
ar
X

iv
:1

50
5.

02
44

4v
1

 [
cs

.L
O

]
 1

0
M

ay
 2

01
5

Eliminating recursion from monadic datalog

programs on trees

Filip Mazowiecki, Joanna Ochremiak, and Adam Witkowski

University of Warsaw

Abstract. We study the problem of eliminating recursion from monadic
datalog programs on trees with an infinite set of labels. We show that
the boundedness problem, i.e., determining whether a datalog program is
equivalent to some nonrecursive one is undecidable but the decidability
is regained if the descendant relation is disallowed. Under similar restric-
tions we obtain decidability of the problem of equivalence to a given

nonrecursive program. We investigate the connection between these two
problems in more detail.

1 Introduction

Among logics with fixpoint capabilities, one of the most prominent is datalog,
which augments unions of conjunctive queries (positive existential first order
formulae) with recursion. Datalog originated as a declarative programming lan-
guage, but later found many applications in databases as a query language. The
gain in expressive power does not, however, come for free. Compared to unions
of conjunctive queries, evaluating a datalog program is harder [22] and basic
properties such as containment or equivalence become undecidable [21].

Since the source of the difficulty in dealing with datalog programs is their
recursive nature, the first line of attack in trying to optimize such programs is to
eliminate the recursion. It is well-known that a nonrecursive datalog program can
be rewritten as a union of conjunctive queries. The main focus of this paper is
therefore the equivalence of recursive datalog programs to unions of conjunctive
queries.

Example 1. The programs in this example work on databases that use binary
predicates likes and knows, and a unary predicate trendy. First, consider the
following pair of datalog programs:

P1

buys(X,Y)← likes(X,Y)

buys(X,Y)← trendy(X), buys(Z, Y)

P
′

1

buys(X,Y)← likes(X, Y)

buys(X,Y)← trendy(X), likes(Z, Y)

The program P1 is recursive because its second rule refers to the predicate buys.
It can be shown that P1 is equivalent to the nonrecursive program P ′

1. Consider,
on the other hand, the following pair of programs:

http://arxiv.org/abs/1505.02444v1

P2

buys(X,Y)← likes(X, Y)

buys(X,Y)← knows(X,Z), buys(Z,Y)

P
′

2

buys(X,Y)← likes(X,Y)

buys(X,Y)← knows(X,Z), likes(Z, Y)

It can be shown that P2 is not equivalent to the nonrecursive program P ′
2. More-

over, this program is not equivalent to any nonrecursive program.

The example above (taken from [18]) presents two approaches to eliminat-
ing recursion from datalog programs. Either we want to determine for a given
datalog program if it is equivalent to some nonrecursive datalog program or
decide whether a given datalog program is equivalent to a given nonrecursive
program. These problems bear some similarities but in general they are separate.
The latter is decidable [11], while the former, called the boundedness problem,
is not [15,16].

Negative results for the full datalog fueled interest in its restrictions [4,6,7].
Important restrictions include monadic programs, using only unary predicates
in the heads of rules; linear programs, with at most one use of an intensional
predicate per rule; and connected programs, where within each rule all variables
that are mentioned are connected to each other. Throughout this paper only
monadic datalog programs are considered. In [12] Cosmadakis et al. show that
for such programs the boundedness problem becomes decidable. Moreover, they
use the same techniques to prove that the containment problem of two monadic
datalog programs is decidable. These results suggest that under some additional
assumptions the boundedness problem and the equivalence problem are more
related.

In this paper we study connected, monadic datalog programs restricted to
tree-structured databases. Our models are finite trees whose nodes carry labels
from an infinite alphabet that can be tested for equality. Over such structures
the problem of equivalence to a given union of conjunctive queries is known
to be undecidable [1,17]. We show that the boundedness problem is also unde-
cidable. In some cases, however, we regain decidability of both problems in the
absence of the descendant relation. On ranked trees we show that the equivalence
and the boundedness problems become decidable (in 2-ExpTime). On unranked
trees we prove that the equivalence of a linear program to a non-recursive one is
ExpSpace-complete. We finish with an analysis of the connection between the
equivalence and the boundedness problems and show that under some assump-
tions they are equi-decidable.

Organization. In Section 2 we introduce datalog programs and some basic
definitions. In Section 3 we deal with the problem of equivalence to a given non-
recursive datalog program. In Section 4 we analyze the boundedness problem.
Finally, in Section 5 we explore the connection between the two approaches to
eliminating recursion from datalog programs and show that under some assump-
tions the arising decision problems are equi-decidable. We conclude in Section 6
with possible directions for future research. Due to the page limit most of the
proofs are moved to the appendix.

2 Preliminaries

In this paper we work over finite trees labeled with letters from an infinite
alphabet Σ. The trees are unranked by default, but we also work with ranked
trees, in particular with words.We use the standard notation for axes: ↓, ↓+ stand,
respectively, for child and descendant relations. We assume that each node has
one label. A binary relation ∼ holds between nodes with identical labels and
there is a unary predicate a for each a ∈ Σ, holding for the nodes labeled with
a.

We begin with a brief description of the syntax and semantics of datalog; for
more details see [2] or [8]. A datalog program P over a relational signature
S is a finite set of rules of the form head ← body , where head is an atom
over S and body is a (possibly empty) conjunction of atoms over S written as a
comma-separated list. All variables in the body that are not used in the head are
implicitly quantified existentially. The size of a rule is the number of different
variables that appear in it.

The relational symbols, or predicates, in S fall into two categories. Exten-
sional predicates are the ones explicitly stored in the database; they are never
used in the heads of rules. In our setting they come from {↓, ↓+,∼} ∪ Σ. The
alphabet Σ is infinite, but the program P uses only its finite subset which we
denote by ΣP . Intensional predicates, used both in the heads and bodies, are
defined by the rules.

The program is evaluated by generating all atoms (over intensional predi-
cates) that can be inferred from the underlying structure (tree) by applying
the rules repeatedly, to the point of saturation. Each inferred atom can be wit-
nessed by a proof tree: an atom inferred by a rule r from intensional atoms
A1, A2, . . . , An is witnessed by a proof tree with the root labeled by r, and n chil-
dren which are the roots of the proof trees for atoms Ai (if r has no intensional
predicates in its body then the root has no children).

There is a designated predicate called the goal of the program. We will often
identify the goal predicate with the program, i.e., we write P(X) if the goal
predicate of the program P holds on the node X . When evaluated in a given
database D, the program P results in the unary relation P(D) = {X ∈ D |
such that P(X) holds}. If P(D) ⊆ Q(D) for every database D then we say that
the program P is contained in the program Q. If the containment holds both
ways then the programs P and Q are equivalent.

Example 2. The program below computes the nodes from which one can reach
some label a along a path where each node has a child with identical label and
a descendant with label b (or has label b itself).

P (X)← X↓Y, P (Y), X↓Y ′

, X ∼ Y
′

, Q(X) (p1)

P (X)← a(X) (p2)

Q(X)← X↓Y,Q(Y) (q1)

Q(X)← b(X) (q2)

p1

q1

q2

p1

q2 p2

c

c b

b a

The intensional predicates are P and Q, and P is the goal. The proof tree shown
in the center witnesses that P holds in the root of the tree on the right.

The notion of proof trees comes from papers on datalog over general struc-
tures (see e.g. [11]). As shown in Example 2 proof trees illustrate how the pro-
gram evaluates. While on general structures for a given proof tree one can always
find a model such that the proof tree witnesses a correct evaluation of the pro-
gram, on tree structures this is not so simple. One reason is that we allow only
one label for every node. As a result, rules like P (X) ← a(X), b(X) cannot be
satisfied for a 6= b. Moreover, nodes have a unique father. Because of this it is
not easy to determine whether a given proof tree is a witness of an evaluation
of the program on some model and it does not suffice to eliminate unsatisfiable
rules. Proof trees for which such a model exists will be called satisfiable proof
trees.

Example 3. The program below goes down a tree along a path labeled with a.
Then it goes up the tree until it finds a node labeled with b.

P (X)← X↓Y, a(Y), P (Y) (p3)

P (X)← Q(X) (p4)

Q(X)← Y ↓X,Q(Y) (q3)

Q(X)← b(X) (q4)

p3

p4

q3

q4

p3

p3

p4

q3

q4

The first proof tree is satisfiable, but the second proof tree is not satisfiable
because it enforces both labels a and b on the same node.

In this paper we consider only monadic programs, i.e., programs whose
intensional predicates are at most unary. Moreover, throughout the paper we
assume that the programs do not use 0-ary intensional predicates. For general
programs this is merely for the sake of simplicity: one can always turn a 0-ary
predicate Q to a unary predicate Q(X) by introducing a dummy variable X . For
connected programs (described below) this restriction matters.

For a datalog rule r, let Gr be a graph whose vertices are the variables
used in r and an edge is placed between X and Y if the body of r contains
an atomic formula X↓Y or X↓+Y . In Gr we distinguish a head node and
intensional nodes. The latter are all variables from the body of r used by
intensional predicates. A program P is connected if for each rule r ∈ P , the
graph Gr is connected1.

Previous work on datalog on arbitrary structures often considered the case of
connected programs [12,15]. The practical reason is that real-life programs tend
to be connected (cf. [3]). Also, rules which are not connected combine pieces of

1 One could consider a definition allowing additionally nodes connected by the equality
relation but we expect that this would be as hard as the disconnected case e.g. the
main problem we leave open in Section 3, the equivalence of child-only non-linear
programs, becomes undecidable by the results of [17] for boolean queries.

unrelated data, corresponding to the cross product, an unnatural operation in
the database context. It seems even more natural to assume connectedness when
working with tree-structured databases. We shall do so. We write Datalog(↓, ↓+)
for the class of connected monadic datalog programs, and Datalog(↓) for con-
nected monadic programs that do not use the relation ↓+.

A datalog program is linear if the right-hand side of each rule contains at
most one atom with an intensional predicate (proof trees for such programs are
single branches). For linear programs we shall use the letter L, e.g., L-Datalog(↓)
means linear programs from Datalog(↓). The program from Example 2 is con-
nected, but not linear. The program from Example 3 is both connected and
linear.

