Graph Exploration by Oblivious Agents

David ILCINKAS

CNRS, Bordeaux, France

GT Algorithmique Distribuée, Bordeaux June 26, 2017

Problem

Model/context

- Team of mobile entities
 - sensing the environment by taking a snapshot of it
 - that do not communicate
 - that are anonymous and oblivious

Problem

Model/context

- Team of mobile entities
 - sensing the environment by taking a snapshot of it
 - that do not communicate
 - that are anonymous and oblivious
- In a discrete environment: anonymous graphs

Problem

Model/context

- Team of mobile entities
 - sensing the environment by taking a snapshot of it
 - that do not communicate
 - that are anonymous and oblivious
- In a discrete environment: anonymous graphs

In this talk: exploration

Each node must be visited.

The Look-Compute-Move cycle

Look

The agent takes an egocentric instantaneous snapshot of the network and its agents

Compute

Based on this observation, it decides to stay idle or to move to some neighboring node.

Move

In the latter case it <u>instantaneously</u> moves towards its destination.

Identical oblivious asynchronous agents

Identical

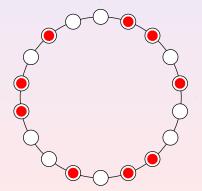
Agents have no IDs. They execute the same program.

Oblivious

The agents have no memory of observations, computations and moves made in previous cycles.

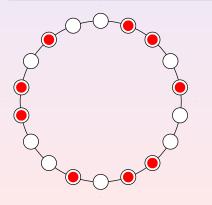
Possibly asynchronous

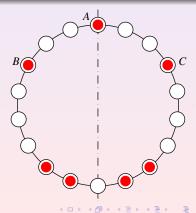
The time between Look, Compute, and Move operations is finite but unbounded.


Reminder:

Non-communicating

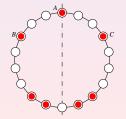
No communication mechanisms between agents, even locally.

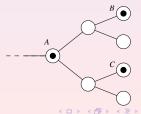

Anonymous setting


Agents and nodes have no IDs

Anonymous setting

- Agents and nodes have no IDs
- There are no port numbers, and no chirality




Anonymous setting

- Agents and nodes have no IDs
- There are no port numbers, and no chirality

In case of symmetry

- Compute : choice of an equivalence class of neighbors
- Actual choice: made by the adversary (i.e. worst case)

Anonymous setting

- Agents and nodes have no IDs
- There are no port numbers, and no chirality

In case of symmetry

- Compute: choice of an equivalence class of neighbors
- Actual choice: made by the adversary (i.e. worst case)

Weak multiplicity detection

"zero", "one", or "more than one" agents

Two types of exploration

Exploration with stop

- Each node must be visited by at least one agent.
- All agents must stop after finite time.

- Each node must be visited by every agent infinitely ofter
- Agents must not collide (meet at a node or cross each other on an edge).
- In both cases, the initial configurations are the configurations without multiplicities

Two types of exploration

Exploration with stop

- Each node must be visited by at least one agent.
- All agents must stop after finite time.

Exclusive perpetual exploration

- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).

In both cases, the initial configurations are the configurations without multiplicities

Two types of exploration

Exploration with stop

- Each node must be visited by at least one agent.
- All agents must stop after finite time.

Exclusive perpetual exploration

- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).

In both cases, the initial configurations are the configurations without multiplicities.

Usual focus

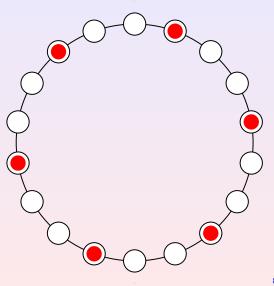
n: number of nodes

Smallest exploring team

 $\rho^-(n) = \text{Minimum}$ number of agents that can explore any n-node graph of a given family.

Largest exploring team

 $\rho^+(n) = \text{Maximum}$ number of agents that can explore any n-node graph of a given family.

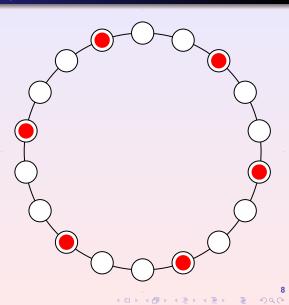

Families: Rings, (Partial) Grids, Trees, Tori, etc.

