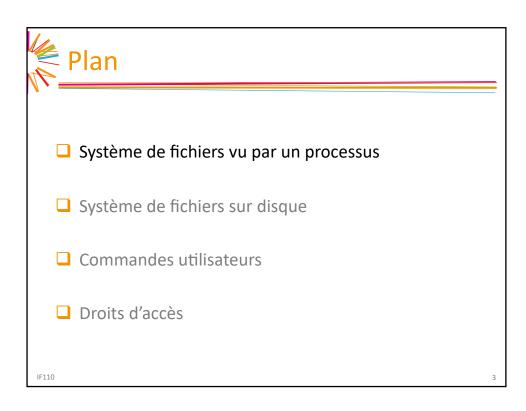
IF110 - Système de Fichiers

Joachim Bruneau-Queyreix

ENSEIRB-MATMECA
Bordeaux-INP

jbruneauqueyreix@enseirb-matmeca.fr


D'après le cours d'introduction aux systèmes d'exploitation de Télécom SudParis

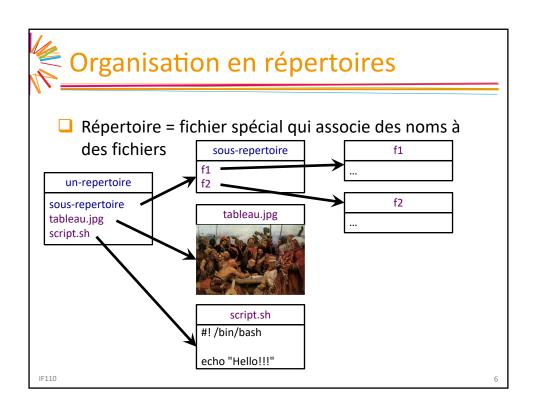
Système de Fichiers

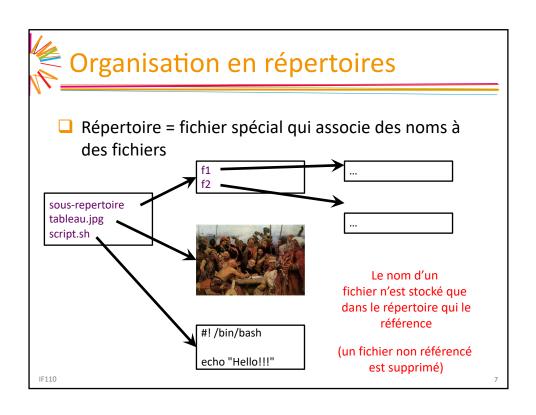
- Besoin de mémoriser des informations
 - > Photos, PDF, données brutes, exécutables d'applications, etc.
- Organisation du stockage sur mémoire de masse
 - > Localisation abstraite grâce à un chemin dans une arborescence
 - Unité de base = fichier
- Exemples de types de systèmes de fichiers
 - NTFS pour Windows, ext2, ext3, ext4 pour Linux, HFSX/APFS pour Mac-OS
 - > exFAT pour les clés USB, ISO pour les CD
 - ... et des myriades d'autres types de systèmes de fichiers (HDFS ...)

