Graph Exploration by Oblivious Agents

David ILCINKAS

CNRS, Bordeaux, France

Moving and Computing, La Maddalena, Italy June 6, 2017

David ILCINKAS Graph Exploration by Oblivious Agents

Model/context

- Team of mobile entities
 - sensing the environment by taking a snapshot of it
 - that do not communicate
 - that are anonymous and oblivious

In a discrete environment: anonymous graphs

this talk: exploration

Each node must be visited.

(Next talk: gathering)

・ロト ・日ト ・ヨト ・ヨト

Э

Model/context

- Team of mobile entities
 - sensing the environment by taking a snapshot of it
 - that do not communicate
 - that are anonymous and oblivious
- In a discrete environment: anonymous graphs

In this talk: exploration

Each node must be visited.

(Next talk: gathering)

・ロト ・回ト ・ヨト ・ヨト

Model/context

- Team of mobile entities
 - sensing the environment by taking a snapshot of it
 - that do not communicate
 - that are anonymous and oblivious
- In a discrete environment: anonymous graphs

In this talk: exploration

Each node must be visited.

(Next talk: gathering)

向下 イヨト イヨト

Look

The agent takes an egocentric instantaneous snapshot of the network and its agents

Compute

Based on this observation, it decides to stay idle or to move to some neighboring node.

Move

In the latter case it instantaneously moves towards its destination.

(4月) (4日) (4日)

Identical oblivious asynchronous agents

Identical

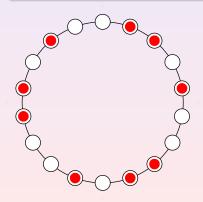
Agents have no IDs. They execute the same program.

Oblivious

The agents have no memory of observations, computations and moves made in previous cycles.

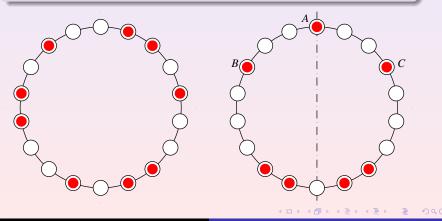
Possibly asynchronous

The time between Look, Compute, and Move operations is finite but unbounded.


Reminder:

Non-communicating

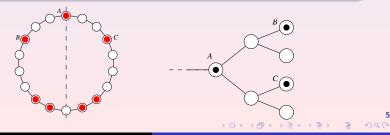
No communication mechanisms between agents, even locally.


Anonymous setting

- Agents and nodes have no IDs
- I here are no port numbers, and no chirality

Anonymous setting

- Agents and nodes have no IDs
- There are no port numbers, and no chirality



Anonymous setting

- Agents and nodes have no IDs
- There are no port numbers, and no chirality

In case of symmetry

- Compute : choice of an equivalence class of neighbors
- Actual choice: made by the adversary (i.e. worst case)

Anonymous setting

- Agents and nodes have no IDs
- There are no port numbers, and no chirality

In case of symmetry

- Compute : choice of an equivalence class of neighbors
- Actual choice: made by the adversary (i.e. worst case)

Weak multiplicity detection "zero", "one", or "more than one" agents		
	《曰》《曰》《臣》《臣》 (臣) []	500
David ILCINKAS	Graph Exploration by Oblivious Agents	

Exploration with stop

- Each node must be visited by at least one agent.
- All agents must stop after finite time.

Exclusive perpetual exploration

- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).

In both cases, the initial configurations are the configurations without multiplicities.

(ロ) (同) (E) (E) (E)

Exploration with stop

- Each node must be visited by at least one agent.
- All agents must stop after finite time.

Exclusive perpetual exploration

- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).

In both cases, the initial configurations are the configurations without multiplicities.

- 4 回 5 - 4 三 5 - 4 三 5

Exploration with stop

- Each node must be visited by at least one agent.
- All agents must stop after finite time.

Exclusive perpetual exploration

- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).

In both cases, the initial configurations are the configurations without multiplicities.

