On the Power of Waiting when Exploring Public Transportation Systems

David Ilcinkas Ahmed Wade

LaBRI, CNRS & Université de Bordeaux

MAC 2013 July 4th, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Graph exploration by a mobile agent

Graph exploration

- The mobile entity, called agent, has to visit every node at least once and then terminate.
 - Well studied classical problem.
 - Focus on the time and space complexity, on the impact of a priori knowledge, on fault-tolerance, etc.

イロン イヨン イヨン イヨン

Graph exploration by a mobile agent

Graph exploration

- The mobile entity, called agent, has to visit every node at least once and then terminate.
- Well studied classical problem.

 Focus on the time and space complexity, on the impact of a priori knowledge, on fault-tolerance, etc.

2/26

- A 🗇 🕨 - A 🖻 🕨 - A 🖻 🕨

Graph exploration by a mobile agent

Graph exploration

- The mobile entity, called agent, has to visit every node at least once and then terminate.
- Well studied classical problem.
- Focus on the time and space complexity, on the impact of a priori knowledge, on fault-tolerance, etc.

2/26

Exploration of dynamic graphs by a mobile agent

Dynamic graphs

- The new generation of network environments are highly dynamic and evolve in time.
- Researchers have begun to study these highly dynamic networks in the past few years.

Periodically-varying graphs (PV-graphs

- PV-graphs model in particular various types of public transportation systems (bus, subway systems, ...).
- A PV-graph consists of a set of routes and a set of carriers, each following periodically its respective route among the sites of the system.

・ロト ・同ト ・ヨト ・ヨト

Exploration of dynamic graphs by a mobile agent

Dynamic graphs

- The new generation of network environments are highly dynamic and evolve in time.
- Researchers have begun to study these highly dynamic networks in the past few years.

Periodically-varying graphs (PV-graphs)

- PV-graphs model in particular various types of public transportation systems (bus, subway systems, ...).
- A PV-graph consists of a set of routes and a set of carriers, each following periodically its respective route among the sites of the system.

3/26

Exploration of dynamic graphs by a mobile agent

Dynamic graphs

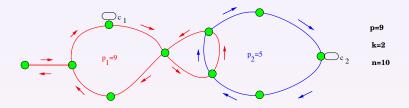
- The new generation of network environments are highly dynamic and evolve in time.
- Researchers have begun to study these highly dynamic networks in the past few years.


Periodically-varying graphs (PV-graphs)

- PV-graphs model in particular various types of public transportation systems (bus, subway systems, ...).
- A PV-graph consists of a set of routes and a set of carriers, each following periodically its respective route among the sites of the system.

3/26

臣


イロト イヨト イヨト イヨト

The model of PV-graphs

- A PV-graph is defined by the tuple (S, C, Id, R).
- $S = \{s_1, \ldots, s_n\}$ is the set of sites (or nodes).
- $C = \{c_1, c_2, \ldots, c_k\}$ is the set of carriers.
- Each carrier c has an identifier Id(c) and follows a finite sequence $R(c) = (s_{i_1}, \cdots, s_{i_{p(c)}})$ of sites, called its route, in a periodic manner.

ヘロン 人間と 人間と 人間と



The model of PV-graphs

- A PV-graph is defined by the tuple (*S*, *C*, Id, *R*).
 - $S = \{s_1, \ldots, s_n\}$ is the set of sites (or nodes).
- C = {c₁, c₂,..., c_k} is the set of carriers.
 Each carrier c has an identifier Id(c) and follows a f
- sequence $R(c) = (s_{i_1}, \cdots, s_{i_{o(c)}})$ of sites, called its route,
 - in a periodic manner

4/26

ヘロン ヘロン ヘビン ヘビン



The model of PV-graphs

- A PV-graph is defined by the tuple (S, C, Id, R).
- $S = \{s_1, \ldots, s_n\}$ is the set of sites (or nodes).

Each carrier c has an identifier Id(c) and follows a finite sequence $R(c) = (s_{i_1}, \cdots, s_{i_{p(c)}})$ of sites, called its route, in a periodic manner.


・ロン ・雪 と ・ ヨ と ・ ヨ と

The model of PV-graphs

- A PV-graph is defined by the tuple (S, C, Id, R).
- $S = \{s_1, \ldots, s_n\}$ is the set of sites (or nodes).
- $C = \{c_1, c_2, \ldots, c_k\}$ is the set of carriers.
- Each carrier c has an identifier Id(c) and follows a finite sequence R(c) = (s_{i1}, ··· , s_{ip(c)}) of sites, called its route, in a periodic manner.