Conjunctive queries (CQs) are existential first order formulae of the form
∃x1 . . . xk ϕ, where ϕ is a conjunction of atoms. We will consider unions of
conjunctive queries (UCQs), corresponding to nonrecursive programs with
a single intensional predicate (goal) which is never used in the bodies of rules.
Since UCQs can be seen as datalog programs, we can speak of connected UCQs
and as for datalog, we shall always assume connectedness. We denote the classes
of connected queries by CQ(↓, ↓+), CQ(↓), UCQ(↓, ↓+), UCQ(↓), respectively.

3 Equivalence

For datalog programs the containment problem can be reduced to the equivalence
problem. Let P be a datalog program and let Q be a UCQ. Then P ⊆ Q iff
P ∨ Q ≡ Q. Notice that this reduction does not depend on the type of the
programs (e.g., disallowing ↓+ relation; or assuming linearity) but relies on the
fact that datalog programs are closed under the disjunction.

The containment problem for datalog programs has been studied on trees
in other contexts [1,5,14,17]. In [17] containment of datalog programs in UCQs
on data trees was analyzed in detail for boolean queries, which are queries that
return the answer ’yes’ if they are satisfied in some node of a given database,
and the answer ’no’, otherwise. More formally, a datalog program P defines a
boolean query PBool(D) which equals 1 iff P(D) is nonempty and 0 otherwise.

The containment problem is usually solved by considering the dual problem.
For unary queries, it is the question whether there exist a databaseD andX ∈ D
such that P(X) and ¬Q(X), where ¬Q = D\Q(D). For boolean queries, it is the
question if there exist a database D and X,Y ∈ D such that P(X) and ¬Q(Y).
For datalog programs over trees, if we allow the ↓+ relation this distinction does
not make much of a difference (intuitively because using ↓+ one can move from
a node X to any node Y). Thus a closer look at the proofs of Theorem 1 and
Proposition 3 from [17] gives the following.

Proposition 4. Over ranked and unranked trees the containment problem of
L-Datalog(↓, ↓+) programs in UCQ(↓, ↓+) is undecidable.

In the rest of this section we work only with fragments of datalog without the
↓+ relation. We start with ranked trees.

Theorem 5. The containment problem is 2 -ExpTime-complete for Datalog(↓)
over ranked trees. In the special case of words it is PSpace-complete.

The above result yields tight complexity bounds for the equivalence prob-
lem of Datalog(↓) programs to UCQ(↓) programs over ranked trees. To prove
Theorem 5 (see Appendices B.1 and B.2) we define automata that simulate the
behavior of datalog programs, modifying the approach of [17]. The new construc-
tion gives better complexity results for non-linear programs2.

In the rest of this section we focus on the equivalence problem of Datalog(↓)
programs to UCQ(↓) programs over unranked trees. For the containment prob-
lem, this question was left open in [1].

For boolean queries, the containment problem of Datalog(↓) programs in
UCQ(↓) programs was proved undecidable in [17]. Decidability was restored for
the linear fragment, for which it was shown to be 2-ExpTime-complete. We
improve the complexity for unary queries using different techniques (see Appen-
dices B.4 and B.5).

Theorem 6. The containment problem of an L-Datalog(↓) program in a UCQ(↓)
program is ExpSpace-complete over unranked trees.

Unfortunately our approach does not generalize to the non-linear case. On the
other hand, the proof of undecidability provided in [17] also cannot be adapted
to work in our setting3. We leave the question of the decidability of containment
for non-linear programs as an open problem.

The following lemma is proved in Appendix B.6 (we do not assume linearity).

Lemma 7. The containment problem of UCQ(↓) queries in Datalog(↓) is in
NPTime over ranked and unranked trees.

As a corollary of Theorem 6 and Lemma 7 we obtain the main result of this
section. The lower bound is carried from the containment problem.

Theorem 8. The equivalence problem of an L-Datalog(↓) program to a UCQ(↓)
program is ExpSpace-complete over unranked trees.

4 Boundedness

Consider a datalog program P with a goal predicate P . By P i(D) we denote the
collection of facts about the predicate P that can be deduced from a database
D by at most i applications of the rules in P . More formally, P i(D) is the subset

2 In [17] the non-linear case required an additional exponential blow-up. However, the
improvement of complexity is not caused by considering unary instead of boolean
queries. It is easy to see that Theorem 5 holds also in the boolean case.

3 Indeed, the main idea of the undecidability proof is to use the UCQ Q to find errors
in the run of a Turing machine encoded by the program P . If the nonrecursive query
Q is unary it can only find errors close to the node X, such that P(X).

of P(D) derived using proof trees of height at most i, where the height of a tree
is the length of the longest path from its root to a leaf. Then obviously

P(D) =
⋃

i≥0

P i(D).

We say that the program P is bounded if there exists a number n, depending
only on P , such that for any database D, we have P(D) = Pn(D). Intuitively
this means that the depth of recursion is independent of the input database4.

Each proof tree corresponds to a conjunctive query in a natural way. There-
fore, we can always translate a datalog program to an equivalent, but possibly
infinite, union of conjunctive queries. If the program is bounded then it is equiva-
lent to a finite subunion of its corresponding conjunctive queries. For full datalog
it is known that the opposite implication is also true, i.e., a program is bounded
iff it is equivalent to a (finite) UCQ [19]. The same holds for the class Datalog(↓):

Proposition 9. Let P ∈ Datalog(↓). Then P is bounded iff it is equivalent to a
union of conjunctive queries Q ∈ UCQ(↓).

We remark that the above characterization (which we prove in Appendix C)
is based on the existence of so-called canonical databases for CQs (see e.g. [10])
in Datalog(↓). The following example shows that without canonical databases
equivalence to some UCQ does not necessarily imply boundedness. It relies on
the fact that ↓+ is the transitive closure of ↓.

Example 10. The program P ∈ Datalog(↓, ↓+) on the left is not bounded – find-
ing b in a tree can take arbitrarily long. The program P ′ on the right is a UCQ
equivalent to P .

P

P (X)← X↓+Y, a(Y)

P (X)← X↓Y,Q(Y)

Q(X)← X↓Y,Q(Y)

Q(X)← b(X)

P ′
P (X)← X↓+Y, a(Y)

P (X)← X↓+Y, b(Y)

We obtain a negative result for L-Datalog(↓, ↓+) (see Appendix C.1).

Theorem 11. The boundedness problem for L-Datalog(↓, ↓+) is undecidable over
words and ranked or unranked trees.

In the following we work with fragments of datalog without the ↓+ relation. For
decidability results we use the automaton-theoretic approach of [12].

Theorem 12. The boundedness problem for Datalog(↓) over words is in PSpace.

4 Observe that we are only interested in the output on the goal predicate. This is why
the property we consider is sometimes called the predicate boundedness [16].

In the case of trees the same technique can be applied but the complexity in-
creases (see Appendix C.2).

Theorem 13. The boundedness problem for Datalog(↓) over ranked trees is in
2 -ExpTime.

Over words, the relations ↓ and ↓+ are interpreted as the “next position” and
the “following position”. Let X be a position in a word w. The n-neighbourhood
of X in w is an infix of w, which begins on position max(1, X − n) and ends on
position min(|w|, X + n). The following lemma is motivated by Proposition 3.2
of [12]. Its proof is provided in Appendix C.2.

Lemma 14. Let P be a Datalog(↓) program. Then P is bounded iff there exists
n > 0 such that for every word w and position X if X ∈ P(w) then X ∈ P(v),
where v is the n-neighbourhood of X in w.

Proof (of Theorem 12). A word w such that for some position X in w we have
X ∈ P(w) but X 6∈ P(v), where v is the n-neighbourhood of X in w will be
called an n-witness. By Lemma 14 a Datalog(↓) program P is unbounded iff
there exist n-witnesses for arbitrarily big n > 0.

Consider a Datalog(↓) program P . Let Σ0 be an alphabet that contains the
set of labels used explicitly in the rules of P together with N “fresh” labels,
where N is the size of the biggest rule in P . It is known [17] (and easy to verify)
that any word w can be relabeled so that the obtained word w′ uses only labels
from Σ0, and for each position X we have that X ∈ P(w) iff X ∈ P(w′). This is
also true with respect to infixes, i.e., for every infix v of w, and every position X
it holds that X ∈ P(v) iff X ∈ P(v′), where v′ is the corresponding infix of w′.
Hence, we can verify the existence of n-witnesses over the finite alphabet Σ0.

In the proof of Theorem 5 (see Appendix B.1) a nondeterministic automaton
is introduced that recognizes words over the alphabet Σ0 satisfying P . More
precisely, the constructed automaton AP works over the alphabet Σ0 × {0, 1},
and accepts a word w iff it has exactly one position X marked with 1 such that
X ∈ P(w). We denote the language recognized by AP by L(AP). The size of
this automaton is exponential in the size of P .

Similarly, we obtain an automaton NP recognizing these words over the al-
phabet Σ0 × {0, 1} which have exactly one position marked with 1 but do not
belong to L(AP). The size of NP is also exponential in the size of P (there is
no exponential blow up because the constructions in Appendix B.1 go through
alternating automata) and the language it recognizes will be denoted L(NP).
Note that this language is closed under infixes containing the marked position.

We define a nondeterministic automaton BP which accepts exactly those
words belonging to L(AP) which have an infix that belongs to L(NP). The states
and transitions of BP are the states and transitions of the product automaton
AP×NP together with the states and transitions of two copies of the automaton
AP denoted A1

P and A2
P . Let qinit be the initial state of NP . For each state q

of A1
P we add to BP an epsilon transition from the state q to the state (q, qinit)

of the product automaton. Now, let F be the set of final states of NP . For each

state q of A2
P and each qfin ∈ F we add to BP an epsilon transition from the

state (q, qfin) to q. The initial state of BP is the initial state of A1
P and the final

states of BP are the final states of A2
P . Hence, an accepting run of the automaton

BP starts in A1
P , moves to the product automaton at some point, reads an infix

that belongs to L(NP) and finally goes to A2
P to accept.

Let N be the number of states of the product automaton AP × NP plus 1.
Suppose that BP accepts an N -witness w. Then, due to the pumping lemma,
it accepts n-witnesses for arbitrarily big n > 0. To end the proof show that
checking whether BP accepts some N -witness is in NLogSpace in the size of
the automata AP and NP (i.e., in PSpace in the size of P).