A simple impossibility result

Observation (in rings)

Impossible for both types of exploration when *k* divides *n*.

n: number of nodesk: number of agents



A simple impossibility result

Observation (in rings)

Impossible for both types of exploration when *k* divides *n*.

n: number of nodesk: number of agents

Focus on Exploration with stop

Exploration with stop (reminder)

- Each node must be visited by at least one agent.
- All agents must stop after finite time.
- Initial configurations are the configurations without multiplicities.

Family: Rings

- Additional assumption
- n and k are coprime.
 - n: number of nodes
- k: number of agents

Focus on Exploration with stop

Exploration with stop (reminder)

- Each node must be visited by at least one agent.
- All agents must stop after finite time.
- Initial configurations are the configurations without multiplicities.

Family: Rings

Additional assumption

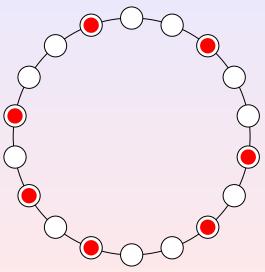
n and k are coprime.

- n: number of nodes
- k: number of agents

Some additional definitions

Interdistance

Minimum distance taken over all pairs of distinct agents.

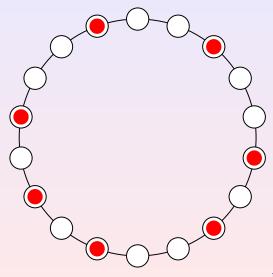

Here interdistance=2

Maximal set of agents of size at least 2

forming a line with an

agent every *d* nodes.

(*d*=interdistance)



Some additional definitions

Interdistance

Minimum distance taken over all pairs of distinct agents.

Here interdistance=2.

Some additional definitions

Interdistance

Minimum distance taken over all pairs of distinct agents.

Here interdistance=2.

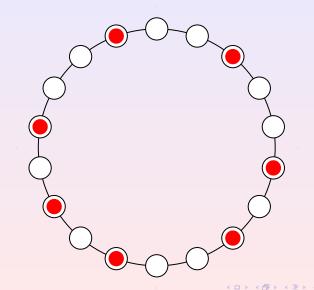
Block

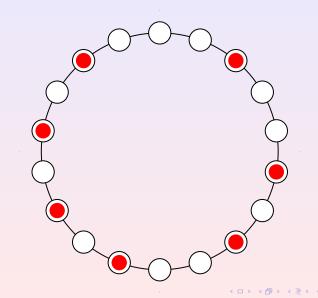
Maximal set of agents, of size at least 2, forming a line with an agent every d nodes. (d=interdistance)

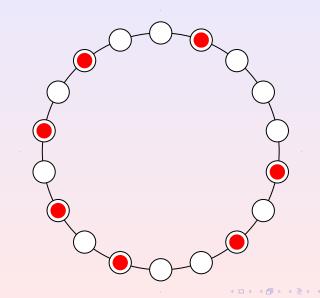
The algorithm

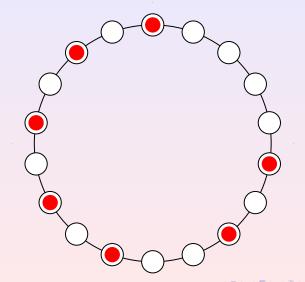
Set-Up Phase

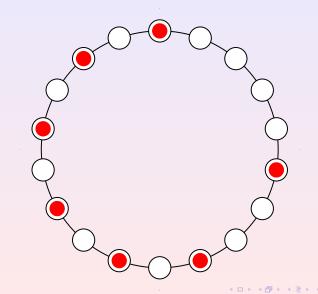
Goal: to transform the (arbitrary) initial configuration into a configuration of interdistance 1 where there is a single block or two blocks of the same size.

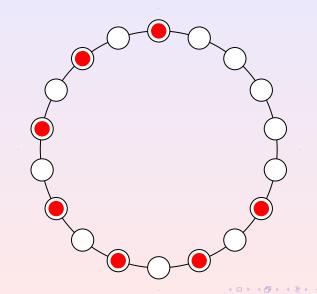

Method: decrease the number of blocks whenever possible. Otherwise, decrease the interdistance.