・ロン ・四マ ・ヨン ・ヨン

The model of PV-graphs

- A PV-graph is defined by the tuple (*S*, *C*, Id, *R*).
- $S = \{s_1, \ldots, s_n\}$ is the set of sites (or nodes).
- $C = \{c_1, c_2, \ldots, c_k\}$ is the set of carriers.
- Each carrier c has an identifier Id(c) and follows a finite sequence R(c) = (s_{i1}, ..., s_{ip(c)}) of sites, called its route, in a periodic manner.

・ロン ・四マ ・ヨン ・ヨン

Some related work

- [FKMS10] P. Flocchini, M. Kellett, P. C. Mason, and N. Santoro. Mapping an unfriendly subway system. FUN 2010
- [FKMS12a] P. Flocchini, M. Kellett, P. C. Mason, and N. Santoro. Searching for black holes in subways. Theory of Computing Systems 2012
- [FKMS12b] P. Flocchini, M. Kellett, P. C. Mason, and N. Santoro. Finding Good Coffee in Paris. FUN 2012
 - [FMS13] P. Flocchini, B. Mans, and N. Santoro. On the exploration of time-varying networks. Theoretical Computer science 2013 (ISAAC 2009)
 - [IYK12] T. Izumi, Y. Yamauchi, and S. Kamei. BA: Mobile Agent Rendezvous on Edge Evolving Rings. SSS 2012

• An entity, called agent, is operating on these PV-graphs.

It can see the carriers and their identities

- It can ride on a carrier to go from a site to another
- It can also leave a carrier to ride with another carrier
- We do not assume any restriction on:
 - the memory size of the agent
 - its computational capabilities
- We say that an agent explores a PV-graph if and only if, starting at time 0 on the starting site, the agent eventually visits all sites of the PV-graph and switches afterwards to a terminal state.

6/26

(日) (四) (三) (三) (三) (三)

• An entity, called agent, is operating on these PV-graphs.

- It can see the carriers and their identities
- It can ride on a carrier to go from a site to another
- We do not assume any restriction on:
 - the memory size of the agent
 - its computational capabilities
- We say that an agent explores a PV-graph if and only if, starting at time 0 on the starting site, the agent eventually visits all sites of the PV-graph and switches afterwards to a terminal state.

6/26

(日) (四) (三) (三) (三) (三)

• An entity, called agent, is operating on these PV-graphs.

- It can see the carriers and their identities
- It can ride on a carrier to go from a site to another
- It can also leave a carrier to ride with another carrier
- We do not assume any restriction on:
 - the memory size of the agent
 - its computational capabilities
- We say that an agent explores a PV-graph if and only if, starting at time 0 on the starting site, the agent eventually visits all sites of the PV-graph and switches afterwards to a terminal state.

・ロン ・日ン ・ヨン ・ヨン

• An entity, called agent, is operating on these PV-graphs.

- It can see the carriers and their identities
- It can ride on a carrier to go from a site to another
- It can also leave a carrier to ride with another carrier

• We do not assume any restriction on:

- the memory size of the agent
- its computational capabilities
- We say that an agent explores a PV-graph if and only if, starting at time 0 on the starting site, the agent eventually visits all sites of the PV-graph and switches afterwards to a terminal state.

6/26

(日) (同) (注) (注) (注)

• An entity, called agent, is operating on these PV-graphs.

- It can see the carriers and their identities
- It can ride on a carrier to go from a site to another
- It can also leave a carrier to ride with another carrier
- We do not assume any restriction on:

the memory size of the agent
 its computational canabilities

 We say that an agent explores a PV-graph if and only if, starting at time 0 on the starting site, the agent eventually visits all sites of the PV-graph and switches afterwards to a terminal state.

・ロン ・回 と ・ ヨ と ・ ヨ と

• An entity, called agent, is operating on these PV-graphs.

- It can see the carriers and their identities
- It can ride on a carrier to go from a site to another
- It can also leave a carrier to ride with another carrier
- We do not assume any restriction on:
 - the memory size of the agent
 - its computational capabilities
- We say that an agent explores a PV-graph if and only if, starting at time 0 on the starting site, the agent eventually visits all sites of the PV-graph and switches afterwards to a terminal state.

・ロト ・回ト ・ヨト ・ヨト

• An entity, called agent, is operating on these PV-graphs.

- It can see the carriers and their identities
- It can ride on a carrier to go from a site to another
- It can also leave a carrier to ride with another carrier
- We do not assume any restriction on:
 - the memory size of the agent
 - its computational capabilities
- We say that an agent explores a PV-graph if and only if, starting at time 0 on the starting site, the agent eventually visits all sites of the PV-graph and switches afterwards to a terminal state.