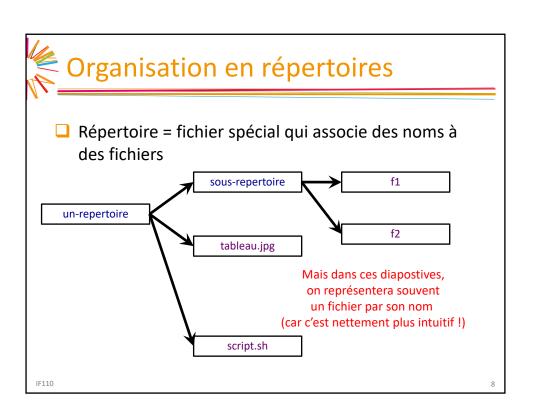
IF110

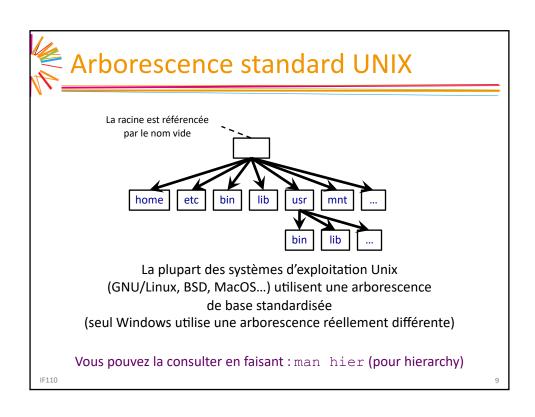
Qu'est-ce qu'un fichier

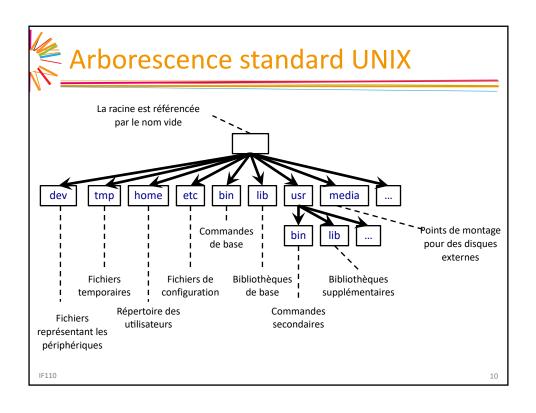
- Un fichier est la réunion de
 - > Un contenu, c'est-à-dire un ensemble ordonné d'octets
 - Un propriétaire
 - Des horloges scalaires (création, dernier accès, dernière modif)
 - Des droits d'accès (en lecture, en écriture, en exécution)
- Attention :
 - > le nom ne fait pas parti du fichier
 - > un même fichier peut avoir plusieurs noms

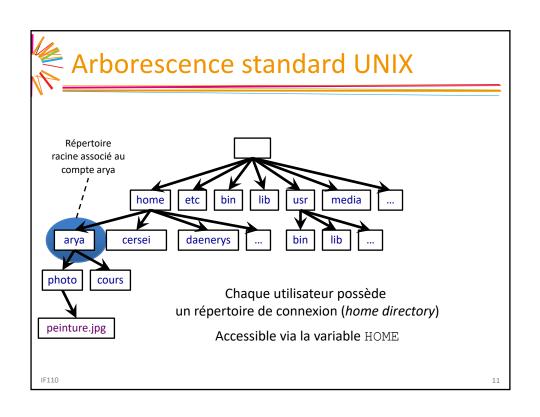

IF110

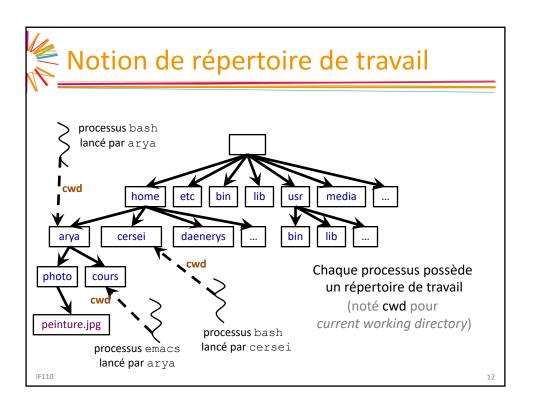


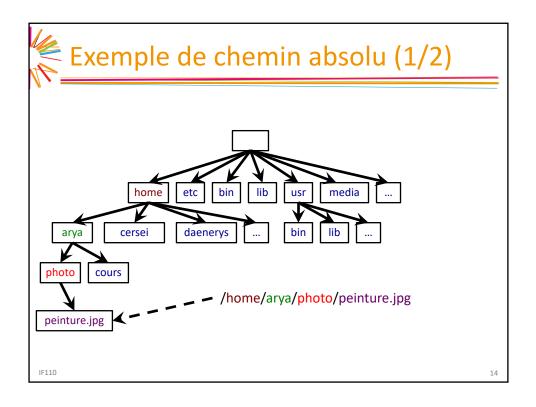

On stocke de nombreux de fichiers

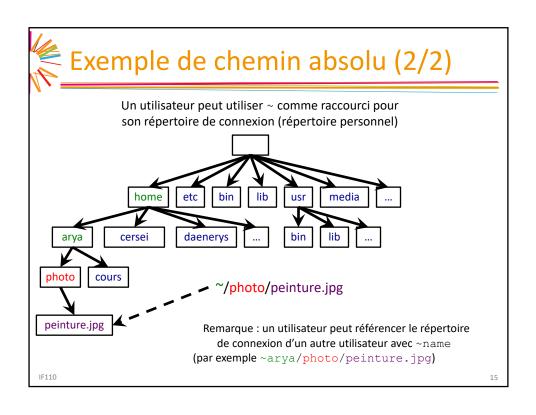

- ☐ Facilement plusieurs centaines de milliers de fichiers dans un ordinateur
 - > Plusieurs milliers gérés/utilisés directement par l'utilisateur
 - Plusieurs centaines de milliers pour le système et les applications
- Problème : comment retrouver facilement un fichier parmi des centaines de milliers ?
- Solution : en rangeant les fichiers dans des répertoires (aussi appelés dossiers)

