
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Joanna Ochremiak

Extended constraint satisfaction problems
PhD dissertation

Supervisors

dr hab. Bartosz Klin

dr Szymon Toruńczyk

Institute of Informatics
University of Warsaw

September 2015

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this dissertation
myself and all the contents of the dissertation have been obtained by legal means.

September 2, 2015 .
date Joanna Ochremiak

Supervisors’ declaration:
the dissertation is ready to be reviewed.

September 2, 2015 .
date dr hab. Bartosz Klin

. .
dr Szymon Toruńczyk

Abstract

To solve an instance of the constraint satisfaction problem (CSP) one has to find
an assignment of values to variables that satisfies given constraints. This thesis
concerns two different extensions of the constraint satisfaction problem.

The first extension allows for an infinite number of constraints in an instance.
It is phrased in the language of sets with atoms, which provides finite means of
representation – an instance is founded upon a fixed infinite relational structure,
and defined by finitely many first order formulas. We prove decidability for this
so-called locally finite CSP, and establish tight complexity bounds in the special
case when the set of possible values is finite.

We further use the constraint satisfaction framework to analyse the computa-
tional model of Turing machines with atoms (TMAs), whose alphabet, state space,
and transition relation are orbit-finite sets with atoms (usually infinite but finitely
presentable). We give an effective characterisation of those alphabets for which
TMAs determinise, with applications to descriptive complexity.

The second extension of the CSP that we consider is known as the valued con-
straint satisfaction problem (VCSP). It provides a common framework for many
discrete optimisation problems. We use algebraic tools to establish a necessary
condition for tractability of VCSPs parametrised by sets of allowed types of con-
straints. We conjecture that our condition is also sufficient, and verify whether the
conjecture agrees with all previously known results.

Keywords: constraint satisfaction problems, sets with atoms, valued constraint
satisfaction
ACM Classification: F.2.2 [Nonnumerical Algorithms and Problems]: Compu-
tations on discrete structures; F.4.1 [Mathematical Logic]: Logic and constraint
programming; F.1.1 [Models of Computation]

3

Streszczenie

Aby rozwiązać daną instancję problemu spełnialności więzów, należy znaleźć
takie przypisanie wartości do zmiennych, żeby spełnione były wszystkie więzy.
Ta rozprawa dotyczy dwóch rozszerzeń problemu spełnialności więzów.

Pierwsze rozszerzenie dopuszcza nieskończenie wiele więzów w instancji.
Jest ono sformalizowane w języku teorii zbiorów z atomami, który pozwala na
skończoną reprezentację – dla ustalonej nieskończonej struktury relacyjnej każda
instancja zadana jest przez skończenie wiele formuł logiki pierwszego rzędu.
Dowodzimy, że ten problem, który nazywamy lokalnie skończonym problemem
spełnialności więzów, jest rozstrzygalny. Podajemy także ścisłe oszacowanie jego
złożoności obliczeniowej w szczególnym przypadku, gdy liczba możliwych war-
tości jest skończona.

Następnie stosujemy narzędzia teorii spełnialności więzów do analizy mo-
delu obliczeniowego maszyn Turinga z atomami, których alfabet, zbiór stanów,
oraz relacja przejścia są orbitowo-skończonymi zbiorami z atomami (są one za-
zwyczaj nieskończone, ale możliwa jest ich skończona reprezentacja). Uzysku-
jemy efektywną charakteryzację tych alfabetów, dla których maszyny Turinga z
atomami się determinizują, a ponadto pokazujemy zastosowanie tego wyniku do
teorii złożoności opisowej.

Drugie rozpatrywane przez nas rozszerzenie problemu spełnialności więzów
jest znane jako problem spełnialności więzów z wartościami. Pozwala ono na for-
malizację wielu dyskretnych problemów optymalizacyjnych. Używając narzędzi
algebraicznych ustanawiamy warunek konieczny, aby problem spełnialności wię-
zów z wartościami, sparametryzowany przez ustalony zbiór dopuszczalnych typów
więzów, był rozwiązywalny w czasie wielomianowym. Formułujemy ponadto
hipotezę, która głosi, że podany przez nas warunek jest jednoczeście dostateczny
i sprawdzamy jej zgodność ze wszystkimi znanymi wcześniej wynikami.

4

Acknowledgements
First and foremost, I would like to thank my supervisors, Bartek Klin and Szy-
mon Toruńczyk, for their constant support and encouragement, for the pleasure of
working together and for everything they taught me.

I am also grateful to Mikołaj Bojańczyk who was the first to show me that theo-
retical computer science has beautiful mathematics.

Many thanks go to Marcin Kozik for introducing me to the world of constraint
satisfaction problems, for his hospitality and the many stimulating conversations
during my visits to Kraków.

I would like to thank all the people with whom I have ever worked or discussed
mathematics, especially my other co-authors, Sławek Lasota, Eryk Kopczyński,
Filip Mazowiecki and Adam Witkowski, for all the inspiration they gave me and
for the great fun of solving problems together.

Special thanks go to my family and friends for always believing in me.

Finally, I would like to thank Jędrek, who was there for me everyday.

5

Dziadkowi i Tacie

6

Introduction
Motivation. Computer science is about effectively finding solutions that satisfy
given specifications. To achieve this goal one develops algorithms that output a
solution or determine its existence, analyses the complexity of those algorithms or
proves that they do not exist, and looks for approximate solutions that provide the
best possible trade-off between satisfying the specification and the effectiveness
of an algorithm. The rich theory of computer science is developed to ultimately
serve those purposes.

Every specification can be seen as a list of constraints imposed on a desired
solution. The theory of constraint satisfaction provides one way of formalising
this intuition. Its study begun in the 70s independently in the fields of artificial
intelligence, database theory, and graph theory. And since 1978, when the seminal
paper of Schaefer [45] about the complexity of boolean constraint satisfaction
problems (CSPs) was published, it has become of more and more importance.
The CSP framework turned out to be very robust. Its different variants appear in
many research areas of theoretical computer science.

The power of constraint satisfaction lies in the fact that although it covers
a large class of problems, its different variants still bear enough similarities to
make transferring methods from one to another possible. Throughout the years,
a very rich collection of mathematical tools got involved in the formal analysis
of the CSP, from algebra, logic and model theory to probability, graph theory
and combinatorics. Phrasing a problem in the constraint satisfaction framework
gives one an additional insight into its structure and suggests tools that could be
potentially used to solve it.

This thesis provides more evidence in favour of the unifying approach of the
constraint satisfaction paradigm. It concerns two different extensions of the classi-
cal constraint satisfaction problem. Firstly, we introduce a new variant of the CSP
with a possibly infinite set of constraints in an instance. We show how it arises in
the analysis of a rather natural model of computation, and allows us to understand
its behaviour, as well as the expressive power of an associated logic. Secondly,
we successfully use universal algebraic tools developed for the decision version
of the CSP to analyse its optimisation version, contributing to the understanding
of its complexity.
Organisation of the thesis. Apart from this introductory chapter, which pro-
vides technical preliminaries necessary to make the subsequent development self-
contained, this thesis consists of three papers:

7

[P1] Locally finite constraint satisfaction problems. Bartek Klin, Eryk Kopczyń-
ski, Joanna Ochremiak, and Szymon Toruńczyk. In Proceedings of the
30th Symposium on Logic in Computer Science (LICS’15), pages 475-486.
IEEE, 2015.

In this paper we define a version of the constraint satisfaction problem with
possibly infinite set of constraints. Instances are given by finitely many
first order formulas and therefore can be treated as an input for algorithms.
We prove a decidability result for such CSPs and provide tight complexity
bounds.

[P2] Turing machines with atoms, constraint satisfaction problems, and descrip-
tive complexity. Bartek Klin, Sławomir Lasota, Joanna Ochremiak, and
Szymon Toruńczyk. In Proceedings of the 29th Symposium on Logic in
Computer Science (LICS’14), pages 58:1-58:10. ACM, 2014.

In this paper we consider a computational model of Turing machines with
atoms, which can be seen as recognisers of a special kind of relational struc-
tures. We use the framework of constraint satisfaction to establish an effec-
tive characterisation of those structures for which deterministic and nonde-
terministic Turing machines have the same expressive power.

[P3] Algebraic properties of valued constraint satisfaction problem. Marcin Kozik
and Joanna Ochremiak. In Proceedings of 42nd International Colloquium
on Automata, Languages, and Programming (ICALP’15), Part I, volume
9134 of LNCS, pages 846-858. Springer, 2015.

In this paper we study the complexity of the valued constraint satisfaction
problem (VCSP) – an optimisation version of the CSP. We formulate a di-
chotomy conjecture, which says that each problem in this class is solvable in
PTime or NP-hard, and proposes a criterion to distinguish those two cases.
We prove the hardness direction, establishing a necessary algebraic condi-
tion for tractability of VCSPs.

In most of this thesis we work within the framework of constraint satisfaction.
In the introduction below we define its basic concepts focusing on the language-
restricted CSPs parametrised by a family of allowed constraints. Furthermore, we
introduce sets with atoms – the key notion of papers [P1] and [P2]. Finally, in the
last section we give a more detailed overview of our results.

8

1. Constraint satisfaction problems
Many classical decision problems can be phrased as constraint satisfaction prob-
lems. An example is the problem 2-SAT, whose instances are propositional for-
mulas such as:

(x ∨ y) ∧ (y ∨ ¬z);

one then asks whether a given formula has a satisfying valuation, i.e., an assign-
ment of values 0 or 1 to variables (here, x, y and z), subject to some constraints.
The constraints are given by the clauses of the formula in question. The clause
x ∨ y says that in any valuation the pair of variables (x, y) cannot take values
(0, 0). The clause y ∨ ¬z says that the pair (y, z) cannot take values (0, 1). A
satisfying valuation is one that satisfies both constraints.

Another example is the problem of vertex 3-coloring, whose instances are
undirected graphs such as:

v1

v2 v3

Here the vertices v1, v2, v3 are to be assigned colors, say, red, blue or yellow.
Adjacent vertices have to be mapped to different colors. Hence, each edge in the
graph imposes a constraint on the set of colorings. An edge between vertices vi
and vj restricts possible colors of the pair (vi, vj) by excluding the pairs (red, red),
(blue, blue), and (yellow, yellow). A valid coloring is one that satisfies all such
constraints.

The following definitions provide a general framework for studying these and
many other problems.

Definition 1 (CSP Instance). An instance of the constraint satisfaction problem is
a triple (V,D, C), where V is a set of variables, D is a set of their possible values,
called a domain, and C is a set of constraints. A constraint is a pair (x̄, R), where
x̄ is an n-tuple of variables, and R is an n-ary relation over D.

A solution is a mapping f : V → D which satisfies all the constraints, i.e.,
such that if (x̄, R) ∈ C then f(x̄) ∈ R, where f is applied component-wise.

Example 1. The instance of 2-SAT above is a CSP instance (V,D, C), where:
V = {x, y, z}, D = {0, 1}, C = {((x, y), D2 \ {(0, 0)}), ((y, z), D2 \ {(0, 1)})}.

9

For now, let us consider only finite CSP instances, where the set of variables,
the domain and the set of constraints are all finite. This problem we call the
classical constraint satisfaction problem.
Homomorphism problem. It is well known that the constraint satisfaction prob-
lem can be seen equivalently as a homomorphism problem for relational struc-
tures. A relational signature Σ is a set of relational symbols. Each symbol comes
with a (finite) arity. A relational structure A over Σ is a set A (called a domain)
together with a set of relations over A, where for every symbol R in Σ of arity
n, there is an n-ary relation RA. In this section we consider only finite relational
structures, where both the domain and the signature are finite.

A homomorphism between structures A and B over the same signature is a
function f : A → B from the domain of A to the domain of B that preserves all
relations, i.e., such that if x̄ ∈ RA then f(x̄) ∈ RB (where f is applied component-
wise).

With every CSP instance I = (V,D, C) one can associate two relational struc-
tures AI and BI . The signature ΣI of both structures contains a symbol R, for
every relation R that appears in any of the constraints of I. The domain of the
structure AI is the set of variables V . For each symbol R in ΣI the relation RA

consists of those tuples x̄ of variables for which (x̄, R) ∈ C. The structure BI
has domain D and all relations R which appear in the constraints of I. That is,
RB = R, for every R ∈ ΣI . There exists a solution of I if and only if there is a
homomorphism from AI to BI , i.e., a function from V to D which maps tuples in
RA to tuples in R.

On the other hand, it is not difficult to see that every instance of the homomor-
phism problem can be expressed as a CSP instance.

The CSP is NP-complete in general, and the main line of research tries to
identify restrictions that give rise to tractable problems (by tractable we usually
mean polynomial-time solvable).

Let A and B be classes of relational structures. By CSP(A,B) we denote the
class of those CSP instances I where AI ∈ A and BI ∈ B.

Example 2 (Subgraph isomorphism problem). Subgraph isomorphism is a basic
graph-theoretic problem: given graphs G1 = (V1, E1) and G2 = (V2, E2), decide
if G1 is an (induced) subgraph of G2. That is, one has to find an injective mapping
f : V1 → V2 such that u and v are adjacent in G1 if and only if f(u) and f(v) are
adjacent in G2.

Let A be a class of structures with two disjoint binary relations E+ and E−

whose union is a full binary relation on the domain. The intended meaning is that

10

E+ is the set of edges of a graph and E− is the set of non-edges. It is not difficult
to see that CSP(A,A) corresponds to the subgraph isomorphism problem.

Structural restrictions. One type of restrictions are so called structural re-
strictions to the CSP. For a fixed class of relational structures A, the problem
CSP(A,−) consists of those CSP instances I for which the structure AI belongs
to A. The idea is to restrict the structure that constraints induce on variables.

Example 3. LetA be the class of planar graphs. Then every instance of the graph
3-coloring problem that belongs to (A,−) asks about a coloring of a planar graph.

Purely structural restrictions to the classical constraint satisfaction problem are
well understood and they can be summarised in the following result (the left-to-
right implication holds under an additional assumption that FPT 6= W[1] which
is a standard hypothesis of parameterised complexity, cf. [22, 24]):

Theorem 1 (Dalmau, Kolaitis, Vardi [21]; Grohe [26]). Let A be a recursively
enumerable class of structures of bounded arity. Then CSP(A,−) is polynomial-
time solvable if and only ifA has bounded tree-width modulo homomorphic equiv-
alence.

Language restrictions. In this thesis we focus on language restrictions to the
CSP. That is, we consider the problem CSP(−,B) for a fixed class of structures B.
More precisely, most of the time we talk about so-called non-uniform CSPs [23],
where B = {B} consists of a single relational structure called a constraint lan-
guage or a template. Instead of CSP(−, {B}) we write CSP(B). An instance of
CSP(B) is a CSP instance over a domain B where every relation in every con-
straint is a relation from B.

Example 4 (3-coloring). Let B be a structure with three elements {red, blue,
yellow}, and a single binary relation which is the inequality relation over the
domain. Then CSP(B) is essentially the 3-coloring problem.

Example 5 (2-SAT). Let B be a structure with two elements {0, 1}, and four
binary relations: there is a relation R(x,y) = {0, 1}2 \ {(x, y)}, for each pair
(x, y) ∈ {0, 1}2. Then CSP(B) is the 2-SAT problem. For instance, a constraint
((z, t), R(0,0)) corresponds to a clause z ∨ t.

The main goal is to classify non-uniform CSPs with respect to complexity.
The first result of this form comes from Schaefer [45], who proved a complexity

11

dichotomy for boolean CSPs: if the domain of B has two elements then CSP(B) is
either polynomial-time solvable, or NP-complete. Schaefer also provided a char-
acterisation of those structures that give rise to polynomial-time solvable CSPs.

The famous Dichotomy Conjecture of Feder and Vardi states that the same
complexity dichotomy holds for all constraint languages B. That is, every non-
uniform CSP is either tractable or NP-complete.

Conjecture 1 (Dichotomy Conjecture). For every relational structure B the prob-
lem CSP(B) is either in PTime or NP-complete.

It is known [38] that if NP 6= PTime then there are problems of intermediate
complexity (problems in NP that are neither in PTime nor NP-complete). Proving
the conjecture of Feder and Vardi would establish non-uniform CSPs as one of the
biggest natural classes of computational problems to exhibit such a dichotomy.
Algebraic approach. A breakthrough in studying the complexity of the CSP
came with an introduction of the so-called algebraic approach to constraint satis-
faction. The remainder of this section presents the key ideas and developments of
the algebraic approach, as many results of this thesis are based on this framework.