・ロト ・回ト ・ヨト ・ヨト

• An entity, called agent, is operating on these PV-graphs.

- It can see the carriers and their identities
- It can ride on a carrier to go from a site to another
- It can also leave a carrier to ride with another carrier
- We do not assume any restriction on:
 - the memory size of the agent
 - its computational capabilities
- We say that an agent explores a PV-graph if and only if, starting at time 0 on the starting site, the agent eventually visits all sites of the PV-graph and switches afterwards to a terminal state.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definitions

A PV-graph is said to be

- anonymous if the nodes don't have any identities, or the agent is not able to see them.
 - labeled if the nodes have distinct identities and the agent can see and memorize them.
- homogeneous if all its carriers have the same period

・ロト ・日ト ・ヨト ・ヨト

7/26

臣

Definitions

A PV-graph is said to be

- anonymous if the nodes don't have any identities, or the agent is not able to see them.
- labeled if the nodes have distinct identities and the agent can see and memorize them.

homogeneous if all its carriers have the same period.

7/26

Definitions

A PV-graph is said to be

- anonymous if the nodes don't have any identities, or the agent is not able to see them.
- labeled if the nodes have distinct identities and the agent can see and memorize them.
- homogeneous if all its carriers have the same period.

7/26

(本間) (本語) (注)

Previous result (1/2)

[Paola Flocchini, Bernard Mans and Nicola Santoro, TCS 2013]

Anonymous PV-Graphs

The knowledge of an upper bound on the longest period is necessary and sufficient.

Labeled PV-Graphs

The knowledge of the number of nodes or an upper bound on the longest period is necessary and sufficient.

・ロト ・回ト ・ヨト ・ヨト

8/26

크

Previous result (1/2)

[Paola Flocchini, Bernard Mans and Nicola Santoro, TCS 2013]

Anonymous PV-Graphs

The knowledge of an upper bound on the longest period is necessary and sufficient.

Labeled PV-Graphs

The knowledge of the number of nodes or an upper bound on the longest period is necessary and sufficient.

イロト イヨト イヨト イヨト

Previous result (1/2)

[Paola Flocchini, Bernard Mans and Nicola Santoro, TCS 2013]

Anonymous PV-Graphs

The knowledge of an upper bound on the longest period is necessary and sufficient.

Labeled PV-Graphs

The knowledge of the number of nodes or an upper bound on the longest period is necessary and sufficient.

・ロト ・回ト ・ヨト ・ヨト

Previous result (2/2)

[Paola Flocchini, Bernard Mans and Nicola Santoro, TCS 2013]

- k: number of carriers
- p: longest period
- B: upper bound on p given to the agent

General case

- $\Omega(kp^2)$ moves and time steps.
- $O(kB^2)$ moves and time steps.

Homogeneous PV-graphs

- $\Omega(\textit{kp})$ moves and time steps.
- O(kB) moves and time steps.

Previous result (2/2)

[Paola Flocchini, Bernard Mans and Nicola Santoro, TCS 2013]

- k: number of carriers
- p: longest period
- B: upper bound on p given to the agent

General case

- $\Omega(kp^2)$ moves and time steps.
- O(kB²) moves and time steps.

lomogeneous PV-graphs

- Ω(kp) moves and time steps.
- O(kB) moves and time steps.

Previous result (2/2)

[Paola Flocchini, Bernard Mans and Nicola Santoro, TCS 2013]

- k: number of carriers
- p: longest period
- B: upper bound on p given to the agent

General case

- $\Omega(kp^2)$ moves and time steps.
- O(kB²) moves and time steps.

Homogeneous PV-graphs

- $\Omega(kp)$ moves and time steps.
- O(kB) moves and time steps.

Model of PV-graphs

[FMS13] considered that the agent cannot leave the carrier to stay on a site.

Motivation

Not being able to stay on a site is particularly legitimate in low earth orbiting satellite systems for example, where the sites do not correspond to any physical station.

Remark

In most public transportation systems, it is possible for the agent (human or not) to stay on a site in order to wait for a (possibly different) carrier.

◆□ → ◆□ → ◆ □ → ◆ □ → ●

Model of PV-graphs

[FMS13] considered that the agent cannot leave the carrier to stay on a site.

Motivation

Not being able to stay on a site is particularly legitimate in low earth orbiting satellite systems for example, where the sites do not correspond to any physical station.

Remark

In most public transportation systems, it is possible for the agent (human or not) to stay on a site in order to wait for a (possibly different) carrier.