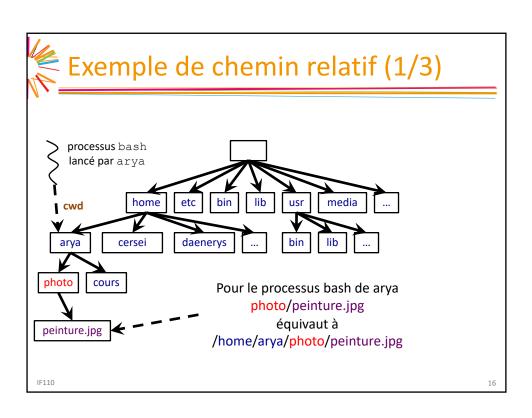

IF110

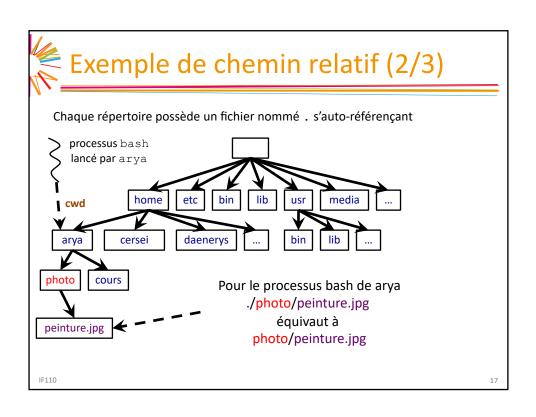


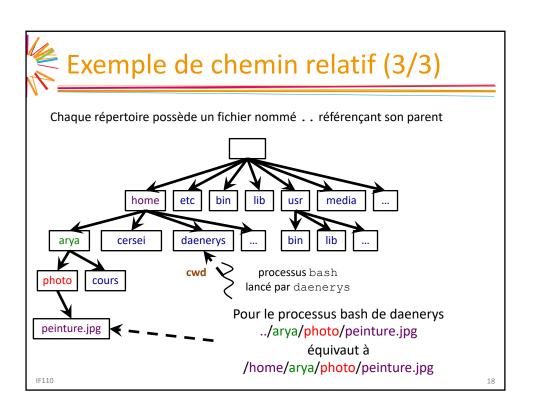







Notion de chemin


- ☐ En bash, le séparateur de répertoire est le caractère /
- ☐ Un chemin s'écrit sous la forme a/b/c qui référence
 - ▶ le fichier c
 - > se trouvant dans le répertoire b
 - > se trouvant lui même dans le répertoire a
- ☐ Un chemin absolu part de la racine du système de fichiers Commence par le nom vide (racine), par exemple /a/b/c
- ☐ Un chemin relatif part du répertoire de travail du processus Commence par un nom non vide, par exemple a/b/c


IF110 1

Remarque

Dans bash, quand vous écrivez ./script.sh, vous référencez le fichier script.sh du répertoire de travail du processus bash de votre terminal

IF110

19

Exemple

```
#! /bin/bash
```

echo "Bonjour, vous êtes dans le répertoire \$PWD" echo "Votre maison se trouve en \$HOME" echo "Et vous avez lancé le script \$0"

/home/reveillere/tmp/script.sh

\$./script.sh

Bonjour, vous êtes dans le répertoire /home/reveillere/tmp Votre maison se trouve en /home/reveillere Et vous avez lancé le script ./script.sh