An N -witness is a word that belongs to L(AP) but the N -neighbourhood
of the position marked with 1 belongs to L(NP). The NLogSpace algorithm
simulates a run of the automaton BP . The size of BP is exponential in the size
of P but its states and transitions can be generated on the fly in polynomial
space. The algorithm guesses a state from the AP × NP part and checks if it
is reachable from the initial state. This is a simple reachability test which is
in NLogSpace. Then it guesses some run of the AP × NP part, counts the
number of transitions done before the one marked with 1, and ensures that it
is at least N . After the transition marked with 1 it ensures that the automaton
makes at least N more transitions before leaving the AP × NP part. For both
of these counting procedures we need log(N) tape cells. Finally, the algorithm
performs a second reachability test to check if the automaton can reach a final
state.

There are three possible ways of how an N -witness v may look like. For
simplicity, the algorithm described above does not deal with the case when the
N -neighbourhood that belongs to L(NP) is shorter then 2N + 1 (which can
happen if it begins at the first position of w or ends at the last position of w).
Those possibilities can be verified similarly. ⊓⊔

Notice that if P is bounded then N from the proof above is the bound on the
depth of recursion. Since the size of the constructed automaton is exponential in
the size of the program P , the UCQ which is equivalent to this program consists
of proof trees of size at most exponential in the size of P .

5 Boundedness vs equivalence

In this section we focus on the similarities between the boundedness and the
equivalence problem for datalog programs. In Sections 3 and 4 those problems are
treated separately but with similar techniques. Also in [12], where boundedness
and equivalence are considered for monadic programs on arbitrary structures,
both problems are solved using the same automata-theoretic construction. For
these reasons we investigate the connection between the two problems in more
detail. In contrast to the previous sections, in this section the structures under
consideration are not necessarily trees or words.

Definition 15. A class C of datalog programs over a fixed class of databases is
called well-behaved if:

1. for every program P ∈ C all the UCQs corresponding to the proof trees for
P belong to C,

2. containment of a UCQ in a datalog program is decidable for C.

Condition (1) is satisfied for most natural classes of programs. In particular by
the class of all datalog programs on arbitrary structures and the class Datalog(↓)
on trees. For the class of datalog programs on arbitrary structures Condition
(2) is also known to hold true (see [9,13,20]). Lemma 7 shows that the class
Datalog(↓) on trees satisfies Condition (2). Hence both those classes are well-
behaved.

We say that C has a computable bound if there exists a computable func-
tion f such that if a datalog program P in C is bounded and f(P) = n then
P(D) = Pn(D) for any database D, i.e., for bounded programs the function f
returns a bound on the depth of recursion. For programs which are not bounded
f returns some arbitrary natural numbers.

Example 16. Consider the full datalog. It follows from the results of [12] that
the class of monadic datalog programs on arbitrary structures has a computable
bound. It is not stated explicitly but a closer analysis of the proofs gives that for
a bounded program P the depth of recursion can be bounded polynomially in the
size of the automaton constructed to check if P is bounded. For example, for a
linear connected program the size of such an automaton is bounded exponentially
in the size of the program.

The following theorem for a well-behaved class C with a computable bound
establishes a connection between the problems of boundedness and equivalence
to a given UCQ.

Theorem 17. For any well-behaved class C with a computable bound the follow-
ing conditions are equivalent:

1. boundedness is decidable,
2. it is decidable whether two programs are equivalent, given that one of them

is a UCQ.

Proof. Let f be the function from the definition of the computable bound. For
the implication from (1) to (2), take programs P and Q which belong to C and
assume that Q is a UCQ. Since C is well-behaved, we only need to show how to
decide whether P is contained in Q. It follows from the assumption that we can
verify if P is bounded. If this is the case, then let f(P) = n. Observe that P is
equivalent to the UCQ P ′ that corresponds to the proof trees for P of height at
most n. It remains to decide whether the UCQ P ′ is contained in Q.

Suppose now that P is not bounded and consider a unionR of the programsP
and Q. More formally, let R be a program containing the rules of both programs
P and Q. If the predicate Q occurs in the program P we rename it so that
the predicates do not coincide. The goal predicate R holds for X iff we have
P(X) or Q(X). For this we introduce two additional rules R(X) ← P(X) and
R(X)← Q(X). The atoms Q(X) are all inferred in one step. Therefore, if R is

unbounded then there exists X satisfying P(X) such that Q(X) does not hold,
and hence P is not contained in Q. If R is bounded then using f we construct
an equivalent UCQ R′ and check whether it is equivalent to Q. If this is the case
then P is contained in Q. Otherwise it is not.

For the other implication, consider a datalog programP ∈ C and let f(P) = n.
Then P is bounded iff P(D) = Pn(D) for any database D. Let Q be the UCQ
that corresponds to the proof trees of P of height at most n. It suffices to decide
whether the programs P and Q are equivalent. But this is decidable from the
assumption that C is well-behaved. ⊓⊔

While assuming that a class of programs is well-behaved is natural, the existence
of a computable bound is a strong assumption. It is needed since an algorithm
that solves the boundedness problem might not be constructive, meaning that
we do not know how big the equivalent UCQ is. However, deciding if such a
function exists is usually as hard as solving the boundedness problem. From Ex-
ample 16 we know that for monadic programs on arbitrary structures there exist
constructive algorithms for the boundedness problem, and hence we have a com-
putable bound. On the other hand, the undecidability results of the boundedness
problem for datalog on arbitrary structures rely heavily on the fact that such
a computable bound does not exist. In [15,16] the authors present reductions
from the halting problem for 2-counter machines and Turing machines. If a dat-
alog program is bounded then the size of the equivalent UCQ corresponds to the
length of an accepting run of these machines, which of course cannot be bounded
by a computable function. The results of our paper are, in this sense, similar: the
positive results provide computable bounds whereas the negative results rely on
the fact that such a function does not exist. For these reasons we conjecture that
for well-behaved classes of datalog programs the decidability of the boundedness
problem is equivalent to the decidability of finding a computable bound. If this
conjecture holds true then Theorem 17 becomes an implication from (1) to (2)
because the opposite implication is trivially satisfied.

6 Conclusions

The equivalence to a given nonrecursive program and the boundedness problem
for Datalog(↓, ↓+) are undecidable. To regain decidability we considered programs
that do not use the ↓+ relation. We showed that equivalence to a given UCQ
over ranked trees is decidable, and over unranked trees it is decidable in the case
of linear programs. We also showed the decidability of boundedness on words
and ranked trees. In the most general case of non-linear Datalog(↓) programs
over unranked trees we do not know if the two problems under consideration are
decidable and we leave these questions as open problems.

We also investigated the connection between the boundedness and the equiv-
alence to a UCQ. We showed that these problems are equivalently decidable for
classes of programs with a computable bound. We suspect, however, that the
existence of a computable bound for a class of programs is equivalent to the
decidability of the boundedness problem. We also leave this as an open problem.

References

1. Serge Abiteboul, Pierre Bourhis, Anca Muscholl, and Zhilin Wu. Recursive queries
on trees and data trees. In ICDT, pages 93–104, 2013.

2. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Ad-
dison Wesley, 1995.

3. François Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to re-
cursive query processing strategies. In ACM SIGMOD, pages 16–52, 1986.

4. Michael Benedikt, Pierre Bourhis, and Pierre Senellart. Monadic datalog contain-
ment. In ICALP, pages 79–91, 2012.

5. Miko laj Bojańczyk, Filip Murlak, and Adam Witkowski. Containment of monadic
datalog programs via bounded clique-width. Accepted for ICALP, 2015.

6. Piero A. Bonatti. On the decidability of containment of recursive datalog queries
- preliminary report. In PODS, pages 297–306, 2004.

7. Diego Calvanese, Giuseppe De Giacomo, and Moshe Y. Vardi. Decidable contain-
ment of recursive queries. Theor. Comput. Sci., 336(1):33–56, 2005.

8. Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic programming and databases.
Springer-Verlag New York, Inc., 1990.

9. Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Embedded im-
plicational dependencies and their inference problem. In STOC, pages 342–354,
1981.

10. Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC, pages 77–90, 1977.

11. Surajit Chaudhuri and Moshe Y. Vardi. On the equivalence of recursive and non-
recursive datalog programs. In PODS, pages 55–66, 1992.

12. Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi.
Decidable optimization problems for database logic programs (preliminary report).
In STOC, pages 477–490, 1988.

13. Stavros S. Cosmadakis and Paris C. Kanellakis. Parallel evaluation of recursive
rule queries. In PODS, pages 280–293, 1986.

14. André Frochaux, Martin Grohe, and Nicole Schweikardt. Monadic datalog con-
tainment on trees. In Proceedings of the 8th Alberto Mendelzon Workshop on

Foundations of Data Management, 2014.
15. Haim Gaifman, Harry G. Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecid-

able optimization problems for database logic programs. J. ACM, 40(3):683–713,
1993.

16. Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi.
Undecidable boundedness problems for datalog programs. J. Log. Program.,
25(2):163–190, 1995.

17. Filip Mazowiecki, Filip Murlak, and Adam Witkowski. Monadic datalog and reg-
ular tree pattern queries. In MFCS, pages 426–437, 2014.

18. Jeffrey F. Naughton. Data independent recursion in deductive databases. J. Com-

put. Syst. Sci., 38(2):259–289, 1989.
19. Jeffrey F. Naughton and Yehoshua Sagiv. A simple characterization of uniform

boundedness for a class of recursions. J. Log. Program., 10(34):233 – 253, 1991.
20. Yehoshua Sagiv. Optimizing datalog programs. In Foundations of Deductive

Databases and Logic Programming., pages 659–698. Morgan Kaufmann, 1988.
21. Oded Shmueli. Equivalence of datalog queries is undecidable. J. Log. Program.,

15(3):231–241, 1993.
22. Moshe Y. Vardi. The complexity of relational query languages (extended abstract).

In STOC, pages 137–146, 1982.

A Definitions

A.1 Automata

Throughout the paper all decidability results use automata constructions. We
briefly recall the standard automata model for ranked trees here.