< ロ > < 回 > < 回 > < 回 > < 回 >

Model of PV-graphs

[FMS13] considered that the agent cannot leave the carrier to stay on a site.

Motivation

Not being able to stay on a site is particularly legitimate in low earth orbiting satellite systems for example, where the sites do not correspond to any physical station.

Remark

In most public transportation systems, it is possible for the agent (human or not) to stay on a site in order to wait for a (possibly different) carrier.

(D) (A) (A) (A) (A)

Our contribution

Our contribution

We extend the study of Flocchini, Mans and Santoro to the case when the agent can leave a carrier to stay at a site.

We prove that this new ability allows

- to explore PV-graphs that are less connected over time.
- to reduce the move and time complexities in the general case.
- the agent to completely map the PV-graph, in addition to just explore it.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Our contribution

Our contribution

We extend the study of Flocchini, Mans and Santoro to the case when the agent can leave a carrier to stay at a site.

We prove that this new ability allows

• to explore PV-graphs that are less connected over time.

to reduce the move and time complexities in the genera case.

 the agent to completely map the PV-graph, in addition to just explore it.

< ロ > < 回 > < 回 > < 回 > < 回 >

Our contribution

Our contribution

We extend the study of Flocchini, Mans and Santoro to the case when the agent can leave a carrier to stay at a site.

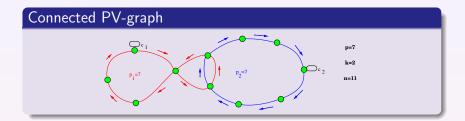
We prove that this new ability allows

- to explore PV-graphs that are less connected over time.
- to reduce the move and time complexities in the general case.
 - the agent to completely map the PV-graph, in addition to just explore it.

(ロ) (同) (三) (三)

Our contribution

Our contribution

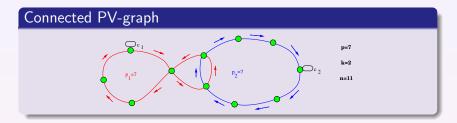

We extend the study of Flocchini, Mans and Santoro to the case when the agent can leave a carrier to stay at a site.

We prove that this new ability allows

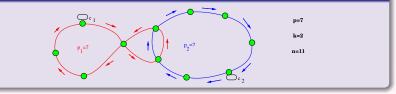
- to explore PV-graphs that are less connected over time.
- to reduce the move and time complexities in the general case.
- the agent to completely map the PV-graph, in addition to just explore it.

() < </p>

Definition: notions of connectivity


Highly-connected PV-graph

・ロト ・日ト ・ヨト ・ヨト


12/26

크

Definition: notions of connectivity

Highly-connected PV-graph

David Ilcinkas, Ahmed Wade Exploration of Public Transportation Systems

イロト イヨト イヨト イヨト

- In this table we assume that B = O(p)
- [FMS13] (the agent cannot leave the carrier)
- Our results (the agent can leave the carrier)

	Connected	Highly-connected
General case	Impossible	$\Theta(kp^2)$ moves and
		time steps
	$\Theta(\min\{kp, np, n^2\})$ moves	$\Theta(\min\{kp, np, n^2\})$ moves
	$\Theta(np)$ time steps	$\Theta(np)$ time steps
Homogeneous	Impossible	$\Theta(kp)$ moves and
		time steps
	$\Theta(\min\{kp, np, n^2\})$ moves	$\Theta(\min\{kp, np, n^2\})$ moves
	$\Theta(np)$ time steps	O(np) time steps
		13/26

David Ilcinkas, Ahmed Wade Exploration of Public Transportation Systems

- In this table we assume that B = O(p)
- [FMS13] (the agent cannot leave the carrier)
- Our results (the agent can leave the carrier)

	Connected	Highly-connected
General case	Impossible	$\Theta(kp^2)$ moves and
		time steps
	$\Theta(\min\{kp, np, n^2\})$ moves	$\Theta(\min\{kp, np, n^2\})$ moves
	$\Theta(np)$ time steps	$\Theta(np)$ time steps
Homogeneous	Impossible	$\Theta(kp)$ moves and
		time steps
	$\Theta(\min\{kp, np, n^2\})$ moves	$\Theta(\min\{kp, np, n^2\})$ moves
	$\Theta(np)$ time steps	O(np) time steps
		13/26

David Ilcinkas, Ahmed Wade Exploration of Public Transportation Systems

- In this table we assume that B = O(p)
- [FMS13] (the agent cannot leave the carrier)
- Our results (the agent can leave the carrier)

