PING PONG IN DANGEROUS GRAPHS Optimal Black Hole Search with Pebbles

Paola Flocchini¹ David Ilcinkas² Nicola Santoro³

¹SITE, University of Ottawa, Canada

²CNRS, LaBRI, Universit Bordeaux I, France

³School of Computer Science, Carleton University, Canada

GT Algorithmique Distribue June 16. 2008

Problem

Black hole in a network

Node blocking and destroying any mobile agent entering it. Motivations:

- Site which is destroyed or dangerous for a physical robot
- Node infected by a "killer" virus
- Mute or crashed node

From a safe node (homebase), a team of mobile agents has to locate the black hole(s).

Performance: nb of agents, nb of moves, time

Problem

Black hole in a network

Node blocking and destroying any mobile agent entering it. Motivations:

- Site which is destroyed or dangerous for a physical robot
- Node infected by a "killer" virus
- Mute or crashed node

Black hole search

From a safe node (homebase), a team of mobile agents has to locate the black hole(s).

Problem

Black hole in a network

Node blocking and destroying any mobile agent entering it. Motivations:

- Site which is destroyed or dangerous for a physical robot
- Node infected by a "killer" virus
- Mute or crashed node

Black hole search

From a safe node (homebase), a team of mobile agents has to locate the black hole(s).

Performance: nb of agents, nb of moves, time

(A)synchronous

Synchronous

Agents act simultaneously at every pulse of a global clock.

Possible to wait for an agent gone exploring a potentially dangerous edge.

- Every action takes a finite but unbounded time.
- → A priori impossible to distinguish a very slow link from a
 - illik leading to the black hole.
- \Longrightarrow Useless to wait for an agent.
- \implies Pb equivalent to the exploration of dangerous graphs.

(A)synchronous

Synchronous

Agents act simultaneously at every pulse of a global clock.

Possible to wait for an agent gone exploring a potentially dangerous edge.

Asynchronous

Every action takes a finite but unbounded time.

- A priori impossible to distinguish a very slow link from a link leading to the black hole.
- ⇒ Useless to wait for an agent.
- ⇒ Pb equivalent to the exploration of dangerous graphs.

Necessary hypotheses (in asynchronous)

Required knowledge

- Knowledge of the number of black holes
 - \longrightarrow Here, exactly one black hole
- Knowledge of the number of nodes n

Necessary hypotheses (in asynchronous)

Required knowledge

- Knowledge of the number of black holes
 - → Here, exactly one black hole
- Knowledge of the number of nodes n

2-vertex-connected

Model (still in asynchronous)

Communication/coordination

No direct communication but

Whiteboards (memory space on each node).

ou Edge markers (mark a specific port).

ou Pebbles (node markers).

Model (still in asynchronous)

Communication/coordination

No direct communication but

Whiteboards (memory space on each node).

- ou Edge markers (mark a specific port).
- ou Pebbles (node markers).

Computational step

- Observation: sense for the presence of a pebble/message on the node.
- Interaction: put down or pick up a pebble/message.
- Action: move along an edge (or terminate).

This set of steps (forming a computational step) is executed atomically in mutual exclusion.

Related work (asynchronous, whiteboards)

Seminal results

[Dobrev, Flocchini, Prencipe, Santoro. Dist. Comp. 2006]

	nb of agents	nb of moves
No information (besides n)	$\Delta + 1$	$\Theta(n^2)$
Sense of direction	2	$\Theta(n^2)$
Complete knowledge	2	$\Theta(n \log n)$

Related work (asynchronous, whiteboards)

Seminal results

[Dobrev, Flocchini, Prencipe, Santoro. Dist. Comp. 2006]

	nb of agents	nb of moves
No information (besides n)	$\Delta + 1$	$\Theta(n^2)$
Sense of direction	2	$\Theta(n^2)$
Complete knowledge	2	$\Theta(n \log n)$

Improvements (with complete knowledge)

[Dobrev, Flocchini, Santoro. SIROCCO 2004]

- Specific topologies (but not the ring)
- Nb of moves : O(n)

[Dobrev et al. Networks 2006]

• Nb of moves : $O(n + D \log D)$ (D = diameter)

Minimal conditions on agents coordination.

Minimal conditions on agents coordination.

Edge markers, ring, FIFO links

[Dobrev, Santoro, Shi. CIAC 2006]

- O(1) edge markers in total, up to 3 per node
- Nb of moves : $\Theta(n \log n)$

Related work (asynchronous)

Minimal conditions on agents coordination.

Edge markers, ring, FIFO links

[Dobrev, Santoro, Shi. CIAC 2006]

- O(1) edge markers in total, up to 3 per node
- Nb of moves : $\Theta(n \log n)$

Edge markers, arbitrary graphs, FIFO links

[Dobrev, Flocchini, Kralovic, Santoro. IFIP TCS 2006]

- No information (besides n)
- Nb of agents : $\Delta + 1$
- Nb of moves : roughly $O(n^{10})$

Related work (asynchronous)

Minimal conditions on agents coordination.

Edge markers, ring, FIFO links

[Dobrev, Santoro, Shi. CIAC 2006]

- O(1) edge markers in total, up to 3 per node
- Nb of moves : $\Theta(n \log n)$

Edge markers, arbitrary graphs, FIFO links

[Dobrev, Flocchini, Kralovic, Santoro. IFIP TCS 2006]

- No information (besides n)
- Nb of agents : $\Delta + 1$
- Nb of moves : roughly $O(n^{10})$

Pb: Is coordination through pebbles sufficient?