A (B) > A (B) > A (B) >

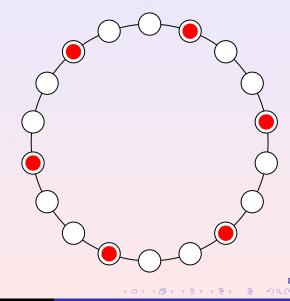
n: number of nodes

<u>Smallest</u> exploring team

 $\rho^{-}(n) =$ Minimum number of agents that can explore any *n*-node graph of a given family.

Largest exploring team

 $\rho^+(n) = Maximum$ number of agents that can explore any *n*-node graph of a given family.

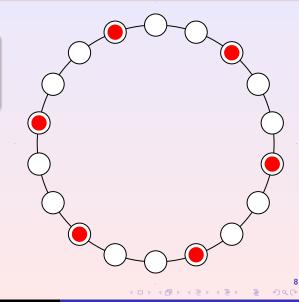

Families: Rings, (Partial) Grids, Trees, Tori, etc.

A simple impossibility result

Observation

Impossible for both types of exploration when k divides n.

n: number of nodes
k: number of agents



A simple impossibility result

Observation

Impossible for both types of exploration when k divides n.

n: number of nodes
k: number of agents

Focus on Exploration with stop

Exploration with stop (reminder)

- Each node must be visited by at least one agent.
- All agents must stop after finite time.
- Initial configurations are the configurations without multiplicities.

Family: Rings

Additional assumption

n and k are coprime.

- n: number of nodes
- k: number of agents

・ロン ・日ン ・ヨン ・ヨン

Focus on Exploration with stop

Exploration with stop (reminder)

- Each node must be visited by at least one agent.
- All agents must stop after finite time.
- Initial configurations are the configurations without multiplicities.

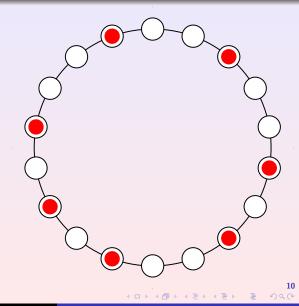
Family: Rings

Additional assumption

- *n* and *k* are coprime.
 - *n*: number of nodes
 - k: number of agents

・ロン ・回 と ・ ヨ と ・ ヨ と …

Some additional definitions

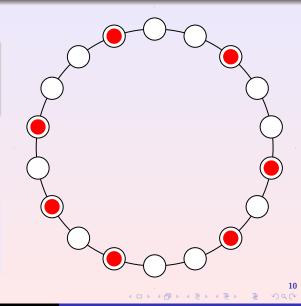

Interdistance

Minimum distance taken over all pairs of distinct agents.

Here interdistance=2.

Block

Maximal set of agents, of size at least 2, forming a line with an agent every *d* nodes. (*d*=interdistance)


Some additional definitions

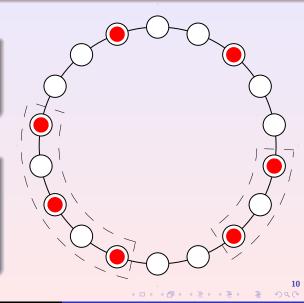
Interdistance

Minimum distance taken over all pairs of distinct agents.

Here interdistance=2.

Maximal set of agents, of size at least 2, forming a line with an agent every *d* nodes. (*d*=interdistance)

Some additional definitions


Interdistance

Minimum distance taken over all pairs of distinct agents.

Here interdistance=2.

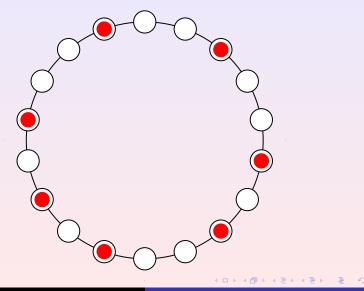
Block

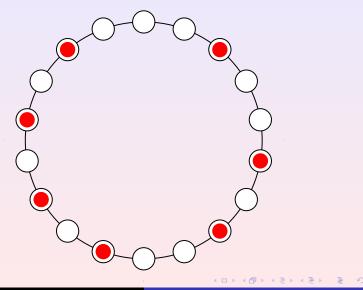
Maximal set of agents, of size at least 2, forming a line with an agent every d nodes. (d=interdistance)