	Connected	Highly-connected
General case	Impossible	$\Theta(kp^2)$ moves and
		time steps
	$\Theta(\min\{kp, np, n^2\})$ moves	$\Theta(\min\{kp, np, n^2\})$ moves
	$\Theta(np)$ time steps	$\Theta(np)$ time steps
Homogeneous	Impossible	$\Theta(kp)$ moves and
		time steps
	$\Theta(\min\{kp, np, n^2\})$ moves	$\Theta(\min\{kp, np, n^2\})$ moves
	$\Theta(np)$ time steps	O(np) time steps
	·	13/26

David Ilcinkas, Ahmed Wade Exploration of Public Transportation Systems

- In this table we assume that B = O(p)
- [FMS13] (the agent cannot leave the carrier)
- Our results (the agent can leave the carrier)

	Connected	Highly-connected
General case	Impossible	$\Theta(kp^2)$ moves and
		time steps
	$\Theta(\min\{kp, np, n^2\})$ moves	$\Theta(\min\{kp, np, n^2\})$ moves
	$\Theta(np)$ time steps	$\Theta(np)$ time steps
Homogeneous	Impossible	$\Theta(kp)$ moves and
		time steps
	$\Theta(\min\{kp, np, n^2\})$ moves	$\Theta(\min\{kp, np, n^2\})$ moves
	$\Theta(np)$ time steps	O(np) time steps
		13/26

David Ilcinkas, Ahmed Wade Exploration of Public Transportation Systems

Sommaire

- 3 Lower bounds
- Upper bounds
- 5 Conclusion and perspectives

・ロン ・回 と ・ ヨ と ・ ヨ と

14/26

크

An agent without information on the PV-graphs it has to explore cannot explore all PV-graphs.

Theorem

An agent cannot explore all labeled homogeneous highly-connected PV-graphs if it has no information on the PV-graphs it has to explore.

・ロン ・回 と ・ ヨ と ・ ヨ と

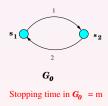
15/26

臣

An agent without information on the PV-graphs it has to explore cannot explore all PV-graphs.

Theorem

An agent cannot explore all labeled homogeneous highly-connected PV-graphs if it has no information on the PV-graphs it has to explore.

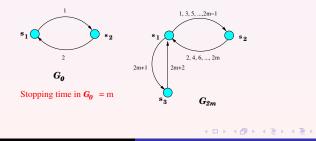

15/26

(4月) (4日) (4日)

An agent without information on the PV-graphs it has to explore cannot explore all PV-graphs.

Theorem

An agent cannot explore all labeled homogeneous highly-connected PV-graphs if it has no information on the PV-graphs it has to explore.

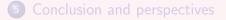


15/26

An agent without information on the PV-graphs it has to explore cannot explore all PV-graphs.

Theorem

An agent cannot explore all labeled homogeneous highly-connected PV-graphs if it has no information on the PV-graphs it has to explore.


Sommaire

2 Solvability

3 Lower bounds
• On the number of moves
• On the time

Upper bounds

・ロト ・回ト ・ヨト ・ヨト

Lower bound on the number of moves

Theorem

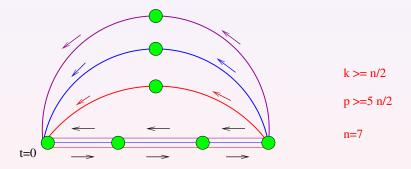
 For any n, k, and p, there exists a labeled homogeneous highly-connected PV-graph such that any agent needs at least Ω(min{kp, np, n²}) moves to explore it.

This result holds even if the agent knows completely the PV-graph, and has unlimited memory.

17/26

- A 🗇 🕨 - A 🖻 🕨 - A 🖻 🕨

Lower bound on the number of moves


Theorem

- For any n, k, and p, there exists a labeled homogeneous highly-connected PV-graph such that any agent needs at least Ω(min{kp, np, n²}) moves to explore it.
- This result holds even if the agent knows completely the PV-graph, and has unlimited memory.

(D) (A) (A) (A) (A)

Some part of the proof

There exists a PV-graph requiring $\Omega(\min\{kp, np, n^2\})$ moves.

18/26

(4月) (4日) (4日)

Lower bound on time

The exploration time (time steps) \geq Number of moves

.emma

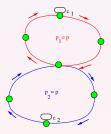
 For any n, k, p, there exists a family G_{n,p,k} of labeled homogeneous PV-graphs such that, for any agent, there exists a PV-graph in this family which cannot be explored by the agent using less than Ω(np) time steps.