A (bottom-up) tree automaton A = 〈Γ,Q, δ, F 〉 on at most R-ary trees
consists of a finite alphabet Γ , a finite set of states Q, a set of accepting states
F ⊆ Q, and transition relation δ ⊆

⋃n
i=0Q×Γ ×Q

i. A run on a tree t over Γ is
a labeling ρ of t with elements of Q consistent with the transition relation, i.e., if
v has children v1, v2, . . . , vk with k ≤ n, then (ρ(v), labt(v), ρ(v1), . . . , ρ(vk)) ∈ δ.
In particular, if v is a leaf we have (q, a) ∈ δ. Run ρ is accepting if it assigns a
state from F to the root. A tree is accepted by A if it admits an accepting run.
The language recognized by A, denoted by L(A), is the set of all accepted trees.
We recall that testing emptiness of a tree automaton can be done in PTime, but
complementation involves an exponential blow-up. For a special case, when the
model is words testing emptiness is in NLogSpace.

As an intermediate automata model, closer to datalog than the bottom-up
automata, we shall use the two-way alternating automata introduced in [12]. A
two-way alternating automaton A = 〈Γ,Q, qI , δ〉 consists of an alphabet Γ ,
a finite set of states Q, an initial state qI ∈ Q, and a transition function

δ : Q× Γ → BC+
(

Q× {−1, 0, 1}
)

describing actions of automaton A in state q in a node with label a as a positive
boolean combination of atomic actions of the form (p, d) ∈ Q× {−1, 0, 1}.

A run ρ of A over tree t is a tree labelled with pairs (q, v), where q is a state
of A and v is a node of t, satisfying the following conditions: the root of ρ is
labelled with the pair consisting of q0 and the root of t, and if a node of ρ with
label (q, v) has children with labels (q1, v1), . . . , (qn, vn), and v has label a in t,
then there exist d1, . . . , dn ∈ {−1, 0, 1} such that:

– vi is a child of v in t for all i such that di = 1;
– vi = v for all i such that di = 0;
– vi is the parent of v in t for all i such that di = −1; and
– boolean combination δ(q, a) evaluates to true when atomic actions
(q1, d1), . . . , (qn, dn) are substituted by true, and other atomic actions are
substituted by false.

Tree t is accepted by automaton A if it admits a finite run. By L(A) we denote
the language recognized by A; that is, the set of trees accepted by A.

According to the definition above, two-way alternating automata only distin-
guish between going up, down, and staying where they are. In a more general
model, appropriate for ordered ranked trees, one could also distinguish between
going to the first child, the second child, etc. Given that our datalog programs
are not able to make such distinction, this simplified definition suffices.

The computation model of two-way alternating automata is very similar to
that of datalog programs, making them a perfect intermediate formalism on the

road to nondeterministic bottom-up automata. From there one continues thanks
to the following fact.

Proposition 18 ([12]). Given a two-way alternating automaton A (interpreted
over words or ranked trees), one can compute (in time polynomial in the size of
the input and output) single-exponential nondeterministic bottom-up automata
recognizing the language L(A) and its complement, respectively.

Notice that complementing two-way alternating automata is not trivial because
there can be infinite runs that are not accepting.

A.2 Canonical models and homomorphisms

Let r be a satisfiable rule of a datalog program P . Recall from Section 2 that
Gr is a graph of nodes from r. A pattern πr has the same nodes and edges as
Gr but the type of edge between nodes (↓ or ↓+) is distinguished. The nodes
are labeled with variable names. If there is an extensional unary predicate, e.g.
a(X), specified by the rule then we replace the label X with a. We simulate the
relation ∼ by repeating variable labels.

Since in our setting the relation ↓+ is disallowed, we can always transform
a satisfiable rule r into an equivalent rule r′ such that πr′ is a tree. This is
because our models are trees and therefore nodes that have a common child can
be merged into one node.

Example 19. The rule P is transformed into its tree version P ′. On the right
there are patterns corresponding to these rules. The repeated occurrence of X
represents the relation ∼ in the patterns.

P (X)← X↓Y, Y ↓Z, T↓Z, a(T),X ∼ Z

P
′(X)← X↓Y, Y ↓Z, a(Y), X ∼ Z

X

Y

X

a

X

a

X

A homomorphism from a pattern πr to a model tree t is a function between
nodes that preserves the extensional predicates. A proof tree is witnessing an
evaluation of the program on a given model t iff for all rules there is a homomor-
phism from their patterns to t such that the intensional nodes are mapped to
the same nodes as the head nodes in the following rules. The connection between
patterns and datalog is explained in more detail in [17].

From a satisfiable proof tree we obtain a canonical model. First we change
rules to patterns and merge head nodes with intensional nodes. Nodes labeled
with variables are relabeled with fresh labels (preserving the equalities forced
by ∼). The obtained graph can be seen as a pattern of the proof tree. Then we
turn it into a tree similarly as in Example 19.

It is easy to see that it suffices to consider the containment problem only on
canonical models. If there is a model t for P ∧ ¬Q then there is a witnessing
proof tree for P on t. The canonical model corresponding to this proof tree is
also a model for P ∧ ¬Q.

B Equivalence

We decide containment by constructing an automaton that is non-empty iff there
is a counterexample to containment. To do this, we mark a single node in a tree,
and use the automaton to verify if the goal predicates of programs in question
are satisfied in this node. Formally, we extend the alphabet by taking its product
with {0, 1}, and recognize models which have exactly one node marked with 1.
To obtain tight complexity bounds, we use two-way alternating automata. The
same technique was used in [14].

B.1 Special case: words

Over words, the relations ↓ and ↓+ are interpreted as the “next position” and
the “following position”.

Lemma 20. Let P ∈ Datalog(↓) and let Σ0 be a finite alphabet. There exists
a two-way alternating automaton that accepts all words over Σ0 × {0, 1} with
exactly one position with label (a, 1) for some a ∈ Σ0, such that P holds in that
position. The automaton can be constructed in time polynomial in |P| and |Σ0|.

Proof. Let us fix a program P ∈ Datalog(↓) and a finite alphabet Σ0. The
alphabet is Σ0 × {0, 1} but most of the time the second component is ignored.
Since we work over words (and consider only connected programs) without loss
of generality we can assume that each rule r is of the form

H(x0)←
ℓ−1
∧

i=k

xi ↓ xi+1 ∧ ψ(xk, xk+1, . . . , xℓ),

where k ≤ 0 ≤ ℓ and ψ(xk, xk+1, . . . , xℓ) is a conjunction of atoms over unary
predicates and ∼; that is, it does not use ↓. This means that the pattern corre-
sponding to the body of r is a word.

In the automaton AP = 〈Σ0, Q, q0, δ〉 we are about to define we allow tran-
sitions of a slightly generalized form: the transition function δ assigns to each
state-letter pair a positive boolean combination of elements of

Q× {−N,−N + 1, . . . , N}

for a fixed constant N ∈ N, rather than just Q×{−1, 0, 1}. The semantics of this
is the natural one: (q, k) means that the automaton moves by k positions (left
or right depending on the sign of k) and changes state to q. Each generalized
automaton can be transformed to a standard one at the cost of enlarging the
state-space by the factor of 2N + 1. In our case N will be bounded by the
maximal number of variables used in a rule of P .

Let us describe the automaton AP . The state-space Q is

Σ0 ∪ P ∪ {q0} ;

that is, it consists of the letters from Σ0, the rules of P and an additional
initial state q0. The transition relation δ is defined as follows. In the initial state,
regardless of the current letter, we loop moving to the right until we reach the
position in the word where we start evaluating P :

δ(q0, (, 0)) = (q0,+1),

δ(q0, (, 1)) = (rgoal, 0) ,

where rgoal is the goal rule of P . This is the only case when AP does not ignore
the component {0, 1} in the alphabet. That is we require that there is 1 in the
second component when the first goal rule is applied. When we are in state r ∈ P ,
regardless of the current letter, we check that the body of r can be matched in
the input word in such a way that x0 is mapped to the current position:

δ(r,) =
∧

a(xi)

(a, i) ∧
∧

xi∼xj

∨

b∈Σ0

(b, i) ∧ (b, j) ∧
∧

R(xi)

∨

r′∈PR

(r′, i) ,

where a(xi), xi ∼ xj , and R(xi) range respectively over labels, ∼, and intensional
atoms of r, and PR ⊆ P is the set of rules defining intensional predicate R. In
state a ∈ Σ0 we simply check that the letter in the current position is a:

δ(a, a) = ⊤ , and δ(a, b) = ⊥ for b 6= a .

Checking correctness and the size bounds for AP poses no difficulties. Taking a
product of AP with an automaton (of size linear in |Σ0|) that checks if there is
exactly one position with label (a, 1) for some a ∈ Σ0 gives the automaton from
the statement.

Now we can show the proof of Theorem 5 for the case of words.

Proof (of Theorem 5 (words)). In Proposition 2 of [17] it is shown that over words
it suffices to check satisfiability of P ∧ ¬Q over an alphabet Σ0 of linear size.
For programs P and Q, let AP and AQ be alternating two-way automata given
by Lemma 20. From automata AP and AQ, by Proposition 18, we obtain one-
way non-deterministic automata BP and B¬Q of exponential size that recognize
respectively the language L(AP) and the complement of L(AQ). From this we
easily get a product automaton BP∧¬Q equivalent to the query P(x) ∧ ¬Q(x).
Indeed, it accepts all words over Σ0 with exactly one position x marked with 1,
such that P(x) ∧ ¬Q(x).

The size of BP∧¬Q is exponential in the size of P ,Q, but its states and
transitions can be generated on the fly in polynomial space. To check emptiness of
BP∧¬Q we make a simple reachability test, which is in NLogSpace. Altogether,
this gives a PSpace algorithm. ⊓⊔

B.2 Ranked trees

The results for words can be lifted to ranked trees: complexities are higher, but
the general picture remains the same.

Lemma 21. Let P ∈ Datalog(↓) be a program with rules of size at most n and
let Σ0 be a finite alphabet. There exists a two-way alternating automaton AP of
size O(‖P‖ · |Σ0|n · n) recognizing trees over Σ0 × {0, 1} with exactly one node
with label (a, 1) for some a ∈ Σ0, such that P holds in that node.

Proof. Let us fix a program P ∈ Datalog(↓) and a finite alphabet Σ0. Given that
we are only interested in trees over alphabet Σ0, we can eliminate the use of ∼
from P : if a rule contains x ∼ y we replace this rule with |Σ0| variants in which
x ∼ y is replaced with a(x) ∧ a(y) for a ∈ Σ0. The size of the program grows by
a O(|Σ0|n) factor; the size of the rules grows only by a constant factor.