An algebraic signature ∆ is a set of function symbols. Each symbol comes
with a (finite) arity. An algebra A over ∆ is a set A called a universe together
with a set of functions called basic operations of A. For every symbol f in ∆ of
arity n, there is a function fA : An → A in A. The algebraic approach to the CSP
began with an observation that the complexity of CSP(B) can be characterised by
the algebra of so-called polymorphisms of B.

Definition 2 (Polymorphism of a relation). Let R be a relation over a set B. A
function f : Bn → B is a polymorphism of R if for any tuples x̄1, x̄2, . . . , x̄n ∈ R
we have f(x̄1, x̄2, . . . , x̄n) ∈ R (where f is applied component-wise). Then we
also say that R is compatible with f .

Definition 3 (Polymorphism of a structure). Let B be a relational structure with a
domainB. A function f : Bn → B is a polymorphism of B if it is a polymorphism
of every relation in B. The set of polymorphisms of B is denoted Pol(B).

Example 6. A majority polymorphism of a relational structure B is a ternary
polymorphism which for each pair x, y of elements of its domain, satisfies

m(x, x, y) = m(x, y, x) = m(y, x, x) = x.

If the domain is {0, 1} then the above equations define m uniquely. Moreover,
that unique m is a polymorphism of every binary relation R on {0, 1}. Indeed,
take x̄1, x̄2, x̄3 ∈ R and apply m component-wise:

12

x̄1 = (x1
1, x

2
1) ∈ R

x̄2 = (x1
2, x

2
2) ∈ R

x̄3 = (x1
3, x

2
3) ∈ R

(
m(x1

1, x
1
2, x

1
3),m(x2

1, x
2
2, x

2
3)
)
∈ R

It is not difficult to see that the tuple
(
m(x1

1, x
1
2, x

1
3),m(x2

1, x
2
2, x

2
3)
)

is equal to one
of the tuples x̄1, x̄2, x̄3. Hence, it belongs to R. Moreover, any unary relation is
compatible with m. It follows that any boolean constraint language with relations
of arity at most two has a majority polymorphism. This applies, in particular, to
the template for 2-SAT (see Example 5).

With a relational structure B one can associate an algebra with universe B
and a set of operations Pol(B). We call it the polymorphism algebra of B. It
was shown [33] that if (A and B have the same domain and) Pol(B) ⊆ Pol(A)
then CSP(A) is polynomial-time reducible to CSP(B). In particular, if Pol(A) =
Pol(B) then CSP(A) and CSP(B) are polynomial-time equivalent. This means
that indeed the complexity of non-uniform CSPs can be analysed via their corre-
sponding algebras of polymorphisms, which allows to use powerful results from
universal algebra.

Of particular importance in universal algebra are idempotent algebras, i.e., al-
gebras whose every operation f satisfies f(x, . . . , x) = x, for every element x of
the universe (such an operation is also called idempotent). It was shown [15, 14]
that while studying the complexity of the CSP one can restrict attention to idem-
potent algebras. This is due to the fact that for every relational structure A there
exists a core structure B such that CSP(A) and CSP(B) are polynomial-time
equivalent. A core is a relational structure whose all unary polymorphisms are
bijective. To a core structure B one can add all one-element unary relations with-
out increasing the complexity. To sum up, for every relational structure A there
exists a relational structure B, such that CSP(A) and CSP(B) are computation-
ally equivalent, and the structure B, for every element b of its domain, contains the
relation {b}. It is easy to see that every polymorphism of B then is idempotent.

A term over a signature ∆ is defined recursively: a variable is a term; and if
t1, . . . , tn are terms, and f ∈ ∆ is an n-ary function symbol, then f(t1, . . . , tn) is
a term. For an algebra A over ∆, a term operation tA is a function obtained by
composing the basic operations of A according to t. If s and t are terms then we

13

say that A satisfies the identity s ≈ t if sA = tA. The next step in the algebraic
approach to the CSP was to move from considering single algebras to studying
varieties, which are classes of algebras (over the same signature) defined by sets
of identities.

Definition 4 (Variety). For any set of identities I over a signature ∆, a variety V
is the class of all algebras over ∆ that satisfy every identity from I .

There is a different way of introducing varieties, where a variety is defined as
a class of algebras closed under certain operations (see e.g. [16]). The equivalence
of both definitions was shown by Birkhoff [5].

By V(B) we denote a variety generated by an algebra B, i.e., the class of alge-
bras that satisfy all identities satisfied by B. Let B be the polymorphism algebra
of B, and let A be some algebra in V(B). It turns out [15, 14, 39] that CSP(A),
where A is a relational structure whose domain is the universe of A, and whose
relations are compatible with operations in A, is no harder than CSP(B). Infor-
mally, this means that the complexity of a non-uniform CSP can be captured by a
set of identities.

The Algebraic Dichotomy Conjecture of Bulatov, Jeavons, and Krokhin [15,
14] makes the conjecture of Feder and Vardi more specific by proposing a con-
crete algebraic condition to distinguish tractable and intractable CSPs. For a core
structure B, they conjecture CSP(B) to be NP-complete if in the variety generated
by its polymorphism algebra there is a two-element algebra whose every operation
is a projection, and solvable in PTime otherwise.

Further work lead to an equivalent formulation of the conjecture, which uses
the notion of a cyclic polymorphism. A polymorphism f of arity n ≥ 2 is called
cyclic if it satisfies the identity f(x1, x2, . . . , xn) ≈ f(x2, . . . , xn, x1). Barto and
Kozik [3] showed that the hardness condition in the conjecture above is equivalent
to saying that B does not have an idempotent cyclic polymorphism.

Conjecture 2 (Algebraic Dichotomy Conjecture). Let B be a relational struc-
ture that is a core. If B does not have an idempotent cyclic polymorphism, then
CSP(B) is NP-complete. Otherwise it is polynomial-time solvable.

While stating their conjecture, Bulatov et al. proved its one direction: they
showed that if in the variety generated by the polymorphism algebra of a core
structure B there is a two-element algebra whose every operation is a projection
then CSP(B) is NP-complete. Using the characterisation with cyclic polymor-
phism their result can be formulated as follows:

14

Theorem 2 (Bulatov, Jeavons, Krokhin [15, 14]). Let B be a relational struc-
ture that is a core. If B does not have an idempotent cyclic polymorphism, then
CSP(B) is NP-complete.

The Algebraic Dichotomy Conjecture agrees with the result of Schaefer for
boolean CSPs. It was also confirmed for structures over three-element domains [12],
and for so-called conservative languages [11].

Even though the Dichotomy Conjecture is still open, the algebraic approach
resulted in a remarkable progress in understanding the complexity of the CSP. An
interesting direction is characterising constraint satisfaction problems tractable in
a stronger sense than polynomial-time solvability. Of particular interest in this
thesis is definability in Datalog – a logic obtained by extending unions of con-
junctive queries by a fixpoint operator (cf. [1]).
Bounded width. Probably the most well-known polynomial-time algorithm for
solving constraint satisfaction problems is the consistency algorithm with param-
eters k and l (where k ≤ l). We recall it here after Barto and Kozik [4] (by dom f
we denote the domain of a function f):

Input: An instance I = (V,D, C)
Output: YES/NO
F = all functions from at most l-element subsets of V into D;

for f ∈ F do
for ((x1, . . . , xn), R) ∈ C do

if x1, . . . , xn ∈ dom f and (f(x1), . . . , f(xn)) 6∈ R then
F = F \ {f};
break;

repeat
for f ∈ F do

foreach W at most l-element subset of V do
if (| dom f | ≤ k, dom f ⊆ W

and there is no g ∈ F with dom g = W and g|dom f = f)
or (W ⊆ dom f and f |W 6∈ F) then
F = F \ {f};
break;

until F was not altered;
if F = ∅ then return NO else return YES

Intuitively, the (k, l)-consistency algorithm constructs a family of partial solu-
tions of the instance (defined on all sets of at most l variables) which are pair-wise

15

consistent on sets of at most k variables. If an instance has a solution then such
a family always exists and the algorithm’s answer is correct (’YES’). We say that
a template B has bounded width if there exist numbers k ≤ l such that the (k, l)-
consistency algorithm provides a correct answer (’NO’) for every unsatisfiable
instance of CSP(B). Examples include templates for 2-colorability and 2-SAT.

Constraint languages of bounded width were introduced in the seminal paper
of Feder and Vardi [23]. The original (equivalent) definition says that a structure B
has bounded width if the set of structures which do not map homomorphically
into B is definable in Datalog. The (k, l)-consistency checking can be seen as a
canonical Datalog program.

Constraint satisfaction problems solvable in Datalog form a very robust class,
with many equivalent characterisations. One of them, using the notion of so-called
ability to count, was suggested already in [23]. We say that a template B has the
ability to count if CSP(B) can simulate solving systems of linear equations over a
finite field (for a precise definition see [40]). In [23] it was shown that constraint
languages with the ability to count fail to have bounded width. In the same paper
Feder and Vardi conjectured that solving linear equations is essentially the only
obstacle to bounded width.

Example 7. A classical example of a template which has the ability to count is
a template for solving linear equations over the two-element field Z2, with three
variables per equation. Its domain is {0, 1}, and there are two relations that encode
solutions to two possible kinds of equations with three variables (by + we denote
addition modulo 2):

R1 = {(x, y, z) | x+ y + z = 1},
R0 = {(x, y, z) | x+ y + z = 0}.

By the result of Feder and Vardi [23] this template does not have bounded width.

Another famous conjecture regarding bounded width is one by Larose and
Zádori [41] who proposed a characterisation in terms of algebra. A polymorphism
f is a weak near unanimity polymorphism if it is idempotent and satisfies the
identities

f(y, x, . . . , x) ≈ f(x, y, x, . . . , x) ≈ . . . ≈ f(x, x, . . . , x, y).

Larose and Zádori proved that if a core template B has bounded width then it

16

has weak near unanimity polymorphisms of all but finitely many arities1, and
conjectured this algebraic condition to be also sufficient.

In [40] the above conjectures were shown to be equivalent, to finally be con-
firmed by Barto and Kozik [4], and independently by Bulatov [13]. Using addi-
tionally a recent development of [37] their result can be stated as follows:

Theorem 3. Let B be a core structure. Then B has bounded width if and only if
B has a pair of weak near unanimity polymorphisms v and w of arity 3 and 4,
respectively, satisfying v(y, x, x) ≈ w(y, x, x, x).

The advantage of the above formulation lies in the fact that the required poly-
morphisms have bounded arity. For a given structure B there are finitely many
candidates for polymorphisms of a fixed arity. Their existence can be verified by
an algorithm. Therefore, the characterisation is effective.

2. Sets with atoms
The classical constraint satisfaction problem and the algebraic perspective pre-
sented above concern finite CSP instances. In this thesis we are also interested
in the case when the instances are infinite. Sets with atoms provide a convenient
framework for modeling infinite objects and representing them in a finite way so
that they can be treated as input for algorithms.

Sets with atoms were introduced by Fraenkel in 1922 as an alternative set
theory. Just as classical sets are built of empty sets and brackets, sets with atoms
might also contain so-called atoms, which do not have any elements themselves.
Axioms of the set theory with atoms (call it ZFA) are similar to the Zermelo-
Fraenkel axiomatisation of the standard set theory. There are, however, some
differences. For example, the axiom of extensionality is weakened to allow two
different atoms to have the same elements (namely, no elements) and not be equal.
ZFA was originally introduced to show independence of some axioms from others:
it has models where the axiom of choice fails. In this context sets with atoms were
further studied by Mostowski, which is why they are sometimes called Fraenkel-
Mostowski sets.

Sets with atoms were rediscovered for computer science by Gabbay and Pitts,
under the name of nominal sets [25, 44]. They received considerable attention

1The original statement in [41] uses Tame Congruence Theory (TCT) [28]. The version we
present here is based on a result from [42] where varieties omitting TCT-types 1 and 2 are charac-
terised by weak near unanimity terms.

17

in the semantics community where they are used to model name-binding and α-
conversion (for details see [44]). This application area is not of concern in the
present thesis but the notions below are based on [25, 44], with some extensions
defined in [8, 6].
Atoms. The notion of sets with atoms is parametrised by a relational structure
which we denote Atoms. We assume its signature to be finite, and its domain to
be countable. An atom is an element of the domain, which for simplicity we also
denote by Atoms. The most important examples of Atoms are natural numbers
with the equality relation (N,=), and rational numbers with order (Q, <).

A (left) action of a group G on a set X is a function that maps each pair
(π, x) ∈ G × X to an element π · x of X , and satisfies πσ · x = π · (σ · x), and
1 · x = x, where 1 is the identity element of G. An orbit of an element x ∈ X
under the action of a group G is the set G · x = {π · x | π ∈ G}. The set X is then
a disjoint union of orbits.

We shall be interested in the action of the automorphism group Aut(Atoms)
of Atoms on the set of n-tuples of atoms. The action is defined in a natural way:
for an automorphism π ∈ Aut(Atoms) and an n-tuple (a1, . . . , an) of atoms,
we put π · (a1, . . . , an) = (π(a1), . . . , π(an)). In this thesis we consider only
oligomorphic atom structures, which means that the action of the automorphism
group on the set of n-tuples has finitely many orbits for every n. The structures
(N,=), and (Q, <) are oligomorphic. Oligomorphicity is a well-studied notion in
model theory (see e.g. [29]).

Example 8. Fix Atoms to be natural numbers with the equality relation. Then
the set of pairs of atoms has two orbits:

{(a, b) | a, b ∈ N, a 6= b} and {(a, a) | a ∈ N}.

Now letAtoms be rational numbers with order. Then the set of pairs of atoms has
three orbits:

{(a, b) | a, b ∈ Q, a < b}, {(a, b) | a, b ∈ Q, a > b}, and {(a, a) | a ∈ Q}.

Example 9. Consider the structure (Z, <) of integer numbers with order. This
structure is not oligomorphic. To see this observe that the automorphism group of
(Z, <) is the group of translations i 7→ i + c, isomorphic to the additive group of
integers. The set of pairs of integers has infinitely many orbits under the action
of Aut(Z, <). An orbit of a pair (m,n) is uniquely determined by the number
m−n. TakingAtoms to be the structure (Z, <) results in pathological properties
of sets with atoms (see [8]).

18

We shall now introduce sets with atoms, the way they are defined in [25].
Set-theoretic approach. Given a structure Atoms, sets with atoms are defined
by ordinal induction. The only set on level 0 is the empty set. Sets on level α
are atoms, or contain sets at levels smaller than α. Examples of sets with atoms
include:

• the set of atoms itself,

• the set Atomsn of n-tuples of atoms (where tuples are encoded by usual
set-theoretic constructions),

• the set Atoms(n) of non-repeating n-tuples of atoms,

• the set Pfin(Atoms) of all finite sets of atoms,

• any classical set without atoms.

The group Aut(Atoms) acts on the family of sets on each level α. When
we apply an automorphism π to a set with atoms X , we rename via π the atoms
that are its elements, and the atoms that are elements of its elements, and so on
recursively.

By Aut(Atoms, a1, . . . , an), where ai ∈ Atoms, we denote the group of those
automorphisms of Atoms that fix all the ai’s.

Definition 5 (Support). A set S = {a1, . . . , an} of atoms is a support of a set with
atoms X if π · X = X for every automorphism π ∈ Aut(Atoms, a1, . . . , an).
Then we also say that X is S-supported.

A set with atoms is equivariant if it has an empty support. All sets with atoms
mentioned above are equivariant. An example of a finitely supported set with
atoms which is not equivariant is the set of all pairs of atoms with the atom a on
the first coordinate. One of its finite supports is the set {a}.

The definition of a finitely supported set with atoms applies to relations and
functions. Let X and Y be sets with atoms. A finitely supported relation is any
finitely supported subset of X×Y . A function f : X → Y is S-supported (equiv-
ariant) if its graph is S-supported (respectively equivariant) as a subset of X × Y .
Equivalently, for a finite set S = {a1, . . . , an} of atoms, the function f is S-
supported if f(π · x) = π · f(x), for every x ∈ X , and every automorphism
π ∈ Aut(Atoms, a1, . . . , an).

The following fact (see [6]) provides a useful representation of finitely sup-
ported subsets of Atomsk, for oligomorphic atom structures.