・ロン ・回 と ・ ヨ と ・ ヨ と

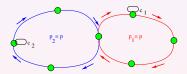
19/26

Э

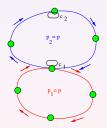
Lower bound on time

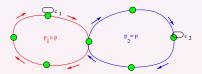

The exploration time (time steps) \geq Number of moves

Lemma


 For any n, k, p, there exists a family G_{n,p,k} of labeled homogeneous PV-graphs such that, for any agent, there exists a PV-graph in this family which cannot be explored by the agent using less than Ω(np) time steps.

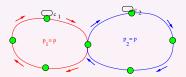
(D) (A) (A) (A) (A)

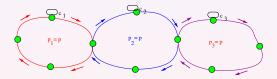

For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.


For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.

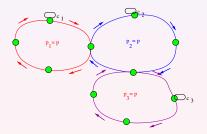
For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.

For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.

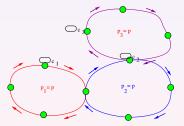

For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.


For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.

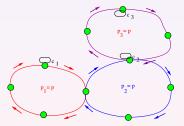
For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.

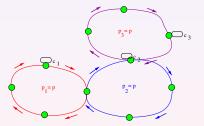


For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.



< 🗇 > < 🖃 >


For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.


For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.

For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.

For any agent, there exists a PV-graph $\in \mathcal{G}_{n,p,k}$ which cannot be explored by the agent using less than $\Omega(np)$ time steps.

Sommaire

1 Introduction

2 Solvability

3 Lower bounds

Upper bounds
 Our algorithm
 Complexities

5 Conclusion and perspectives

21/26

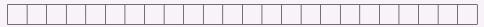
臣

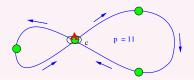
- 4 回 2 - 4 □ 2 - 4 □

• *B* is the upper bound given to the agent on the longest period *p*

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

22/26

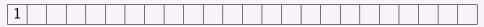

(ロ) (同) (E) (E) (E)


• *B* is the upper bound given to the agent on the longest period *p*

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

B is the upper bound given to the agent on the longest period *p*

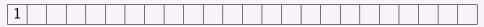
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

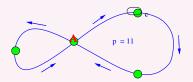


22/26

• *B* is the upper bound given to the agent on the longest period *p*

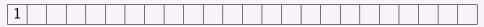
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

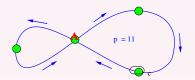




22/26

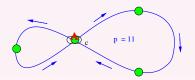
• *B* is the upper bound given to the agent on the longest period *p*


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



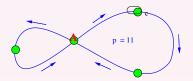
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



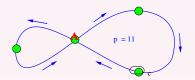
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



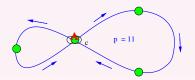
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

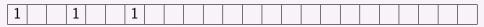


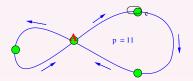
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



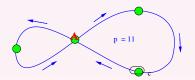
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



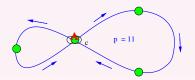
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



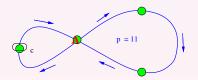
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

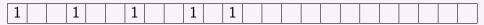


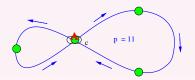
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

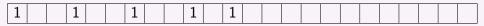


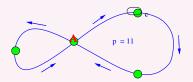
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

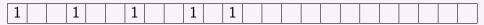


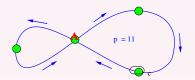
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

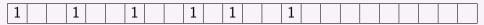


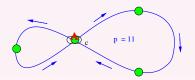
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

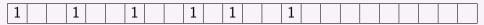


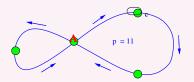
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

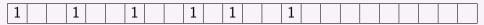


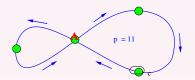
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

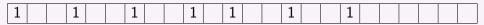


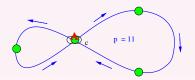
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

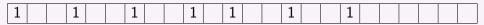


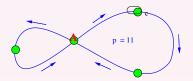
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

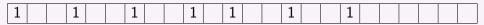


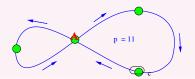
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

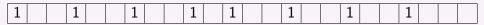


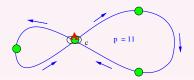
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

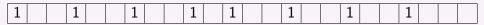


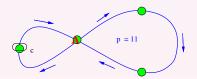
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



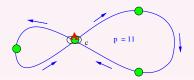
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



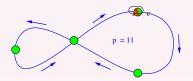
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



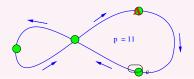
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



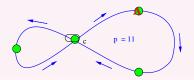
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

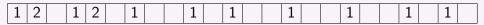


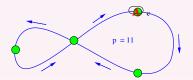
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