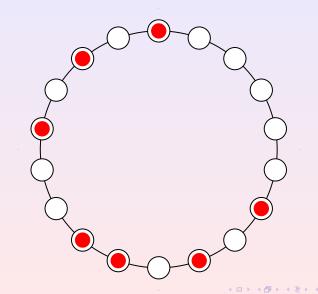

Tower-Creation Phase

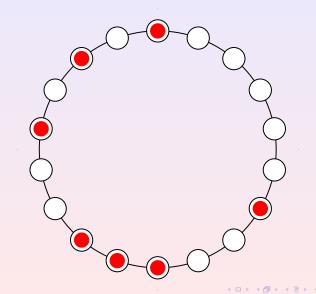

Goal: to create one or two multiplicities (towers) inside each block; furthermore a number of agents become uniquely identified as explorers.

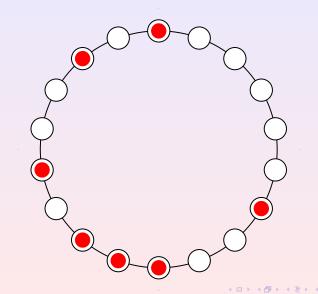

Exploration Phase

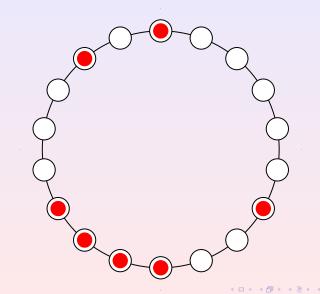

Goal: to perform exploration thanks to the explorers until reaching an identified final configuration.