Intro Algo ring Arbitrary graphs Conclusion Defs and model Related work Our results

Our results

Model

- Complete knowledge (arbitrary graphs)
- Undistinguishable pebbles (at most one per node)
- Links do not need to be FIFO

- 1 pebble per agent
- 2 agents
- \bullet $\Theta(n \log n)$ moves

Model

- Complete knowledge (arbitrary graphs)
- Undistinguishable pebbles (at most one per node)
- Links do not need to be FIFO

Optimal result

- 1 pebble per agent
- 2 agents
- \bullet $\Theta(n \log n)$ moves

Case of the ring

Model

- Two identical agents equiped with one pebble each
- Identical pebbles
- At most one pebble per node / carried by an agent
- Asynchronous ring with exactly one black hole

Case of the ring

Model

- Two identical agents equiped with one pebble each
- Identical pebbles
- At most one pebble per node / carried by an agent
- Asynchronous ring with exactly one black hole

Definition

- Edge of the homebase with smallest port: right
- Other direction: left.

Beginning of the algorithm

If node is empty then

Go right

Beginning of the algorithm

Beginning of the algorithm

Beginning of the algorithm

Beginning of the algorithm

Beginning of the algorithm

Beginning of the algorithm

Beginning of the algorithm

Cautious walk

Exploration of $e = \{u, v\}$ from u to v

Simple cautious walk

Initially: agent at u with a pebble, node without a pebble

- ullet Put down the pebble (warn the other agent) and go to v
- Come back to u
- Retrieve the pebble and return at v

- Initially: agent at u with a pebble, node with a pebble
 - Go to V
 - Put down the pebble and go back to u
- Retrieve the other pebble and return at v

Cautious walk

Exploration of $e = \{u, v\}$ from u to v

Simple cautious walk

Initially: agent at u with a pebble, node without a pebble

- ullet Put down the pebble (warn the other agent) and go to v
- Come back to u
- Retrieve the pebble and return at v

Double cautious walk

Initially: agent at u with a pebble, node with a pebble

- Go to v
- Put down the pebble and go back to u
- Retrieve the other pebble and return at v

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble \rightarrow Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble \rightarrow Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble \rightarrow Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble \rightarrow Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Intro Algo ring Arbitrary graphs Conclusion Preliminaries Ping Pong Result

Ping Pong algorithm

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

ntro Algo ring Arbitrary graphs Conclusion Preliminaries Ping Pong Result

Ping Pong algorithm

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

 \Rightarrow The algorithm is correct and uses $O(n^2)$ moves

Quick description

- 1 pebble → Simple cautious walk to the right
- 2 pebbles → Double cautious walk to the left
- 0 pebbles → Non-cautious walk to the left

Enhanced Ping Pong algorithm

Quick description

- Execute Ping Pong until agents "meet" at least two/three nodes from the homebase (until the safe zone becomes sufficiently large)
- While still an unexplored node do
- Divide the unexplored part in two
- Each agent explores an half
- The first agent to finish its part goes • and helps the other agent to explore the other part
- When an agent finds the pebble of the other agent
 - it moves the pebble by one node toward the center
 - and restart the loop

Example of an execution

Analysis of Enhanced Ping Pong

Analysis

Between two halving

- Roughly half of the nodes are explored
- Agents do at most O(n) moves

Analysis

Between two halving

- Roughly half of the nodes are explored
- Agents do at most O(n) moves

Result

- 1 pebble per agent
- 2 agents
- \bullet $\Theta(n \log n)$ moves

Extension to arbitrary graphs

Basic principle

Adaptation of Enhanced Ping Pong by analogy with the ring

- Order of exploration: DFS of spanning trees (one for the "left" direction, one for the "right" direction)
- *i*-th node of the ring in one direction \leftrightarrow *i*-th explored node of the graph in this direction
- Edge $\{i, i+1\} \leftrightarrow$ shortest safe path from i to i+1

Extension to arbitrary graphs

Basic principle

Adaptation of Enhanced Ping Pong by analogy with the ring

- Order of exploration: DFS of spanning trees (one for the "left" direction, one for the "right" direction)
- *i*-th node of the ring in one direction \leftrightarrow *i*-th explored node of the graph in this direction
- Edge $\{i, i+1\} \leftrightarrow \text{shortest safe path from } i \text{ to } i+1$

Challenges

- in the graph
- Modification of the pair of trees at each halving

Modification and analysis

Modification

If possible, use shortcuts (go from i to j without necessarily going through nodes i + 1, i + 2, ...

Modification and analysis

Modification

```
If possible, use shortcuts
(go from i to j without necessarily going through nodes
i + 1, i + 2, ...
```

Analysis

- Average length of a ring edge is constant
- Precise analysis of Enhanced Ping Pong: each edge is traversed at most $O(\log n)$ times

Modification and analysis

Modification

If possible, use shortcuts (go from i to j without necessarily going through nodes i + 1, i + 2, ...

Analysis

- Average length of a ring edge is constant
- Precise analysis of Enhanced Ping Pong: each edge is traversed at most $O(\log n)$ times

Result

- 1 pebble per agent
- 2 agents
- \bullet $\Theta(n \log n)$ moves

Conclusion and perspectives

Conclusion

Equivalence, for black hole search, between

- Coordination through whiteboards
- Coordination through pebbles

Perspectives

For which other mobile agents problems is this equivalence true?