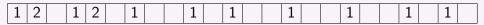


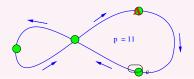
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

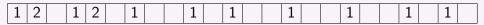


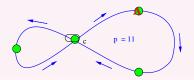
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



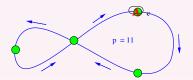
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



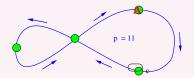
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

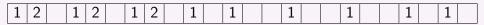


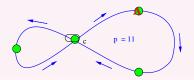
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

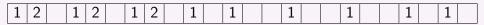


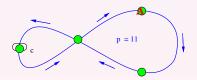
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

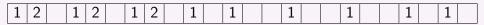


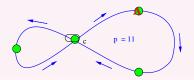
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

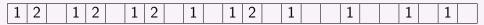


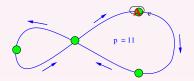
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

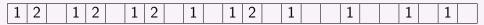


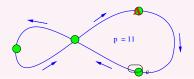
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

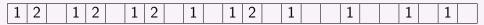


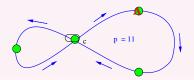
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

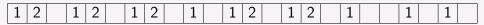


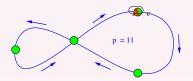
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

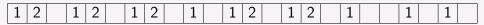


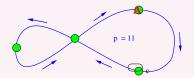
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

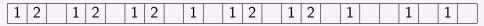


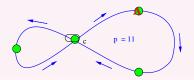
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



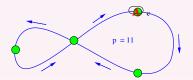
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

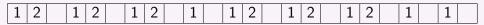


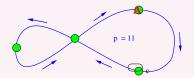
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



22/26

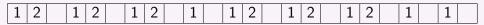

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

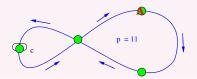

 1
 2
 1
 2
 1
 1
 2
 1
 2
 1
 1

22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

22/26

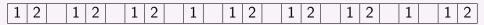

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

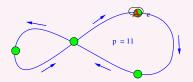

 1
 2
 1
 2
 1
 1
 2
 1
 2
 1
 1

22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

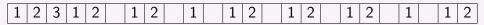
22/26

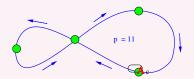

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 1
 2
 1
 1
 2
 1
 2
 1
 1

22/26

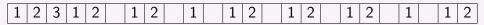
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

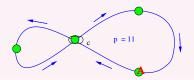




22/26

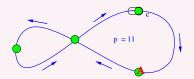
向下 イヨト イヨト


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



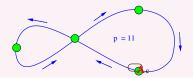
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.



22/26

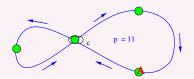
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2

22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

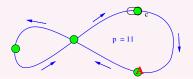
 1
 2
 3
 1
 2
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 1
 2



22/26

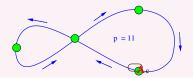
向下 イヨト イヨト

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 1
 2

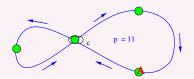
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 1
 2

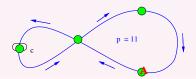
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 1
 2

22/26

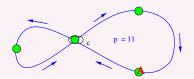
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 1
 2

22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

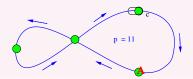
 1
 2
 3
 1
 2
 3
 1
 1
 2
 1
 2
 1
 2
 1
 2



22/26

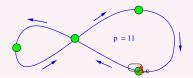
向下 イヨト イヨト

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 1
 2

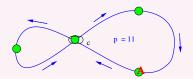
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 1
 2

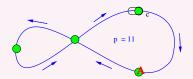
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 1
 2
 1
 1
 2

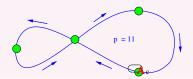
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 1
 2
 1
 1
 2

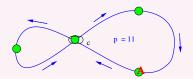
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 1
 2
 1
 1
 2

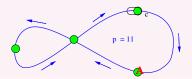
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 1
 1
 2

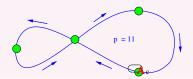
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 1
 1
 2

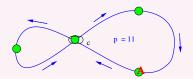
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 1
 1
 2

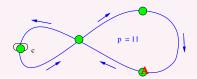
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1

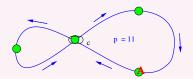
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1

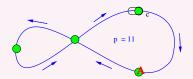
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1

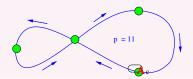
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1

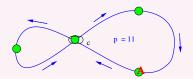
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1

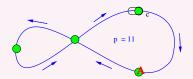
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1

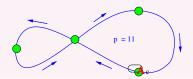
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1

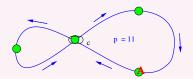
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1