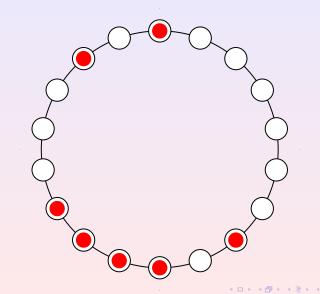


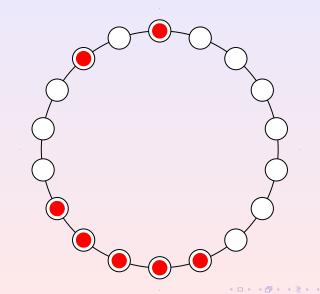


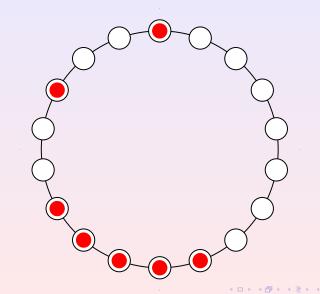


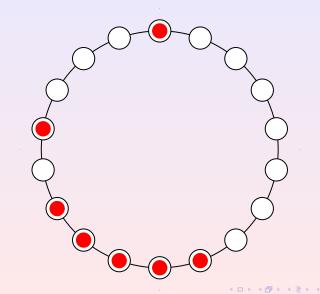


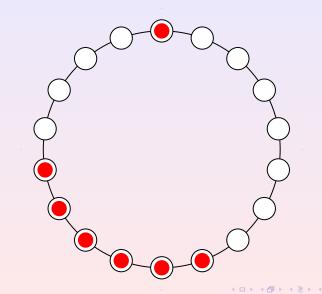


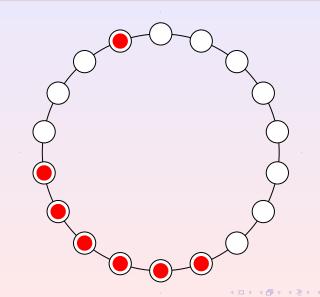


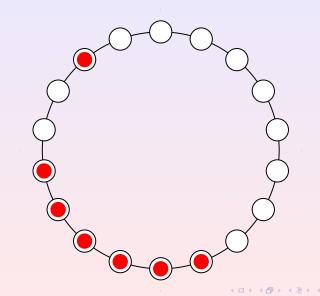


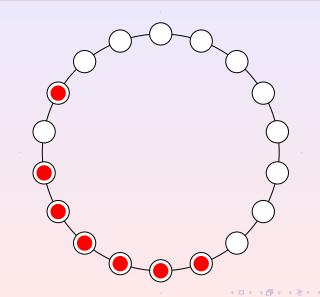


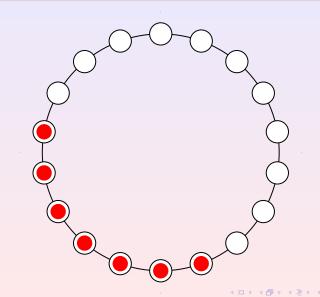


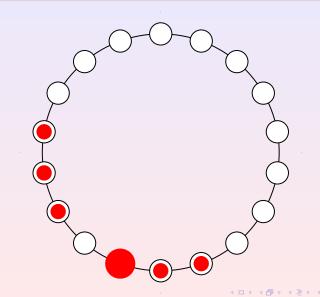


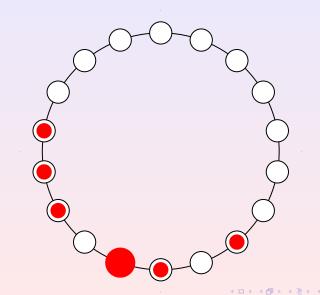


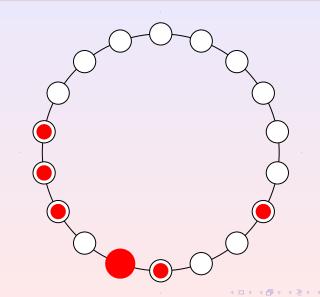


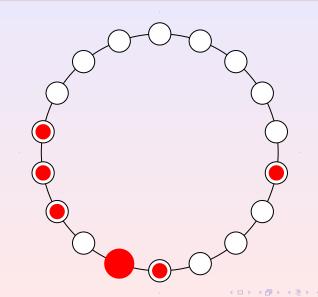


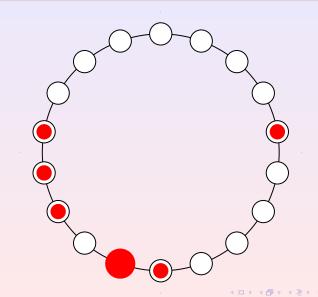


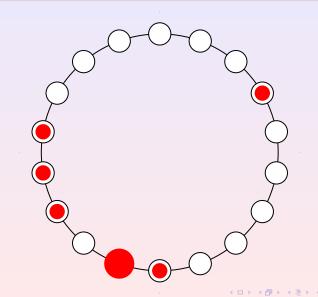


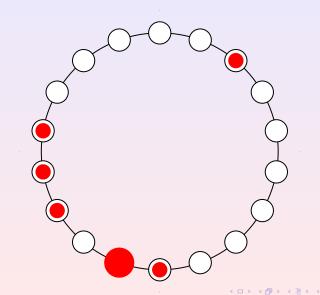


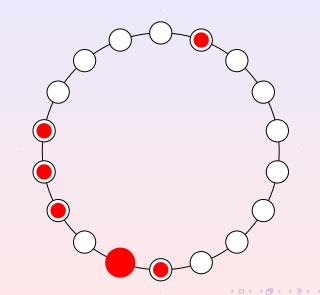


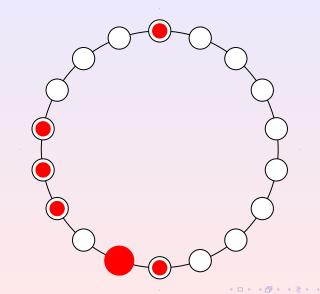


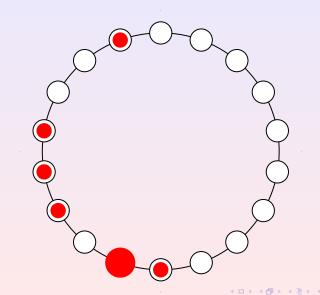


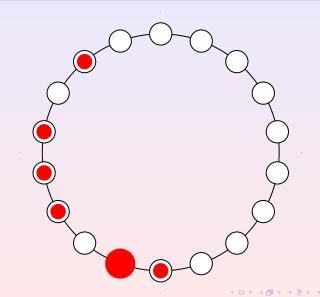


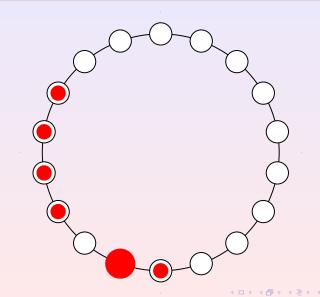












Algorithmic techniques (exploration with stop)

Phase 1

Form a special configuration without multiplicities.

