Euler Tour Lock-in Problem in the Rotor-Router Model I choose pointers and you choose port numbers

Evangelos Bampas^{1,3} Leszek Gasieniec² Nicolas Hanusse³ David Ilcinkas³ Ralf Klasing³ Adrian Kosowski^{3,4}

¹National Technical University of Athens, Greece
²University of Liverpool, UK
³CNRS / INRIA / Univ. of Bordeaux, France
⁴Gdańsk University of Technology, Poland

GT Graphes et Applications October 16th, 2009

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski

Euler Tour Lock-in Problem in the Rotor-Router Model

Definitions

Anonymous graphs / networks

- No (used) node labeling
- Local port numbering at node v from 1 to deg(v)

Mobile agent / robot / message / anything

Follows the rotor-router mechanism

Definitions

Anonymous graphs / networks

- No (used) node labeling
- Local port numbering at node v from 1 to deg(v)

Mobile agent / robot / message / anything

Follows the rotor-router mechanism

Definitions

Anonymous graphs / networks

- No (used) node labeling
- Local port numbering at node v from 1 to deg(v)

Mobile agent / robot / message / anything

Follows the rotor-router mechanism

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski

Euler Tour Lock-in Problem in the Rotor-Router Model

Very simple mechanism:

- Each node has a pointer /
 - The agent follows the pointer and "increments" it with respect to the cyclic ordering () (induced by the port numbering)

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

<u>Other names:</u> Propp machine, Next-Port, Edge Ant Walk

Very simple mechanism:

- Each node has a pointer 🗡
- The agent follows the pointer

Other names: Propp machine, Next-Port, Edge Ant Walk

Very simple mechanism:

- Each node has a pointer /
- The agent follows the pointer and "increments" it with respect to the cyclic ordering (induced by the port numbering)

Other names: Propp machine, Next-Port, Edge Ant Walk

Very simple mechanism:

- Each node has a pointer /
- The agent follows the pointer and "increments" it with respect to the cyclic ordering (induced by the port numbering)

伺 ト イヨト イヨト

Other names: Propp machine, Next-Port, Edge Ant Walk

Known results

- The agent eventually traverses each edge
- The traversal stabilizes into an Euler tour: each edge is traversed once in each direction within a period
- Lock-in time: $\Theta(m \cdot D)$ (m: # edges, D: diameter)

Motivations / Applications

- Graph exploration (by a software agent / robot)
- Mutual exclusion
- Stabilisation of distributed processes
- Work and load balancing problems
- etc.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆○

Known results

- The agent eventually traverses each edge
- The traversal stabilizes into an Euler tour: each edge is traversed once in each direction within a period

Lock-in time: ⊖(m · D) (m: # edges, D: diameter)

Motivations / Applications

- Graph exploration (by a software agent / robot)
- Mutual exclusion
- Stabilisation of distributed processes
- Work and load balancing problems
- etc.

Bampas, Gasieniec, Hanusse, <u>Ilcinkas</u>, Klasing, Kosowski Euler Tour Lock-in Problem in the Rotor-Router Model

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆○

Known results

- The agent eventually traverses each edge
- The traversal stabilizes into an Euler tour: each edge is traversed once in each direction within a period
- Lock-in time: $\Theta(m \cdot D)$ (m: # edges, D: diameter)

Motivations / Applications

- Graph exploration (by a software agent / robot)
- Mutual exclusion
- Stabilisation of distributed processes
- Work and load balancing problems
- etc.

Known results

- The agent eventually traverses each edge
- The traversal stabilizes into an Euler tour: each edge is traversed once in each direction within a period
- Lock-in time: $\Theta(m \cdot D)$ (m: # edges, D: diameter)

Motivations / Applications

- Graph exploration (by a software agent / robot)
- Mutual exclusion
- Stabilisation of distributed processes
- Work and load balancing problems
- etc.