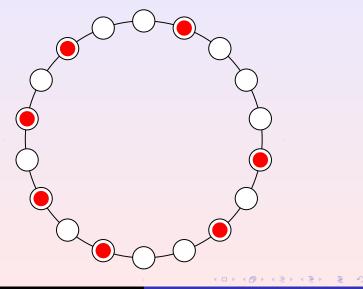
The algorithm

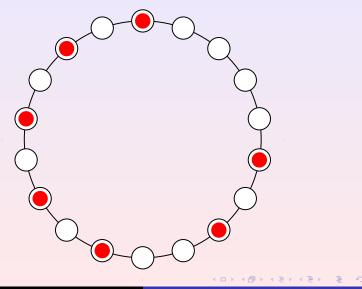
Set-Up Phase

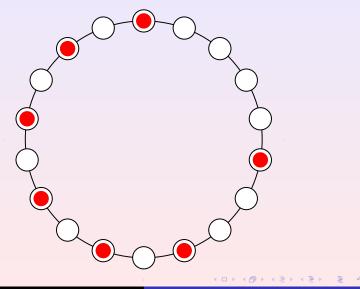
Goal: to transform the (arbitrary) initial configuration into a configuration of interdistance 1 where there is a single block or two blocks of the same size.

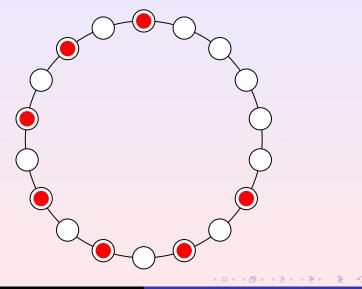

Method: decrease the number of blocks whenever possible. Otherwise, decrease the interdistance.

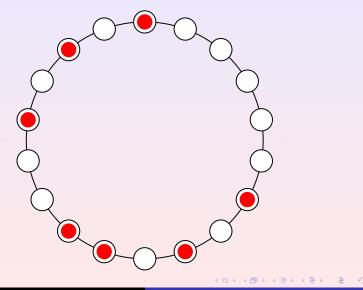

Tower-Creation Phase

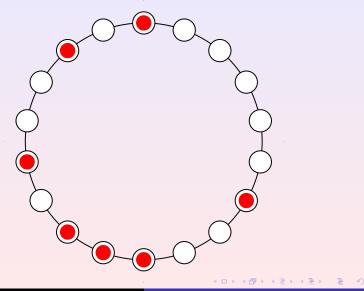

Goal: to create one or two multiplicities (towers) inside each block; furthermore a number of agents become uniquely identified as explorers.

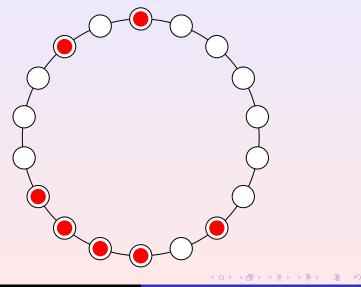

Exploration Phase

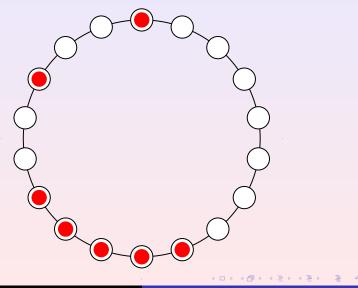

Goal: to perform exploration thanks to the explorers until reaching an identified final configuration.

