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Definitions

Anonymous graphs / networks

No (used) node labeling

Local port numbering at node v from 1 to deg(v)

d

1

2 3

d−1

Mobile agent / robot / message / anything

Follows the rotor-router mechanism
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Rotor-router mechanism

d

1

2 3

d−1

Very simple mechanism:

Each node has a pointer↗
The agent follows the
pointer and “increments”
it with respect to the
cyclic ordering � (induced
by the port numbering)

Other names: Propp machine, Next-Port, Edge Ant Walk
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Context

Known results

The agent eventually traverses each edge

The traversal stabilizes into an Euler tour: each edge is
traversed once in each direction within a period

Lock-in time: Θ(m · D) (m: # edges, D: diameter)

Motivations / Applications

Graph exploration (by a software agent / robot)

Mutual exclusion

Stabilisation of distributed processes

Work and load balancing problems

etc.
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Our results

Problem

How does the lock-in time depend on the initial configuration
of the ports � and pointers ↗?

Scenario Worst case Best case
Case P-all Θ(m) Θ(m)

Case A(�)P(↗) Θ(m) Θ(m)
Case P(↗)A(�) Θ(m ·min{log m, D}) Θ(m)
Case A(↗)P(�) Θ(m · D) Θ(m)
Case P(�)A(↗) Θ(m · D) Θ(m) for D ≤

√
n

Case A-all Θ(m · D) Θ(m · D)

P=Player, A=Adversary

(Subtitle: I choose pointers and you choose port numbers)
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Player wins

Scenario Worst case Best case
Case P-all Θ(m) Θ(m)

Case A(�)P(↗) Θ(m) Θ(m)

Very simple algorithm

Consider any choice of ports � and pointers ↗
Run virtually the agent for Θ(m · D) steps

The pointers ↗ are now correctly set again by P
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Useful properties (known results)

Definitions

Phase: Interval between two traversals of the first edge

Gi : Graph induced by the edges traversed in Phase i

Saturated node: Node whose incident edges are all
traversed in both directions during the current phase

(Known) Properties

Each arc is traversed at most
once during a phase

Gi ⊆ Gi+1

If v ∈ Gi , then v is saturated
in Gi+1

⇒ Gi+1 ⊇ neighborhood(Gi)
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Adversary wins

Scenario Worst case Best case
Case A-all Θ(m · D) Θ(m · D)

u

H1 H2

D
2

D
2

v

G

(Sketch of the) Proof

Let [u, v ] be a
diameter

Make G1 be the
larger of H1 and H2

Make Gi+1 =
neighborhood(Gi)
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Case A(↗)P(�)

Scenario Worst case Best case
Case A(↗)P(�) Θ(m · D) Θ(m)

m edges
D
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Case A(↗)P(�)

Scenario Worst case Best case
Case A(↗)P(�) Θ(m · D) Θ(m)

V1
V0

D

u

s

s′
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2 1
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2 3

41

m
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Case P(�)A(↗)

Scenario Worst case Best case
Case P(�)A(↗) Θ(m · D) Θ(m) for D ≤

√
n

5

4 6

1 3

2
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Conclusion and perspectives

Scenario Worst case Best case
Case P-all Θ(m) Θ(m)

Case A(�)P(↗) Θ(m) Θ(m)
Case P(↗)A(�) Θ(m ·min{log m, D}) Θ(m)
Case A(↗)P(�) Θ(m · D) Θ(m)
Case P(�)A(↗) Θ(m · D) Θ(m) for D ≤

√
n

Case A-all Θ(m · D) Θ(m · D)

Open problem

Does there exist any graph of large diameter with lock-in
time O(m) in Case P(�)A(↗)?

What if ports � and/or pointers ↗ are set uniformly at
random?
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Thank You
for your attention
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