ヘロン 人間と 人間と 人間と

Э

Related work

- Y. Afek and E. Gafni, SIAM Journal on Computing, 1994.
- S. Bhatt, S. Even, D. Greenberg, and R. Tayar, *Journal of Graph Algorithms and Applications*, 2002.
- J.N. Cooper and J. Spencer, *Combinatorics, Probability and Computing*, 2006.
- B. Doerr and T. Friedrich, *Combinatorics, Probability and Computing*, 2009.
- A.S. Fraenkel, *Mathematics Magazine*, 1970.
- L. Gasieniec and T. Radzik, Proc. WG, 2008.
- V.B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, *Physics Review Letters*, 1996.
- S. Tixeuil, Proc. WSS, 2001.
- V. Yanovski, I.A. Wagner, and A.M. Bruckstein, *Algorithmica*, 2003.

Related work

- Y. Afek and E. Gafni, SIAM Journal on Computing, 1994.
- S. Bhatt, S. Even, D. Greenberg, and R. Tayar, *Journal of Graph Algorithms and Applications*, 2002.
- J.N. Cooper and J. Spencer, *Combinatorics, Probability and Computing*, 2006.
- B. Doerr and T. Friedrich, *Combinatorics, Probability and Computing*, 2009.
- A.S. Fraenkel, Mathematics Magazine, 1970.
- L. Gasieniec and T. Radzik, Proc. WG, 2008.
- V.B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, *Physics Review Letters*, 1996.
- S. Tixeuil, Proc. WSS, 2001.
- V. Yanovski, I.A. Wagner, and A.M. Bruckstein, Algorithmica, 2003.

Our results

Problem

How does the lock-in time depend on the initial configuration of the ports \circlearrowright and pointers \nearrow ?

P = Player, A = Adversary

(Subtitle: I choose pointers and you choose port numbers)

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski

Euler Tour Lock-in Problem in the Rotor-Router Model

Our results

Problem

How does the lock-in time depend on the initial configuration of the ports \circlearrowright and pointers \nearrow ?

Scenario	Worst case	Best case
Case \mathcal{P} -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{P}(\nearrow)\mathcal{A}(\circlearrowright)$	$\Theta(m \cdot \min\{\log m, D\})$	$\Theta(m)$
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$
Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$	$\Theta(m \cdot D)$	$\Theta(m)$ for $D \leq \sqrt{n}$
Case <i>A</i> -all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

$$\mathcal{P}$$
=Player, \mathcal{A} =Adversary

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski

Euler Tour Lock-in Problem in the Rotor-Router Model

・ロ・・ (日・・モ・・・モ・・)

Our results

Problem

How does the lock-in time depend on the initial configuration of the ports \circlearrowright and pointers \nearrow ?

Scenario	Worst case	Best case
Case \mathcal{P} -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{P}(\nearrow)\mathcal{A}(\circlearrowright)$	$\Theta(m \cdot \min\{\log m, D\})$	$\Theta(m)$
Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$	$\Theta(m \cdot D)$	$\Theta(m)$
Case $\mathcal{P}(\circlearrowright)\mathcal{A}(\nearrow)$	$\Theta(m \cdot D)$	$\Theta(m)$ for $D \leq \sqrt{n}$
Case <i>A</i> -all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

$$\mathcal{P}$$
=Player, \mathcal{A} =Adversary

(Subtitle: I choose pointers and you choose port numbers)

Euler Tour Lock-in Problem in the Rotor-Router Model

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$

Very simple algorithm

- Consider any choice of ports () and pointers /
- Run virtually the agent for $\Theta(m \cdot D)$ steps
- ullet The pointers \nearrow are now correctly set again by $\mathcal P$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$

Very simple algorithm

- Consider any choice of ports <a>C and pointers
- Run virtually the agent for $\Theta(m \cdot D)$ steps
- ullet The pointers earrow are now correctly set again by ${\mathcal P}$

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski Euler Tour Lock-in Problem in the Rotor-Router Model

(ロ) (同) (E) (E) (E)

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$

Very simple algorithm

- Consider any choice of ports 🔿 and pointers /
- Run virtually the agent for $\Theta(m \cdot D)$ steps

