Graph Exploration by Automata

David Ilcinkas

LRI, Université Paris-Sud, France

Oct. 4, 2004

1/32

-1

Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown anonymous graph.

Motivation

- exploration of environments unreachable by humans
- network maintenance
- map drawing

크

2/32

Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown anonymous graph.

Motivation

- exploration of environments unreachable by humans
- network maintenance
- map drawing

(D) (

◆□▶ ◆□▶ ◆□▶ ◆□▶ -

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

4

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

・ロト ・ 日 ・ ・ ヨ ・ ・ ・ 日 ・ ・

3/32

3

Unknown, anonymous

Unknown

- Unknown topology
- Unknown size (no upper bound)

Anonymous

- No node labeling
- Local edge labeling

4/32

Example of an anonymous graph

5/32

Input of the automaton

Outline

1 Introduction

- Labyrinths
- Graphs
- Hydra
- 3 Minimizing memory
- 4 Minimizing time

6/32

4

Labyrinths Graphs Hydra

Particular case: Labyrinths

Definition

- two-dimensional, obstructed chess-board
- directions are known: North, South, East, West

7/32

크

Budach, Math. Nachrichten 1978 Automata and Labyrinths

∄ universal finite automaton

Blue, Koven, FOCS 1978 On the power of the compass

a universal two-pebble automaton

∃ two cooperative automata that can explore all labyrinths ∄ two finite automata that can explore all graphs

nn, FCT 1981

One pebble does not suffice to search plane labyrinths

i universal one-pebble automaton for labyrinths

Budach, Math. Nachrichten 1978 Automata and Labyrinths

∄ universal finite automaton

Blum, Kozen, FOCS 1978 On the power of the compass

 \exists a universal two-pebble automaton

∃ two cooperative automata that can explore all labyrinths ∄ two finite automata that can explore all graphs

m, FCT 1981

One pebble does not suffice to search plane labyrinths

i universal one-pebble automaton for labyrinths

・ロト ・ 日 ・ ・ ヨ ・ ・ ・ 日 ・ ・

Budach, Math. Nachrichten 1978 Automata and Labyrinths

∄ universal finite automaton

Blum, Kozen, FOCS 1978 On the power of the compass

 \exists a universal two-pebble automaton

 \exists two cooperative automata that can explore all labyrinths

A two finite automata that can explore all graphs

n, FCT 1981

One pebble does not suffice to search plane labyrinths

i universal one-pebble automaton for labyrinths

Budach, Math. Nachrichten 1978 Automata and Labyrinths

∄ universal finite automaton

Blum, Kozen, FOCS 1978 On the power of the compass

 \exists a universal two-pebble automaton

 \exists two cooperative automata that can explore all labyrinths \nexists two finite automata that can explore all graphs

, FCT 1981

One pebble does not suffice to search plane labyrinths

i universal one-pebble automaton for labyrinths

・ロト ・四ト ・ヨト ・ヨト

Budach, Math. Nachrichten 1978 Automata and Labyrinths

∄ universal finite automaton

Blum, Kozen, FOCS 1978 On the power of the compass

 \exists a universal two-pebble automaton

 \exists two cooperative automata that can explore all labyrinths \nexists two finite automata that can explore all graphs

Hoffmann, FCT 1981

One pebble does not suffice to search plane labyrinths

i universal one-pebble automaton for labyrinths

8/32

(日) (四) (三) (三)

Arbitrary graphs

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all labyrinths \implies graphs.

🗼, Acta Informatica, 1980

Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all graphs.

(日) (四) (注) (注) (注) (三)

Arbitrary graphs

Budach, Math. Nachrichten, 1978 Automata and Labyrinths

No finite automaton can explore all labyrinths \implies graphs.

Rollik, Acta Informatica, 1980 Automaten in planaren Graphen

No finite team of finite cooperative automata can explore all graphs.