IF110

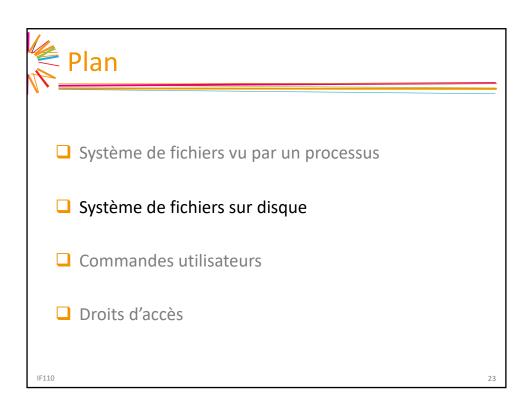
Explorer l'arborescence de fichiers

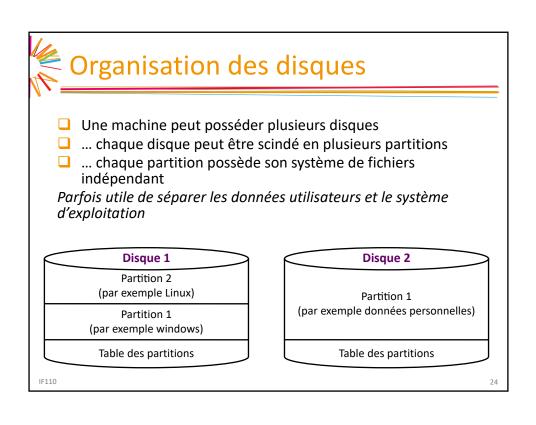
- cd chem
 - ⇒ change le répertoire courant vers chem

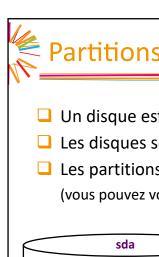
Exemple: cd ../cersei; cd /home/arya/photo (sans argument, cd va dans votre répertoire de connexion)

- pwd (print working directory)
 - ⇒ affiche le répertoire de travail (⇔ echo \$PWD)

IF110

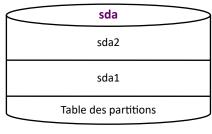

21

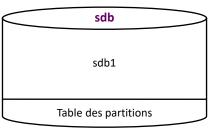



Explorer l'arborescence de fichiers

- ☐ ls chem
- ⇒ Affiche le contenu d'un répertoire
 - > Si chem absent : affiche le contenu du répertoire de travail
 - > Si chem répertoire : affiche le contenu du répertoire chem
 - Sinon si chem est un fichier : affiche le nom du fichier
 - > Options utiles :
 - -a: affiche les fichiers cachés (c.-à.d., commençant par '.')
 - -1 : affichage long (propriétaire, droits d'accès, taille etc.)

IF110




☐ Un disque est identifié par le préfixe sd (scsi drive)

Les disques sont numérotés a, b, c...

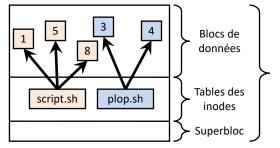
Les partitions sont numérotées 1, 2, 3...

(vous pouvez voir les disques/partitions en faisant ls /dev)

2.5

Système de fichiers sur disque (1/2)

- 3 concepts fondamentaux
 - Le bloc : unité de transfert entre le disque et la mémoire (souvent 4096 octets)
 - L'inode (index node) : descripteur d'un fichier
 - » Type du fichier (ordinaire, répertoire, autres)
 - » Propriétaire, droits, dates de création/modification/accès
 - » Taille
 - » Liste des blocs du contenu du fichier
 - **»** ...
 - > Donc, dans ce cours : fichier = inode + blocs du fichier


IF110

Le système de fichiers sur disque (2/2)

- ☐ Avec ext, utilisé sous GNU/Linux, trois zones principales
 - Le superbloc, au début, décrit les autres zones
 - La table des inodes contient les inodes (inode 0 = racine)
 - La zone des blocs de données contient les données des fichiers

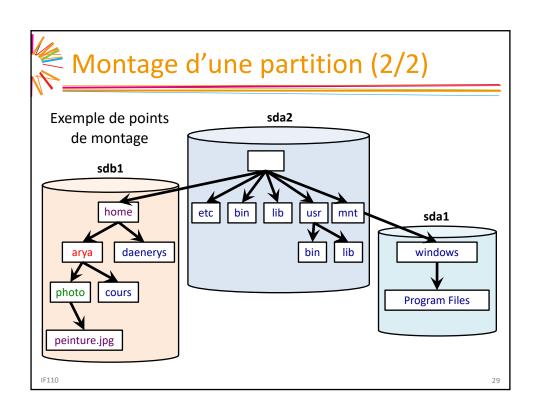
Par exemple, contenu de script.sh: 4096 octets du bloc 1 puis 4096 octets du bloc 5 puis 312 octets du bloc 8