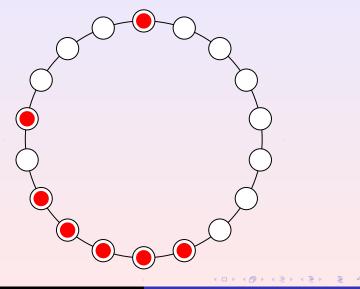


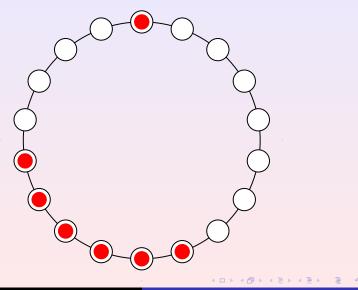


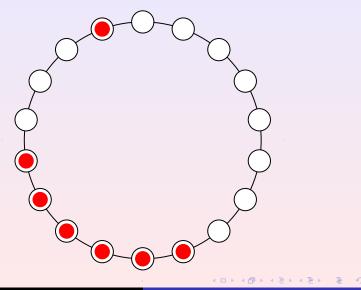


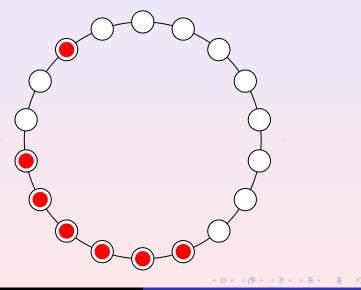


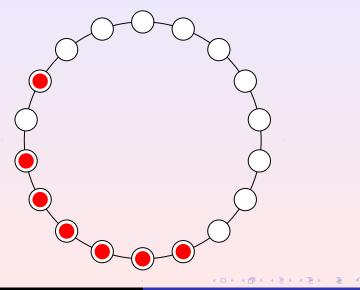


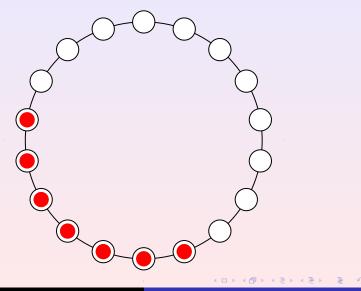


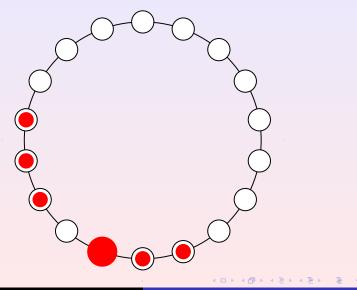


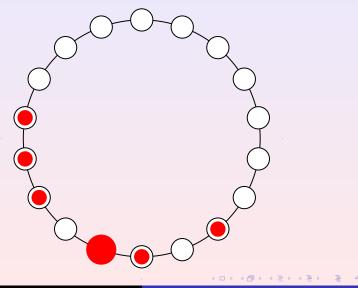


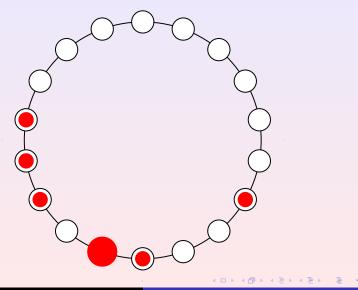


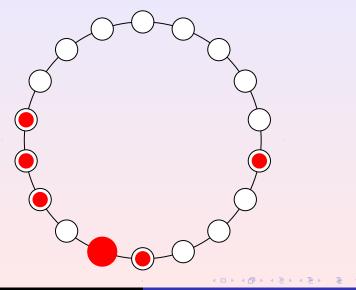


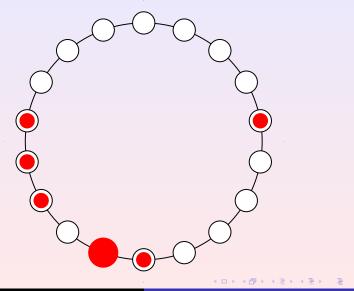


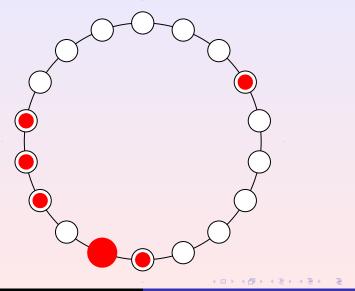


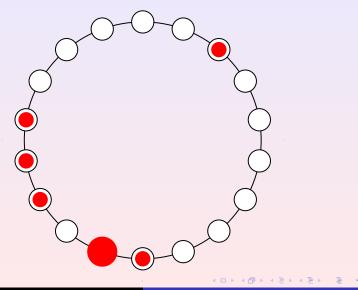


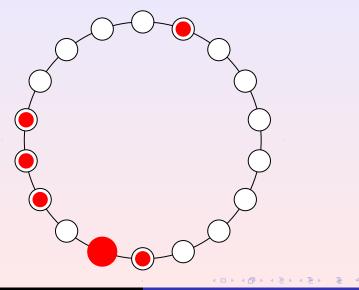


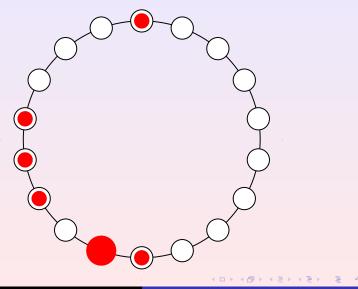


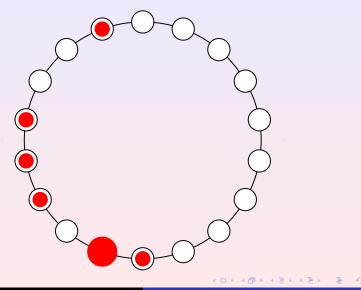


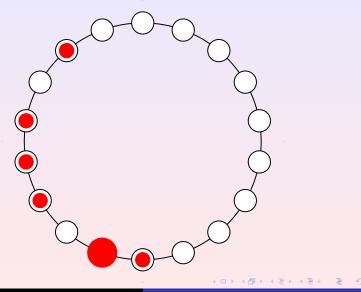


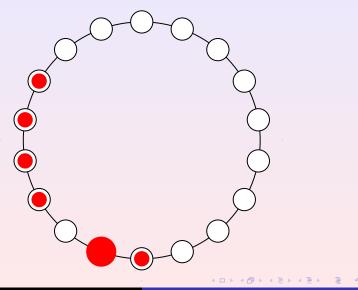












Algorithmic techniques (exploration with stop)

Phase 1

Form a special configuration without multiplicities.

• Uses (co-)primality of *n* and *k*.

Phase 2

Create a multiplicity to mark beginning of exploration.

Phase 3

Perform exploration by few (1-3) agents.

- Uses multiplicity and other agents to
 - break symmetry
