Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps

Stéphane Devismes¹ <u>David Ilcinkas</u>² Colette Johnen²

¹Univ. Grenoble Alpes, France ²CNRS & Univ. Bordeaux, France

GT DALGO at LIF, Marseille October 26, 2017

Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps

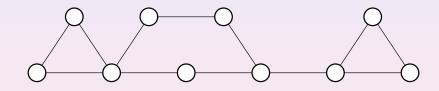
Stéphane Devismes¹ <u>David Ilcinkas</u>² Colette Johnen²

¹Univ. Grenoble Alpes, France ²CNRS & Univ. Bordeaux, France

GT DALGO at LIF, Marseille October 26, 2017

Rooted shortest-path tree

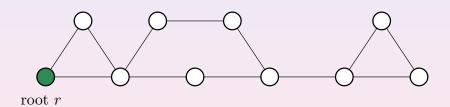
(Framework: distributed computing in networks.)



Basically, local knowledge of a shortest path to a fixed node

Rooted shortest-path tree

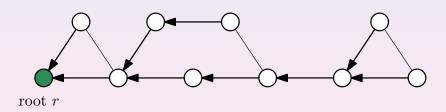
(Framework: distributed computing in networks.)



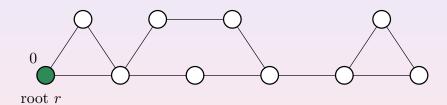
Basically, local knowledge of a shortest path to a fixed node

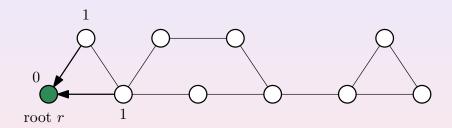
Rooted shortest-path tree

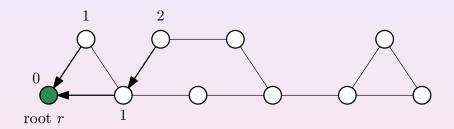
(Framework: distributed computing in networks.)

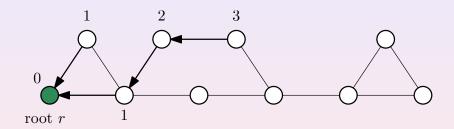


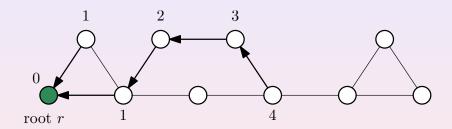
Basically, local knowledge of a shortest path to a fixed node.

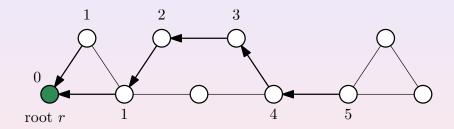


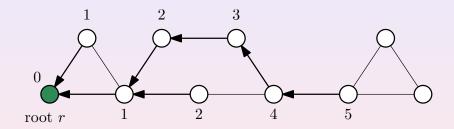


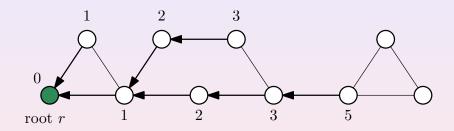


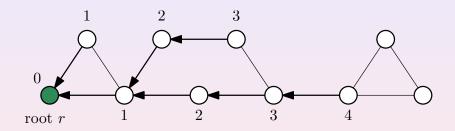


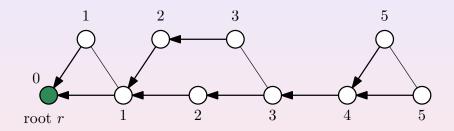












Context

Motivations

Classical building block for routing in networks

- In shortest-path routing schemes (like BGP)
- In compact routing schemes
- ... and in distributed algorithms in general.

- The network may change over time (faults, updates, etc.)
- The network may be even disconnected

Context

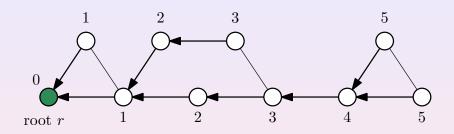
Motivations

Classical building block for routing in networks ...