IF110

27

Une partition

Montage d'une partition (1/2)


- Le système maintient une table des montages qui associe des chemins (points de montage) et des disques
 - > / ⇒ sda1
 - \rightarrow /home \Rightarrow sdb1
 - /mnt/windows ⇒ sdb2

Remarque: les partitions du disque dur peuvent se trouver sur une autre machine (typiquement Network File System, comme en salle TP, voir https://doc.ubuntu-fr.org/nfs)

 Lorsqu'un processus accède à un point de montage, il accède à l'inode racine du disque indiqué dans la table des montages

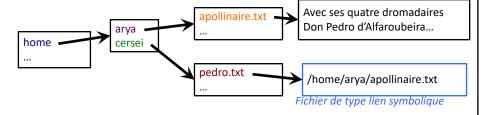
Par exemple cd /mnt/windows accède à l'inode racine de sdb2

IF110

Lien direct (2/2)

- ☐ Mais faire de multiples liens directs pour faire des raccourcis peut poser problème
 - ➤ Pour supprimer un fichier, il faut supprimer tous les liens directs vers son inode, mais les utilisateurs sont distraits et en oublient
 - Un lien direct ne peut référencer qu'un inode de la même partition

IF110



Notion de lien symbolique (1/2)

 Pour faire des raccourcis on utilise aussi des liens symboliques

Comme ln -s chem-cible chem-lien

- Fichier spécial (type lien) dont le contenu est un chemin cible
- Lorsque le système doit ouvrir le fichier, il ouvre la cible à la place de l'original

ln -s /home/arya/apollinaire.txt /home/cersei/pedro.txt

IF110

Notion de lien symbolique (2/2)

- Avantages des liens symboliques
 - Dès que le fichier cible est détruites, son espace est libéré (ouvrir le lien symbolique engendre alors une erreur)
 - Un lien symbolique peut référencer un fichier quelconque, y compris appartenant à une autre partition
- Principal inconvénient des liens symboliques
 - ➤ En cas de déplacement du fichier cible, le lien symbolique peut devenir invalide

IF110 33

Il existe de nombreux types de fichiers

- Fichier ordinaire
- Répertoire
- Lien symbolique
- Device : un fichier qui représente un périphérique (disque dur, carte son, carte réseau, ...)
 - » Par exemple /dev/sda1
- > Tube nommé : fichier spécial étudié plus loin
- Socket : fichier spécial proche des tubes (non étudié dans ce cours, voir cours prog. réseau en T2)

IF110 34

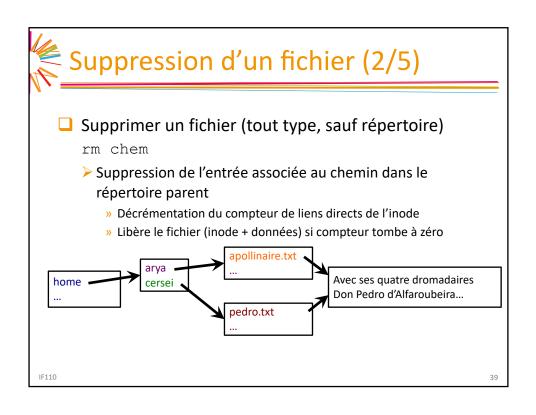
Plan Système de fichiers vu par un processus Système de fichier sur disque Commandes utilisateurs Droits d'accès