Since we are working on trees we can further transform the program so that
the patterns corresponding to the rules of the program are trees (with in and out
nodes positioned arbitrarily). Indeed, it can be done by unifying variables x and
y whenever the rule contains x ↓ z and y ↓ z for some variable z, and removing
rules containing atom u ↓ u, or atoms a(u) and b(u) for some variable u and
distinct letters a and b (see Example 19). This modification does not increase
the size of the program.

Finally, we rewrite each rule into a set of rules of the form

H(x0)← a(x0) ∧
ℓ
∧

i=1

axi(x0, xi) ∧ ψ(x0, x1, . . . , xℓ)

where a ∈ Σ0, axi(x0, xi) is either x0 ↓ xi or xi ↓ x0, and ψ(x0, x1, . . . , xℓ) is
a conjunction of (monadic) intensional atoms. That is, one rule can only test
the label and some intensional predicates for the current node, and demand exis-
tence of neighbours (children or parents) satisfying some intensional predicates.
This modification introduces auxiliary intensional predicates, but the size of the
program icreases only by O(n) factor.

The resulting program is essentially a two-way alternating automaton B, only
given in a different syntax. The automaton from the statement is obtained by
modifying the automaton B similarly as in the case of words.

Proof (of Theorem 5 (trees)). In Theorem 1 of [17] it is shown that for trees it
suffices to verify containment over a finite alphabet Σ0, although for treesΣ0 is of
exponential size. Using Lemma 21 and Proposition 18 we reduce the containment
problem to the emptiness problem for a nondeterministic tree automaton of a
double exponential size in |P|, and test emptiness with the standard PTime

algorithm. ⊓⊔

The lower bounds can be obtained by a straightforward modifications of the
results in [17].

B.3 Satisfiability on unranked trees

Proposition 22. The satisfiability problem for L-Datalog(↓) on unranked trees
is in ExpTime.

Before proving this result let us introduce the notation.

Definition 23. Let Σ0 be a finite alphabet. A universal Σ0-tree is a full |Σ0|-
ary tree over Σ0 such that every non-leaf node has a child with each label from
Σ0. For a ∈ Σ0, n ∈ N, we will denote by Ua

n a universal Σ0-tree of height n and
with a in the root.

a

a b c

a b c a b c a b c

Fig. 1: A universal Σ0-tree U
a
2 for Σ0 = {a, b, c}

The proof will proceed as follows. First, we will show that if P is satisfiable,
then it is satisfiable in a universal Σ0-tree. Then it is easy to see (combining
Lemma 21 and Proposition 18) that the set of universal Σ0-trees satisfying P is
regular and recognized by an automaton with number of states double exponen-
tial in |P|. For linear programs however, we can do better and get an ExpTime

algorithm.

Lemma 24. Let P ∈ Datalog(↓) and let Σ0 be a finite set of labels, s.t. ΣP ⊆ Σ0.
The program P is satisfiable iff P is satisfiable in a universal Σ0-tree.

Proof. It suffices to show that if P is satisfiable, then it is satisfied in some
universal Σ0-tree. The other direction is obvious. Let t be a model for P . Recall
that ΣP is the set of constants used in P . First, we can change all labels from t
that are not in Σ0 to a single label chosen from Σ0 (preserving the equalities).
Since Datalog(↓) programs do not use negation and 6∼ this operation can only
make the set P(t) bigger. Next, we perform the following operation. If a node of
v has two or more children with the same labels then we merge these children
into one node v. The resulting node has children from both of the merged nodes.
It is easy to check that this operation preserves homomorphisms and does not
change the emptiness of the set P(t). We apply this procedure until there are no
siblings with the same label. Finally we add nodes to the obtained tree so that
it becomes a universal Σ0-tree. Of course adding nodes cannot decrease the set
P(t), which finishes the proof. ⊓⊔

From now on we assume that P is a linear program. We will actually prove
a stronger result that will be useful for deciding the containment of a datalog
program in a UCQ. We will show an algorithm for calculating all possible ways
of evaluating the program P in the universal Σ0-tree such that the evaluation
uses the root of this tree.

First, we need to introduce a notion of a partial matching of a datalog pro-
gram. We say that a rule is matched to a tree t if there is a homomorphism from

its pattern into t. Let r1r2 . . . rn be a proof word. A partial matching m of a
program P into a tree t is an infix ri . . . rj of a proof word such that all the rules
ri+1, . . . , rj−1 are matched completely and ri and rj are partially matched, such
that the images of the intensional nodes are equal to the following head nodes.

Each partial matching m can be represented by a pair of partial homomor-
phisms from the patterns of the first and the last rule of the infix of the proof
word. We are interested in the partial matchings that map one of the nodes of
the pattern to the root of the tree. Thus each partial homomorphism can be
represented as a partial function from pattern π into Σ0. Of course there are
also partial matchings with nodes mapped below the root of the tree, and one
end of a partial matching may be not possible to extend. This situation can arise
when the goal rule is at the beginning of the matching; or the non-recursive rules
are in the last position (leaves). We use an additional symbol OK to mark this
situation.

We denote the set of all partial matchings of P by Match(P). The size of
Match(P) is exponential in the size of P . Obviously it suffices to calculate the
set of all partial matchings into a tree to determine if it satisfies P .

Lemma 25. Let Σ0 be a finite alphabet. The set of partial matchings of P
matched in a root of any Σ0-universal tree can be calculated in time exponential
in |P| for linear programs.

Proof. For a tree t we will denote the set of partial matchings in the root of t by
matched(t). Observe that because every partial matching of P in Ua

n−1 is also a
partial matching of P in Ua

n then matched is monotonic, i.e., matched(Ua
n−1) ⊆

matched(Ua
n). This observation yields a simple algorithm. There are |Σ0| dif-

ferent universal trees of height n. To calculate matched(Ua
n) for each a ∈ Σ0

it suffices to join partial matchings from
⋃

b∈Σ0
matched(U b

n−1) using the root
node labeled with a and add the previously calculated matched(Ua

n−1). Note
that if matched(Ua

n) = matched(Ua
n+1), then matched(Ua

n) = matched(Ua
m) for

all m > n. Therefore, the described procedure requires at most |Match(P)| steps
to terminate, each step takes O(|Match(P)|) time which gives an ExpTime al-
gorithm. ⊓⊔

B.4 Proof of the upper bound in Theorem 6

Let P be a L-Datalog(↓) program and letQ be a UCQ(↓). Our goal is to determine
whether for all databases D we have P(D) ⊆ Q(D). We solve the dual problem
and look for a counterexample for the containment, i.e., a database D and a
node X ∈ D such that X ∈ P(D) but X 6∈ Q(D). Moreover, we can assume that
D is a canonical model. Let n be the size of the biggest conjunct in Q. Since Q
is nonrecursive and connected, to determine if X ∈ Q(D) it suffices to check the
subtree of D containing nodes of distance at most n from X .

We shall refer to P as the positive query and to Q as the negative query. We
define an automaton A = (Q,A, δ, q0, F) that essentially recognizes satisfiable
proof words for P simultaneously checking if the negative query is satisfied on

the canonical model of the read word. The alphabet A = {r1, . . . , rm} is the set
of rules of the program P .

We define the set of states Q as a cartesian product of three components,
i.e., Q = Q1×Q2×Q3. We describe each component separately. Recall that ΣP

denotes the set of constants used explicitly in rules of program P . Let N be the
size of the biggest rule in P . Let B1 be an alphabet of N different letters and
let B2 be an alphabet of 2n+ 1 letters, disjoint from B1.

In the first component Q1 the automaton stores a labeled pattern correspond-
ing to the currently read letter (rule). Formally,

Q1 =
∑

r∈A

(ΣP ∪B1 ∪B2)
πr .

We identify the pattern πr with the set of its nodes, thus Q1 is the set of patterns,
whose nodes are labeled with elements of the set ΣP ∪ B1 ∪ B2. The intended
meaning of B1 and B2 will be explained later.

In the second component Q2 the automaton stores a word w of length at
most 2n+ 1 and its position compared to the node X . Formally

Q2 =
∑

1≤i≤2n+1
0≤k,l≤n

(ΣP ∪B1 ∪B2)
[i] × (k, l),

where [i] = {1, . . . , i} and (ΣP ∪B1 ∪B2)
[i] is the set of words of length i with

labels from ΣP ∪ B1 ∪ B2. This word is a representation of an ancestor-path
starting from the intensional node vi of the current pattern stored in Q1. This
is necessary to verify if the proof word is satisfiable. The ancestor path could be
arbitrary long but, as we will see, we only need to remember nodes that are of
distance at most n from X (there are at most 2n+ 1 such nodes). Additionally
the automaton remembers how this path lays compared to X . For this it stores
a pair of numbers (k, l) such that 0 ≤ k, l ≤ n. Let va be the least common
ancestor of X and vi. The number k denotes the distance between X and va,
and the number l denotes the distance between va and vi. Note that k+ l is the
distance between vi and X . Also if k = 0 then vi is a descendant of X , and if
l = 0 then X is a descendant of vi.

The last component Q3 is the set of partial homomorphisms of the patterns
corresponding to CQs from the negative query Q. Let w be the word stored
in the second component and let AQ be the set of all conjuncts ϕ from Q.
Formally, Q3 =

∑

ϕ∈AQ
Fϕ where Fϕ is the set of all partial functions from πϕ

to ΣP ∪B1 ∪B2 ∪ {♭} ∪ {w1, . . . , w|w|}. The interpretation of the labels will be
explained later.

We now define the transition relation δ. Suppose that the automaton reads
a new letter r. Let q = (q1, q2, q3) ∈ Q1 × Q2 × Q3 be the previous state. We
show how the automaton calculates its new state q′ = (q′1, q

′
2, q

′
3).