19

Proposition 4. If the structure Atoms is oligomorphic then a set of k-tuples of
atoms is S-supported if and only if it is definable by a first order formula over the
signature of Atoms with k free variables and constants from S.

A set with atoms is hereditarily finitely supported if it has a finite support, and
all its elements have finite supports, and so on. In the following we consider only
hereditarily finitely supported sets with atoms, so we omit this qualification.

Example 10. FixAtoms to be natural numbers with the equality relation. Then it
is not difficult to see that the finitely supported subsets of atoms are exactly finite
sets of atoms and those whose complement is finite. Therefore, the set P(Atoms)
of all subsets of atoms is not hereditarily finitely supported. On the other hand, the
set Pfin(Atoms) of all finite subsets of atoms is hereditarily finitely supported.

Let X be a set with atoms supported by S = {a1, . . . , an}. Then the group
Aut(Atoms, a1, . . . , an) acts on X in the standard way (by renaming the atoms
that appear in elements of X). An orbit of this action is called an S-orbit. If X
has finitely many S-orbits then X is called orbit-finite with respect to S. Notice
that a set with atoms does not have a unique finite support. In particular, supports
are closed under adding atoms. For oligomorphic atoms, it can be shown (see [6])
that if X is orbit-finite with respect to some finite support S then it is orbit-finite
with respect to any of its finite supports. Therefore, we call it simply orbit-finite.

Example 11. For oligomorphic atoms the set of atoms, and the set of n-tuples of
atoms are orbit-finite. The set of all finite subsets of atoms is not orbit-finite, as
any two subsets of different cardinality are in different orbits.

To treat sets with atoms as an input for computation we need finite means to
represent them. Below we introduce the finite representation that we use in [P1].
Different approaches can be found e.g. in [18, 19, 8].
Set expressions. A definable set with atoms is specified by a set expression to-
gether with a valuation of its free variables. A set expression is defined induc-
tively. It can be:

• a variable from some fixed infinite set of variables Var,

• an integer,

• a formal tuple of set expressions,

• a formal union of set expressions,

20

• a set-builder expression of the form

{e(x̄ȳ) | ȳ ∈ Atomsn, φ(x̄ȳ)},

where x̄ is an n-tuple of free variables, ȳ is a k-tuple of bound variables, e
is an already defined set expression with n+k free variables, and φ is a first
order formula over Atoms with n+ k free variables.

We allow only set expressions where the formal union is applied to set-builder
expressions or unions of set-builder expressions.

The formal tuple of set expressions is not necessary in the definition above. It
is introduced to simplify the syntax. We fix some set-theoretic encoding of tuples
and treat the formal tuple as a shorthand for the set expression describing this
encoding.

The integers are also introduced to improve readability and could be got rid
of. We fix some set-theoretic encoding of integers, where an integer is represented
by a hereditarily finite set (without atoms)2. In the definition of a set expression
all the integers except for 0 can be removed. If we use the constant 0 to represent
the empty set then the encoding of any integer can be defined using standard set-
theoretic construction.

A valuation of the free variables x̄ is a function that assigns an atom to every
variable in the tuple x̄. A set expression together with a valuation defines a set
with atoms in an obvious way. The semantics is very intuitive and we shall not
give its precise description. Below we show that any definable set with atoms is
orbit-finite. First let us have a look at some examples.

Example 12. Examples of definable sets with atoms include:

• an atom a, as defined by an expression x (a variable) together with a valua-
tion x 7→ a,

• the sets of non-repeating pairs of atoms, as defined by an expression

{(y1, y2) | (y1, y2) ∈ Atoms2, y1 6= y2}.

Proposition 5. A set expression together with a valuation defines an orbit-finite
set with atoms.

2For natural numbers we can use the von Neumann construction (see e.g. [30]). Then a negative
number −n can be encoded as the set that represents n with some additional special element.

21

Proof. We show this by induction on the structure of the set expression. Recall
that a formal tuple of set expressions is only syntactic sugar, so we do not need to
take it into account in the proof.

A variable x together with a valuation x 7→ a defines an atom a which is
obviously orbit-finite, since it has no elements.

A set expression which is an integer has no free variables. It defines its set-
theoretical encoding as a classical set without atoms. We fixed the encoding to be
a finite set, hence it is orbit-finite (each element is in a different orbit).

Now consider a formal union of set expressions e1(x̄1) and e2(x̄2) together
with some valuation val of the free variables in the tuples x̄1 and x̄2. By the
inductive assumption the set expression e1(x̄1) together with the valuation val
restricted to the free variables in x̄1, and the set expression e2(x̄2) together with
the valuation val restricted to the free variables in x̄2 are orbit-finite sets with
atoms X1 and X2, respectively. Recall that we only allow the formal union to be
applied to set-builder expressions and unions of set-builder expressions. Hence,
we can assume that neither X1 nor X2 is an atom or an integer. Then the formal
union of e1(x̄1) and e2(x̄2) defines the union of X1 and X2 which is orbit-finite
(with respect to the sum of supports of X1 and X2).

Finally, let e(x̄) be a set-builder expression of the form

{e∗(x̄ȳ) | ȳ ∈ Atomsn, φ(x̄ȳ)},

where x̄ and ȳ are disjoint tuples of variables of length n and k, respectively. And
let val be some valuation of the free variables in the tuple x̄. Then e(x̄) together
with val defines a set with atoms X . We need to show that X is orbit-finite. Let
S = {a1, . . . , an} be the image of val. In the first order formula φ(x̄ȳ) we replace
the free variables in x̄ by constants from S according to val, and we obtain a
formula φ′(ȳ). By Proposition 4, the formula φ′(ȳ) defines an S-supported set Y
of k-tuples of Atoms. Since the atoms are oligomorphic, it is not difficult to see
that Y is orbit-finite.

Now the set expression e(x̄) can be (informally) rewritten as follows:

{e∗(x̄ȳ) | ȳ ∈ Y }.

By this we mean that each element of X is a set with atoms defined by the set
expression e∗(x̄ȳ) together with a valuation which maps the tuple of free variables
x̄ to a tuple of atoms according to val, and the tuple of free variables in ȳ to some
tuple of atoms in Y . Hence, elements of X are determined by k-tuples in Y .

22

Take k-tuples b̄1 and b̄2 that belong to the same S-orbit of Y . Let val1 and
val2 be extensions of the valuation val which additionally map the variables in
the tuple ȳ to the corresponding atoms in the tuples b̄1 and b̄2, respectively. The
set expression e∗(x̄ȳ) together with each of the valuations val1 and val2 defines
elements of X . We denote them by x1 and x2, respecitively. There exists π ∈
Aut(Atoms, a1, . . . , an) which maps the tuple b̄1 to the tuple b̄2. It is not difficult
to show that such a π maps x1 to x2. Hence, x1 and x2 are in the same S-orbit.
Since there are finitely many S-orbits in Y , it follows that there are finitely many
S-orbits in X , which finishes the proof.

Both in [P1] and [P2] we work within the framework of sets with atoms but
in [P1] we confine to those that are definable. Below we show that every orbit-
finite set with atoms is related by a finitely supported bijection to a definable set
with atoms. Together with Proposition 5 this implies that orbit-finite and definable
sets with atoms are essentially equivalent.

As a first step we prove that orbit-finite sets with atoms can be represented as
sets of tuples of atoms modulo a first-order definable equivalence relation. We
need an auxiliary lemma.

Lemma 6. Let ∼ be an S-supported equivalence relation on a set with atoms X ,
then the quotient X/∼ is an S-supported set with atoms.

Proof. Let S = {a1, . . . , an}. Observe that X is an S-supported set itself. Take
π ∈ Aut(Atoms, a1, . . . , an). We need to show that π ·X/∼ = X/∼. Since ∼ is
an S-supported relation, for every x ∈ X , we have π · [x]∼ ⊆ [π · x]∼. Moreover,
the mapping x 7→ π · x is bijective. Since the equivalence classes of ∼ form a
partition of the set X , it follows that indeed π ·X/∼ = X/∼.

It remains to show that X/∼ is a “legal” set with atoms, i.e., that it is hered-
itarily finitely supported. We already know that X/∼ is finitely supported. Take
an equivalence class [x]∼. Since x is an element of X it has some finite support
T = {b1, . . . , bl}. Let π ∈ Aut(Atoms, a1, . . . , an, b1, . . . , bl). Then π · [x]∼ =
[π · x]∼ = [x]∼. Hence, the set [x]∼ is supported by S ∪T . Elements of the equiv-
alence classes, and elements of those elements, and so on, are finitely supported,
since X is hereditarily finitely supported.

Proposition 7. Let X be an S-supported set which is a single S-orbit. Then X is
in an S-supported bijection with a set O/∼, where O is an S-orbit of Atomsm,
and ∼ is an equivalence relation definable by a first order formula with 2m free
variables and constants from S.

23

Proof. Take some element x of X , and let ū be an ordered tuple of all elements in
some support of x. LetO ⊆ Atomsm be the S-orbit of the tuple ū. We consider a
function f : O → X which for π ∈ Aut(Atoms, a1, . . . , an), maps π · ū to π · x.
This function is well-defined. Indeed, if π · ū = σ · ū, then σ−1π · ū = ū. Since
the set of atoms in ū supports x, this implies that σ−1π · x = x, and π · x = σ · x.
Moreover, it follows from the definition of f that it is supported by S. Let∼ be the
kernel of f , i.e., an equivalence relation where v̄ ∼ w̄ if and only if f(v̄) = f(w̄).
It is not difficult to see that the relation ∼ is also S-supported. Therefore, by
Lemma 6 the quotient O/∼ is an S-supported set with atoms. The function f
induces an S-supported bijection between O/∼ and X . The equivalence class
[v̄]∼ is mapped to f(v̄).

It remains to show that∼ is first-order definable. To do this we observe that∼
is an S-supported subset of Atomsm × Atomsm. This follows from the fact
that f is supported by S. Indeed, if v̄ ∼ w̄, then f(v̄) = f(w̄), hence for every
automorphism π ∈ Aut(Atoms, a1, . . . , an) we have f(π·v̄) = f(π·w̄), therefore
π · v̄ ∼ π · w̄. By Proposition 4, the equivalence relation ∼ is definable by a first
order formula with 2m free variables and constants from S.

Example 13. Let Atoms be natural numbers with equality. The set of two-
element subsets of Atoms is related by an equivariant bijection to the set O/∼,
where O is the single orbit of pairs of distinct atoms, and for every two distinct
atoms a, b we have (a, b) ∼ (b, a), i.e., ∼ is defined by the formula

(x1 = y1 ∧ x2 = y2) ∨ (x1 = y2 ∧ x2 = y1).

Theorem 8. Every orbit-finite set with atoms is in a finitely supported bijection
with a definable set with atoms.

Proof. First, let us deal with the special case of single-orbit sets. Let X be an S-
supported set which is a single S-orbit, where S = {a1, . . . , an}. By Proposition 7
X is related by an S-supported bijection to a set O/∼, where O is an S-orbit
of Atomsm, and ∼ is an equivalence relation definable by a first order formula
with 2m free variables and constants from S. We show that O/∼ is a definable
set with atoms.

Let x̄ and ȳ be m-tuples of variables, and let ϕ(x̄ȳ) be a first order formula
that defines ∼. Let ā be an m-tuple of atoms. A set expression

e∗(ȳ) = {x̄ | x̄ ∈ Atomsm, ϕ(x̄ȳ)}

with m free variables together with a valuation that maps the variables in the tuple
ȳ to the corresponding atoms in the tuple ā defines the equivalence class of ā.

24

The set O/∼ consists of equivalence classes of tuples in O. Let ψ(ȳ) be a first
order formula with m free variables that defines O. Then the quotient O/∼ is
defined by

e = {e∗(ȳ) | ȳ ∈ Atomsm, ψ(ȳ)}.

According to the definition, a set expression cannot use constants. Therefore,
we have to slightly modify e. In the formulas ϕ and ψ every constant ai from S
has to be replaced with a free variable zi. The new expression has an n-tuple z̄
of free variables. Together with a valuation which maps every zi to ai it defines
O/∼.

Now let X be any orbit-finite set with atoms supported by S = {a1, . . . , an};
thenX is a disjoint union of finitely many S-orbitsX1, . . . , Xl. Above we showed
that for every i ∈ {1, . . . , l}, the orbit Xi is related by an S-supported bijection to
a set X ′i definable by a set expression

{e∗i (ȳz̄) | ȳ ∈ Atomsmi , ψi(ȳz̄)}

together with some valuation vali. The problem is that the sets X ′i might not be
disjoint. Therefore, instead of each X ′i we take X ′i × {i} which is definable by a
set expression

ei(z̄) = {
(
e∗i (ȳz̄), i

)
| ȳ ∈ Atomsmi , ψi(ȳz̄)},

where
(
e∗i (ȳz̄), i

)
is a formal tuple of a set expression e∗i (ȳz̄) and an integer i.

Then the set X is related by an S-supported bijection to a set with atoms defined
by a set expression which is a formal union of the set expressions ei(z̄) together
with a valuation induced by the valuations vali (we make sure that the sets of free
variables in the expressions ei are disjoint).

It should be stressed that the correspondence between orbit-finite and definable
sets with atoms crucially relies on Atoms being an oligomorphic structure.

Example 14. Take Atoms to be integer numbers with order. Recall from Exam-
ple 9 that the set of pairs of integers has infinitely many orbits under the action
of Aut(Z, <). However, the set of pairs of atoms is obviously definable by a set
expression {(y1, y2) | (y1, y2) ∈ Atoms}.

Relation to nominal sets. In the definition of a nominal set, as given in [25],
atoms are assumed to have no structure except for equality, i.e., Atoms are fixed
to be (N,=). A nominal set is a set X together with an action of the group of

25

all permutations of atoms, such that every element of X is finitely supported.
It follows from results of Ciancia and Montanari [18, 19] that every orbit-finite
nominal set is related by a finitely supported bijection to an orbit-finite set with
atoms.

3. Overview of the results
Having introduced the key notions of the constraint satisfaction paradigm, and the
language of sets with atoms, we shall now give a summary of the most important
results of the three papers which constitute this thesis.

3.1. Deciding definable CSP instances [P1]
In [P1] we study definable CSP instances, where the set of variables, the domain,
and the set of constraints are definable sets with atoms. Most of the time Atoms
are fixed to be natural numbers with the equality relation.

Example 15. Consider the following instance of 3-colorability. The graph has
infinitely many vertices which are pairs of distinct atoms, i.e., the set of variables
is defined by the set expression {(a, b) | a, b ∈ Atoms, a 6= b}. The domain is
the set of possible colors, say {0, 1, 2}. For every triple of distinct atoms a, b, c
there is an edge between the vertices (a, b) and (b, c). So the set of constraints is
defined by

{
(
((a, b), (b, c)), R

)
| a, b, c ∈ Atoms, a 6= b ∧ b 6= c ∧ a 6= c},

where R is the expression {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}.

In the above example the domain of the instance is finite. In general, we are
interested in definable instances over possibly infinite templates. A definition of a
template is the same as in the classical CSP, but now the template can be an infinite
relational structure, i.e., its domain, as well as the number of relations might be
infinite. We assume templates to be locally finite, which means that every relation
in the structure is finite.

Example 16. In a generalised 2-colorability problem we ask for a coloring of a
graph, but the set of possible colors is infinite. Every vertex is assigned a set of two
colors (that come from the infinite set). As usual, each vertex has to be mapped
to one of the two colors assigned to it, such that no two adjacent vertices share

26

the same color. This problem can be seen as a constraint satisfaction problem
over a definable, locally finite template with infinitely many binary relations. The
domain is the set of atoms defined by {a | a ∈ Atoms}, and the set of relations is

{{(a, c), (a, d), (b, c), (b, d)} | a, b, c, d ∈ Atoms, a 6= b ∧ c 6= d}.

This set of relations has three orbits. An orbit of a relation depends on how many
colors the sets {a, b} and {c, d} have in common. If the sets of colors are equal
then the relation contains two pairs. If the sets of colors have a one-element in-
tersection then there are three pairs in the relation. If they are disjoint then the
relation has four elements. The template for the generalised 2-colorability prob-
lem is therefore locally finite.

The main result of [P1] is decidability of definable CSP instances over locally
finite templates.

Theorem 9. For any definable, locally finite template T, it is decidable whether a
given definable instance I over T has a solution.