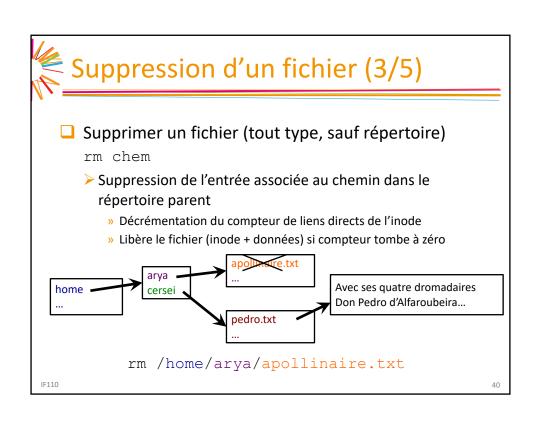
Création d'un fichier

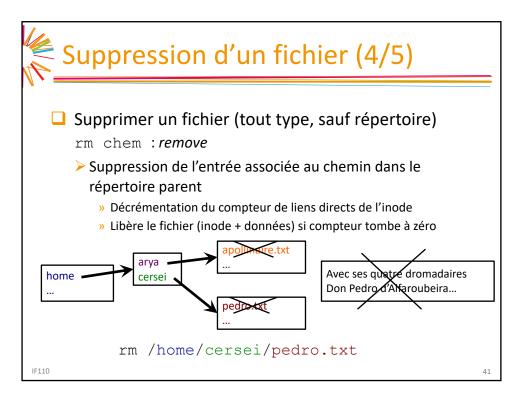
- Création d'un fichier ordinaire :
 - > Au travers de logiciels
 - » en particulier des éditeurs : emacs, vi, gedit, nano, etc...
 - > touch chem : crée fichier vide + mise à jour heures modif.
- Création d'un répertoire :
 - > mkdir rep
- Création d'un lien :
 - ▶ Lien dur: ln chem-cible chem-lien
 - ➤ Lien symbolique: ln -s chem-cible chem-lien

IF110

37


Suppression d'un fichier (1/5)


Supprimer un fichier (tout type, sauf répertoire)


rm chem

- Suppression de l'entrée associée au chemin dans le répertoire parent
 - » Décrémentation du compteur de liens directs de l'inode
 - » Libère le fichier (inode + données) si compteur tombe à zéro

IF110

Suppression d'un fichier (5/5)

Supprimer un fichier (tout type, sauf répertoire)

rm chem

- Suppression de l'entrée associée au chemin dans le répertoire parent
 - » Décrémentation du compteur de liens directs de l'inode
 - » Libère le fichier (inode + données) si compteur tombe à zéro
- Supprimer un répertoire
 - rmdir <rep> : suppression d'un répertoire vide
 - rm -r <rep> : suppression récursive d'un répertoire et de tous les sous-fichiers (sous-répertoires inclus)

(faites très attention avec cette commande!)

IF110

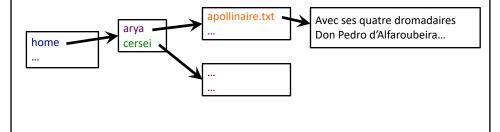
Copie d'un fichier (1/3)

□ cp [-r] <src> <dest>

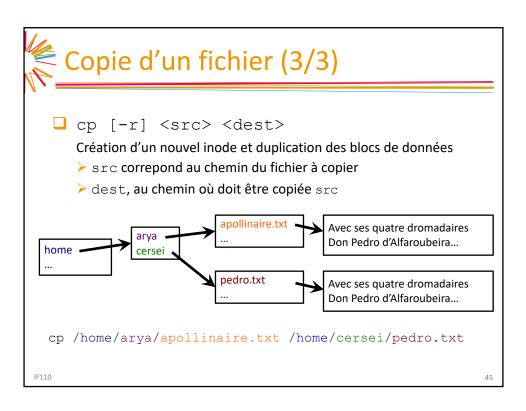
Création d'un nouvel inode et duplication des blocs de données

- src correpond au chemin du fichier à copier
- dest, au chemin où doit être copiée src
- Deux fonctionnements différents
 - ➤ Si dest est un répertoire, copie src dans le répertoire dest (dans ce cas, multiples copies possibles avec cp fic1 fic2 ... rep)
 - > Sinon, copie src sous le nom dest
- L'option -r permet de copier récursivement un répertoire (sans -r, si src est un répertoire, erreur)

IF110



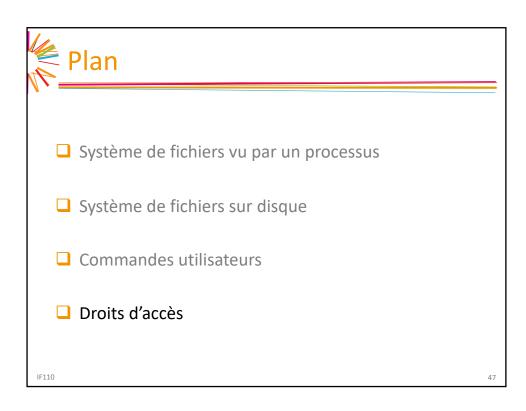
Copie d'un fichier (2/3)