. The pointers \nearrow are now correctly set again by ${\cal P}$

(ロ) (同) (E) (E) (E)

Scenario	Worst case	Best case
Case <i>P</i> -all	$\Theta(m)$	$\Theta(m)$
Case $\mathcal{A}(\circlearrowright)\mathcal{P}(\nearrow)$	$\Theta(m)$	$\Theta(m)$

Very simple algorithm

- Consider any choice of ports 🔿 and pointers /
- Run virtually the agent for $\Theta(m \cdot D)$ steps
- ullet The pointers \nearrow are now correctly set again by $\mathcal P$

(ロ) (同) (E) (E) (E)

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

Known) Properties

- Each arc is traversed at most once during a phase
- $G_i \subseteq G_{i+1}$
- If v ∈ G_i, then v is saturated in G_{i+1}

• $\Rightarrow G_{i+1} \supseteq \text{neighborhood}(G_i)$

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i

- $G_i \subset G_{i+1}$
- If $v \in G_i$, then v is saturated

• \Rightarrow $G_{i+1} \supset$ neighborhood(G_i)

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

(Known) Properties

• Each arc is traversed at most once during a phase

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

(Known) Properties

- Each arc is traversed at most once during a phase
- $G_i \subseteq G_{i+1}$

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski

Euler Tour Lock-in Problem in the Rotor-Router Model

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

(Known) Properties

- Each arc is traversed at most once during a phase
- $G_i \subseteq G_{i+1}$
- If $v \in G_i$, then v is saturated in G_{i+1}

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski

Definitions

- Phase: Interval between two traversals of the first edge
- G_i: Graph induced by the edges traversed in Phase i
- Saturated node: Node whose incident edges are all traversed in both directions during the current phase

(Known) Properties

- Each arc is traversed at most once during a phase
- $G_i \subseteq G_{i+1}$
- If $v \in G_i$, then v is saturated in G_{i+1}

•
$$\Rightarrow G_{i+1} \supseteq \operatorname{neighborhood}(G_i)$$

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski

Scenario	Worst case	Best case
Case <i>A</i> -all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

Make G_{i+1} = neighborhood(G_i)

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Scenario	Worst case	Best case
Case <i>A</i> -all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

Euler Tour Lock-in Problem in the Rotor-Router Model

3

Scenario	Worst case	Best case
Case <i>A</i> -all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

(Sketch of the) Proof

- Let [u, v] be a diameter
- Make G_1 be the larger of H_1 and H_2

・ロン ・回 と ・ ヨ と ・ ヨ と

E

Scenario	Worst case	Best case
Case <i>A</i> -all	$\Theta(m \cdot D)$	$\Theta(m \cdot D)$

(Sketch of the) Proof

- Let [u, v] be a diameter
- Make G_1 be the larger of H_1 and H_2
- Make $G_{i+1} =$ neighborhood (G_i)

◆□ → ◆□ → ◆ □ → ◆ □ →

3

Case $\mathcal{A}(\nearrow)\mathcal{P}(\circlearrowright)$

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski Euler Tour Lock-in Problem in the Rotor-Router Model

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

 $\mathbb{Z}(\mathbb{Z})$

Case $\mathcal{A}($

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

Case $\mathcal{P}(\circlearrowright)\mathcal{A}($

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

Conclusion and perspectives

Open problem

Does there exist any graph of large diameter with lock-in time O(m) in Case P(○)A(↗)?

What if ports () and/or pointers / are set uniformly at

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusion and perspectives

Open problem

- Does there exist any graph of large diameter with lock-in time O(m) in Case P(○)A(↗)?
- What if ports and/or pointers / are set uniformly at random?

・ロン ・回 と ・ヨン ・ヨン

Thank You for your attention

Bampas, Gasieniec, Hanusse, Ilcinkas, Klasing, Kosowski Euler Tour Lock-in Problem in the Rotor-Router Model

・ロト ・日ト ・ヨト ・ヨト