In [P1] we prove the above theorem for the special case of equivariant tem-
plates and instances, and we indicate how our arguments can be generalised to
cover the general case. In the sketch of the proof presented below we also implic-
itly restrict to equivariant templates and instances.

The idea is to show decidability of instances definable over Atoms that are
rational numbers with order. Then it remains to notice that instances definable
by formulas which use the equality relation only are a special case of instances
definable by formulas that use the order relation. To avoid confusion, whenever
we talk about instances definable over Atoms that are rational numbers with or-
der we indicate this by writing order-definable. Moreover, sets equivariant with
respect to the action of the group Aut(Q, <) we call monotone-equivariant.

Take an order-definable instance I over a locally finite template T, and con-
sider the space of all assignments of values to variables with the topology of point-
wise convergence (cf. [35]). We notice that the space of solutions hom(I,T)3 is
its compact subspace. We further show that the automorphisms group Aut(Q, <)
acts continuously on hom(I,T), and we use a theorem by Pestov to conclude that
I has a solution if and only if it has a monotone-equivariant solution.

Theorem 10 (Pestov [43]). If the topological group Aut(Q, <) acts continuously
on a nonempty compact space then this action has a fixpoint.

3Recall that a solution can be seen as a homomorphism.

27

It follows from general principles of equivariant computation on orbit-finite
structures [10, 7] that the existence of a monotone-equivariant solution can be
decided, which concludes the proof.

In [P1] we also show that many results regarding the complexity, as well as the
algebraic properties, of the classical constraint satisfaction problem can be gener-
alized to the case of definable, locally finite templates. An example is Theorem 3,
i.e., the characterisation of templates of bounded width. A locally finite template
T has bounded width if there exist numbers k ≤ l such that for every finite in-
stance over T the (k, l)-consistency algorithm provides the correct anwser. Note
that this definition is exactly the same as for finite templates, most importantly it
concerns only finite instances.

Theorem 11. Let T be a locally finite structure that is a core. Then T has bounded
width if and only if T has a pair of weak near unanimity polymorphisms v and w
of arity 3 and 4, respectively, satisfying v(y, x, x) ≈ w(y, x, x, x).

A relational structure is a core if every unary polymorphism of T is a monomor-
phism (this extends the notion of a core for finite structures). We show that for
a definable, locally finite template T a computationally equivalent core can be
effectively constructed.

To prove Theorem 11 we first make an easy observation that T has bounded
width if and only if its every finite subtemplate has bounded width, where by
a subtemplate we mean a relational structure whose domain is a subset of the
domain of T, and whose relations are relations from T. We say that an identity
s ≈ t is linear if s and t are terms with at most one function symbol. We use a
compactness argument to prove that a locally finite template has polymorphisms
that satisfy a set of linear identities if and only if its every finite subtemplate has
this property. This, together with the characterisation of bounded width for finite
templates (see Theorem 3), finishes the proof.

We also show that if the template T is definable then the condition given in
Theorem 11 is effective. We recall the standard construction (see e.g. [2]) that
allows us to view polymorphisms of T satisfying a set of identities as a solution
to a certain CSP instance over T. We take the instance whose solutions are pairs
of polymorphisms v and w characterising bounded width, and notice that it is
definable and computable from T. Hence, by Theorem 9 the existence of such
polymorphisms can be decided.

We further study in more detail the complexity of deciding definable instances
over finite templates. For a computational class L we define an “exponentially

28

bigger” class exp(L). The formal definition uses padding; here let us only men-
tion that exp(L) = PSpace, exp(PTime) = ExpTime, and so on. Recall that by
CSP(T) we denote the classical constraint satisfaction problem whose instances
are finite CSP instances over a fixed template T. We obtain the following

Theorem 12. Let T be a finite template such that CSP(T) is complete for a com-
plexity class L under logarithmic space reductions. Then deciding definable in-
stances over T is complete for the complexity class exp(L) under logarithmic
space reductions.

To decide whether an order-definable instance I over a finite template T has
a monotone-equivariant solution we construct a finite instance I∗ over T, whose
variables are orbits of I (with respect to the action of the group Aut(Q, <)). It
has a solution if and only if I has a monotone-equivariant solution. If I is defin-
able over Atoms that are natural numbers with equality, then the size of I∗ is at
most exponential in the size of the set expression defining I. This results in an
exponential blow-up in complexity, and proves the upper bound in Theorem 12.
To show the lower bound we use a padding argument.

Theorem 12 implies, for example, that 3-colorability of definable graphs is
NExpTime-complete.

3.2. When do Turing machines with atoms determinise? [P2]
In [P2] we fix Atoms to be natural numbers with the equality relation, and we
consider Turing machines with atoms (TMA) that are defined almost the same as
the classical Turing machines, only their input and work alphabets, state space,
and transition relation are assumed to be orbit-finite sets with atoms.

Example 17. Let the input alphabet be the set of atoms. Consider a Turing ma-
chine with a state space Atoms ∪ {⊥, accept}, where ⊥ is the initial state. The
machine reads the first letter a of the input word and loads it into the state. Then it
scans the word and accepts if it finds another letter a. This machine recognises the
language of those words where the first letter appears at least twice (the machine
is in fact a deterministic automaton).

In [9] it was shown that there exists an orbit-finite alphabet A, and a lan-
guage L over A recognised by some nondeterministic TMA, such that no deter-
ministic TMA recognises L. This motivated a definition of standard alphabets,
i.e., alphabets for which the set of languages recognised by deterministic TMAs

29

is equal to the set of languages recognised by nondeterministic TMAs. It was left
open whether being standard is a decidable property of alphabets. In [P2] we use
the constraint satisfaction framework to answer this question in the positive.

In this section, whenever we talk about a relational structure we assume it to
be finite, and its vertices to be atoms (every vertex is a different atom). We present
our results in the language of so-called patched structures.

Let P be a finite set of finite relational structures. Then the set AP of all
relational structures isomorphic to some structure in P is an orbit-finite set with
atoms. Moreover, it is not difficult to see that every orbit-finite set with atoms is
related by an equivariant bijection toAP , for some finite set of relational structures
P . Hence, we can assume all alphabets under consideration to be of this form. The
intuition is that the structures in P specify the “shapes” of letters in AP .

Whole words over an alphabet AP also correspond to certain structures. For a
finite set P of relational structures, a linearly P-patched structure is a relational
structure K together with a linearly ordered family of patches that cover K. A
patch is a substructure (not necessarily induced substructure) of K isomorphic
to some element of P . We assume that every vertex and every hyperedge of K
belongs to some patch.

Example 18. If the family P contains a single undirected graph with two vertices
and an edge between them, then a linearly P-patched structure is an undirected
graph without isolated vertices with a linear order on the set of edges.

Observe that there is a one-to-one correspondence between words over the
alphabet AP and linearly P-patched structures. Therefore, TMAs can be seen as
recognisers of linearly patched structures.

An isomorphism between linearly P-patched structures is a sequence of iso-
morphisms between corresponding patches (the i-th patch of the first structure has
to be mapped to the i-th patch of the second structure) that forms an isomorphism
of the whole structures. The starting point to the characterisation of standard al-
phabets is the following theorem of Bojańczyk et al.

Theorem 13 (Bojańczyk, Klin, Lasota, Toruńczyk [9]). An alphabetA is standard
if and only if the language

{vw | v and w are isomorphic}

is recognised by a deterministic TMA.

30

Informally, the alphabetAP is standard if and only if the isomorphism problem
for linearly P-patched structures can be solved by a deterministic TMA.

The initial insight of [P2] is that the isomorphism problem for linearly P-
patched structures can be expressed as a CSP instance. For any linearlyP-patched
structure M we define an equivalence relation∼M on the set of its vertices. The re-
lation ∼M holds between two vertices if they belong to exactly the same patches.
The equivalence classes of this relation, called bags, inherit a linear order from
the lexicographic order induced by the order of the patches of M. The i-th bag is
denoted by BM

i . Now, let M and K be linearly P-patched structures. The vari-
ables of an instance IMK are pairs of corresponding bags (BM

i , B
K
i), and the values

are bijections between them (we only do the construction for so-called “similar”
structures, where the corresponding bags have the same size and belong to the
same patches). For every pair of corresponding patches pMj and pKj of structures M
and K, respectively, there is a constraint which says that the bijections from the
bags contained in the patch pMj to the bags contained in the patch pKj form an
isomorphism from pMj to pKj .

We show that the isomorphism problem from Theorem 13 is recognisable by
a deterministic TMA if and only if there exist numbers k and l such that the (k, l)-
consistency algorithm provides a correct answer for every instance IMK . The right-
to-left implication follows from the fact that a deterministic TMA can perform
the consistency algorithm. For the other direction, we need to show that if AP is
standard, and the consistency algorithm answers ’YES’ then the input structures
are indeed isomorphic. This we prove by showing that the nonempty family of
partial solutions constructed by the algorithm can be used to translate an accepting
run of a TMA over a word vv, to an accepting run over a word vw (the parameters
k, l are chosen depending on the Turing machine that solves the isomorphism
problem).

For a finite set of structures P , all CSP instances IMK are over some orbit-
finite template TP . Moreover, it can be shown that any instance of CSP(TP) is
essentially of the form IMK , for some structures M and K. The above result can be
therefore phrased as follows:

Theorem 14. For any finite set of relational structures P , the alphabet AP is
standard if and only if the template TP has bounded width.

The final step is to show that the above characterisation of standard alphabets
is effective. In [P2] we do this by constructing a finite structure that has bounded
width if and only if TP has bounded width. The construction is natural but tech-
nically involved. In [P1] we were able to significantly simplify this argument.

31

Since TP is an orbit-finite, locally finite template computable from P , we use
Theorem 11 to conclude the decidability of bounded width.

In the last part of [P2] we relate our results concerning TMAs to logics over
relational structures. The least fixpoint logic (LFP) is an extension of first order
logic by a fixpoint operator (for a precise definition see e.g. [27]). Formulas of
LFP can be evaluated over linearly P-patched structures. It turns out that the
expressive power of this logic is the same as the expressive power of determin-
istic TMAs, i.e., for a set of linearly P-patched structuresM, we show that the
following conditions are equivalent:

• there exists an LFP formula φ such thatM = {M |M |= φ},

• there exists a deterministic TMA that accepts exactly the structures inM.

By adding to LFP the possibility of counting we obtain the least fixpoint logic
with counting (LFP+C) (see e.g. [27]). The above result holds also for LFP+C,
since the expressive power of those logics over linearly P-patched structures is
the same.

The main open problem in descriptive complexity theory asks about the ex-
istence of logic for PTime. By this we mean a logic whose formulas would de-
fine exactly the same sets of structures as sets of structures whose encodings are
recognised by (classical) deterministic Turing machines in polynomial time (for
details see e.g. [27]). A famous result independently showed by Immerman and
Vardi [32, 48] says that LFP captures PTime over ordered strucutres (structures
with a linear order on the set of vertices). On the other hand, Cai, Fürer, and
Immerman [17] proved that even the more expressive logic LFP+C does not cap-
ture PTime over all structures. Using our results on TMAs we obtain a common
generalisation of those results.

Theorem 15. For a finite set of relational structuresP , the logic LFP (and LFP+C)
captures polynomial time over linearly P-patched structures if and only if the al-
phabet AP is standard.

In the light of Theorems 11 and 14 the above characterisation is effective.

3.3. A necessary condition for tractability of valued CSPs [P3]
In [P3] we no longer work within the framework of sets with atoms. We con-
sider a different generalisation of the classical CSP, namely, the valued constraint
satisfaction problem (VCSP), which fall into the area of discrete optimisation.

32

Before presenting the contribution of [P3] we provide basic definitions and exam-
ples showing how the main CSP notions are modified to capture the optimisation
aspect. For details we refer to the survey by Jeavons et al. [34].

By Q = Q∪{∞}we denote the set of rational numbers with (positive) infinity.
A cost function on a set D of arity n is a function % : Dn → Q. A feasibility
relation of % is defined by Feas(%) = {x̄ ∈ Dn | %(x̄) is finite}. Whenever we talk
about polymorphisms of cost functions we mean polymorphisms (in the sense of
Section 1) of their feasibility relations.

In an instance of the valued constraint satisfaction problem the constraints not
only specify the allowed combinations of values, but also a cost of each such
combination. The goal is to minimise an aggregate cost of an assignment.

Definition 6 (VCSP Instance). An instance of the valued constraint satisfaction
problem is a triple (V,D, C), where V is a set of variables, D is a set of their
possible values, called a domain, and C is a set of constraints. A constraint is a
pair (x̄, %), where x̄ is an n-tuple of variables, and % : Dn → Q is an n-ary cost
function on D.

The cost of an assignment f : V → D is given byCost(f) =
∑

(x̄,%)∈C %(f(x̄))
(where f is applied component-wise). To solve I is to find an assignment with a
minimal cost, called an optimal assignment.

Many natural optimisation problems can be phrased in the valued constraint
satisfaction framework.

Example 19 (Max-Cut). In the Max-Cut problem, one needs to find a partition
of the vertices of a given graph into two sets, such that the number of edges with
ends in different sets is maximal.

The Max-Cut problem can be expressed as a valued constraint satisfaction
problem. The domain has two elements 0 and 1. Variables in the instance are
vertices of the graph, and for each edge e there is a constraint of a form (e, %XOR),
where %XOR is a binary cost function defined by

%XOR(x, y) =

{
1 if x = y,

0 otherwise.

Any assignment of the values 0 and 1 to the variables corresponds to a partition of
the graph. The cost of an assignment is equal to the number of edges of the graph
minus the number of cut edges.

33

Example 20 (Min-Vertex-Cover). A cover of an undirected graph G(V,E) is a
subset V ′ of the set of vertices of the graph, such that every edge is incident to
at least one vertex in V ′. In the Min-Vertex-Cover problem, one needs to find a
cover of a given graph with a minimal number of vertices.

Min-Vertex-Cover seen as a VCSP has a domain {0, 1}, where assigning 1 to
a vertex means choosing it to be in the cover. The set of variables is V . For every
edge there is a constraint of the form (e, %MVC), where

%MVC(x, y) =

{
∞ if x = y = 0,

0 otherwise.

Constraints of this kind are used to enforce an assignment of 0’s and 1’s to the
vertices of the graph to be a cover. Moreover, for every vertex there is a constraint
of the form (v, %1), where

%1(x) =

{
1 if x = 1,

0 if x = 0.

Those constraints “count” the number of vertices in the cover. If the cost of an
assignment is finite then it is equal to the number of vertices in a corresponding
cover. If it is infinite then the assignment does not specify a cover.

The valued constraint satisfaction problem generalises the constraint satisfac-
tion problem (as presented in Section 1). CSP instances correspond to those VCSP
instances where all cost functions in all constraints assign only cost 0 or∞ to ev-
ery tuple. This is because such cost functions can be seen as relations.

In [P3] we consider non-uniform VCSPs. That is, for a finite set of cost func-
tions Γ (over a fixed domain D) called a valued constraint language, we consider
the problem VCSP(Γ) whose instances are VCSP instances where all cost func-
tions in all constraints come from Γ.

We study the complexity of such problems using the algebraic approach in-
troduced in [20] (which is a generalisation of the algebraic approach to the CSP).
The key notion is that of a weighted polymorphism. Let Polk(Γ) denote the set of
all k-ary polymorphisms of a valued constraint language Γ.

Definition 7 (Weighted polymorphism). Let Γ be a valued constraint language.
A function ω : Polk(Γ) → Q is a weighted polymorphism of Γ if it satisfies the
following conditions:

34

•
∑

f∈Polk(Γ) ω(f) = 0,

• if ω(f) < 0 then f is a projection,

• for any cost function % ∈ Γ, and any list of n-tuples x̄1, . . . , x̄k ∈ Feas(%),∑
f∈Polk(Γ)

ω(f) · %(f(x̄1, . . . , x̄k)) ≤ 0, where f is applied component-wise.

Weighted polymorphisms characterise the complexity of VCSPs [20] in a sim-
ilar manner as polymorphisms characterise the complexity of CSPs.

In [P3] we introduce and study a notion of a positive clone Pol+(Γ) of a con-
straint language Γ. A positive clone contains all those polymorphism of Γ which
are assigned a positive weight by some weighted polymorphism of Γ. Our key
result generalises Theorem 2:

Theorem 16. Let Γ be a valued constraint language that is a core. If there is no
idempotent cyclic polymorphism in Pol+(Γ), then VCSP(Γ) is NP-hard.