(《圖》) 《문》 《문》

How to trap an automaton

Trap for a specific automaton

- <u>finite</u> automaton \implies behaviour becomes periodic
- trap the automaton in a cycle

Trap for *k* non-cooperative automata

- defined recursively
- place a trap for k-1 in every edge

Trap for *k* cooperative automata

- again defined recursively
- place a trap for k-1 in every edge
- much more complicated meta-structure

How to trap an automaton

Trap for a specific automaton

- <u>finite</u> automaton \implies behaviour becomes periodic
- trap the automaton in a cycle

Trap for k non-cooperative automata

- defined recursively
- place a trap for k-1 in every edge

Trap for k cooperative automata

- again defined recursively
- place a trap for k-1 in every edge
- much more complicated meta-structure

<ロト (四) (注) (注) (注) (注)

How to trap an automaton

Trap for a specific automaton

- <u>finite</u> automaton \implies behaviour becomes periodic
- trap the automaton in a cycle

Trap for k non-cooperative automata

- defined recursively
- place a trap for k-1 in every edge

Trap for k cooperative automata

- again defined recursively
- place a trap for k-1 in every edge
- much more complicated meta-structure

(II) (II) (II) (II)

Cooperation models

Local cooperation (Rollik)

Robots only communicate if they are at the same node at the same time.

Global cooperation

Robots always communicate. Especially, robots know when other robots mee

Cooperation models

Local cooperation (Rollik)

Robots only communicate if they are at the same node at the same time.

Global cooperation

Robots always communicate.

Especially, robots know when other robots meet.

(《圖》) 《문》 《문》

Example

Full knowledge \iff Single state

Definition: Hydra

Multi-headed automaton

k globally-cooperative automata \iff k-head hydra

◆□> <圖> <≧> <≧> <≧> <</p>

$\mathsf{Full} \mathsf{ knowledge} \iff \mathsf{Single state}$

Definition: Hydra

Multi-headed automaton

k globally-cooperative automata \iff k-head hydra

◆□> <圖> <≧> <≧> <≧> <</p>

$\mathsf{Full} \mathsf{ knowledge} \iff \mathsf{Single state}$

Definition: Hydra

Multi-headed automaton

k globally-cooperative automata \iff k-head hydra

13/32

크

Fraigniaud, Ilcinkas, Markou, Pelc

Power of communication in cooperative exploration of graphs

- a k-head hydra ≻ a team of k locally-cooperative automata
- a 2-head hydra is not universal
- a 3-head hydra ≻ a 2-head hydra
- a 3-head hydra is not universal

Conjecture : No hydra is universal

(日) (四) (三) (三)

Fraigniaud, Ilcinkas, Markou, Pelc

Power of communication in cooperative exploration of graphs

- a k-head hydra ≻ a team of k locally-cooperative automata
- a 2-head hydra is not universal
- a 3-head hydra ≻ a 2-head hydra
- a 3-head hydra is not universal

Conjecture : No hydra is universal

(日) (四) (三) (三)

Fraigniaud, Ilcinkas, Markou, Pelc

Power of communication in cooperative exploration of graphs

- a k-head hydra ≻ a team of k locally-cooperative automata
- a 2-head hydra is not universal
- a 3-head hydra ≻ a 2-head hydra
- a 3-head hydra is not universal

Conjecture : No hydra is universal

(日) (四) (三) (三)

Fraigniaud, Ilcinkas, Markou, Pelc

Power of communication in cooperative exploration of graphs

- a k-head hydra ≻ a team of k locally-cooperative automata
- a 2-head hydra is not universal
- a 3-head hydra ≻ a 2-head hydra
- a 3-head hydra is not universal

Conjecture : No hydra is universal

(日) (문) (문) (문)

Fraigniaud, Ilcinkas, Markou, Pelc

Power of communication in cooperative exploration of graphs

- a k-head hydra ≻ a team of k locally-cooperative automata
- a 2-head hydra is not universal
- a 3-head hydra ≻ a 2-head hydra
- a 3-head hydra is not universal

Conjecture : No hydra is universal

(日) (문) (문) (문)

Fraigniaud, Ilcinkas, Markou, Pelc

Power of communication in cooperative exploration of graphs

- a k-head hydra ≻ a team of k locally-cooperative automata
- a 2-head hydra is not universal
- a 3-head hydra ≻ a 2-head hydra
- a 3-head hydra is not universal

Conjecture : No hydra is universal

(日) (문) (문) (문)

Fraigniaud, Ilcinkas, Markou, Pelc

Power of communication in cooperative exploration of graphs

- a k-head hydra ≻ a team of k locally-cooperative automata
- a 2-head hydra is not universal
- a 3-head hydra ≻ a 2-head hydra
- a 3-head hydra is not universal

Conjecture : No hydra is universal

< ロト < 部ト < ヨト < ヨト

Hydra vs team

Conclusion

a 2-head hydra 쑲 a finite team of automata

Corollary

a k-head hydra \succ a team of k locally-cooperative automata

David Ilcinkas Graph Exploration by Automata

Hydra vs team

Conclusion

a 2-head hydra <u>⊀</u> a finite team of automata

Corollary

a k-head hydra \succ a team of k locally-cooperative automata

David Ilcinkas Graph Exploration by Automata

(日) (四) (문) (문) (문) (문)