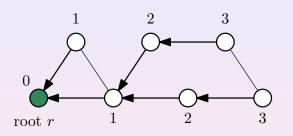
- In shortest-path routing schemes (like BGP)
- In compact routing schemes
- ... and in distributed algorithms in general.

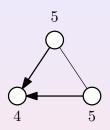
In practice

- The network may change over time (faults, updates, etc.)
- The network may be even disconnected

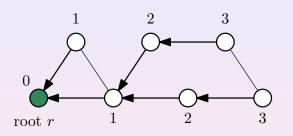


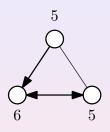
- Bandwidth is uselessly consumed
- Basic update mechanism may fail
 ⇒ useless control messages.



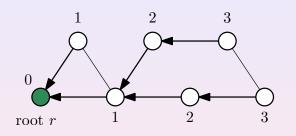


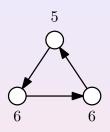
- Bandwidth is uselessly consumed.
- ⇒ useless control messages



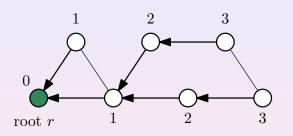


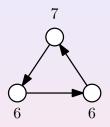
- Bandwidth is uselessly consumed.
- ⇒ useless control messages.



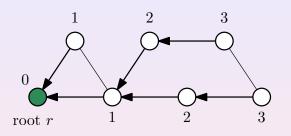


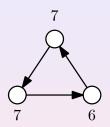
- Bandwidth is uselessly consumed.
- → useless control messages





- Bandwidth is uselessly consumed.
- Basic update mechanism may
 weeless control messages

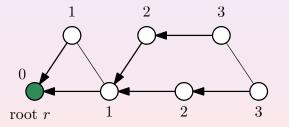


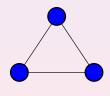


- Bandwidth is uselessly consumed.
- ② Basic update mechanism may fail ⇒ useless control messages.

The problem at hand

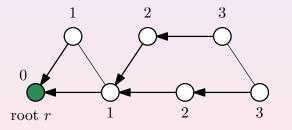
<u>Disconnected Components Detection and</u> rooted <u>Shortest-Path tree Maintenance</u> (DCDSPM)

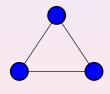




The problem at hand

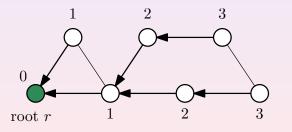
<u>Disconnected Components Detection and</u> rooted Shortest-Path tree Maintenance (DCDSPM)

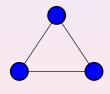




The problem at hand

<u>Disconnected Components Detection and</u> rooted <u>Shortest-Path tree Maintenance</u> (DCDSPM)





Self-Stabilization

Definition

A self-stabilizing distributed system will eventually behave correctly no matter its initialization.

- Context of use
 - Transient faults
 - Low-rate dynamics

Self-Stabilization

Definition

A self-stabilizing distributed system will eventually behave correctly no matter its initialization.

Context of use

- Transient faults
- Low-rate dynamics

7/16

Model (1/2)

Classical model, introduced by Dijkstra [Commun. ACM, 1974]

Locally shared memory model...

Each node u has local variables that can be

- read by u and its neighbors,
- written only by u

The state of a node is updated based on the local neighborhood in an atomic step.

Model (1/2)

Classical model, introduced by Dijkstra [Commun. ACM, 1974]

Locally shared memory model...

Each node u has local variables that can be

- read by u and its neighbors,
- written only by u

... with composite atomicity

The state of a node is updated based on the local neighborhood in an atomic step.

Model (2/2)

Program of a node

List of rules Guard \rightarrow Action for node u

- Guard: function of the variables of u and its neighbors
- Action: update of the local variables

Model (2/2)

Program of a node

List of rules Guard \rightarrow Action for node u

- Guard: function of the variables of u and its neighbors
- Action: update of the local variables

Enabled

- A rule is enabled if its guard evaluates to true.
- A node is enabled if at least one of its rules is enabled.