A notion of a core language extends the notion of a core template. A val-
ued constraint language Γ is a core if all unary polymorphisms in Pol+(Γ) are
bijective. We show that every valued constraint language has a computationally
equivalent core language (using similar arguments as in the previously known re-
sult for the special case of so-called finite-valued CSPs [31, 47]).

The key idea of the proof of Theorem 16 lies in the fact that any relation
compatible with Pol+(Γ) can be encoded as an instance of VCSP(Γ). This we
show using Farkas’ lemma. If there is no idempotent cyclic polymorphism in
Pol+(Γ) then there is a relation R that corresponds to a certain NP-hard problem
and is compatible with Pol+(Γ) [46, 3]. This ends the proof.

We further conjecture that the lack of a cyclic polymorphism in the positive
clone is the only reason for intractability of VCSPs (this generalises the Algebraic
Dichotomy Conjecture).

Conjecture 3 (VCSP Algebraic Dichotomy Conjecture). Let Γ be a valued con-
straint language that is a core. If there is no idempotent cyclic polymorphism in
Pol+(Γ), then VCSP(Γ) is NP-hard. Otherwise it is polynomial-time solvable.

Finally, we show that the above conjecture agrees with all known complexity
classifications for valued constraint satisfaction problems.

35

It is worth mentioning that shortly after [P3] was published Kolmogorov et
al. [36] proved a result which together with Theorem 16 implies an equivalence
of the CSP and VCSP dichotomy conjectures. Specifically, they showed that
for a core language Γ, if the underlying feasibility relations form a tractable
CSP language, and there is an idempotent cyclic polymorphism in Pol+(Γ), then
VCSP(Γ) is tractable.

36

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] Libor Barto. The collapse of the bounded width hierarchy. Journal of Logic
and Computation, 2014.

[3] Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms, and
the constraint satisfaction problem. Logical Methods in Computer Science,
8(1), 2012.

[4] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by
local consistency methods. J. ACM, 61(1):3:1–3:19, January 2014.

[5] George Birkhoff. On the structure of abstract algebras. In Proceedings of
the Cambridge Philosophical Society, volume 31, pages 433–454, 1935.

[6] Mikołaj Bojańczyk. Computation in sets with atoms. Manuscript.
http://atoms.mimuw.edu.pl, November 2013.

[7] Mikołaj Bojańczyk, Laurent Braud, Bartek Klin, and Sławomir Lasota. To-
wards nominal computation. In Proc. POPL’12, pages 401–412, New York,
2012. ACM.

[8] Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in
nominal sets. Logical Methods in Computer Science, 10, 2014.

[9] Mikołaj Bojańczyk, Bartek Klin, Sławomir Lasota, and Szymon Toruńczyk.
Turing machines with atoms. In Proc. LICS’13, pages 183–192, 2013.

[10] Mikołaj Bojańczyk and Szymon Toruńczyk. Imperative programming in sets
with atoms. In Proc. FSTTCS 2012, volume 18 of LIPIcs, pages 4–15, 2012.

37

[11] Andrei A. Bulatov. Tractable conservative constraint satisfaction problems.
In Proc. LICS’03, pages 321–330, 2003.

[12] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction prob-
lems on a 3-element set. J. ACM, 53(1):66–120, January 2006.

[13] Andrei A. Bulatov. Bounded relational width. Manuscript, 2009.

[14] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the
complexity of constraints using finite algebras. SIAM J. Comput., 34:720–
742, 2005.

[15] Andrei A. Bulatov, Andrei A. Krokhin, and Peter Jeavons. Constraint satis-
faction problems and finite algebras. In Proc. ICALP ’00, pages 272–282,
2000.

[16] Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra.
Number 78 in Graduate Texts in Mathematics. Springer-Verlag, 1981.

[17] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on
the number of variables for graph identification. Combinatorica, 12(4):389–
410, 1992.

[18] Vincenzo Ciancia. Accessible functors and final coalgebras for named sets.
PhD thesis, University of Pisa, 2008.

[19] Vincenzo Ciancia and Ugo Montanari. Symmetries, local names
and dynamic (de)-allocation of names. Information and Computation,
208(12):1349 – 1367, 2010.

[20] David Cohen, Martin Cooper, Páidí Creed, Peter Jeavons, and Stanislav
Živný. An algebraic theory of complexity for discrete optimization. SIAM
J. Comput., 42(5):1915–1939, 2013.

[21] Vìctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint sat-
isfaction, bounded treewidth, and finite-variable logics. In Principles and
Practice of Constraint Programming, volume 2470 of LNCS, pages 310–
326. Springer Berlin Heidelberg, 2002.

[22] Rodney Downey and Michael Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer-Verlag New York, 1999.

38

[23] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: A study through datalog and group
theory. SIAM J. Comput., 28(1):57–104, February 1999.

[24] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. An EATCS
Series. Springer-Verlag Berlin Heidelberg, 2006.

[25] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syn-
tax with variable binding. Formal Aspects of Computing, 13(3-5):341–363,
2002.

[26] Martin Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. J. ACM, 54(1):1:1–1:24, March 2007.

[27] Martin Grohe. Descriptive complexity, canonisation, and definable graph
structure theory. http://www.automata.rwth-aachen.de/~grohe/cap/index.en,
December 2013.

[28] David Hobby and Ralph McKenzie. The structure of finite algebras, vol-
ume 76 of Contemporary Mathematics. American Mathematical Society,
1988.

[29] Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cam-
bridge, 1997.

[30] Karel Hrbacek and Thomas Jech. Introduction to set theory. Monographs
and textbooks in pure and applied mathematics. M. Dekker, New York, 1999.

[31] Anna Huber, Andrei A. Krokhin, and Robert Powell. Skew bisubmodularity
and valued CSPs. In Proc. SODA ’13, pages 1296–1305. SIAM, 2013.

[32] Neil Immerman. Upper and lower bounds for first order expressibility. Jour-
nal of Computer and System Sciences, 25(1):76 – 98, 1982.

[33] Peter Jeavons. On the algebraic structure of combinatorial problems. Theo-
retical Computer Science, 200(1-2):185 – 204, 1998.

[34] Peter Jeavons, Andrei A. Krokhin, and Stanislav Živný. The complexity of
valued constraint satisfaction. Bulletin of the EATCS, 113, 2014.

[35] John Kelley. General topology. Springer-Verlag New York, 1975.

39

[36] Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolinek. The com-
plexity of general-valued CSPs. CoRR, abs/1502.07327, 2015.

[37] Marcin Kozik, Andrei A. Krokhin, Matt Valeriote, and Ross Willard. Char-
acterizations of several maltsev conditions. Algebra universalis, 73(3-
4):205–224, 2015.

[38] Richard Ladner. On the structure of polynomial time reducibility. J. ACM,
22(1):155–171, January 1975.

[39] Benoit Larose and Pascal Tesson. Universal algebra and hardness re-
sults for constraint satisfaction problems. Theoretical Computer Science,
410(18):1629 – 1647, 2009.

[40] Benoit Larose, Matthew Valeriote, and László Zádori. Omitting types,
bounded width and the ability to count. IJAC, 19(5):647–668, 2009.

[41] Benoit Larose and László Zádori. Bounded width problems and algebras.
Algebra universalis, 56(3-4):439–466, 2007.

[42] Miklós Maróti and Ralph McKenzie. Existence theorems for weakly sym-
metric operations. Algebra universalis, 59(3-4):463–489, 2008.

[43] Vladimir Pestov. On free actions, minimal flows, and a problem by ellis.
Trans. of the American Mathematical Society, 350(10):pp. 4149–4165, 1998.

[44] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science.
Cambridge University Press, New York, 2013.

[45] Thomas Schaefer. The complexity of satisfiability problems. In Proc. of the
10th ACM Symp. on Theory of Computing, STOC ’78, pages 216–226, 1978.

[46] Walter Taylor. Varieties obeying homotopy laws. Canadian Journal of Math-
ematics, 29(3):498–527, 1997.

[47] Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs.
In Proc. of the 45th ACM Symp. on Theory of Computing, STOC ’13, pages
695–704, 2013.

[48] Moshe Y. Vardi. The complexity of relational query languages (extended
abstract). In Proc. of the 14th ACM Symp. on Theory of Computing, STOC
’82, pages 137–146, 1982.

40

Locally Finite Constraint Satisfaction Problems
Bartek Klin∗, Eryk Kopczyński†, Joanna Ochremiak∗, Szymon Toruńczyk∗

University of Warsaw
Email: {klin,erykk,ochremiak,szymtor}@mimuw.edu.pl

Abstract—First-order definable structures with atoms are infi-
nite, but exhibit enough symmetry to be effectively manipulated.
We study Constraint Satisfaction Problems (CSPs) where both
the instance and the template are definable structures with atoms.
As an initial step, we consider locally finite templates, which
contain potentially infinitely many finite relations. We argue that
such templates occur naturally in Descriptive Complexity Theory.

We study CSPs over such templates for both finite and infinite,
definable instances. In the latter case even decidability is not
obvious, and to prove it we apply results from topological
dynamics. For finite instances, we show that some central results
from the classical algebraic theory of CSPs still hold: the
complexity is determined by polymorphisms of the template,
and the existence of certain polymorphisms, such as majority or
Maltsev polymorphisms, guarantees the correctness of classical
algorithms for solving finite CSP instances.

Index Terms—Sets with atoms; Constraint Satisfaction Prob-
lems

Once and for all, fix a countably infinite set A =
{1, 2, 3, . . .}, whose elements we call atoms.

I. INTRODUCTION

Example 1. Here is an easy puzzle: consider an (infinite)
graph G with ordered pairs of distinct atoms as vertices (here
we denote such a pair simply by ab, for a 6= b ∈ A), and with
an undirected edge ab—bc whenever a and c are distinct. Is
this graph 3-colorable?

The answer is negative, as G contains the subgraph:

12

23

34

45

51

31

42 53

14

25

checked by hand, is not 3-colorable. We do not know whether
this is the smallest non-3-colorable subgraph of G, but we
could not find a smaller one, and it is rather interesting to see
how big a graph we needed to check.

This motivates a harder puzzle: consider graphs with n-
tuples of distinct atoms as vertices, and edges defined by
quantifier-free (or even first order) formulas with equality, and

Supported by the Polish National Science Centre (NCN) grants
∗2012/07/B/ST6/01497 and †2012/07/D/ST6/02435.

with 2n variables that range over atoms; for G above, n = 2
and the set of edges is:{
{ab, dc} | a, b, c, d ∈ A, (b = d)∧(a 6= b)∧(c 6= d)∧(a 6= c)

}
.

Now the question is whether the 3-colorability of a graph
represented by a number n and a formula is decidable at all?
It is a standard exercise in logical compactness that a graph
is 3-colorable iff all its finite subgraphs are, but it may not be
clear whether there is a computable bound on the size of finite
subgraphs that need to be checked to ensure the colorability
of the entire graph.

Example 2. Systems of linear equations over the two-element
field Z2 can be augmented with atoms just as graphs can.
Consider n-tuples of distinct atoms as variable names, and let
a system of equations be defined by a formula similarly to
Example 1, for example (with n = 2):{
ab+ bc+ ca = 0 | a, b, c ∈ A, (a 6= b)∧ (b 6= c)∧ (a 6= c)

}
.

This system has a trivial solution where all variables have
value 0. To disallow that solution one may e.g. extend the
system by one more equation:

12 + 21 = 1.

Does the extended system have a solution? It turns out that it
does not, but a finite subsystem with no solutions again turns
out curiously bulky. Here is the smallest one that we have
managed to find:

12 + 21 = 1
12 + 23 + 31 = 0

21 + 13 + 32 = 0
23 + 34 + 42 = 0

31 + 15 + 53 = 0
13 + 34 + 41 = 0

32 + 25 + 53 = 0
42 + 25 + 54 = 0

15 + 54 + 41 = 0
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 1

Again, a question appears whether the solvability of equation
systems given by formulas over atoms is decidable, and if so,
what its complexity is.

The above are examples of so-called Constraint Satisfac-
tion Problems (CSPs). An instance I of a CSP is a set
of variables together with a set of constraints of the form

(
(x1, . . . , xn), R

)
, where the xi are variables and R is an n-

ary relation belonging to a fixed family of relations R over a
domain T ; the pair T = (T,R) is called a template for I.

For example, 3-colorability is a CSP for a template with
three elements (colors) equipped with a single binary inequal-
ity relation 6=. To see a graph as an instance, one considers
its vertices as variables, and adds a constraint

(
(x, y), 6=

)
whenever x and y are adjacent. An equation system E over
Z2, assuming that every equation is of the form x+y+z = 0
or x+ y = 1, can be seen as an instance over a template with
two elements 0 and 1, equipped with two relations:

Z = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},
S = {(0, 1), (1, 0)}.

To construct an instance, one picks constraints:(
(x, y, z), Z

)
for each x+ y + z = 0 in E,(

(x, y), S
)

for each x+ y = 1 in E.

A solution of an instance is an assignment f which maps ev-
ery variable to a template element, so that for every constraint(
(x1, . . . , xn), R

)
, the tuple of values

(
f(x1,), . . . , f(xn)

)
belongs to the relation R. It is useful to view a template
T = (T,R) as a relational structure with universe1 T , over
the signature R, with the tautological interpretation mapping.
A CSP instance I over the template T can then be viewed as a
relational structure, whose universe consists of its variables I ,
and the interpretation of a relation R ∈ R of arity n is the set
of those tuples x̄ ∈ In for which (x̄, R) is a constraint. Then
solutions of I correspond to homomorphisms of relational
structures from I to T.

The classical theory of CSPs tries to classify the com-
putational complexity of the following decision problem,
parametrized by a template T, with finite instances.

Problem: CSP(T)
Input: A finite instance I over T
Decide: Does I have a solution?

The algebraic approach to this end is particularly successful.
It is based on the observation that the complexity of CSP(T)
entirely depends on the algebra of polymorphisms (a multi-
variate generalization of the notion of an endomorphism) of
the template T [1]. For example, the fact that finite systems
of equations over Z2 can be solved in polynomial time can
be inferred from the fact that the relevant template has a so-
called Maltsev polymorphism [2], and the NP-completeness of
graph 3-coloring follows from the fact that the corresponding
template has no so-called cyclic polymorphisms [3]–[5].

Our Examples 1 and 2 do not fit the mainstream develop-
ment of CSP theory, since our instances are infinite. They are,
however, definable via first order expressions, in a sense made
precise in Section II. The aim of this paper is to formulate the
rudiments of CSP theory for definable structures. We define
and study the complexity of the following decision problem.

1In this paper, we adapt the convention that the universe of a relational
structure A is denoted with the corresponding italic letter A.

Problem: CSP-Inf(T)
Input: An expression defining an instance I over T
Decide: Does I have a solution?

We show that, for any fixed finite template T, this problem is
decidable, and specify tight complexity bounds. In particular,
the following result is a consequence of the results proved in
Section III.

Theorem 3. Let T be a finite template such that CSP(T) is
complete for a complexity class C under logarithmic space
reductions. Then CSP-Inf(T) is decidable and complete for the
complexity class exp(C) under logarithmic space reductions.

The general definition of the class exp(C) is given
in Section III-B; here we just mention that exp(L) =
PSPACE, exp(P) = EXP, exp(NP) = NEXP, etc.

Interestingly, our key technical tool for proving the upper
bound comes from topological dynamics, in the following
theorem due to Pestov:

Theorem 4 ([6]). Every continuous action of the topological
group Aut(Q,≤) on a compact space has a fixpoint.

This theorem is strongly related with Ramsey’s theorem
(see [7] for a generalization of this theorem, linking it to
Ramsey theory). In fact, the upper bound in Theorem 3 could
be proved directly with the use of Ramsey’s theorem.

In Section IV, we reverse the situation and consider finite
instances over infinite templates. We allow the templates to
have an infinite set of relations, but we assume them to be
locally finite, i.e., every relation is finite. Examples of such
CSPs appear in various contexts:

Example 5. Consider the following graph coloring problem.
Fix a positive integer k. Let G = (V,E) be a finite graph,
together with a labeling l : V →

(A
k

)
, where elements of A

are interpreted as colors.
The problem is to decide whether one can find a coloring

c : V → A such that c(v) ∈ l(v) for every v ∈ V and
c(v) 6= c(w) whenever v and w are adjacent in G.