Hydra vs team

Conclusion

a 2-head hydra ∠ a finite team of automata

Corollary

a k-head hydra \succ a team of k locally-cooperative automata

15/32

3

(日) (四) (三) (三)

d-homogeneous graph

- *d*-regular
- edge-colored (same label at both extremities)

In *d*-homogeneous graphs: 2-head hydra ≡ team of two automata

d-homogeneous graph

- *d*-regular
- edge-colored (same label at both extremities)

In *d*-homogeneous graphs: 2-head hydra \equiv team of two automata

(日) (四) (三) (三)

2-head hydra vs 3-head hydra

David Ilcinkas Graph Exploration by Automata

◆□▶ ◆□▶ ◆□▶ ◆□▶ -

17/32

2-head hydra vs 3-head hydra

Conclusion

3-head hydra \succ 2-head hydra

・ロト ・ 日下・ ・ 日下・

3

• If heads are separated

- Two heads (together or not)
 - The third head does not help
 - Trap for a 2-head hydra
- One head alone
 - Receive periodic information from the other heads
 - Simulated by a bigger automaton
 - Head trapped in a meta-structure
- If heads are not separated (bounded distance between each other)
 - Simulated by a bigger automaton
 - Heads trapped in a meta-meta-structure

• If heads are separated

- Two heads (together or not)
 - The third head does not help
 - Trap for a 2-head hydra
- One head alone
 - Receive periodic information from the other heads
 - Simulated by a bigger automaton
 - Head trapped in a meta-structure
- If heads are not separated (bounded distance between each other)
 - Simulated by a bigger automaton
 - Heads trapped in a meta-meta-structure

(ロ) (四) (三) (三)

• If heads are separated

- Two heads (together or not)
 - The third head does not help
 - Trap for a 2-head hydra
- One head alone
 - Receive periodic information from the other heads
 - Simulated by a bigger automaton
 - Head trapped in a meta-structure
- If heads are not separated (bounded distance between each other)
 - Simulated by a bigger automaton
 - Heads trapped in a meta-meta-structure

• If heads are separated

- Two heads (together or not)
 - The third head does not help
 - Trap for a 2-head hydra
- One head alone
 - Receive periodic information from the other heads
 - Simulated by a bigger automaton
 - Head trapped in a meta-structure
- If heads are not separated (bounded distance between each other)
 - Simulated by a bigger automaton
 - Heads trapped in a meta-meta-structure

< 同→ < 注→ < 注→

Outline

3

1 Introduction

2 Feasibility

Minimizing memory

- Different tasks
- Trees
- General graphs

Minimizing time

(日) (四) (三) (三)

19/32

크

Different tasks

- Perpetual exploration
- Exploration with stop the robot is required to stop after completing exploration
- Exploration with return

the robot has to stop at its starting node

Mapping

the robot has to output an edge-labeled isomorphic copy of the graph

・ 日・ ・ モ・ ・ モ・

Diks, Fraigniaud, Kranakis, Pelc, SODA 2002 Tree exploration with little memory

- Perpetual: Θ(log Δ) bits
- With stop: $\Omega(\log \log \log n)$ bits
- With return: $\Omega(\log n)$, $O(\log^2 n)$ bits

(II) (II) (II) (II)

Arbitrary graphs

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, MFCS 2004 Graph exploration by a finite automaton

Perpetual exploration:

- For any *K*-state automaton, there exists a trap of at most *K* + 1 nodes.
- DFS is space optimal: $\Theta(D \log \Delta)$ bits

(II) (II) (II) (II)

DFS is optimal

Algorithm

- Depth-first search (DFS) of increasing depth
- Memory: a stack of port numbers leading to the root $\longrightarrow O(D \log \Delta)bits$

Lower bound

Attach a tree to the trap in order to reduce the diameter.

DFS is optimal

Algorithm

- Depth-first search (DFS) of increasing depth
- Memory: a stack of port numbers leading to the root $\longrightarrow O(D \log \Delta)bits$

Lower bound

Attach a tree to the trap in order to reduce the diameter.