In the first component the automaton starts from checking if the rule r is
proper for the intensional predicate in the previous rule; or if it is the first letter
then the automaton checks if it is the goal predicate. If none of these cases

holds then the automaton immediately rejects the word. Otherwise it labels
πr in two phases. In the first phase it labels its head node vh with the same
label that the intensional node in q1 has. Also the labels of the nodes that are
ancestors of vh must match the corresponding labels from the path in q2. Then
the automaton labels nodes that have an explicit label from ΣP . In the second
phase the automaton guesses the remaining labels from ΣP ∪B1 ∪B2 respecting
the ∼ relation. If there is a node on which ∼ forces two different labels, then the
automaton rejects the word. This way we use a small alphabet to represent an
arbitrary large set of labels. If in the state q′ we use a label that is also used in
the state q but ∼ does not force them to be the same then we assume that in
the canonical model they are different labels.

In the second component the automaton updates first the pair (k, l) so that
it agrees with the location of the new intensional node with respect to X . Then
it creates a new ancestor-path whose labels have to agree with the labels of the
old path in q2, and the labels of those nodes in q′1 that are ancestors of vi. The
case when the distance of the new intensional node to X is bigger than n is
explained later.

In the last component the automaton starts from updating the old partial
functions. All labels that appeared in q1 but were not used in the first phase
are replaced with ♭. The intended meaning is that these labels no longer appear
in the model. Actually this is where we use the crucial feature of the canonical
models. Since we use fresh labels whenever it is possible the automaton can
forget all labels that will no longer appear.

The automaton forgets all partial homomorphisms that have unmapped nodes
such that their label is forced by ∼ to be equal to a node labelled by ♭. This is be-
cause such homomorphisms can never be fulfilled. Then the automaton extends
the remaining homomorphisms with new nodes from q′1. The label wi denotes
the fact that the node was mapped to the corresponding node from the path in
q′2. The next step is to relabel the partial homomorphisms so that they agree
with the new path. This way the automaton knows where it can extend the
homomorphisms. Note that if there is a partial homomorphism without any wi

then it can be discarded because it cannot be extended. If at any time one of
the homomorphisms becomes a full homomorphism then the automaton rejects
the word.

So far we explained the behavior for the letters in the proof word that have
the intensional node of distance at most n from X . This is of course not the
only possible case, but we already noticed that nodes of bigger distance have no
impact on the negative query. Because of this now we can use the results for the
satisfiability problem. Suppose that the automaton reads a letter r such that its
intensional node is of distance bigger than n from X . The automaton updates
the third component of its state in the usual way and rejects the word if a full
homomorphism is found. Let v be the ancestor of the intensional node in r such
that v is of distance n from X . The automaton assumes that there is a universal
tree tv over the alphabet ΣP ∪B1 ∪B2 (see Definition 23) below v. It calculates
the set matched(tv) and finds all matchings that have the rule r as the first rule

with the node v in the root. The automaton chooses one of the matchings but
the last rule r′ can also have the intensional node below v. Then it proceeds
with r′ as it did with r. Eventually the automaton guesses a matching such that
the intensional node of the last rule r′′ is of distance at most n from X . Then it
stores r′′ in q′1 and updates the other states in the usual way. If instead of the
last rule there is OK then the automaton accepts the word.

Notice that the node v could not exist. This happens when the least common
ancestor of X and the intensional node of r is of distance bigger than n from
X . If such a situation occurs then, since we assumed that we work on canonical
models, all nodes from the next rules will be of distance bigger than n from X .
Thus it suffices to check satisfiability starting from the rule r.

We slightly modified the canonical models using universal trees. For the posi-
tive program we showed in Lemma 24 that we can use universal trees; and for the
negative program we assured that the changes are on nodes that are of distance
bigger than n from X .

The constructed automaton is non-empty iff there is a canonical model for
P ∧ ¬Q. We need to bound the size of the set of states. In the first component
every labelled rule (B1∪B2∪ΣP)

πr is of exponential size in |P| and the number
of rules is bounded by the size of P . The second component is a set of triples:
two numbers and a word of size at most 2n+1, which is exponential in the size of
P ,Q. The third component is the powerset of all partial homomorphisms which is
double exponential in the size of P andQ. Thus the whole automaton is bounded
double exponentially. However, its states and transitions can be generated on the
fly in exponential space. To check its emptiness we make a simple reachability
test, which is in NLogSpace. We use the results about satisfiability to generate
all transitions, but by Proposition 22 this can be done in ExpTime. Altogether,
this gives an algorithm in ExpSpace.

B.5 Proof of the lower bound in Theorem 6

We consider the satisfiability problem of P ∧ ¬Q, where P ∈ L-Datalog(↓) and
Q ∈ UCQ(↓). To prove hardness, for a number n and a Turing machine M , we
construct datalog programs P and Q of size polynomial in |M | and n such that
P ∧¬Q is satisfiable iff M accepts the empty word using not more than 2n tape
cells. The program P will encode the run of the machine, and the program Q
will ensure its correctness.

Assume that B is the tape alphabet of M , Q is the set of states, F is the set
of accepting states and δ is the transition relation. The finite alphabet used by
the programs will contain sets B and B × Q. The symbols from B ×Q will be
used to mark the position of the head on the tape and the state of the machine.

We now define the rules of the positive program P . The program starts in a
node labeled with ⊤. We encode each configuration of M (the current state and
the tape contents) by enforcing a full binary tree of hight n. For this we need the
alphabet ΣP to contain the set

∑

1≤i≤n{(L, i), (R, i)}. The predicates (L, i) and
(R, i) denote the left and right son of the previous node, respectively. The tape
is encoded in the nodes below the leafs of the tree. The label of the node above

the root of the tree is used as an identificator of the encoded configuration. We
will refer to it as an identification node.

The goal rule is

GP(X)← ⊤(X), X↓Y, Init(Y), Y ↓Z, conf(Z).

It means that the encoding of the initial configuration of the machine, which
identification node is labeled with Init, is stored in the tree (note that Init
belongs to ΣP). The program will then traverse the configuration trees one by
one in an infix order.

conf(X)← X↓Y, (L, 1)(Y), downleft1(Y)

downlefti(X)← X↓Y, (L, i+ 1)(Y), downlefti+1(Y)

i = 1, . . . , n− 1

downleftn(X)← X↓Y, store(Y)

store(X)← a(X), Y ↓X, (L, n)(Y), upleftn(X)

store(X)← a(X), Y ↓X, (R, n)(Y), uprightn(X)

for every symbol a ∈ B ∪ (B ×Q)

uplefti(X)← Y ↓X, downrighti−1(Y)

i = 1, . . . , n

downrighti(X)← X↓Y, (R, i+ 1)(Y), downlefti+1(Y)

i = 0, . . . , n− 1

uprighti(X)← Y ↓X, (R, i− 1)(Y), uprighti−1(Y)

i = 2, . . . , n

uprighti(X)← Y ↓X, (L, i− 1)(Y), uplefti−1(Y)

i = 2, . . . , n

upright1(X)← Y ↓X,next(Y).

Observe that when we reach downleftn we stop traversing the tree and the
program uses the rule store to write the content of the tape. That is why there
is no rule downrightn.

The program finishes traversing the tree in next and goes to the next con-
figuration of the machine. We ensure that the identification node of the next
configuration has the same label as the root of the tree which encodes the pre-
vious one. This will enable the negative program to check the correctness of the
encoding.

next(X)← Y ↓X,Z↓Y, Z↓Ŷ , Ŷ ∼ X, Ŷ ↓X̂, conf(X̂).

We finish when we find an accepting state. That is for every letter a ∈ B and
every q ∈ F we have two non-recursive rules

store(X)← (a, q)(X), Y ↓X, (L, n)(Y)

store(X)← (a, q)(X), Y ↓X, (R, n)(Y).

Now let us define the rules of the negative program Q, which will be a dis-
junction of queries describing possible errors in the encoding. The content of the
tape has to be defined uniquely. Hence, for each pair of different symbols a and
b from B ∪ (B ×Q) we have a rule

GQ(X)←⊤(X), X↓Y, Y ↓X0, X0↓X1, X1↓X2, . . . , Xn↓Z1, Xn↓Z2, a(Z1), b(Z2).

We cannot ensure that each configuration tree has its identification node
labeled differently, but we can guarantee that trees with the same labels of the
identification nodes encode the same configurations. For each pair of different
symbols a and b from B ∪ (B ×Q) we introduce a rule

GQ(X)←⊤(X), X↓Y,X↓Ŷ , Y ∼ Ŷ , Y ↓X0, Ŷ ↓X̂0, X0↓X1, X̂0↓X̂1, X1 ∼ X̂1, . . . ,

. . . , Xn−1↓Xn, X̂n−1↓X̂n, Xn ∼ X̂n, Xn↓Z, X̂n↓Ẑ, a(Z), b(Ẑ).

We can also easily enforce that the configuration tree labeled with Init encodes
the initial configuration of the machine with an empty word stored on the tape.

Finally we have to make sure that the way the positive program P moves
from one configuration to another is consistent with the transition function of the
machine. To do this we consider changes in the content of any three consecutive
tape cells, i.e., we take all tuples (a1, a2, a3, b1, b2, b3) of symbols from B∪(B×Q),
such that: if a1, a2, a3 encode a content of three consecutive tape cells i, i+1, i+2,
respectively, then it is not possible for the machine to have b1, b2, b3 on those
positions in the next configuration. For each of those tuples there is a set of
2(n − 1) rules in Q. The rules are constructed depending on the least common
ancestor of the three leafs which encode the consecutive tape cells. We write
them down for n = 3. There are two rules that deal with the case when the least

common ancestor is the root of the tree

GQ(X)←⊤(X), X↓Y, Y ↓X0, X↓Ŷ , X0 ∼ Ŷ ,

X0↓X1↓X2↓X3, X0↓X
′
1↓X

′
2↓X

′
3, X0↓X

′′
1 ↓X

′′
2 ↓X

′′
3 ,

(L, 1)(X1), (R, 2)(X2), (L, 3)(X3),

(L, 1)(X ′
1), (R, 2)(X

′
2), (R, 3)(X

′
3),

(R, 1)(X ′′
1), (L, 2)(X

′′
2), (L, 3)(X

′′
3),

Y ↓X̂0, X̂0↓X̂1↓X̂2↓X̂3, X̂0↓X̂
′
1↓X̂

′
2↓X̂

′
3, X̂0↓X̂

′′
1 ↓X̂

′′
2 ↓X̂

′′
3 ,

X1 ∼ X̂1, X
′
1 ∼ X̂

′
1, . . . , X

′′
3 ∼ X̂

′′
3 ,

X3↓Z1, a1(Z1), X
′
3↓Z2, a2(Z2), X

′′
3 ↓Z3, a3(Z3),

X̂3↓Ẑ1, b1(Ẑ1), X̂
′
3↓Ẑ2, b2(Z2), X̂

′′
3 ↓Ẑ3, b3(Ẑ3)