• Uses (co-)primality of n and k.

Phase 2

Create a multiplicity to mark beginning of exploration

Phase 3

Perform exploration by few (1-3) agents.

Uses multiplicity and other agents to

break symmetry

keep track of the progress

Algorithmic techniques (exploration with stop)

Phase 1

Form a special configuration without multiplicities.

• Uses (co-)primality of n and k.

Phase 2

Create a multiplicity to mark beginning of exploration.

and asynchrony

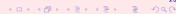
Algorithmic techniques (exploration with stop)

Phase 1

Form a special configuration without multiplicities.

• Uses (co-)primality of n and k.

Phase 2


Create a multiplicity to mark beginning of exploration.

Phase 3

Perform exploration by few (1–3) agents.

- Uses multiplicity and other agents to
 - break symmetry
 - keep track of the progress

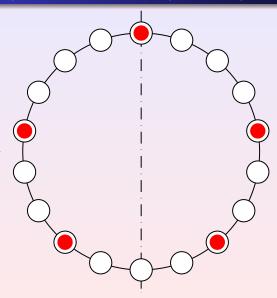
But symmetry and asynchrony

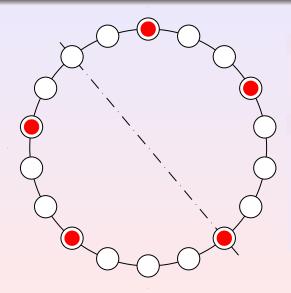
Models of synchrony

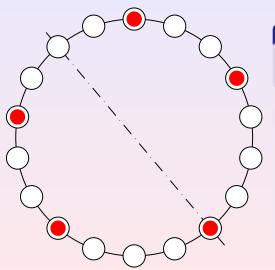
FSYNC (fully synchronous)

All agents execute their Look-Compute-Move simultaneously.

SSYNC (semi-synchronous)

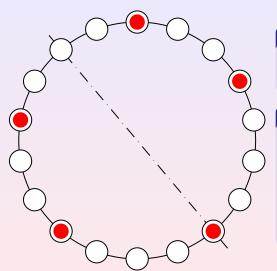

Look-Compute-Move is instantaneous.


⇒ Difficult to move multiplicities


ASYNC (asynchronous)

The time between Look, Compute, and Move operations is finite but unbounded.

⇒ Pending moves (moves based on outdated snapshots)

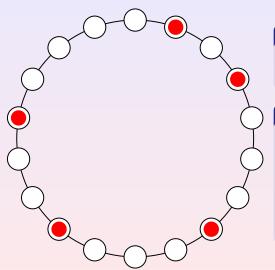


Guideline 1

Move only one agent at a time if possible.

f the current

me from a symmeti nfiguration, then



Guideline 1

Move only one agent at a time if possible.

Guideline 2

If the current configuration could come from a symmetric configuration, then move the "risky" agent first.

Guideline 1

Move only one agent at a time if possible.

Guideline 2

If the current configuration could come from a symmetric configuration, then move the "risky" agent first.

Known results (explo. with stop) 1/3

In the rings

- [1] ASYNC det.: $\rho^-(n)$ is in $O(\log n)$
- [1] SSYNC det.: $\rho^-(n)$ is in $\Omega(\log n)$ for inf. many n
- [2] ASYNC det.: $\rho^-(n) \le 5$ when n is not a multiple of 5
- [2] SSYNC det.: $\rho^-(n) = 4$ when n is odd.
- [2] SSYNC det.: $\rho^-(n) \ge 5$ if n is even
- [3] ASYNC prob.: $\rho^-(n)$ is in $\Omega(\log n)$ for inf. many n
- [3] SSYNC prob.: $\rho^{-}(n) = 4$ for any n > 4
- [1] Flocchini, Ilcinkas, Pelc, Santoro. Algorithmica 2013
- [2] Lamani, Potop-Butucaru, Tixeuil. SIROCCO 2010
- [3] Devismes, Petit, Tixeuil. TCS 2013