9/16

Model (2/2)

Program of a node

List of rules Guard \rightarrow Action for node u

- Guard: function of the variables of u and its neighbors
- Action: update of the local variables

Enabled |

- A rule is enabled if its guard evaluates to true.
- A node is enabled if at least one of its rules is enabled.

Step and daemon (asynchrony)

At each step, the daemon must select at least one enabled node to be executed.

9/16

Our results

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

Our results

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

• It works under any daemon (the unfair daemon).

Our results

Main contribution

We propose and prove a self-stabilizing algorithm solving the DCDSPM problem with the following properties

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.

• n_{maxCC} : max. number of nodes in a connected component

10/16

Main contribution

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.

Main contribution

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like n or D).

- n: total number of nodes
- D: (hop-)diameter of the network

Main contribution

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like n or D).
- Linear in rounds: $3n_{\text{maxCC}} + D$.

- n: total number of nodes
- D: (hop-)diameter of the network
- n_{maxCC} : max. number of nodes in a connected component

Main contribution

- It works under any daemon (the unfair daemon).
- The algorithm is silent: eventually, no states are changed.
- Edges may have arbitrary positive weights.
- No a priori knowledge on global parameters (like n or D).
- Linear in rounds: $3n_{\text{maxCC}} + D$.
- Polynomial in steps: $O(W_{\text{max}}n_{\text{maxCC}}^3n)$.
- n: total number of nodes
- D: (hop-)diameter of the network
- n_{maxCC} : max. number of nodes in a connected component
- W_{max}: maximum integer weight

DCDSPM

• [Glacet, Hanusse, Ilcinkas, Johnen, 2014] $2n_{\text{maxCC}} + D$ rounds but exponential \sharp steps

```
[Many papers]
```

Disjunction

• [Datta, Devismes, Larmore, 201

FS-tree (restricted to polynomial #steps)

• [Cournier, Devismes, Villain, 2009]

Cournier Royadakis Villain 201

 $O(D^2)$ rounds. $O(n^6)$ steps

DCDSPM

• [Glacet, Hanusse, Ilcinkas, Johnen, 2014] $2n_{\text{maxCC}} + D$ rounds but exponential \sharp steps

Shortest-path spanning tree (no analyses for #steps)

[Many papers]

Disjunction

- [Datta, Devismes, Larmore, 2012]
- pprox DCDSPM with uniform weights but exponential \sharp steps
- <u>BFS-tree</u> (restricted to polynomial #steps)
- [Cournier, Devismes, Villain, 2009]
 - Not silent, $O(\Delta n^3)$ steps
- [Cournier, Rovedakis, Villain, 2011] $O(D^2)$ rounds $O(n^6)$ steps

DCDSPM

• [Glacet, Hanusse, Ilcinkas, Johnen, 2014] $2n_{\text{maxCC}} + D$ rounds but exponential \sharp steps

Shortest-path spanning tree (no analyses for #steps)

[Many papers]

Disjunction

[Datta, Devismes, Larmore, 2012]
 ≈ DCDSPM with uniform weights but exponential #steps

11/16

DCDSPM

• [Glacet, Hanusse, Ilcinkas, Johnen, 2014] $2n_{\text{maxCC}} + D$ rounds but exponential \sharp steps

Shortest-path spanning tree (no analyses for #steps)

[Many papers]

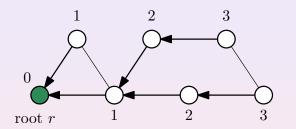
Disjunction

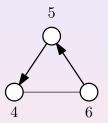
[Datta, Devismes, Larmore, 2012]
 ≈ DCDSPM with uniform weights but exponential #steps

BFS-tree (restricted to polynomial #steps)

- [Cournier, Devismes, Villain, 2009] Not silent, $O(\Delta n^3)$ steps
- [Cournier, Rovedakis, Villain, 2011] $O(D^2)$ rounds, $O(n^6)$ steps

Ideas behind the algorithm

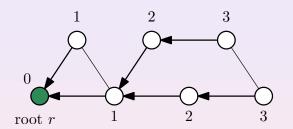


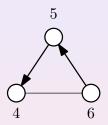


To be pretty cautious... but not too much

12/16

Ideas behind the algorithm

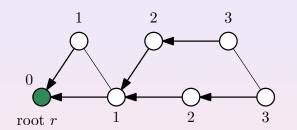


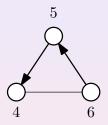


To be pretty cautious...