Outline

1 Introduction

2 Feasibility

3 Minimizing memory

4 Minimizing time

- Some references
- Other frameworks

5 Bonus

・日本 ・ 日本 ・ モト

24/32

크

Minimizing time

 $\mathsf{Time} = \mathsf{number} \text{ of edge traversals}$

Dudek, Jenkin, Milios, Wilkes, IEEE TRA 1991

Robotic exploration as graph construction

• Mapping with pebbles in O(mn)

IEEE 1996

Competitive robot mapping with homogeneous markers

- Competitive ratio: mapping / map verification
- With a single pebble, DJMW's algorithm is optimal (relaxed depth-one strategies)

(日) (四) (三) (三)

Minimizing time

 $\mathsf{Time} = \mathsf{number} \text{ of edge traversals}$

Dudek, Jenkin, Milios, Wilkes, IEEE TRA 1991

Robotic exploration as graph construction

• Mapping with pebbles in O(mn)

Deng, Mirzaian, IEEE 1996

Competitive robot mapping with homogeneous markers

- Competitive ratio: mapping / map verification
- With a single pebble, DJMW's algorithm is optimal (relaxed depth-one strategies)

(日) (四) (三) (三)

Piecemeal exploration

- Digraphs
- Geometric exploration
- Rooms with obstacles
- UTS, UXS

26/32

- Piecemeal exploration
- Digraphs
- Geometric exploration
 Rooms with obstacles
 UTS, UXS

◆□▶ ◆□▶ ◆□▶ ◆□▶ -

26/32

- Piecemeal exploration
- Digraphs
- Geometric exploration
- Rooms with obstacles UTS, UXS

・ロト ・ 日 ・ ・ ヨ ・ ・ ・ 日 ・ ・

26/32

크

A lot of frameworks

- Piecemeal exploration
- Digraphs
- Geometric exploration
- Rooms with obstacles

• UTS, UXS

・ロト ・ 日 ・ ・ ヨ ・ ・ ・ 日 ・ ・

- Piecemeal exploration
- Digraphs
- Geometric exploration
- Rooms with obstacles
- UTS, UXS

26/32

크

Outline

1 Introduction

2 Feasibility

3 Minimizing memory

4 Minimizing time

5 Bonus

- Base
- Three colors
- Only two colors ?

27/32

크

Coloring nodes

An oracle colors (labels) the nodes to help the automaton.

Basic idea

spanning tree: the label tells which edges are in the tree

Enhanced labeling

only edge leading to the parent $\longrightarrow \Delta$ colors

Coloring nodes

An oracle colors (labels) the nodes to help the automaton.

Basic idea

spanning tree: the label tells which edges are in the tree

Enhanced labeling

only edge leading to the parent $\longrightarrow \Delta$ colors

Coloring nodes

An oracle colors (labels) the nodes to help the automaton.

Basic idea

spanning tree: the label tells which edges are in the tree

Enhanced labeling

only edge leading to the parent $\longrightarrow \Delta$ colors

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト・

29/32

Three colors are enough

- choose arbitrarily a node as the root
- \bullet colors all nodes according to their distance d to the root
 - distance $d \cong 0[n]$ red
 - distance $d \cong 1[n]$ blue
 - distance $d \cong 2[n]$ black

Three colors are enough

- choose arbitrarily a node as the root
- colors all nodes according to their distance d to the root
 - distance $d \cong 0[n]$ red
 - distance $d \cong 1[n]$ blue
 - distance $d \cong 2[n]$ black

29/32

Three colors are enough

- choose arbitrarily a node as the root
- \bullet colors all nodes according to their distance d to the root
 - distance $d \cong 0[n]$ red
 - distance $d \cong 1[n]$ blue
 - distance $d \cong 2[n]$ black

Only two colors ?

- Layer 1: red
- Layer 2: blue
- Layer 3: red
- Layer 4: red
- Layer 5: red
- Layer 6: blue
- Layer 7: blue
- Layer 8: blue

(日) (四) (三) (三)

Outline

1 Introduction

- 2 Feasibility
- 3 Minimizing memory
- 4 Minimizing time
- 5 Bonus

31/32

-1

Open problems

Hydra

- $\forall k \ (k+1)$ -head hydra $\succ k$ -head hydra ?
- Is there a k such that the k-head hydra is universal ?

USTCON

- Is USTCON in log-space ?
- Better understanding of UTS, UXS, automata.

・ロト ・(四)ト ・(日)ト ・(日)ト

Open problems

Hydra

- $\forall k \ (k+1)$ -head hydra $\succ k$ -head hydra ?
- Is there a k such that the k-head hydra is universal ?

USTCON

- Is USTCON in log-space ?
- Better understanding of UTS, UXS, automata.