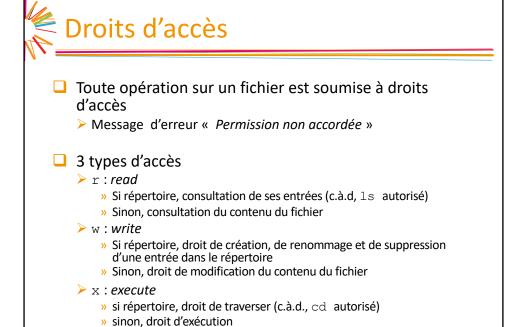

□ cp [-r] <src> <dest>

Création d'un nouvel inode et duplication des blocs de données

- src correpond au chemin du fichier à copier
- dest, au chemin où doit être copiée src

IF110



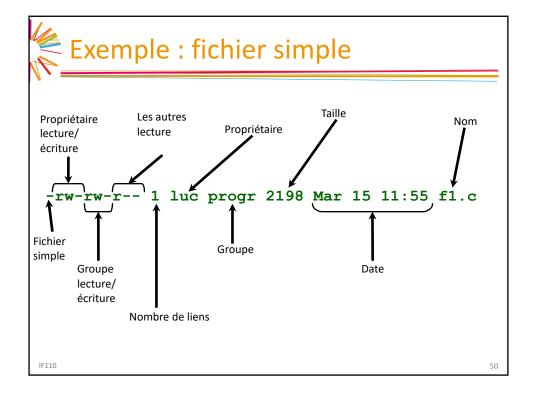


Déplacement / renommage d'un fichier

- ☐ mv <src> <dest> (déplace ou renomme)
 - > src : fichier de type quelconque
 - Si dest est un répertoire, déplace src dans le répertoire dest (dans ce cas, multiples déplacements possibles avec mv fic1 fic2 ... rep)
 - > Sinon, déplace src sous le nom dest
- Fonctionnement :
 - Déplacement dans la même partition
 - » Crée un lien direct à partir de src puis supprime src
 - Déplacement sur une autre partition
 - » Copie src vers dest puis supprime src

IF110

IF110



Droits d'accès

- 3 catégories d'utilisateurs:
 - Propriétaire (u)
 - > Groupe propriétaire (g)
 - > Tous les autres (0)
- ☐ Consultation des droits d'accès d'un fichier :

ls -ld chemin

IF110

Droits d'accès – modification

- ☐ Modification sur une entrée existante chmod droit entrée : change mode
- ☐ Droits à !appliquer! à l'entrée
 - Catégories : u, g, o ou a (= all c.à.d., ugo)
 - ➤ Opérations : Ajout (+), retrait (-), affectation (=)

\$

IF110

51

Droits d'accès – modification

- ☐ Modification sur une entrée existante chmod droit entrée
- Droits à !appliquer! à l'entrée
 - Catégories : u, g, o ou a(= all = ugo)
 - Opérations : Ajout (+), retrait (-), affectation (=)

\$ ls -ld fichier
-rwx r-- --- fichier
\$

IF110

Droits d'accès – modification

- ☐ Modification sur une entrée existante chmod droit entrée : change mode
- ☐ Droits à !appliquer! à l'entrée
 - Catégories : u, g, o ou a(= all = ugo)
 - Opérations : Ajout (+), retrait (-), affectation (=)

```
$ ls -ld fichier

-rwx r-- -- fichier

$ chmod u-x fichier

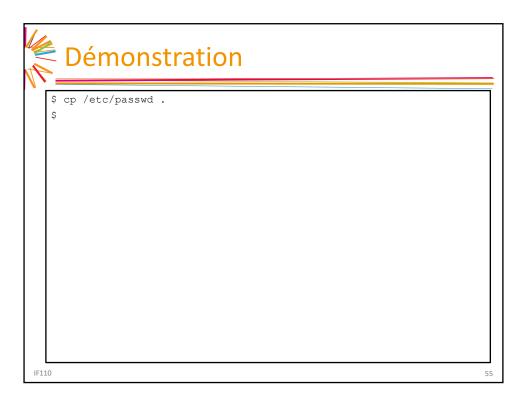
$ ls -ld fichier

-rw- r-- -- fichier

$
```

IF110

53



Droits d'accès – modification

- ☐ Modification sur une entrée existante chmod droit entrée : change mode
- Droits à !appliquer! à l'entrée
 - > Catégories : u, g, o ou a(= all = ugo)
 - ➤ Opérations : Ajout (+), retrait (-), affectation (=)

```
$ ls -ld fichier
-rwx r-- --- fichier
$ chmod u-x fichier
$ ls -ld fichier
-rw- r-- --- fichier
$ chmod u+x fichier
$ ls -ld fichier
-rwx r-- --- fichier
```

