Digraphs Exploration with Little Memory

> Pierre FRAIGNIAUD David ILCINKAS (speaker)

CNRS, LRI, Université Paris-Sud, France

Graph Exploration

- Goal
 - a mobile entity in an unknown graph has to
 - traverse all edges
 - stop after completing exploration

Graph Exploration

- Goal
 - a mobile entity in an unknown graph has to
 - traverse all edges
 - stop after completing exploration
- Motivations
 - exploration or map drawing of places unreachable by humans
 - network maintenance
 - searching for data (P2P, Web)

Unknown size and topology

- Unknown size and topology
- No node labeling

- Unknown size and topology
- No node labeling
- Local edge labeling

- Unknown size and topology
- No node labeling
- Local edge labeling

Robot's actions

Two different frameworks

Two different frameworks

- Geometric setting
 - rooms with obstacles

Two different frameworks

- Geometric setting
 rooms with obstacles
- Network exploration
 - graphs

Geometric setting

- Bar-Eli, Berman, Fiat, Yan [JALG 1994]
 On-line navigation in a room
- Blum, Raghavan, Schieber [SIAMJC 1997] Navigating in unfamiliar geometric terrain
- Deng, Kameda, Papadimitriou [JACM 1998] How to learn an unknown environment I: the rectilinear case

Exploration with stop

a mobile entity in an unknown graph has to

- traverse all edges
- stop after completing exploration

Exploration with stop

- a mobile entity in an unknown graph has to
- traverse all edges
- stop after completing exploration
- Weaker task perpetual exploration
 - the mobile entity is not required to stop

Exploration with stop

- a mobile entity in an unknown graph has to
- traverse all edges
- stop after completing exploration
- Weaker task

perpetual exploration

- the mobile entity is not required to stop
- Stronger Task map drawing
 - the mobile entity has to output an edge-labeled isomorphic copy of the graph

Stop \Rightarrow Need of a pebble!

Survey graph exploration Objective one: minimizing time

- Dudek, Jenkins, Milios, Wilkes [IEEE Transaction on Robotics and Automation 1994] Robotic exploration as graph construction
- Betke, Rivest, Singh [Machine Learning 1995] Piecemeal learning of an unknown environment
- Awerbuch, Betke, Rivest, Singh [Information and Computation 1999] Piecemeal graph exploration by a mobile robot
- Panaite, Pelc [JALG 1999] Exploring unknown undirected graphs
- Duncan, Kobourov, Kumar [SODA 2001] Optimal constrained graph exploration

Survey graph exploration Objective two: minimizing memory

- Budach [Math. Nachrichten 1978] Automata and labyrinths
- Rollik [Acta Informatica 1980] Automaten in planaren Graphen
- Diks, Fraigniaud, Kranakis, Pelc
 [SODA 2002]

Tree exploration with little memory

Our framework: Digraphs

Our framework: Digraphs

Difficulty in digraphs: impossibility to backtrack

Digraph exploration

- Bender, Slonim [FOCS 1994]
 The power of team exploration: Two robots can learn unlabeled directed graphs
- Bender, Fernandez, Ron, Sahai, Vadhan
 [STOC 1998]

The power of a pebble: Exploring and mapping directed graphs

- Deng, Papadimitriou [JGT 1999]
 Exploring an unknown graph
- Albers, Henzinger [SICOMP 2000] Exploring unknown environments

Our results

Exploration with stop in anonymous digraphs

- Lower bound $\Omega(n \log d)$ bits
- Upper bounds
 - compact memory
 - O(nd log n) bits, one pebble
 - polynomial time
 - $O(n^2 d \log n)$ bits, $\Theta(\log \log n)$ pebbles

Lower bound: $\Omega(n \log d)$

Theorem 1

- Exploration cannot be done with less than $\Omega(n \log d)$ bits
- Additional properties
 - holds even with a linear number of pebbles
 - also holds for perpetual exploration

Proof of $\Omega(n \log d)$

Proof of $\Omega(n \log d)$

Number of system's states before a full run

- number of robot's states: 2^k (k bits of memory)
- number of configurations for the pebbles: 2ⁿ

Number of system's states before a full run

- number of robot's states: 2^k (k bits of memory)
- number of configurations for the pebbles: 2ⁿ
 Number of combination locks: dⁿ⁻¹

Number of system's states before a full run

- number of robot's states: 2^k (k bits of memory)
- number of configurations for the pebbles: 2^n Number of combination locks: d^{n-1} We have $2^k \times 2^n \ge d^{n-1} \rightarrow k \ge n \log(d/2)$

Upper bound: O(nd log n)

Theorem 2

- Algorithm Test-all-maps accomplishes exploration with a robot
- of O(nd log n) bits
- using one pebble
- Remarks
 - accomplishes map drawing
 - time complexity: exponential

- Main idea
 - the robot tests all the maps

Main idea

- the robot tests all the maps

The real city (Paris)

A candidate map (New York)

Main idea

- the robot tests all the maps

The real city (Paris)

A candidate map (New York)

Upper bound: O(n²d log n)

- Theorem 3
 - Algorithm Compacted-Explore-and-map accomplishes exploration with a robot
 - of O(n²d log n) bits
 - using $\Theta(\log \log n)$ pebbles
- Remarks
 - optimized variant of the algorithm of Bender et al. [STOC 1998]
 - does map drawing
 - time complexity: polynomial

Conclusion

- Results
 - Lower bound
 Ω(n log d) bits
 - Upper bounds

O(nd log n) bits, one pebble $O(n^2d log n)$ bits, $\Theta(log log n)$ pebbles