Known results (explo. with stop) 2/3

Limited visibility: snapshot up to distance φ only [Datta, Lamani, Larmore, Petit]

In the rings, with arphi=1 (ICDCS 2013)

- SSYNC det.: impossible
- FSYNC det.: $\rho^-(n) \geq 5$
- FSYNC det.: algo. k = 5 when initial config. is special

In the rings, with arphi= 2 and 3 (IPDPS workshop 2015)

For $\varphi = 2$:

• ASYNC det.: algo. k = 7 when initial config. is special

For $\varphi = 3$:

• ASYNC det.: $\rho^-(n) \le 7$ for any n > 21

Known results (explo. with stop) 3/3

[Flocchini, Ilcinkas, Pelc, Santoro. TCS 2010]

- Trees max. deg. 3: $\rho^-(n) \in \Theta(\log n / \log \log n)$
- Complete ternary trees: $\rho^-(n) \in \Theta(n)$

[Flocchini, Ilcinkas, Pelc, Santoro. IPL 2011]

• Line: iff k = 3, $k \ge 5$, or k = 4 and n odd

[Devismes, Lamani, Petit, Raymond, Tixeuil. SSS 2012]

• Grid: $\rho^-(n) = 3$ (SSYNC/ASYNC)

[Devismes, Lamani, Petit, Tixeuil. NETYS 2015]

• Torus: SSYNC $\rho^-(n) = 4$ prob. (≥ 5 det.)

[Chalopin, Flocchini, Mans, Santoro. WG 2010]

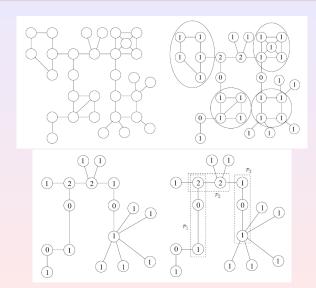
Arbitrary graphs with port numbers: rigid initial config.

Focus on Exclusive Perpetual Exploration

Exclusive perpetual exploration (reminder)

- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).
- Initial configurations are the configurations without multiplicities.

First studied family: Partial grids with NSEW


Focus on Exclusive Perpetual Exploration

Exclusive perpetual exploration (reminder)

- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).
- Initial configurations are the configurations without multiplicities.

First studied family: Partial grids with NSEW

Mobility tree and parameter q

Known results (exclusive perpetual explo.) 1/2

In the partial grids (FSYNC)

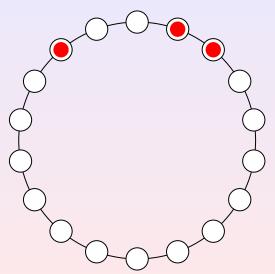
[Baldoni, Bonnet, Milani, Raynal. IPL 2008]

- Definition of the parameter q
- Solvable iff $k \le n q$

[Baldoni, Bonnet, Milani, Raynal. OPODIS 2008]

- Limited visibility $\varphi = 1$
- Solvable iff $k \le n q$, except for $q = 0 \Longrightarrow n 1$

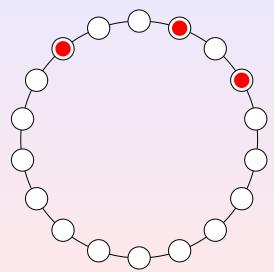
In the (complete) grids


[Bonnet, Milani, Potop-Butucaru, Tixeuil. OPODIS 2011]

- ASYNC. no sense of direction
- Deterministically: $\rho^-(n) = 3$

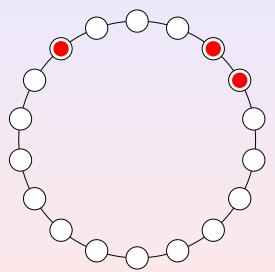
Algorithmic techniques (exclusive perpetual explo.)

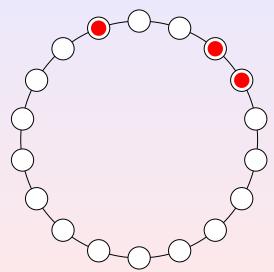
Two phases


- Form a special asymmetric pattern
- Move the pattern through the graph

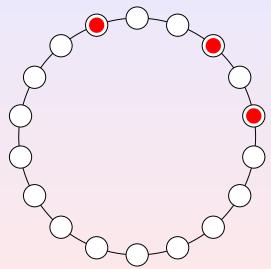
Algorithmic techniques (exclusive perpetual explo.)