This problem can be understood as a CSP over a (definable)
template whose domain is A, with a relation

RC,D = C ×D −∆

for every pair C,D ∈
(A
k

)
, where ∆ ⊆ A2 is the binary

diagonal relation. The instance corresponding to a graph has
V as the set of variables, and a constraint

(
(v, w), Rl(v),l(w)

)
for each pair of adjacent vertices v, w.

Note that while every finite instance over an infinite, lo-
cally finite template is trivially an instance over its finite
subtemplate, there may be no single finite subtemplate that
immediately fits all instances of interest. Since templates in
CSP theory are means of grouping large classes of similar
instances, it may sometimes be useful to consider infinite,
locally finite templates.

Situations where the set of admissible values for variables
is not fixed for all instances sometimes arise naturally. For

example, consider the cycle cover problem: given a directed
graph G, decide whether it contains a set of directed cycles
so that every vertex belongs to exactly one cycle. This is
equivalent to checking whether one can choose an outgoing
edge from every vertex so that no two chosen edges have the
same target. In other words, one wants to color every vertex
with one of its out-neighbours so that no two vertices get the
same color. Assuming a bound k on the out-degree of the
vertices of G, and labeling vertices of G with atoms in an
arbitrary way, this can be seen as a CSP instance over the
template from Example 5. Here graph vertices play the role
of colors, therefore the set of possible colors depends on the
instance.

Another example is that of Cai-Fürer-Immerman (CFI)
graphs [8] considered in Descriptive Complexity Theory:

Example 6. Consider a template with atoms as elements
and, for every triple of pairs of distinct atoms β =
((a, a′), (b, b′), (c, c′)), a ternary relation:

Rβ =
{

(a, b, c), (a, b′, c′), (a′, b, c′), (a′, b′, c)
}
.

To construct an interesting instance over this template, start
with a 3-regular graph G and label each edge e with a set
{a, a′} ⊆ A of two distinct atoms, so that labels of distinct
edges do not intersect. Let the edges of G be the variables of
the instance. For each vertex v adjacent to some edges e1, e2

and e3 add exactly one constraint(
(e1, e2, e3), Rβ

)
,

where β =
(
(a, a′), (b, b′), (c, c′)

)
arises from some ordering

of the unordered labels {a, a′}, {b, b′}, {c, c′} of the edges
e1, e2, e3. Note that even though there are eight possible
orderings, there are only two possible resulting relations Rβ .

Graphically, this can be seen as replacing every edge with
two nodes, and every vertex with one of two little hypergraphs:

·

·
·

·

·
·

◦
◦ ◦
◦ ←− −→

·

·
·

·

·
·

◦◦
◦ ◦

Such an instance has a solution if and only if one can
choose one of the two nodes for each edge of G so that for
each vertex v of G, the three nodes chosen for the adjacent
edges are connected by a hyperedge in the hypergraph for v.
Checking whether a given instance has a solution is called a
CFI query, and is the core of the Cai-Fürer-Immerman theorem
from Descriptive Complexity (see Section V for more on this
topic).

In Section IV we lift some central results from classical CSP
theory to the setting of locally finite templates. First, we prove
that the cornerstone result of the algebraic approach to CSP
still holds: the complexity of the CSP problem over a template
depends only on the set of polymorphisms over that template.
We also show that the important notion of a core template has
the expected properties, and that a definable template can be
effectively converted to its core.

Furthermore, we show that a locally finite template admits
a family of polymorphisms defined by a specified set of
linear identities iff each of its finite subtemplates admit such
polymorphisms. This proves a series of results analogous to
finite CSP theory: for example, if a locally finite template
T has a majority polymorphism or a Maltsev polymorphism
then specific polynomial time algorithms correctly solve finite
instances over T. Moreover, by the results of Section III, we
can effectively decide whether a given definable, locally finite
template T admits polymorphisms which satisfy a specified
set of linear identities. This allows us to prove statements
such as the one below, which follows from Corollary 35 and
Proposition 31 in Section IV, and characterizes those templates
for which the CSP problem can be solved by a certain well-
known bounded width algorithm.

Theorem 7. Let T be a definable, locally finite template. It is
decidable whether T has bounded width.

Coming back to Example 5, one may notice that not only
every particular instance there is over a finite template: in
fact, the entire graph coloring problem can be presented as a
CSP over a single finite template. To do this, impose a total
order on A; this defines a bijection from each l(v) to the set
[k] = {1, 2, . . . , k}. One can then consider a template of k
elements, with a relation

Ri,j = [k]× [k]− {(i, j)}

for each i, j ∈ [k], and translate a graph to be colored to an
instance over that finite template. In Section IV-C, we show
how this can be generalized: for any definable, locally finite
template T there is a finite template T̂, and a polynomial
time reduction of instances over T to equivalent instances
over T̂. This shows that CSP(T) is not computationally harder
then CSP(T̂). Moreover, if T̂ admits polymorphisms satisfying
some linear identities, then so does T. By the algebraic results
proved earlier in Section IV, and by results very recently
announced by Barto and Pinsker [9], this says that CSP(T̂)
is not harder than CSP(T).

Finally, in Section V we show how locally finite templates
streamline the (previously unpleasantly technical) proof of the
main result in [10], a characterization of those linearly patched
structures over which the least fixpoint logic LFP captures
polynomial time computations.

Related work

CSP for certain infinite instances were studied in [11]. All
instances there are periodic, i.e., invariant under an action of
a subgroup of finite index of the automorphism group of the
total order of integers. This is similar to our approach, as our
definable instances are also invariant under certain groups,
in particular the automorphism group of rational numbers.
However, the choice of a group makes a big difference: thanks
to model-theoretic properties of rationals we are able to prove
decidability results that do not hold in the setting of [11].
Indeed, one of the main points of that paper was to show

that for periodic instances, 3-colorability is undecidable. Proof
techniques used there are also quite different from ours.

The line of research started in [11] was continued in [12],
and certain infinite instances were studied also in [13]. In [12],
[13] it is argued that infinite periodic instances naturally
arise when studying large – perhaps of unknown size or
infinite – constraint networks whose constraints possess a high
degree of regularity or symmetry. We believe that relaxing the
periodicity assumption might be natural in many cases, and,
as we show, leads to a drastic improvement in the complexity
(in the case of 3-colorability, from undecidable by [11] to EXP
by Theorem 3). It would be interesting to look for a common
generalisation of these developments and ours.

More attention has been devoted to the study of finite
instances over infinite templates. In contrast to our work, the
templates there usually consist of only finitely many infinite
relations. In the most well-behaved case of ω-categorical
templates, central results of finite CSP still hold [14]–[16].
In particular, the complexity of templates depend only on
their polymorphisms, which gives complexity classifications
for large classes of ω-categorical templates [17]–[19]. Connec-
tions to Ramsey theory were studied in [20]. Our section IV
shows that some of these results hold for locally finite tem-
plates as well.

Sets with atoms are also known in Computer Science as
nominal sets [21]. In fact, our notion of definable set is almost
the same as the notion of orbit-finite set considered there: every
definable set is orbit-finite, and every orbit-finite nominal set
is isomorphic to a definable one [22]. We choose to define
our sets by first order formulas, but all results we show here
could be reformulated in terms of group actions, orbit-finite
sets and finite supports, studied in [21]. In fact, we used that
terminology in most previous work on computation theory
over sets with atoms [10], [23], [24], of which the present
paper is a natural continuation.

II. SETS WITH ATOMS

A. Definable sets

We introduce definable sets with atoms as follows. An
expression is either a variable ranging over atoms, or a finite
tuple of expressions, or a formal finite union of expressions,
or an integer, or a set-builder expression, which is a variable
binding construct of the form

{ e | v1, . . . , vn ∈ A, φ},

where e is an expression, v1, . . . , vn are bound variables, and
φ is a first order formula with equality as the only predicate,
whose free variables are contained in the free variables of e.
A quantifier-free expression is an expression which uses only
quantifier-free formulas, on every level, recursively.

If an expression e has free variables V , then any valuation
val : V → A defines in an obvious way the value X = e[val],
which is either a set, an atom, a tuple, or an integer.2 We say

2Tuples and integers could be encoded by standard set-theoretic tricks, but
to improve readability we refrain from that. To interpret unions of non-sets
we may treat the latter as singleton sets.

that X is a definable set with atoms and that it is defined by
e with valuation val. Note that the same set X can be defined
by many different expressions. We denote by D the set of all
definable sets. Observe that any element of a definable set is
definable.

Example 8. Examples of definable sets with atoms include:
• any atom, such as 1, as defined by the expression v, with

valuation v 7→ 1.
• any pair of atoms, such as (1, 2), as defined by the

expression (v, w), with valuation v 7→ 1, w 7→ 2.
• the set A of atoms itself, as defined by the expression
{v | v ∈ A}.

• for any n ∈ N, the set An of all n-tuples and A(n) of non-
repeating n-tuples of atoms, as defined by the expression

{(v1, . . . , vn) | v1, . . . , vn ∈ A, φ},

where φ is > in the case of An and
∧

1≤i<j≤n(vi 6= vj)

in the case of A(n).
An example of a definable function is the swapping function
s : A2 → A2, s(a, b) = (b, a), whose graph is defined by the
expression {((v, w), (w, v)) | v, w ∈ A}.

For any mathematical object (a relation, a function, a logical
structure, etc.), it makes sense to ask whether it is definable.
E.g., a definable relation on X,Y is a relation R ⊆ X × Y
which is a definable set. As a side remark, definable structures
over a finite signature correspond, up to isomorphism, to
structures which interpret in A (a notion from logic).

As a particular case of the above definition, a definable
instance is an instance I = (V,C) such that the set of vari-
ables V and the set of constraints C are definable. Definable
instances are represented by expressions, which are used as
inputs for the problem CSP-Inf(T) described in the Introduc-
tion.

Example 9. We show an expression describing the instance
from Example 1. Consider the following expressions.

R :
{

(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)
}

V :
{

(a, b) | a, b ∈ A, a 6= b
}

C :
{(

((a, b), (b, c)), R
)
| a, b, c ∈ A, a 6= b ∧ b 6= c ∧ a 6= c

}
I : (V,C)

They define, respectively, the inequality relation on the set
of integers {0, 1, 2}, the variables and the constraints of the
instance described in Example 1, and finally the instance itself.
In general, a definable instance may use parameters.

B. Group actions, equivariant sets and orbits

Recall that a group G acts on a set U if a mapping G×U →
U is provided, denoted (π, u) 7→ π ·u, such that 1 ·u = u and
(π · σ) · u = π · (σ · u), for all π, σ ∈ G, u ∈ U , and 1 the
identity element in G. An orbit under this action is any set of
the form {π · u : π ∈ G}, where u ∈ U .

Let Aut(A) denote the group of atom permutations, i.e.,
bijections π : A → A. If Aut(A) acts on a set U , then we

say that U is equivariant. Note that every equivariant set is
the disjoint union of its orbits.

The group Aut(A) naturally acts on the set D of definable
sets. Indeed, if π ∈ Aut(A) and X is a set defined by an
expression e and valuation val, then let

π ·X = π · e[val]
def
= e[val;π],

where val;π denotes function composition (i.e., (val;π)(v) =
π(val(v))). This is well defined: it is easy to prove by induc-
tion on expressions that e[val] = e′[val′] implies e[val;π] =
e′[val′;π]. For example, if π(1) = 2 and π(2) = 3, then
π · (1, 2) = (2, 3) and π · A2 = A2.

As a result, the group Aut(A) acts on D. Moreover, x ∈ X
implies π · x ∈ π ·X , for any π ∈ Aut(A) and definable sets
x,X . We say that a definable set X is equivariant if π ·X =
X for all π ∈ Aut(A). This is consistent with the previous
definition of equivariance, since Aut(A) then acts on X . The
orbits of X are its orbits under the action of Aut(A). We say
that X is orbit-finite if X has finitely many orbits.

The sets A, An and A(n), and the function s in Example 8
are equivariant. All sets in Example 9 are equivariant.

We will use the following results describing the action
of Aut(A) on definable sets. All these results follow, using
standard model-theoretic techniques (see e.g. [25]), from the
evident fact the structure A = (A,=) is homogeneous, i.e., ev-
ery isomorphism between two finite substructures of A extends
to an automorphism of A. In particular, it admits quantifier-
elimination, i.e., every first-order formula is equivalent to a
quantifier-free formula.

Theorem 10. Let X be a set definable by an expression
without free variables. Then:

1) X is equivariant.
2) X is definable by a quantifier-free expression which can

be computed in polynomial space from any expression
defining X .

3) X is orbit-finite, and each of its orbits is definable by a
quantifier-free expression.

4) If Y is an equivariant subset of X , then Y is definable
by a quantifier-free expression.

Proof: see Appendix A1.

Proposition 11. For definable sets X and Y , it is decidable
in polynomial space whether X ∈ Y , X ⊆ Y , X = Y .

Proof: see Appendix A2.
A system of orbit representatives of X is a set R which

contains exactly one element of each orbit of X .

Lemma 12. One can compute, in polynomial space, a system
of orbit representatives of a definable set X .

Proof: see Appendix A3.

C. Order-definable sets

We will sometimes find it advantageous to have a total
order < on A, isomorphic to the ordering of the rational

numbers. The development in Section II-A can be extended
to this setting, by the use of the total order relation < in first-
order formulas that define sets with atoms. Sets and functions
defined this way will be called order-definable. Clearly, any
definable set is also order-definable. When we want to make
clear that we do not allow the total order in the formulas, we
can speak about equality-definable sets.

Example 13. The total order relation < ⊆ A2 is order-defined
by the expression

{(a, b) | a, b ∈ A, a < b}.

In contrast, no total ordering on A is equality-definable.

Let Aut(A, <) be the group of monotone atom permu-
tations, i.e., automorphisms of the total order on A. The
notions of action, equivariance and orbits, can be developed as
previously, with Aut(A) replaced by Aut(A, <) throughout,
and definable sets replaced by order definable sets. (This is a
special case of a construction from [23], where various “atom
symmetries” are considered, which is itself a special case of
permutation models studied in set theory.) To distinguish from
previous notions, we shall speak of monotone-equivariant sets
and functions.

Note that the restriction to monotone permutations may
cause the number of orbits in a set to grow. For example,
the set A(n), a single-orbit set under the action of Aut(A),
decomposes into n! orbits under the action of Aut(A, <).
However, an orbit-finite set remains orbit-finite under the
action of monotone atom permutations.

All results from Section II-B hold for order-definable sets
as well. For this, it is crucial that the structure (Q, <) is
homogeneous. Indeed, for a different order such as that of
natural or integer numbers, most of those results would fail.

III. INFINITE INSTANCES

In this section we study the decidability and complexity of
solving definable CSP instances with atoms, i.e., the decision
problem CSP-Inf(T) described in the Introduction. Examples 1
and 2 only concern finite templates; we prove decidability for
the more general case of locally finite templates, where every
relation is finite.

In Section III-A the main result is Theorem 19, which states
that the existence of a solution of a definable instance over a
locally finite template can be decided. The key technical step
towards it, Theorem 17, will also be of use in further sections.
In Section III-B we focus on the case when the template T
is finite, and prove matching lower and upper bounds on the
complexity of the problem CSP-Inf(T).

Before we begin, observe that for an equivariant instance,
the existence of a solution does not imply the existence of an
equivariant solution.

Example 14. Consider an instance I with A(2) as the set of
variables, and with the set of constraints:{(

((a, b), (b, a)), R
)
| a, b ∈ A, a 6= b

}
,

where R = {(0, 1), (1, 0)} is the inequality relation on the
finite domain {0, 1}. It is easy to see that I has a solution.
Indeed, for any distinct atoms a and b, one can arbitrarily
assign a value 0 or 1 to the variable (a, b), and then assign
the other value to (b, a). However, it is impossible to do so
in a way that would be invariant with respect to all atom
permutations, therefore no equivariant solution exists.

On the other hand, there exists a monotone-equivariant
solution, namely the assignment

f(a, b) =

{
0 if a < b
1 otherwise.

This anticipates Theorem 17.

A. General decidability

For any instance I over a template T, let hom(I,T) denote
the set of solutions of I. It is a subset of the set T I of all
functions from I to T . The latter set is equipped with the
product topology, i.e., where basic open neighborhoods of a
function f : I → T are of the form:

BJ(f) =
{
g : I → T | g(x) = f(x) for all x ∈ J

}
(1)

for finite subsets J ⊆ I . This topology is also called the
topology of pointwise convergence (where T is discrete), since
a sequence of mappings f1, f2, . . . converges in this topology
if and only if the sequence f1(v), f2(v), . . . stabilizes for every
v ∈ I .