 - keep track of the progress

イロン イ団ン イヨン イヨン 三日

Algorithmic techniques (exploration with stop)

Phase 1

Form a special configuration without multiplicities.

• Uses (co-)primality of n and k.

Phase 2

Create a multiplicity to mark beginning of exploration.

Phase 3

Perform exploration by few (1–3) agents.

- Uses multiplicity and other agents to
 - break symmetry
 - keep track of the progress

(日) (종) (종) (종) (종)

Algorithmic techniques (exploration with stop)

Phase 1

Form a special configuration without multiplicities.

• Uses (co-)primality of n and k.

Phase 2

Create a multiplicity to mark beginning of exploration.

Phase 3

Perform exploration by few (1-3) agents.

- Uses multiplicity and other agents to
 - break symmetry
 - keep track of the progress

But symmetry and asynchrony

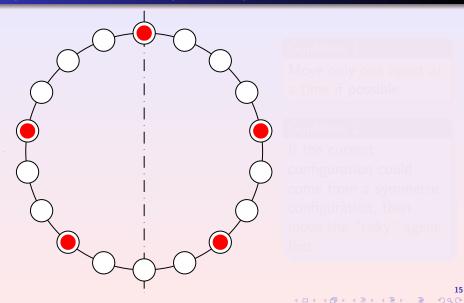
Models of synchrony

FSYNC (fully synchronous)

All agents execute their Look-Compute-Move simultaneously.

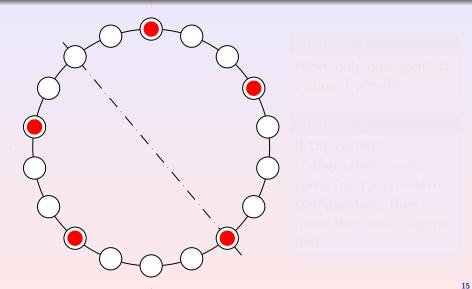
<u>SSYNC</u> (semi-synchronous)

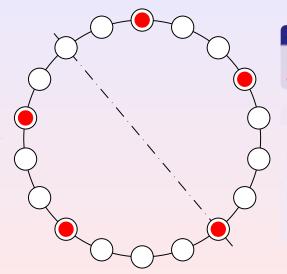
Look-Compute-Move is **atomic**.