IF110

Démonstration \$ cp /etc/passwd . \$ ls -1 total 4 -rw-r--r- 1 reveillere users 1927 sept. 28 11:45 passwd \$

```
Démonstration

$ cp /etc/passwd .
$ ls -1
total 4
-rw-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
$ chmod u-r passwd
$
```

Démonstration \$ cp /etc/passwd . \$ ls -1 total 4 -rw-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd \$ chmod u-r passwd \$ cat passwd cat: passwd: Permission non accordée \$

```
$ cp /etc/passwd .
$ ls -l
total 4
-rw-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
$ chmod u-r passwd
$ cat passwd
cat: passwd: Permission non accordée
$ mkdir rep
$
```

Démonstration

```
$ cp /etc/passwd .
$ ls -l
total 4
-rw-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
$ chmod u-r passwd
$ cat passwd
cat: passwd: Permission non accordée
$ mkdir rep
$ ls -l
total 8
--w-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
drwxr-xr-x 2 reveillere users 4096 sept. 28 11:47 rep
$
```

```
Démonstration
```

```
$ cp /etc/passwd .
  $ ls -1
  total 4
  -rw-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
 $ chmod u-r passwd
 $ cat passwd
  cat: passwd: Permission non accordée
  $ mkdir rep
  $ ls -1
  total 8
  --w-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
  drwxr-xr-x 2 reveillere users 4096 sept. 28 11:47 rep
  $ cd rep/
IF110
```

Démonstration

```
$ cp /etc/passwd .
$ ls -1
total 4
-rw-r--r- 1 reveillere users 1927 sept. 28 11:45 passwd
$ chmod u-r passwd
$ cat passwd
cat: passwd: Permission non accordée
$ mkdir rep
$ ls -1
total 8
--w-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
drwxr-xr-x 2 reveillere users 4096 sept. 28 11:47 rep
$ cd rep/
$ cd ..
$
```

IF110

```
Démonstration
```

```
$ cp /etc/passwd .
  $ ls -1
  total 4
  -rw-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
 $ chmod u-r passwd
 $ cat passwd
  cat: passwd: Permission non accordée
  $ mkdir rep
  $ ls -1
  total 8
  --w-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
  drwxr-xr-x 2 reveillere users 4096 sept. 28 11:47 rep
  $ cd ..
  $ chmod u-x rep
  $
IF110
```

Démonstration

```
$ cp /etc/passwd .
  $ ls -l
  total 4
  -rw-r--r- 1 reveillere users 1927 sept. 28 11:45 passwd
  $ chmod u-r passwd
  $ cat passwd
  cat: passwd: Permission non accordée
  $ mkdir rep
  $ ls -1
  --w-r--r-- 1 reveillere users 1927 sept. 28 11:45 passwd
  drwxr-xr-x 2 reveillere users 4096 sept. 28 11:47 rep
  $ cd rep/
 $ cd ..
 $ chmod u-x rep
 $ cd rep
 bash: cd: rep: Permission non accordée
IF110
```


Droits d'accès initiaux

- Masque de droits d'accès !retirés! à la création de tout fichier
 - Commande umask (user mask)
 - Le masque est donné en octal (base 8) avec 3 chiffres (u, g, o)
 - > En standard, masque par défaut = 022
 - $^{\circ}$ r = 100 en binaire = 4 en octal, w = 010 = 2
 - » Le droit d'exécution n'est pas affecté par le umask
 - » Si droits retirés --- -w- -w-, alors droits appliqués rw- r-- r--
 - > Modification du masque grâce à la commande umask
 - » Attention : umask sans effet rétroactif sur les fichiers préexistantes
 - » Attention: umask n'a d'effet que sur le bash courant

IF110

65

Conclusion

Concepts clés :

- Arborescence, racine du système de fichier, répertoire de connexion, répertoire de travail
- > Chemin absolu, chemin relatif
- Droits d'accès
- > Partition, inode
- > Fichier, répertoire, liens (direct et symbolique)

Commandes clés :

- > pwd, cd, ls
- chmod, umask
- > mkdir, ln, rm, rmdir, cp, mv

IF110