.. but not too much.

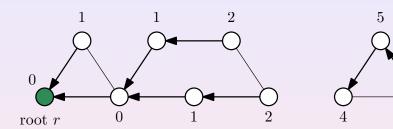
Ideas behind the algorithm





To be pretty cautious...

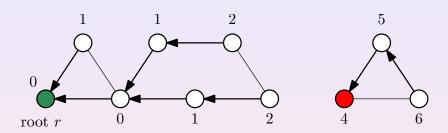
... but not too much.



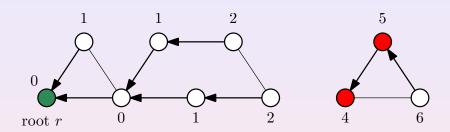
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

Two waves allow a polynomial number of steps. But n_{maxcc} additional rounds.

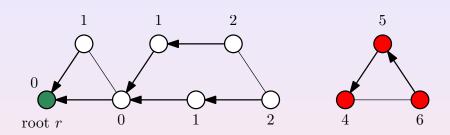
13/16



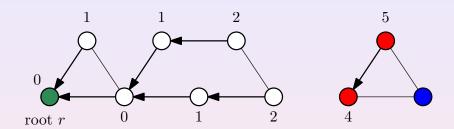
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



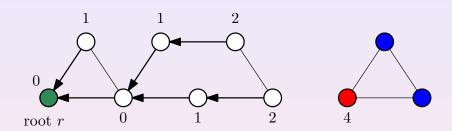
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



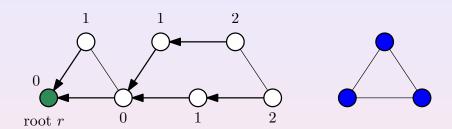
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



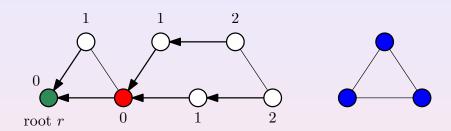
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



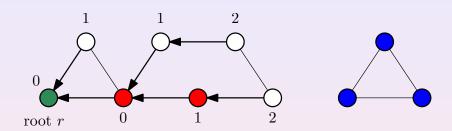
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



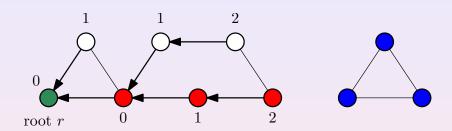
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



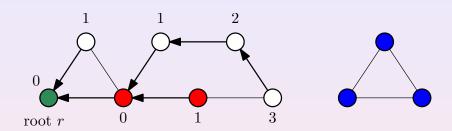
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



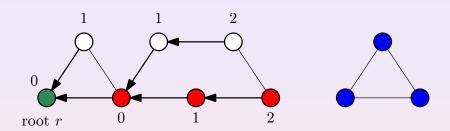
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



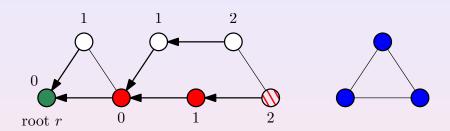
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



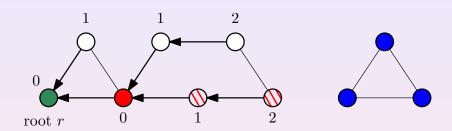
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



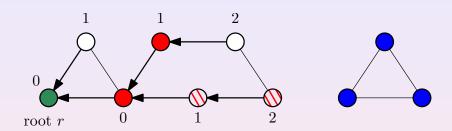
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