 \implies Difficulties to move multiplicities

ASYNC (asynchronous)

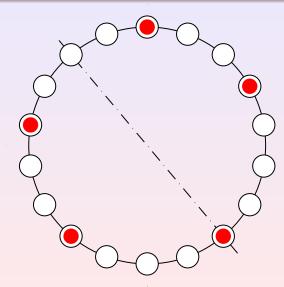
The time between Look, Compute, and Move operations is finite but unbounded.


 \implies Pending moves (moves based on outdated snapshots)


(D) (A) (A) (A) (A)

A ₽

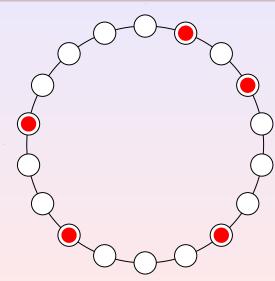
∃ ⊳



Guideline 1

Move only one agent at a time if possible.

If the current configuration could come from a symmetric configuration, then move the "risky" agent first.



Guideline 1

Move only one agent at a time if possible.

Guideline 2

If the current configuration could come from a symmetric configuration, then move the "risky" agent first.

Guideline 1

Move only one agent at a time if possible.

Guideline 2

If the current configuration could come from a symmetric configuration, then move the "risky" agent first.

Known results (explo. with stop) 1/3

In the rings

- [1] ASYNC det.: $\rho^-(n)$ is in $O(\log n)$
- [1] SSYNC det.: $\rho^-(n)$ is in $\Omega(\log n)$ for inf. many n
- [2] SSYNC det.: $\rho^-(n) = 4$ when n is odd.
- [2] SSYNC det.: $\rho^-(n) \ge 5$ if n is even
- [2] ASYNC det.: $\rho^{-}(n) \leq 5$ when *n* is not a multiple of 5
- [3] ASYNC prob.: $\rho^{-}(n)$ is in $\Omega(\log n)$ for inf. many n
- [3] SSYNC prob.: $\rho^-(n) = 4$ for any n > 4

Flocchini, Ilcinkas, Pelc, Santoro. Algorithmica 2013
 Lamani, Potop-Butucaru, Tixeuil. SIROCCO 2010
 Devismes, Petit, Tixeuil. TCS 2013

(ロ) (同) (E) (E) (E)

Known results (explo. with stop) 2/3

Limited visibility: snapshot up to distance φ only [Datta, Lamani, Larmore, Petit]

In the rings, with $\varphi = 1$ (ICDCS 2013)

- SSYNC det.: impossible
- FSYNC det.: $\rho^-(n) \ge 5$
- FSYNC det.: algo. k = 5 when initial config. is special

In the rings, with $\varphi = 2$ and 3 (IPDPS workshop 2015)

For $\varphi = 3$:

• ASYNC det.: $\rho^-(n) \leq 7$ for any n > 21

For $\varphi = 2$:

• ASYNC det.: algo. k = 7 when initial config. is special

Known results (explo. with stop) 3/3

[Flocchini, Ilcinkas, Pelc, Santoro. TCS 2010]

- Trees max. deg. 3: $\rho^-(n) \in \Theta(\log n / \log \log n)$
- Complete ternary trees: $\rho^-(n) \in \Theta(n)$

[Flocchini, Ilcinkas, Pelc, Santoro. IPL 2011]

• Line: iff k = 3, $k \ge 5$, or k = 4 and n odd

[Devismes, Lamani, Petit, Raymond, Tixeuil. SSS 2012]

• Grid: $\rho^-(n) = 3$ (SSYNC/ASYNC)

[Devismes, Lamani, Petit, Tixeuil. NETYS 2015]

• Torus: SSYNC $\rho^{-}(n) = 4$ prob. (≥ 5 det.)