The following lemma extracts a crucial property of locally
finite templates. We say that an instance is constrained if every
variable in it appears in some constraint.

Lemma 15. For any locally finite template T, and any
constrained instance I over T, hom(I,T) is a compact subset
of T I .

Proof: see Appendix B1.
Similarly as above, the group Aut(A) of atom permutations

inherits the structure of a topological space (in fact, a topo-
logical group, which is not even locally compact), as a subset
of AA with the product topology.

Lemma 16. For any definable, equivariant, constrained in-
stance I over an equivariant template T, Aut(A) acts contin-
uously on hom(I,T).

Proof: see Appendix B2.
By definition, fixpoints of the action of Aut(A) on

hom(I,T) are exactly equivariant solutions. Example 14
shows that the action may have no fixpoints. This changes
if we assume A to be ordered and restrict to monotone atom
permutations, as described in Section II-C. Indeed:

Theorem 17. For any definable, equivariant, constrained
instance I over an equivariant, locally finite template T, if
I has a solution than it has a monotone-equivariant solution.

Proof. Note that Aut(A, <) is isomorphic to the automor-
phism group of the total order of rational numbers. It is also
a subgroup of Aut(A), so by Lemma 16 it acts continuously

on hom(I,T). By definition, the fixpoints of this action are
exactly monotone-equivariant solutions. Now apply Pestov’s
theorem (Theorem 4) using Lemma 15.

The last missing part for the decidability of CSP-Inf(T) is
the following lemma, whose proof follows general principles
of equivariant computation on orbit-finite structures for arbi-
trary atom symmetries, studied in [22], [26].

Lemma 18. For any equivariant, locally finite template T, it is
decidable whether a given definable, constrained, equivariant
instance I over T has a monotone-equivariant solution.

Proof: see Appendix B3.
Finally, we are ready to prove the main result of this section:

Theorem 19. For any equivariant, locally finite template T,
it is decidable whether a given definable, equivariant I over
T has a solution.

Proof. Remove the variables of I which are not constrained
and apply Theorem 17 and Lemma 18.

Remark 20. The careful reader may notice that Example 2
from the Introduction does not quite fit the development
presented so far. Indeed, the instance (i.e. the equation system)
considered there is not equivariant, or definable by an expres-
sion without free variables: atoms 1 and 2 are singled out in
it. However, it is definable by an expression with two free
variables, say v1, v2, with a valuation val that maps them to 1
and 2 respectively. In terminology of [21], [23], the instance
is supported by the set {1, 2}.

With a little effort, the results of this section can be
generalized to all definable instances and templates, dropping
the equivariance assumption. Indeed, let both I and T be
definable by expressions with free variables and valuations,
with other assumptions as before. Let a1, . . . , an ∈ A be
the (finite) set of all atoms taken as values by either of the
valuations. Lemma 15 holds with no change. Lemma 16 holds
as well, with Aut(A) replaced by Aut(A, a1, . . . , an), the
group of those atom permutations that fix all the ai.

Consider the group Aut(A, <, a1, . . . , an) of those mono-
tone atom permutations that fix all the ai; by analogy to the
equivariant case, this group acts continuously on solutions of I,
and its fixpoints are monotone solutions invariant with respect
to all permutations in that group.

To re-prove Theorem 17, notice that Aut(A, <, a1, . . . , an)
is an open subgroup of Aut(A, <) therefore, by [27, Lemma
13], Theorem 4 works for it as well. Finally, Lemma 18 and
Theorem 19 are proved entirely analogously for all definable
structures.

A more substantial generalization is also possible, where
one replaces a mere set A by a homogeneous relational
structure of atoms, along the lines of [23]. Supposing that A
is a reduct of a so-called Ramsey structure with enough decid-
ability properties, the above development can be repeated, with
Pestov’s theorem replaced by its generalization due to Kechris,
Pestov and Todorcevic [7]. A more detailed description of this
is deferred to a full version of this paper.

B. Finite templates

Consider now a classical, finite template T, without atoms,
such as in Examples 1 and 2. The algorithm for solving
definable instances over T that arises from a general proof of
Lemma 18 is double exponential. However, for finite templates
this complexity can be lowered using the following PSPACE
reduction to CSP(T):

Proposition 21. For every equivariant, definable instance I
over a finite template T one can compute (in polynomial space)
a finite instance I∗ of size exponential in the size of the set
expression that defines I, and such that I has a solution if and
only if I∗ has a solution.

Proof. By Theorem 17, I has a solution if and only if it
has a monotone-equivariant solution. We construct a finite in-
stance I∗ whose solutions correspond bijectively to monotone-
equivariant solutions of I. In the rest of the proof, by orbits
we mean orbits with respect to monotone atom permutations.

Let e be the set expression that defines the instance I.
The set I∗ of variables of I∗ consists of the orbits of the
set I of variables of I. Their number is at most exponential
in the size of e and they can be enumerated in polynomial
space, by scanning all quantifier-free types of formulas with n
free variables, where n is the number of variables in the
expression e.

For every constraint
(
(x1, . . . , xk), R

)
of I we take the

orbits O1, . . . , Ok of the variables x1, . . . , xk, respectively,
and add a constraint

(
(O1, . . . , Ok), R

)
to I∗. The number

of constraints is also at most exponential in the size of e.
Every monotone-equivariant function from I to T is con-

stant on the orbits of I . Hence, it is easy to see that there
is a bijective correspondence between solutions of I∗ and
monotone-equivariant solutions of I.

By analogy to Remark 20, the above result can be gen-
eralized to all definable instances, and hence gives an upper
complexity bound of solving definable instances for each finite
template T: if CSP(T) is in a complexity class C such that
L ⊆ C, then CSP-Inf(T) is in the “exponentially larger” class
exp(C), defined by:

exp(C) =
⋃
k∈N
{L : padk(L) ∈ C}

where, for a language L, the language padk(L) consists of
words from L of any length m padded with arbitrary letters
to the length 2m

k

. For example, exp(L) = PSPACE and
exp(NP) = NEXP.

As it turns out, this upper bound is tight:

Theorem 22. For any C such that L ⊆ C, if CSP(T) is C-
hard then CSP-Inf(T) is exp(C)-hard, under logarithmic space
reductions.

Proof: see Appendix B4.
Together with Proposition 21, this proves Theorem 3. As

examples, 3-colorability of finite graphs is NP-complete, so
the same problem for definable graphs (see Example 1) is

NEXP-complete; solving finite systems of linear equations
over Zk is MODkL-complete [28], so the same problem for
definable systems of equations (see Example 2) is complete for
the class exp(MODkL) = MODkPSPACE of those languages
L for which there exists a nondeterministic polynomial space
Turing machine ML such that w ∈ L if and only if the number
of accepting runs of ML on input w is divisible by k.

Remark 23. Our proof of Theorem 22 actually works already
if CSP(T) is C-complete under poly-logarithmic space reduc-
tions; completeness of C under logarithmic space reductions
is not necessary. Note that it is an open problem whether the
class of poly-log space algorithms is contained in PTIME.

In a proof of Theorem 22 one must construct definable in-
stances of CSP-Inf(T) from words in a language L ∈ exp(C).
In our general proof, set expressions that define these instances
use the full power of first order logic, including quantification
over atoms. However, for all standard examples of templates
T, e.g. those that correspond to the 3-colorability problem,
Boolean 3-satisfiability, solving linear equations over Zk or
Boolean Horn-satisfiability, we have found reductions that use
the simplest possible formulas over atoms: comparing two
atoms for equality. We are unable to find a general proof which
would only use so simple set expressions.

IV. FINITE INSTANCES

In this section we study the complexity of the problem
CSP(T), where T is a fixed locally finite template. Recall that
instances of this problem are finite structures. We demonstrate
that many results known from the classical setting, where
the templates are finite, lift to the locally finite setting. In
Section IV-A we show that polymorphisms of T determine the
complexity of CSP(T). In Section IV-B we present a general
method of lifting results concerning finite templates to locally
finite templates, and we show a few applications. Finally,
in Section IV-C, we show that for a locally finite, definable
template T, the problem CSP(T) reduces (in polynomial time)
to the problem CSP(T̂) for a finite template T̂. Moreover,
if T admits polymorphisms satisfying some linear identities,
then so does T̂, which in many cases gives an upper bound
on the complexity of CSP(T). To prove these results, we
are sometimes forced to consider infinite templates T as
CSP instances over other templates, and there the results of
Section III come handy.

A. Algebraic foundations

We now generalize, to locally finite templates, several clas-
sical theorems concerning the relationship between the set of
polymorphisms of a template, its set of pp-definable relations
and its complexity, and constructions of core templates. Most
of the proofs are standard, but they require a few tweaks and
nontrivial observations.

1) Pp-formulas: A primitive positive formula (or pp-
formula) is a first-order formula, possibly with free variables,
which uses only existential quantification (no universal quanti-
fiers), conjunctions (no disjunctions nor negations), and atomic

formulas (no negations of atomic formulas), which might
include equalities among variables. A typical pp-formula is

φ(x, z, t) = ∃y.R(x, y) ∧ S(y, z) ∧ z = t.

If T is a relational structure and φ is a pp-formula over the
signature of T with free variables x1, . . . , xn, then we denote
by φ(T) ⊆ Tn the set of those tuples (t1, . . . , tn) which satisfy
φ in T. Any relation of the form φ(T), where φ is some pp-
formula, is said to be a pp-definable relation of T. By ppDef T
we denote the family of all finite pp-definable relations of T.

A generalized pp-formula Φ is a pair (I, α), where I is
an instance (equivalently, a relational structure) and α :
{x1, . . . , xn} → I is a function from a finite set of free
variables of Φ. We say that Φ is finite if the instance I has
finitely many variables and finitely many constraints. If T is a
relational structure over the same signature as I, then Φ defines
a relation on T of arity n:

φ(T)
def
=
{(
f(x1), . . . , f(xn)

)
| f ∈ hom(I,T)

}
.

It is a standard result that finite generalized pp-formulas define
the same relations as pp-formulas. The following lemma shows
that for finite relations and locally finite templates, arbitrary
generalized pp-formulas do not define anything more:

Lemma 24. Let T be a locally finite template. The following
conditions are equivalent for a finite relation R ⊆ Tn

1) There is a pp-formula φ such that φ(T) = R,
2) There is a finite generalized pp-formula Φ such that

Φ(T) = R.
3) There is a generalized pp-formula Φ such that

Φ(T) = R.

Proof: see Appendix C1.

Lemma 24 relies on the following lemma, which is a
variation of the compactness argument used in Lemma 15 (the
union of structures is taken vertex-wise and edge-wise).

Lemma 25. For any structure I and an ascending sequence
I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ I of substructures such that

⋃
i Ii = I,

and for any locally finite structure T, there is a homomorphism
f : I → T if and only if for each n ≥ 0 there is a
homomorphism fn : In → T. If all the fn extend a single
homomorphism f0 : I0 → T, then so does f .

Proof: see Appendix C2.

Proposition 26. Let B and C be locally finite, definable tem-
plates over the same domain B. If ppDef B ⊆ ppDef C then
CSP(B) reduces to CSP(C), via a polynomial-time reduction.

Proof: see Appendix C3.

2) The Inv-Pol connection: An operation on T is a function
f : T k → T , for some number k (the arity). We say that the
operation f preserves a relation R of arity n on T if for any
k tuples in R:

(x11, . . . , x1n), (x21, . . . , x2n), . . . , (xk1, . . . , xkn) ∈ R,

the tuple obtained from them by applying f componentwise:(
f(x11, . . . , xk1), f(x12, . . . , xk2), . . . , f(x1n, . . . , xkn)

)
belongs to R as well. We also say that R is invariant under
the operation f .

If F is a family of operations of T , then by InvF we denote
the set of relations which are invariant under every operation
in F . Dually, if R is a family of relations on T , then by PolR
we denote the set of those operations that preserve all relations
in R. If T is a relational structure, then PolT is defined as
PolR, where R is the set of relations of T, and elements of
PolT are called polymorphisms of T.

A polymorphism of T of arity n can be equivalently defined
as follows. Equip Tn with the cartesian product structure, i.e.,
for a relation R of T of arity k and a k-tuple of n-tuples of T,

R
(
(x11, . . . , x1n), (x21, . . . , x2n), . . . , (xk1, . . . , xkn)

)
holds in Tn if and only if each i = 1, . . . , n, the relation
R(x1i, x2i, . . . , xki) holds in T. It is easy to see that a mapping
f : Tn → T is a polymorphism if and only if it is a
homomorphism from Tn to T.

Proposition 27. For any locally finite template T, and any
finite relation R over T , R ∈ ppDef T if and only of R ∈
Inv PolT.

Proof: see Appendix C4.

Proposition 27 is analogous to a fundamental theorem of
algebraic finite CSP theory [1]. In the proof of the “only if”
part, we define an invariant relation using a generalized pp-
formula, and apply Lemma 24.

Theorem 28. For any two locally finite, definable templates
B and C over the same domain B, if PolC ⊆ PolB then
CSP(B) reduces to CSP(C) via a polynomial-time reduction.

Proof. If PolC ⊆ PolB then Inv Pol(C) ⊇ Inv Pol(B), hence
ppDef(C) ⊇ ppDef(B). Conclude using Proposition 26.

Corollary 29. If PolB = PolC then CSP(B) and CSP(C) are
equivalent, up to polynomial time reductions.

3) Core structures: We say that a structure T is a core
if every endomorphism of T is a monomorphism. If T is a
structure and A is a finite subset of its domain, then by T|A
we denote the template with domain A, whose relations are
the restrictions to A of all relations R ∈ ppDef T. In the proof
of the implication (2→1), again we invoke Pestov’s theorem
(Theorem 4).

Proposition 30. Let T be a monotone-equivariant, locally
finite structure without isolated nodes. Then the following
conditions are equivalent:

1) T is a core.
2) Every monotone-equivariant endomorphism of T is a

monomorphism.
3) For any finite set A ⊆ T , the structure T|A is a finite

core.

Proof: see Appendix C5.

By analogy to the development in Section III, thanks to
Proposition 30 template cores are computable:

Proposition 31. Given a definable, equivariant, locally finite
template T, one can effectively test whether T is a core, and
effectively construct a core which is a retract of T.

Proof (sketch). A retraction of T is an endomorphism r whose
twofold composition r; r is equal to r.

Test all monotone-equivariant retractions of T. If there is
such a retraction r which is not onto, then T is not a core. In
this case, replace T by the image of r and repeat.

B. From finite to locally finite templates

In this section, we present a general method of lifting
results concerning finite templates to locally finite ones. This
is achieved by observing that T can be covered by a family F
of finite subtemplates (defined below), such that the question
whether T admits polymorphisms satisfying a set of linear
equations boils down to the question whether each finite
template in F admits such polymorphisms.

Important classes of polymorphisms are defined using sets
of identities that they satisfy; usually, those identities are of a
specific shape. Formally, let Γ be a functional signature, i.e.,
a set of function names with associated finite arities. A linear
identity is an expression of the form r ≈ s, where r and
s are either variables or Γ-terms with exactly one function
symbol. A Γ-algebra satisfies an identity r ≈ s if for any
valuation of the variables in r and s, both sides have the
same value. For a set E of linear identities, we say that a
template T admits E-polymorphisms if there is a Γ-algebra
with universe T , whose operations are polymorphisms of T
and which satisfies all identities in E.

For example, a majority polymorphism is a ternary poly-
morphism t that satisfies linear identities:

t(x, y, y) ≈ t(y, x, y) ≈ t(x, y, y) ≈ y,

and a Maltsev polymorphism is a ternary one that satisfies
linear identities:

t(x, y, y) ≈ t(y, y, x) ≈ x.

Other polymorphism classes defined by linear identities will
be considered below.

Let T = (T,R) be a template and let R0 ⊆ R be some
family of relations. The subtemplate of T induced by R0 is
the template T0 = (T0,R0) whose domain T0 consists of all
those x ∈ T which appear in some tuple that belongs to any
of the relations in R0. We define a union T1 ∪ T2 of two
subtemplates T1 = (T1,R1) and T2 = (T2,R2) of T to be
the template (T1 ∪ T2,R1 ∪R2), and analogously for unions
of larger families of subtemplates.