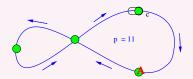
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1

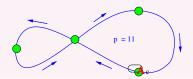
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1

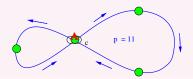
22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

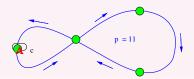

 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1

22/26

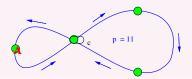
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1

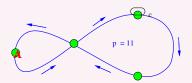
22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

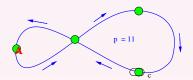
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1
 1
 2
 3
 1


22/26

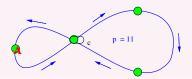
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


22/26

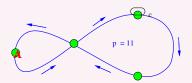
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


22/26

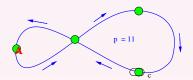
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


22/26

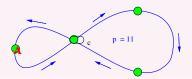
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


22/26

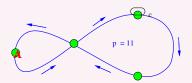
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


22/26

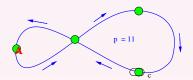
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


22/26

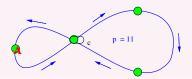
Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

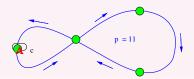

22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.


22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

22/26


Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

22/26

Algorithm EXPLORE-WITH-WAIT correctly explores and maps in finite time any PV-graph, even anonymous, provided that an upper bound on the maximum period is known.

1 2 3 1 2 3 1 2 3 1 4 1 2 3 1 2 3 1 4 1 2 3 1 2 3 1 2 3 1 4 1 2

22/26

Complexities

With the algorithm **EXPLORE-WITH-WAIT**

• The agent performs at most $O(\min\{kp, np, n^2\})$ moves to explore any PV-graph.

The agent explores any in at most O(nB) time steps.

イロン イヨン イヨン イヨン

23/26

Complexities

With the algorithm EXPLORE-WITH-WAIT

- The agent performs at most O(min{kp, np, n²}) moves to explore any PV-graph.
- The agent explores any in at most O(nB) time steps.

23/26

Sommaire

- 1 Introduction
- 2 Solvability
- 3 Lower bounds
- Upper bounds
- 5 Conclusion and perspectives

・ロン ・回 と ・ ヨ と ・ ヨ と

24/26

크

Summary

- Reduction of the optimal number of moves by a multiplicative factor of at least ⊖(p).
- Reduction of the time complexity from Θ(kp²) to Θ(
 Optimal algorithm, which also allows to map the PV-graph.

Perspectives

- Bound on the agent's memory
- Use of several agents
- Study of other models of dynamic graphs

イロン イヨン イヨン イヨン

25/26

Summary

- Reduction of the optimal number of moves by a multiplicative factor of at least ⊖(p).
- Reduction of the time complexity from $\Theta(kp^2)$ to $\Theta(np)$.

Optimal algorithm, which also allows to map the PV-graph.

Perspectives

- Bound on the agent's memory
- Use of several agents
- Study of other models of dynamic graphs

イロト イヨト イヨト イヨト

25/26

Summary

- Reduction of the optimal number of moves by a multiplicative factor of at least ⊖(p).
- Reduction of the time complexity from $\Theta(kp^2)$ to $\Theta(np)$.
- Optimal algorithm, which also allows to map the PV-graph.

rspectives

- Bound on the agent's memory
- Use of several agents
- Study of other models of dynamic graphs

・ロト ・ 同ト ・ ヨト ・ ヨト

Summary

- Reduction of the optimal number of moves by a multiplicative factor of at least ⊖(p).
- Reduction of the time complexity from $\Theta(kp^2)$ to $\Theta(np)$.
- Optimal algorithm, which also allows to map the PV-graph.

Perspectives

- Bound on the agent's memory
 - Use of several agents
- Study of other models of dynamic graphs

イロン イヨン イヨン イヨン

Summary

- Reduction of the optimal number of moves by a multiplicative factor of at least ⊖(p).
- Reduction of the time complexity from $\Theta(kp^2)$ to $\Theta(np)$.
- Optimal algorithm, which also allows to map the PV-graph.

Perspectives

- Bound on the agent's memory
- Use of several agents

Study of other models of dynamic graphs

A (1) > A (1) > A

Summary

- Reduction of the optimal number of moves by a multiplicative factor of at least ⊖(p).
- Reduction of the time complexity from $\Theta(kp^2)$ to $\Theta(np)$.
- Optimal algorithm, which also allows to map the PV-graph.

Perspectives

- Bound on the agent's memory
- Use of several agents
- Study of other models of dynamic graphs

- 4 同 6 4 日 6 4 日 6

Thank you for your attention!

26/26

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