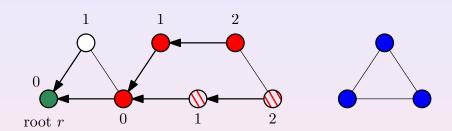
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



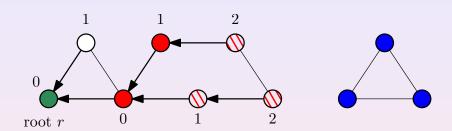
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



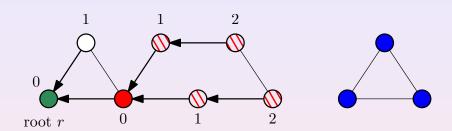
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



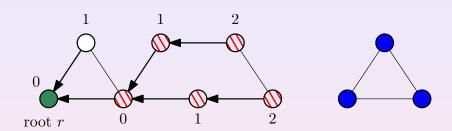
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



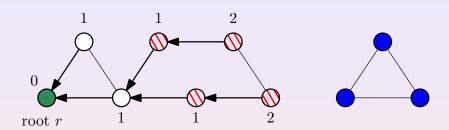
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



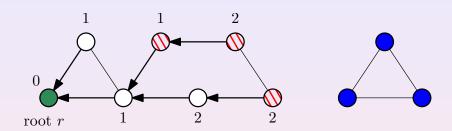
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

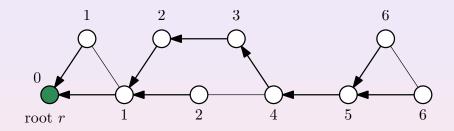


1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]



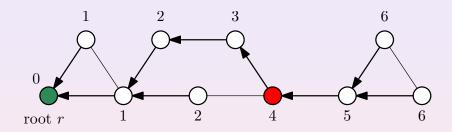
1 wave (1 error state) gives a correct but exponential algorithm [Glacet, Hanusse, Ilcinkas, Johnen, 2014]

... but not too much



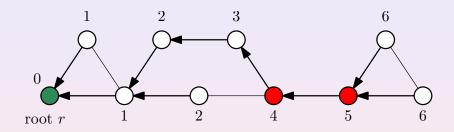
Not directly improving distances leads to $\Omega(D^2)$ rounds.

... but not too much



Not directly improving distances leads to $\Omega(D^2)$ rounds.

... but not too much



Not directly improving distances leads to $\Omega(D^2)$ rounds.

Formal algorithm

 $\mathbf{R}_{\mathbf{R}}(u)$

Algorithm 2: Code of RSP for any process $u \neq r$ Variables: st_u $\{I, C, EB, EF\}$ par_u Lbl \mathbb{N}^* Predicates: $\equiv st_u = EF \wedge abRoot(u)$ P reset(u) $P \ correction(u) \equiv (\exists v \in \Gamma(u) \mid st_v = C \land d_v + \omega(u, v) < d_u)$ Macro: computePath(u) : $par_u := \operatorname{argmin}_{(v \in \Gamma(u) \land st_v = C)} (d_v + \omega(u, v));$ $d_u := d_{par_u} + \omega(u, par_u);$ $st_n := \hat{C}$ Rules : $st_u = C \wedge P \ correction(u)$ computePath(u) $\mathbf{R}_{\mathbf{C}}(u)$ $\mathbf{R_{EB}}(u)$: $st_u = C \wedge \neg P \ correction(u) \wedge$ $st_u := EB$ $(abRoot(u) \lor st_{par_u} = EB)$ $st_u = EB \land (\forall v \in children(u) \mid st_v = EF)$ $\rightarrow st_u := EF$ $\mathbf{R}_{\mathbf{EF}}(u)$ $P \ reset(u) \land (\forall v \in \Gamma(u) \mid st_v \neq C)$ $\rightarrow st_n := I$ $\mathbf{R}_{\mathbf{I}}(u)$

 $(P \ reset(u) \lor st_u = I) \land (\exists v \in \Gamma(u) \mid st_v = C)$

computePath(u)

Thank you for your attention