[Chalopin, Flocchini, Mans, Santoro. WG 2010]

• Arbitrary graphs with port numbers: rigid initial config.

(D) (A) (A) (A) (A)

Focus on Exclusive Perpetual Exploration

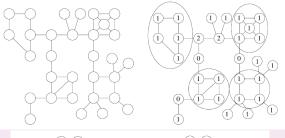
Exclusive perpetual exploration (reminder)

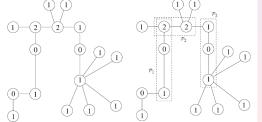
- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).
- Initial configurations are the configurations without multiplicities.

First studied family: Partial grids with NSEW

19

・ 同 ト ・ ヨ ト ・ ヨ ト


Focus on Exclusive Perpetual Exploration


Exclusive perpetual exploration (reminder)

- Each node must be visited by every agent infinitely often.
- Agents must not collide (meet at a node or cross each other on an edge).
- Initial configurations are the configurations without multiplicities.

First studied family: Partial grids with NSEW

Mobility tree and parameter q

David ILCINKAS Graph Exploration by Oblivious Agents

・ロン ・四 と ・ ヨ と ・ ヨ と

Э

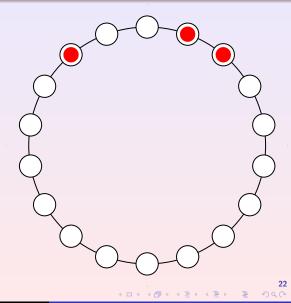
Known results (exclusive perpetual explo.) 1/2

In the partial grids (FSYNC)

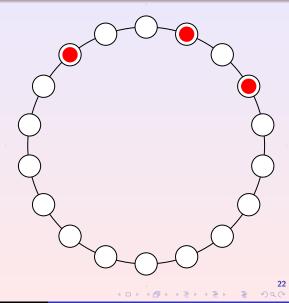
[Baldoni, Bonnet, Milani, Raynal. IPL 2008]

- Definition of the parameter q
- Solvable iff $k \leq n q$

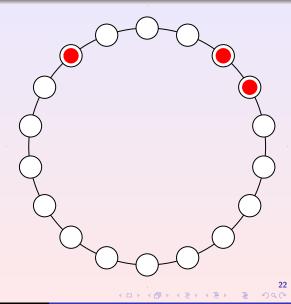
[Baldoni, Bonnet, Milani, Raynal. OPODIS 2008]

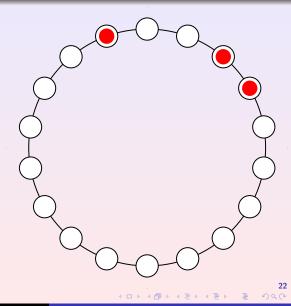

- Limited visibility $\varphi = 1$
- Solvable iff $k \leq n q$, except for $q = 0 \Longrightarrow n 1$

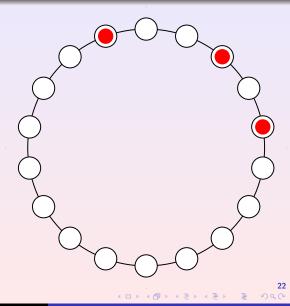
In the (complete) grids

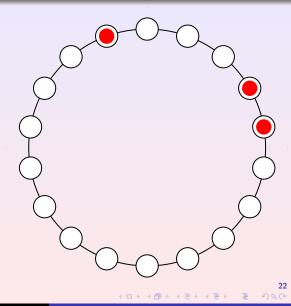

[Bonnet, Milani, Potop-Butucaru, Tixeuil. OPODIS 2011]

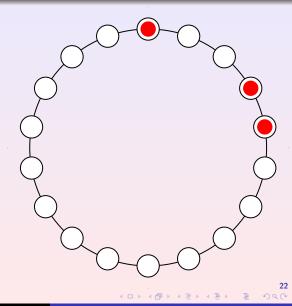
- ASYNC, no sense of direction
- Deterministically: $\rho^-(n) = 3$