GQ(X)←⊤(X), X↓Y, Y ↓X0, X↓Ŷ , X0 ∼ Ŷ ,

X0↓X1↓X2↓X3, X0↓X
′
1↓X

′
2↓X

′
3, X0↓X

′′
1 ↓X

′′
2 ↓X

′′
3 ,

(L, 1)(X1), (R, 2)(X2), (R, 3)(X3),

(R, 1)(X ′
1), (L, 2)(X

′
2), (L, 3)(X

′
3),

(R, 1)(X ′′
1), (L, 2)(X

′′
2), (R, 3)(X

′′
3),

Y ↓X̂0, X̂0↓X̂1↓X̂2↓X̂3, X̂0↓X̂
′
1↓X̂

′
2↓X̂

′
3, X̂0↓X̂

′′
1 ↓X̂

′′
2 ↓X̂

′′
3 ,

X1 ∼ X̂1, X
′
1 ∼ X̂

′
1, . . . , X

′′
3 ∼ X̂

′′
3 ,

X3↓Z1, a1(Z1), X
′
3↓Z2, a2(Z2), X

′′
3 ↓Z3, a3(Z3),

X̂3↓Ẑ1, b1(Ẑ1), X̂
′
3↓Ẑ2, b2(Z2), X̂

′′
3 ↓Ẑ3, b3(Ẑ3).

And there are another two rules to deal with the case when the least common
ancestor is labeled with (L, 1) or (R, 1)

GQ(X)←⊤(X), X↓Y, Y ↓X0, X↓Ŷ , X0 ∼ Ŷ ,

X0↓X1, X1↓X2↓X3, X1↓X
′
2↓X

′
3, X1↓X

′′
2 ↓X

′′
3 ,

(L, 2)(X2), (L, 3)(X3),

(L, 2)(X ′
2), (R, 3)(X

′
3),

(R, 2)(X ′′
2), (L, 3)(X

′′
3),

Y ↓X̂0↓X̂1, X̂1↓X̂2↓X̂3, X̂1↓X̂
′
2↓X̂

′
3, X̂1↓X̂

′′
2 ↓X̂

′′
3 ,

X1 ∼ X̂1, X2 ∼ X̂2, . . . , X
′′
3 ∼ X̂

′′
3 ,

X3↓Z1, a1(Z1), X
′
3↓Z2, a2(Z2), X

′′
3 ↓Z3, a3(Z3),

X̂3↓Ẑ1, b1(Ẑ1), X̂
′
3↓Ẑ2, b2(Z2), X̂

′′
3 ↓Ẑ3, b3(Ẑ3)

GQ(X)←⊤(X), X↓Y, Y ↓X0, X↓Ŷ , X0 ∼ Ŷ ,

X0↓X1, X1↓X2↓X3, X1↓X
′
2↓X

′
3, X1↓X

′′
2 ↓X

′′
3 ,

(L, 2)(X2), (R, 3)(X3),

(R, 2)(X ′
2), (L, 3)(X

′
3),

(R, 2)(X ′′
2), (R, 3)(X

′′
3),

Y ↓X̂0↓X̂1, X̂1↓X̂2↓X̂3, X̂1↓X̂
′
2↓X̂

′
3, X̂1↓X̂

′′
2 ↓X̂

′′
3 ,

X1 ∼ X̂1, X2 ∼ X̂2, . . . , X
′′
3 ∼ X̂

′′
3 ,

X3↓Z1, a1(Z1), X
′
3↓Z2, a2(Z2), X

′′
3 ↓Z3, a3(Z3),

X̂3↓Ẑ1, b1(Ẑ1), X̂
′
3↓Ẑ2, b2(Z2), X̂

′′
3 ↓Ẑ3, b3(Ẑ3).

⊓⊔

B.6 Proof of Lemma 7

Take programs P ∈ Datalog(↓) andQ ∈ UCQ(↓). For every query ϕ in Q consider
the pattern πϕ. Each of these patterns corresponds to a tree tϕ which is unique
up to renaming of labels that are not explicitly mentioned by Q. Additionally,
tϕ has one marked node X corresponding to the head node of ϕ. It remains to
check if P(X) holds for each of these trees. It is well known that the combined
complexity of monadic programs is NPTime-complete. For each tϕ it suffices to
guess the proof tree and verify the correctness of the guess.

C Boundedness

Proof (of Proposition 9). The ’only if’ part is obvious. For the ’if’ part, suppose
that a datalog program P is equivalent to a union of conjunctive queries Q. For
every rule ϕ of Q consider a pattern πϕ. With each of these patterns we associate
a set of trees: the possible homomorphic images of πϕ. Up to renaming of the

labels which are not explicitly mentioned by Q there are finitely many such trees
(this is because ϕ is connected and does not use the relation ↓+). We evaluate
the program P on each of these trees and take n to be the biggest number of
applications of the rules in P that we need. Now let t be any tree. We will show
that P(t) = Pn(t). To this end, consider a node X of t such that P(X). Since
the programs P and Q are equivalent, Q(X) also holds. This means that for
some CQ ϕ of Q there is a witnessing homomorphism h from πϕ to t. Thus, we
need at most n applications of the rules in P to derive P(X), because h(πϕ) is
a fragment of t. ⊓⊔

C.1 Undecidability of the boundedness problem in general

Proof (of Theorem 11). We will reduce the following problem: given a Turing
machineM , are there arbitrary long runs ofM that start from an empty tape and
end in the halting state (denoted HALT). This problem is undecidable, because
for a machine M , for every transition ofM that goes from state q seeing symbol
a on tape to HALT state, we add another transition that stays in the state q
after reading a and does not change the position of M ’s head. Thus, if M had a
run that halted, modified M has arbitrary long halting runs.

Let M be a Turing machine. We can assume without loss of generality that
M has one tape, semi-infinite to the right. We will construct two programs, P
and Q. Program P will find the encoding of the run of M on an empty input
in the tree and Q will detect errors in the encoding. The Q program will be
equivalent to a union of an UCQ. Moreover, we will ensure that for every correct
run of M , there is only one corresponding encoding. Our program PM will be
an alternative of P and Q:

PM (X) : −P (X)

PM (X) : −Q(X)

If a tree contains an error in the encoding, PM will hold for every node of the
tree in just 3 steps of the computation, because Q qill be equivalent to an UCQ.
The constructed program will be not bounded if and only ifM has arbitrary long
halting runs.

The run ofM will be encoded as a word describing consecutive configurations.
Configurations will be separated by # symbols. The beginning of the encoding
will be a START symbol and the end will be denoted by END. Each position on
the tape will be encoded by 4 consecutive nodes, R −N − C − T where R will
denote row number, N the number of the next row, C the column number and
T the encoded tape symbol. s will be marked with 0 or 1 denoting if the head of
M is in this position. Because we consider trees, the encoding will be placed in
the tree from some node upwards to the root. This way, the program will have
only one path on which it can match. Otherwise (that is, going downwards in
the tree) the correctness of the encoding cannot be guaranteed.

For each transition τ of M , there will be a set of rules verifying that the two
consecutive encoded configurations of M are consistent with τ . Single rules will

verify that the contents of the tape are copied/changed correctly between the
configurations. To ensure that, the rule will look at each 3 consecutive positions.
For each triple of tape symbols, there will be rule that matches 3 positions
encoding those tape symbols. A rule P i

τ,a1,a2,a3
(X) is true in X if 3 positions

described directly above X contain symbols a1, a2, a3 and the symbol in the next
configuration in the same position as a2 is also consistent with τ . If the head of
tape, this symbol should just be copied, but if head of M is in the position with
a1, a2ora3 the symbol can change between configurations. The i = 1 if the head
of the tape was already seen in this configuration, 0 otherwise. For example, for
a position where the head has not been seen in this configuration and there is
no head in the inspected positions:

P 0
τ,(0,s1),(0,s2),(0,s3)

(R1) : −

T3↓C3↓N3↓R3↓T2↓C2↓N2↓R2↓T1↓C1↓N1↓R1

T5↓C5↓N5↓R5↓T4↓C4↓N4↓R4↓+T3

(0, s1)(T1), (0, s2)(T2), (0, s3)(T3), (0, s2)(T5)

R4 ∼ R5, R4 ∼ N1, C5 ∼ C2, C4 ∼ C1

N1 ∼ N2 ∼ N3, R1 ∼ R2 ∼ R3, R4 ∼ R5

P 0
τ,(0,s2),(0,s3),(i,s4)

(R1)

There will be such rule for any possible tape symbol (i, s4). A quadrupleRi, Ni, Ci, Ti
of variables describes one position of the tape, in the configuration Ri, with next
configuration Ni and in column Ci. The symbol stored in this position is Ti.
Additionally, there will be rules for changing rows, that checks two last positions
before the # and ensures that the next row is either the same length as the pre-
vious one or one position longer (that is, has 4 more nodes), depending on the
movement of the head. There will be also rules for the final row of the encoding
(that is after reaching halting state), Pfin. Pfin will just go to the last #, and
P will be true in the root of the tree (with END label) if Pfin is matched in the
last #:

The program Q is given below, where Qerr is an alternative of all possible
errors in the encoding.

Q(X) : −Y ↓+X,Y ↓+Z,Qerr(Z) (1)

Q(X) : −Qerr(X) (2)

Q(X) : −X↓+Y,Qerr(Y) (3)

Note the necessity of this triple alternative as ↓+ is a proper descendant relation,
that is X↓+X does not hold. This way, Q holds in every node of the tree if Qerr

is found anywhere. The possible errors are

1. # or tape symbol appearing on the wrong position, for example detecting
symbol (0, s) used as a colum number

Qerr(X) : −#(X), X3↓X2↓X1↓X, (0, s)(X3)

Qerr(X) : −#(X), X3↓X2↓X1↓+Y ↓X,∼ (Y,X1), (0, s)(X3)

Similarly such rules can be constructed for next row, row and # used a tape
symbol.