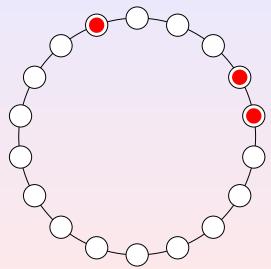
Two phases

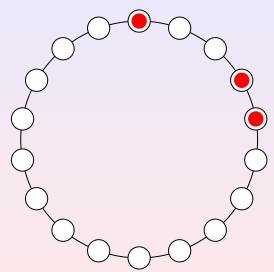

- Form a special asymmetric pattern
- Move the pattern through the graph


Algorithmic techniques (exclusive perpetual explo.)

Two phases


- Form a special asymmetric pattern
- Move the pattern through the graph


- Form a special asymmetric pattern
- Move the pattern through the graph


- Form a special asymmetric pattern
- Move the pattern through the graph

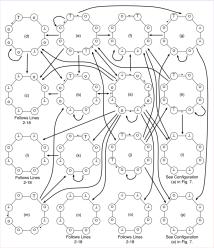
- Form a special asymmetric pattern
- Move the pattern through the graph

- Form a special asymmetric pattern
- Move the pattern through the graph

Known results (exclusive perpetual explo.) 2/2

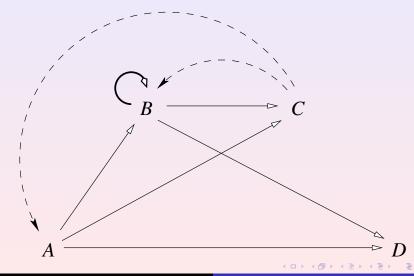
Case of the rings

[Blin, Milani, Potop-Butucaru, Tixeuil. DISC 2010]


- FSYNC det.: Impossible when k is even
- ASYNC det.: $\rho^-(n) = 3$ for $n \ge 10$ and n and k coprime
- ASYNC det.: $\rho^+(n) = n-5$ for k odd & n and k coprime [Bonnet, Défago, Petit, Potop-Butucaru, Tixeuil. SRDS Workshop 2014]
 - Generic method to list all protocols (SSYNC)
 - Application: impossible for k = 5 and n = 10

[D'Angelo, Di Stefano, Navarra, Nisse, Suchan. Algorithmica 2015]

- ASYNC but only for rigid initial configurations
- Det. algo for any k, n such that $n \ge 10$ and $5 \le k \le n 3$, except the case k = 5 and n = 10


Proofs of correctness (1/2)

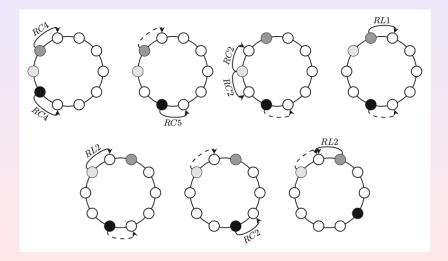
Case-by-case analysis

Proofs of correctness (2/2)

DAG with potential functions

Formal verification via model checking

[Bérard, Lafourcade, Millet, Potop-Butucaru, Thierry-Mieg, Tixeuil. Distributed Computing 2016


Study of two algorithms

- Exploration with stop [FIPS Algorithmica 2013]
 - Correct for 17 < k < 21 and k < n < 22
 - Also correct for smaller values of k (5, 7 and 10)
- Exclusive perpetual exploration [BMPT DISC 2010]
 - Counter-example for k=3 and n=10

[Doan, Bonnet, Ogata. SOFG+MSVL 2016]

- Also study of [BMPT DISC 2010]
- Same counter-example, with a different technique

The counter-example

Conclusion and perspectives

Conclusion

- Computability depends on the amount of symmetries
- Tricky to (correctly) handle symmetries and asynchrony

- Limited visibility
- Formal verification
 - (Parametrized) Model checking
- Proof assistant

Conclusion and perspectives

Conclusion

- Computability depends on the amount of symmetries
- Tricky to (correctly) handle symmetries and asynchrony

Interesting perspectives

- Limited visibility
- Formal verification
 - (Parametrized) Model checking
 - Proof assistant

Thank you for your attention