID-oblivious

The algorithm's output does not depend on the IDs.

Order-invariant

The algorithm's output only depends on the relative order of the IDs.

・ロト ・回ト ・ヨト ・ヨト

ID-dependent

The algorithm's output freely depends on the IDs.

ID-oblivious

The algorithm's output does not depend on the IDs.

Order-invariant

The algorithm's output only depends on the relative order of the IDs.

() < </p>

ID-dependent

The algorithm's output freely depends on the IDs.

ID-oblivious

The algorithm's output does not depend on the IDs.

Order-invariant

The algorithm's output only depends on the relative order of the IDs.

() < </p>

ID-dependent

The algorithm's output freely depends on the IDs.

ID-oblivious, t = 0

Sketch of the proof

• $< \lceil \log \Delta \rceil - 1 \text{ bits} \Rightarrow \text{same output for degrees } i \text{ and } j > i$

construction of two almost identical graphs

- a tree with x + z, resp. y, nodes of degree i, resp. j
- a non-tree with x, resp. y + z, nodes of degree i, resp. j

・ロン ・回 と ・ヨン ・ヨン

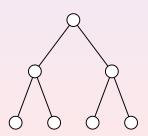
ID-oblivious, t = 0

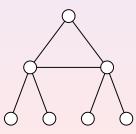
Sketch of the proof

• $< \lceil \log \Delta \rceil - 1 \text{ bits} \Rightarrow \text{same output for degrees } i \text{ and } j > i$

• construction of two almost identical graphs

- a tree with x + z, resp. y, nodes of degree i, resp. j
- a non-tree with x, resp. y + z, nodes of degree i, resp. j





Generalizing to arbitrary (constant) t

Use of subdivided trees:

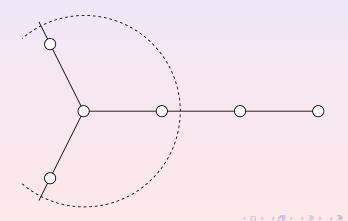
- replace each edge by a path of length 2t + 1
- consider the vector of outputs from the ball

(4月) (4日) (4日)

Generalizing to arbitrary (constant) t

Use of subdivided trees:

- replace each edge by a path of length 2t + 1
- consider the vector of outputs from the ball



The case of the subdivided graphs

Lemma

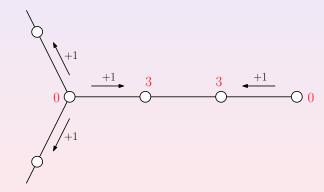
Only four outputs are sufficient in subdivided graphs!

・ロン ・回 と ・ ヨ と ・ ヨ と

The case of the subdivided graphs

Lemma

Only four outputs are sufficient in subdivided graphs!



Nodes of degree different from 2 distribute their degree.

A solution

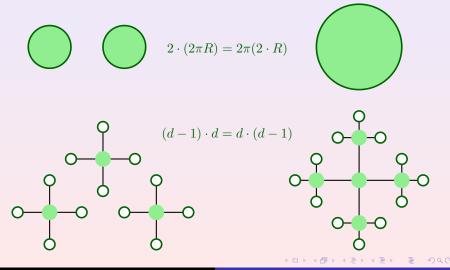
Hiding the trees into the forest!

H. Arfaoui, P. Fraigniaud, <u>D. Ilcinkas</u>, and F. Mathieu Distributedly Testing Cycle-Freeness

크

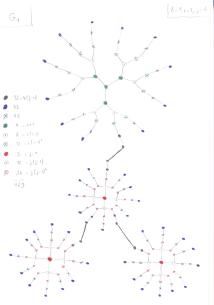
A solution

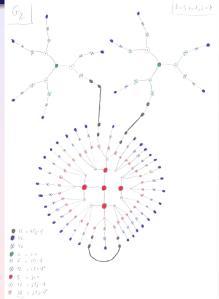
Hiding the trees into the forest!



H. Arfaoui, P. Fraigniaud, D. Ilcinkas, and F. Mathieu Distributedly Testing Cycle-Freeness

ID-oblivious solution

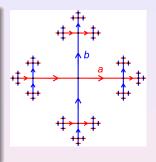




Towards an order-invariant solution

Definition: free group (wikipedia)

The free group F_S over a given set S consists of all expressions (a.k.a. words, or terms) that can be built from members of S, considering two expressions different unless their equality follows from the group axioms (e.g. $st = suu^{-1}t$, but $s \neq t$ for $s, t, u \in S$). The members of S are called generators of F_S .



Definition: linearly ordered group (wikipedia)

A linearly ordered group is a group G equipped with a total order " \leq ", that is translation-invariant: Let $x, y, z \in G$, we say that (G, \leq) is a left-ordered group if $x \leq y$ implies $z \ x \leq z \ y$.

H. Arfaoui, P. Fraigniaud, <u>D. Ilcinkas</u>, and F. Mathieu Distributedly Testing Cycle-Freeness

An order-invariant solution

Theorem (at least from the 1940's)

Every free group is left-orderable.

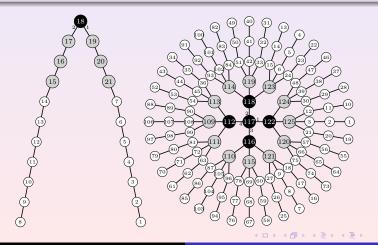
H. Arfaoui, P. Fraigniaud, <u>D. Ilcinkas</u>, and F. Mathieu Distributedly Testing Cycle-Freeness

・ロン ・回 と ・ ヨ と ・ ヨ と

An order-invariant solution

Theorem (at least from the 1940's)

Every free group is left-orderable.



H. Arfaoui, P. Fraigniaud, D. Ilcinkas, and F. Mathieu

Distributedly Testing Cycle-Freeness

Theorem (of independent interest)

 \exists a solution $\Longrightarrow \exists$ an order-invariant solution

For every non-negative integers k, t, Δ , and every language \mathcal{L} defined on connected graphs with maximum degree Δ , and k-valued domain, if there exists a *t*-round construction algorithm \mathcal{A} for \mathcal{L} , then there is a *t*-round order-invariant construction algorithm \mathcal{A}' for \mathcal{L} .

(4月) (4日) (4日)

Thank you for your attention

- (日) (日) (日)

H. Arfaoui, P. Fraigniaud, <u>D. Ilcinkas</u>, and F. Mathieu Distributedly Testing Cycle-Freeness