2. two consecutive # symbols, detected by Qerr(X) : −#(X), X↓Y,#(Y).
3. any node appears above the END, detected by Qerr(X) : −END(X), Y ↓X
4. any node appears below the START, detected byQerr(X) : −START(X), X↓Y
5. row number used in two different rows, detected by

Qerr(X) : −#(X), Y1↓X,Y2↓+Y1,#(Y2), Z↓Y2, Z ∼ Y1

6. the same column number twice in one row, detected by

Qerr(X) : −#(X), Z3↓Z2↓Z1↓+Y3↓Y2↓Y1↓X

Y1 ∼ Z1, Y3 ∼ Z3

The last program works only if every row has distinct row number, which is
ensured by previous rule.

It is easy to see that PM is matched in every node of any tree that contains
one of described errors, and in the root node of those databases that contain
correct encoding of a halting run of M . Moreover, the computation of PM in
those databases takes number of steps linearly proportional to the length of the
encoding. Therefore, PM is unbounded if and only if M has the arbitrary long
halting run property. ⊓⊔

C.2 Boundedness on words and ranked trees

Proof (of Lemma 14). One implication is immediate. If P is bounded then it is
equivalent to a union of conjunctive queries Q. The queries are connected so we
can take n to be the size of the biggest query in Q.

For the other implication, let us assume that P satisfies the condition:

– there exists n > 0 such that for every word w and position X if X ∈ P(w)
then X ∈ P(v), where v is the n-neighbourhood of X in w

with n = n0. We will construct a union of conjunctive queries Q equivalent to
P . Recall that ΣP denotes the set of labels that appear in the rules of program
P . Let us consider all words of length smaller or equal 2n0 + 1 and treat them
as structures over the signature {↓,∼} ∪ ΣP . These words have finitely many
equality types. For each word v that satisfies P we add to Q a query which
defines the equality type of v. It remains to show that P and Q are equivalent.
The containment of Q in P is straightforward from the construction of Q. Take
a word w and position X such that X ∈ P(w). Then X ∈ P(v), where v is the
n-neighbourhood of X in w. Since v is a word of lenght at most 2n0+1 it follows
that X ∈ Q(v), and hence X ∈ Q(w). ⊓⊔

We now move to the case of trees. First let us state the lemma equivalent to
Lemma 14 for ranked trees. For a tree t, the n-neighbourhood of a node X is a
subtree of t consisting of all nodes that are in distance at most n from X .

Lemma 26. Let P be a Datalog(↓) program over ranked trees. Then the follow-
ing conditions are equivalent:

1. P is bounded,
2. there exists n > 0 such that for every tree t and node X if X ∈ P(t) then

X ∈ P(t′), where t′ is the n-neighbourhood of X in t.

Proof. The proof is analogous to the proof of Lemma 14. Let k be the rank of
the considered trees. To show the implication from 2 to 1 it is enough to notice
that for given n there are finitely many equality types (with respect to P) of
trees of height at most 2n + 1 (and thus, finitely many of equality types of n-
neighbourhoods). The equality type of each such n-neighbourhood is definable
by a CQ, and a UCQ equivalent to P is a union of those CQ’s that are contained
in P . ⊓⊔

In the case of trees we define an n-witness for P to be a tree t such that
there exists a node X in t for which X ∈ P(t) but X 6∈ P(t′), where t′ is the
n-neighbourhood of X in t. A witness is a tree that is an n-witness for any n > 0.

Corollary 27. A Datalog(↓) program P over ranked trees is unbounded iff there
exist n-witnesses for arbitrarily big n > 0.

We can now give the proof of Theorem 13. We restate it first.

Theorem. The boundedness problem for Datalog(↓) over ranked trees is in 2-
ExpTime.

Proof. To prove Theorem 13 we first show that boundedness can be verified over
ranked trees over a finite alphabet.

Lemma 28. Let P be a Datalog(↓) program. Then P is bounded over ranked
data trees with rank R over Σ iff P is bounded over ranked trees with the same
rank over a finite alphabet Σ0 ⊆ Σ. The alphabet Σ0 contains ΣP and |Σ0\ΣP | ≤
R|P|.

Proof. This proof is a slight modification of a proof from [17]. If P is bounded
over Σ then it is clearly bounded over any finite subset of Σ. Suppose that P
is bounded over Σ0 but not bounded over Σ. Over Σ0, P is therefore equivalent
to a UCQ Q built of a finite number of proof words of P . Let t be a tree over
Σ and X a node in t s.t. X ∈ P(t) but X 6∈ Q(t). We will show that t can be
relabeled into a tree t′ over Σ0 in a way preserving any label comparison done
by the rules of P . Then, as Q is a union of proof words of P , it must also hold
that X ∈ Q(t) iff X ∈ Q(t′), which is a contradiction since P is not equivalent
to Q over ranked trees over Σ.

Let n be the size of the largest rule in P . Let B ⊆ Σ \ ΣP be a set of size
R|P|. We set Σ0 = B ∪ΣP . We will describe a procedure that traverses the tree
t in a top-down fashion, level by level, and changes the labels to elements of B.
This way the set of processed nodes consists of i full levels starting from the
root, and some nodes from the level i+ 1.

Let v be a node on level i + 1 – the next one to process, and let u be the
node n− 1 edges up the tree (or the root if v is too close to the root). Suppose
that the label of v is a. If a ∈ B ∪ ΣP , we can finish processing v. Assume
that a /∈ B ∪ ΣP . Pick a label b ∈ B that does not appear in the processed
descendants of u, nor in u itself. We can always find such a label b because
the number of processed descendants of u (including u itself) is bounded by
∑n−1

i=0 R
i = Rn−1

R−1 < Rn ≤ R|P|, and so is the number of labels from B used
in these nodes. Let c ∈ Σ \ (B ∪ ΣP) be a fresh label. We now replace all
appearances of b with c, but only in the unprocessed descendants of the node u.
Observe that these nodes are separated from the nodes that keep their label b
by distance at least n. Next, we replace all appearances of a with b, but only in
the unprocessed descendants of u. Again, the distance from these nodes to the
other nodes with label a or b is at least n. Thus, the modification does not affect
the outcome of any label comparison done by rules in P (because they use only
the short axis and are connected). After all nodes are processed, all labels in t′

are from B ∪ΣP .

Let Σ0 be the finite alphabet from the previous Lemma. Now we can construct
an automaton WP , recognizing the set of witnesses for P . From Lemma 21 we
get a two-way alternating tree automaton BP which works over Σ0×{0, 1}, and
accepts the set of trees that have only one node labeled with (a, 1) for a ∈ Σ0,
and the goal predicate of P is satisfied in this node. The size of this automaton
is exponential in |P|. Let AP be the bottom-up automaton recognizing L(BP)
obtained via Proposition 18. Let NP be an automaton obtained by taking a prod-
uct of the bottom-up automaton recognizing the complement of L(BP) (again
obtained via Proposition 18) and the automaton checking that there is only one
node in the tree with label (a, 1) for some a ∈ Σ0. Then NP accepts all trees
over Σ0 for which P does not hold in the marked node. The size of both AP and
NP is double exponential in |P|.

With those two automata, the construction of WP is easy. The set of states
of WP is

Q(AP)× ({ǫ,OK} ∪Q(NP))

where Q(A) denotes the set of states of the automaton A. Let t be a tree over
Σ0 × {0, 1} and let X denote the marked node. The automaton WP starts in
the state (qI , ǫ), where qI is the initial state of AP . Then WP simulates AP

on t. In any node of a tree, the automaton WP can guess that here begins the
neighbourhood of X in which P does not hold. Then WP changes the second
component of its state from ǫ to the initial state of NP and simulates NP on the
guessed neighbourhood, verifying that indeed P does not hold in it. If WP has
reached an accepting state of NP , it can guess that this node is the root of the
neighbourhood and change the state to OK in the second component. Accepting
states of WP are states (q,OK) where q is any accepting state of AP .

Similarly to the word case, if there exists a witness of size linear in the size
of the automaton WP , then there exist arbitrarily big witnesses.

Lemma 29. Let N be the number of states of the automaton WP . If there exists
a (2N +2)-witness for P, then there exist n-witnesses for arbitrary large n. The
existence of (2N + 2)-witness can be decided in time polynomial in N .

Proof. We use a very similar pumping argument as in the word case. This time,
however, to obtain arbitrarily big witnesses we need to be able to pump every
path of the neighbourhood in which P is not satisfied.

Suppose that there exists a (2N +2)-witness and let X be the marked node.
Then on every path of length 2N+2 from X downwards, some state ofWP must
repeat, so we can pump the context between those nodes. Notice that some paths
may be shorter, because the (2N + 2)-witness may contain a leaf of the tree –
we don’t need to pump those paths. On the path from X upwards of length
N + 1 again some states of WP repeat, and we can pump the context between
the occurrences of the same state. This time, however, we need also to extend
the paths that start on the pumped fragment and go downwards, but do not
return to X . Every such path is of length at least N + 1 (that is why we need
the 2N + 2 size of the neighbourhood), so we can pump each of them (except
for those that are shorter because they end with a leaf of the tree).

To verify the existence of a (2N + 2)-witness we modify the automaton WP

by adding two counters from 0 to 2N + 2. When the automaton guesses the
beginning of a neighbourhood of X in a non-leaf node Y it starts counting the
length of the shortest path until the least common ancestor of Y and X is
reached. The automaton in a node calculates the length of the shortest path as
1 + the minimum of the values of the counters calculated for its children (if the
value of the counter is 2N + 2, adding 1 does not change its value). When a
neighbourhood of X begins in a leaf of the tree, the length of this path does
not need to be 2N + 2, so the automaton sets the counter to 2N + 2 (that is
– sufficient length). The second counter is used only for the nodes on the path
above X and counts the length of the path for X to this node (for any other
node in the guessed neighbourhood, value of this counter is 0).

It is not difficult to see that using those two counters we can come up with
an acceptance condition such that the modified automaton has an accepting run
iff there exists a (2N +2)-witness for P . Since emptiness can be decided in time
linear in the size of the automaton, we get the claim. ⊓⊔

Since the size ofWP is double exponential in |P|, we get a 2-ExpTime procedure
for deciding boundedness of P . ⊓⊔

	Eliminating recursion from monadic datalog programs on trees