- Form a special asymmetric pattern
- Move the pattern through the graph


- Form a special asymmetric pattern
- Move the pattern through the graph


- Form a special asymmetric pattern
- Move the pattern through the graph


- Form a special asymmetric pattern
- Move the pattern through the graph


- Form a special asymmetric pattern
- Move the pattern through the graph

- Form a special asymmetric pattern
- Move the pattern through the graph

- Form a special asymmetric pattern
- Move the pattern through the graph

Known results (exclusive perpetual explo.) 2/2

Case of the rings

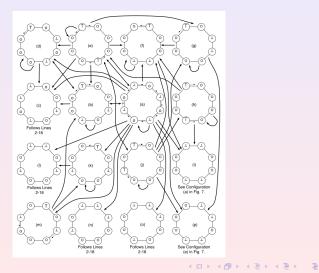
[Blin, Milani, Potop-Butucaru, Tixeuil. DISC 2010]

- FSYNC det.: Impossible when k is even
- ASYNC det.: $\rho^-(n) = 3$ for $n \ge 10$ and n and k coprime

• ASYNC det.: $\rho^+(n) = n - 5$ for k odd & n and k coprime [Bonnet, Défago, Petit, Potop-Butucaru, Tixeuil. SRDS Workshop 2014]

• Generic method to list all protocols (SSYNC)

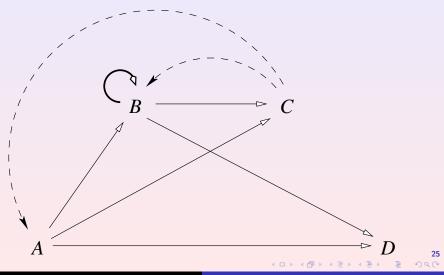
• Application: impossible for k = 5 and n = 10


[D'Angelo, Di Stefano, Navarra, Nisse, Suchan. Algorithmica 2015]

- ASYNC but only for rigid initial configurations
- Det. algo for any k, n such that $n \ge 10$ and

$$5 \le k \le n-3$$
, except the case $k = 5$ and $n = 10$

Proofs of correctness (1/2)


Case-by-case analysis

David ILCINKAS Graph Exploration by Oblivious Agents

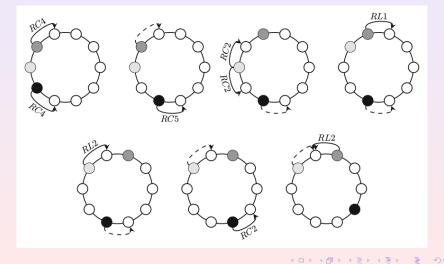
Proofs of correctness (2/2)

DAG with potential functions

David ILCINKAS Graph Exploration by Oblivious Agents

Formal verification via model checking

[Bérard, Lafourcade, Millet, Potop-Butucaru, Thierry-Mieg, Tixeuil. Distributed Computing 2016]


- Study of two algorithms
 - Exploration with stop [FIPS Algorithmica 2013]
 - Correct for $17 \le k \le 21$ and $k < n \le 22$
 - Also correct for smaller values of k (5, 7 and 10)
 - Exclusive perpetual exploration [BMPT DISC 2010]
 - Counter-example for k = 3 and n = 10

[Doan, Bonnet, Ogata. SOFG+MSVL 2016]

[Bonnet, Milani, Potop-Butucaru, Tixeuil. OPODIS 2011]

- Also study of [BMPT DISC 2010]
- Same counter-example, with a different technique

The counter-example

David ILCINKAS Graph Exploration by Oblivious Agents

Conclusion and perspectives

Conclusion

- Computability depends on the amount of symmetries
- Tricky to (correctly) handle symmetries and asynchrony

Interesting perspectives

- Limited visibility
- Formal verification
 - (Parametrized) Model checking
 - Proof assistant

(ロ) (同) (E) (E) (E)

Conclusion and perspectives

Conclusion

- Computability depends on the amount of symmetries
- Tricky to (correctly) handle symmetries and asynchrony

Interesting perspectives

- Limited visibility
- Formal verification
 - (Parametrized) Model checking
 - Proof assistant

Thank you for your attention

29

Э

同 ト く ヨ ト く ヨ ト