Theorem 32. Let T be a locally finite template and let T1 ⊆
T2 ⊆ . . . be an ascending sequence of subtemplates of T such
that

⋃
i Ti = T. If E is a set of linear identities then T admits

E-polymorphisms if and only if for each i, the template Ti
admits E-polymorphisms.

Proof. The left-to-right implication is obvious, since any poly-
morphism of T is a polymorphism of all its subtemplates.
To show the other implication we use a standard construction
which allows to express a polymorphism of a template T as a
solution of a CSP instance. Let E be a set of identities using
function symbols from a functional signature Γ. We assume
that there are no identities of the form x ≈ y where both
x, y are either variables or constants, as the general case can
be easily reduced to this one. For a template T, define an
instance FE(T) as a disjoint union of instances as follows:

FE(T) =
∐
g∈Γ

Tg,

where Tg is the n-fold cartesian product of T, for n the arity
of g. Furthermore, extend FE(T) by constraints as described
below. For each identity in E, consider two possibilities:
• If the identity is of the form g(x̄) ≈ g′(ȳ), with
g, g′ ∈ Γ, then for every valuation val : V → T of the
variables V in the tuples x̄ and ȳ, add a binary constraint(
(x̄[val], ȳ[val]),=

)
, where x̄[val] ∈ Tg and ȳ[val] ∈ Tg′ .

• If the identity is of the form g(x̄) ≈ u or u ≈ g(x̄),
with g ∈ Γ and u a variable or a constant, then for each
valuation val : V → T of the variables V in x̄ and u,
add a unary constraint

(
x̄[val], {u[val]}

)
.

Let T be the structure T equipped additionally with the
singleton unary relations and the relation =. The instance
FE(T) is over T, and it has a solution if and only if T admits
E-polymorphisms.

Suppose now that T is locally finite and let T1 ⊆ T2 ⊆ . . .
be an ascending sequence of subtemplates of T such that⋃
i Ti = T, and for each i the template Ti admits E-

polymorphisms. This means that for every i there exists a
solution of the instance FE(Ti) (which can be seen as an
instance over T). The corresponding sequence of instances
(FE(Ti))i is ascending and satisfies

⋃
FE(Ti) = FE(T). It

follows from Lemma 25 that there exists a solution of the
instance FE(T). Hence T admits E-polymorphisms.

Remark 33. Note that if E is a finite set of linear identities
and the template T is definable, then so is FE(T). By Theo-
rem 19, it can be decided whether T admits E-polymorphisms.

In the literature, there are two general algorithmic principles
for solving CSP(T) in polynomial time for wide classes of
finite templates T. Theorem 32 lets us translate algebraic
characterizations of those classes to the setting of locally finite
templates.

The first algorithm can be seen as a generalization of
Gaussian elimination, and it is based on the fact that for every
finite instance I over T the set of solutions has a “small”
representing set. For a finite structure A let sA(n) denote the
logarithm, base 2, of the number of all different pp-definable
relations of arity n in A. We say that a template T has few
subpowers if there is a natural number k such that for every

finite subtemplate B of T we have that sB(n) is bounded from
above by a polynomial of degree k. It is known [29], [30] that
a finite template T has few subpowers if and only if T admits
a k-edge polymorphism, where a k-edge polymorphism e is a
k + 1-ary polymorphism that satisfies the identities

e(x, x, y, y, y, . . . , y, y) ≈ e(x, y, x, y, y, . . . , y, y) ≈ y
and

e(y, y, y, x, y, . . . , y, y) ≈ e(y, y, y, y, x, . . . , y, y) ≈ . . .
. . . ≈ e(y, y, y, y, y, . . . , x, y) ≈ e(y, y, y, y, y, . . . , y, x) ≈ y.

Corollary 34. A locally finite template T has few subpowers if
and only if T admits a k-edge polymorphism for some k > 0.

Moreover, k-edge polymorphisms characterize in some
sense (see [29]) all locally finite templates that can by solved
in polynomial time by a “Gaussian-like” algorithm.

The second algorithm determines whether a solution of a
given instance exists by looking at subinstances of bounded
size and checking if there is a consistent set of local solutions.
A template of bounded-width is a template for which such an
algorithm, called the local consistency algorithm, is correct.
It follows from the results of [31]–[33] that a core finite
template T has bounded width if and only if T admits weak
near unanimity polymorphisms v of arity 3 and w of arity
4 that satisfy v(y, x, x) ≈ w(y, x, x, x), where a weak near
unanimity polymorphism t is one that satisfies the identities

t(x, x, . . . , x) ≈ x and
t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ . . . ≈ t(x, x, . . . , x, y).

Corollary 35. A core, locally finite template T has bounded
width if and only if T admits weak near unanimity polymor-
phisms v of arity 3 and w of arity 4 that satisfy v(y, x, x) ≈
w(y, x, x, x). Moreover, it can be decided whether a definable,
locally finite template T has bounded width.

Proof (sketch). We show the harder “only if” part. Suppose
that T has bounded width. Consider a finite set A ⊆ T . By
Proposition 30, T|A is a finite core and has bounded width.
By the results of finite CSP theory, T|A admits polymorphisms
vA, wA satisfying the required linear identities. Since A is ar-
bitrary, we may apply Theorem 32, obtaining polymorphisms
v, w of T, which also satisfy the required identities.

The last part of the statement of the corollary follows from
Proposition 31 and Remark 33.

Purely algebraic results, which show for instance that the
existence of polymorphisms of some kind ensures a finite
template T to admit some other polymorphisms can also be
translated to the locally finite setting using Proposition 32. The
following is an easy consequence of Lemma 9 of [34]:

Corollary 36. If a core, locally finite template T has a Maltsev
polymorphism and has bounded width, then it has a majority
polymorphism.

Many other results can be proved following the same
pattern.

C. From locally finite to finite templates

This section is a proof of the following theorem:

Theorem 37. For every equivariant, definable, locally finite
template T there is a finite template T̂ such that:

• for every finite instance I over T there is a finite instance
Î over T̂:

– computable from I in polynomial time, and
– such that I has a solution if and only if Î has a

solution,
• for every set of linear identities E, if T admits E-

polymorphisms then T̂ admits E-polymorphisms.

We assume atoms to be totally ordered as described in
Section II-C. By i we denote the atom that corresponds to
the rational number i. All orbits below are considered with
respect to monotone atom permutations.

Fix any order-definable set x = e[val], where e is an
expression and val : V → A a valuation. There is a unique
order-preserving bijection f between the range of val and the
set {1, . . . , n}, where n is the number of elements in the range
of val. By [x] we denote the set defined by e[val; f]. Note that
[x] = [y] if and only if they are in the same orbit. The set [x]
can therefore be seen as a representative of this orbit.

Assume without loss of generality that all instances are
constrained. For any instance I over T and a variable x ∈ I ,
let Ix be the largest constrained subinstance of I such that x
belongs to the tuple of variables in every constraint of Ix. By
U(I,x) we denote the unary predicate over T defined by the
generalized pp-formula (Ix, αx), where αx : {x} → Ix is the
inclusion mapping (we write simply Ux whenever the instance
I is clear from the context). Observe that if f : I → T is a
solution of the instance I then f(x) ∈ U(I,x). We say that an
assignment f : I → T is feasible if it maps every x to an
element of U(I,x). To decide whether I has a solution, it is
enough to consider feasible assignments.

Fix a constrained instance I over T. For each variable x ∈ I ,
let gx be a monotone atom permutation that maps Ux to [Ux].
We define an instance Î as follows:

• the variables of Î are the variables of I,
• for every constraint

(
(x1, . . . , xn), R

)
in I there is a

constraint
(
(x1, . . . , xn), R̂

)
in Î, where

R̂ = g
(
R ∩ (Ux1 × . . .× Uxn)

)
,

g(t1, . . . tn) = (gx1(t1), . . . , gxn(tn)).

Note that R̂ ⊆ [Ux1
]× . . .× [Uxn

].

It is immediate from the above construction that for any
instance I, there is a bijective correspondence between fea-
sible assignments for I and assignments for Î: if a feasible
assignment f for I maps a variable x to some t ∈ Ux, then
the corresponding assignment for Î maps x to gx(t) ∈ [Ux].
Moreover, a feasible assignment for I is a solution if and only
if the corresponding assignment for Î is a solution. It follows
that I has a solution if and only if Î has a solution.

We now define a finite template T̂ such that for any instance
I over T, the instance Î is over T̂. The domain of T̂ is the
union:

T̂ =
⋃

(I,x)

[U(I,x)],

where (I, x) ranges over all constrained instances I over T,
and their variables x. The relations of T̂ are all the relations
which appear in the constraints of all instances of the form
Î. Notice that if the T is definable then the template T̂ is
finite. Indeed, since T has finitely many orbits, the number of
elements in the unary predicates U(I,x) is bounded, and hence
they form an orbit-finite set. The domain T̂ is the sum of their
representatives, so it is finite. Finally, the arity of relations in
T̂ is bounded by the maximal arity of a relation in T, so there
are finitely many possible relations.
This proves half of Theorem 37; we now prove the second half.

Lemma 38. Let E be a set of linear identities. An equivariant,
definable, locally finite template T admits E-polymorphisms if
and only if it admits monotone-equivariant E-polymorphisms.

Proof. In the proof of Theorem 32, an instance FE(T) is
constructed whose solutions correspond to E-polymorphisms
of T. Let I be its largest constrained subinstance. By Theo-
rem 17, if I has a solution then it has a monotone-equivariant
solution f . Since the domain of FE(T) is a disjoint union
of sets of the form Tn, it is possible to extend this solution
to a monotone-equivariant solution of FE(T), for example
by defining f(x) to be the projection to the first coordinate
whenever x 6∈ I. This solution corresponds to a monotone-
equivariant E-polymorphism of T.

We now finish the proof of Theorem 37. For any set of
linear identities E, let A be an algebra with universe T , whose
operations are polymorphisms of T, and such that A satisfies
the identities in E. By Lemma 38 we can assume that the op-
erations of A are monotone-equivariant. We define an algebra
Â with universe T̂ , whose operations are polymorphisms of
T̂, and such that Â satisfies the identities in E. Observe that
the universe T̂ is a subset of the universe T . Let r : T → T̂
be a function which is the identity on T̂ , and maps all the
other elements of T to some fixed element t of T̂ . For every
operation f of A, define the corresponding operation f̂ of Â
by f̂ = f ; r. Since all identities in E are linear, it is easy to
see that Â satisfies them.

It remains to show that every f̂ is a polymorphism of T̂. To
this end, pick an n-ary relation R̂ of T̂. It follows from the
construction of the template T̂ that there exists a pp-definable
relation R in T such that R̂ = F (R), where F : An → An
is a tuple of monotone atom permutations. The relation R is
invariant under the monotone-equivariant f , hence it is easy
to see that so is R̂. Moreover, since R is a subset of T̂n, it
follows that it is invariant under f̂ .

V. ORDER-INVARIANT LOGICS

In a previous paper [10], we studied the expressive power
of various logics over a certain class of structures, which we

now recall in a slightly simplified version. As an application
of the methods developed in this paper, we briefly say how
the main result of [10] can be re-developed in the setting of
locally finite CSPs, showing the key ideas of the proof much
more clearly and clearing them from a clutter of technicalities.

For a fixed, finite graph p, a linearly p-patched structure
is a finite graph G, together with a linearly ordered family
p1 < . . . < pn of subgraphs of G (called patches), each of
which is isomorphic to p, and which cover G, i.e.,

G = p1 ∪ . . . ∪ pn.

For example, if p is the 2-clique, then a linearly p-patched
structure is the same as a graph together with a linear ordering
of its edges.

First order formulas can be evaluated on linearly p-patched
structures, allowing quantification ∀v,∃v over the vertices,
∀q,∃q over the patches, comparison q < q′ of the patches with
respect to their linear ordering, and tests p |= E(v, w) for each
patch p and vertices v, w (where E denotes the edge predicate).
Various extensions of first order logic can be also evaluated
over linearly p-patched structures, in particular the Least Fix
Point logic (LFP), a well studied extension of first order logic
by a fixpoint operation [8], [35]. It turns out that over linearly
p-patched structures, LFP is equivalent to LFP+C (a further
extension by a counting mechanism) and to polynomial time
Turing Machines with Atoms – an analogue of Turing machines
in the realms of sets with atoms [10], [24].

On the other hand, classical Turing machines can be evalu-
ated on linearly p-patched structures, using standard bit-string
encodings of relational structures. We say that LFP is equally
expressive as PTIME over a class of structures C, if every
property of structures in C which is decidable in polynomial
time, can be expressed by a formula of LFP.

The famous Immerman-Vardi [36], [37] and Cai-Fürer-
Immerman [8] theorems can be reformulated as follows.

Theorem 39. If p is the 2-clique, then LFP is equally
expressive as PTIME over linearly p-patched structures.

Theorem 40. There is a graph p, namely the disjoint union of
two 3-cliques, such that LFP+C is less expressive than PTIME
over linearly p-patched structures.

A corollary of the main result of [10] is the following.

Theorem 41. Given a graph p, it can be effectively decided
whether LFP is equally expressive as PTIME over linearly p-
patched structures.

The proof of the theorem proceeds in several steps, and
starts with the following observation.

Lemma 42. LFP is equally expressive as PTIME over linearly
p-patched structures if and only if it can test their isomor-
phism.

Consider a pair of linearly p-patched structures G,G′,
whose vertices are atoms, both with n patches denoted
p1 < . . . < pn and q1 < . . . < qn, respectively. An

isomorphism from G to G′ must map each pi isomorphically
to qi, for i = 1, . . . , n. Define a finite instance I with variables
1, 2, . . . , n, and for each 1 ≤ i, j ≤ n, a binary constraint

((i, j), Cp,p′

r,r′),

such that Cp,p′

r,r′ is the set of pairs (α, β) where α : pi →
qi, β : pj → qj are isomorphisms which are consistent, i.e.,
α(v) = β(v) for all v such that both v ∈ pi and v ∈ pj .

Clearly, there is an isomorphism of linearly p-patched
structures from G to G′ iff the instance I has a solution.

It is useful to consider a single template Tp such that any
instance I obtained from two linearly p-patched structures
G,G′ as above, is over Tp. The domain of Tp consists of
isomorphisms α : q → q′ between graphs isomorphic to p,
whose vertices are atoms. For each quadruple q, q′, r, r′, there
is the binary relation Cp,p′

r,r′ defined above. Tp is equivariant
and, since every such relation is finite, it is locally finite. It is
also not difficult to see that this structure is definable.

The next lemma follows from the results in [10].

Lemma 43. LFP can test isomorphism of linearly p-patched
structures if and only if the template Tp has bounded width.

In [10], the proof of Theorem 41 then proceeds by construct-
ing a finite template which corresponds to Tp, in an ad-hoc
way roughly similar to the one described in Section IV-C, and
then further studying its properties. Since the construction of
this finite template is technical, its study becomes obfuscated.
Instead, using the results from the present paper, we can now
work directly with the template Tp, as sketched below.

By Corollary 35, it can be effectively tested whether Tp has
bounded width. However, a more effective test is possible, due
to the straightforward observation that the template Tp has a
Maltsev polymorphism, defined by

M(α, β, γ) =


α · β−1 · γ if α, β, γ : q→ q′ for some

q, q′ isomorphic to p,
α otherwise.

The following characterization then follows from Corollary 36.

Lemma 44. The template Tp has bounded width if and only
if it has a majority polymorphism.

By Theorem 19, this last condition can be effectively tested.
Lemmas 42, 43, 44 prove Theorem 41.

We believe that definable locally finite templates might
arise naturally in other applications to Descriptive Complexity:
although any such template is computationally equivalent to
a finite one by Theorem 37, the presented reduction heavily
relies on the ordering of the universe, and therefore cannot be
mimicked by order-invariant logics, such as LFP.

ACKNOWLEDGMENTS

We are grateful to Manuel Bodirsky, Jakub Bulin and
Marcin Kozik for their patience in answering our questions
about various aspects of CSP theory. We also thank the anony-
mous reviewers for their thorough and helpful comments.

REFERENCES

[1] P. Jeavons, D. Cohen, and M. Gyssens, “Closure properties of con-
straints,” J. ACM, vol. 44, no. 4, pp. 527–548, Jul. 1997.

[2] A. Bulatov and V. Dalmau, “A simple algorithm for mal’tsev
constraints,” SIAM Journal on Computing, vol. 36, no. 1, pp. 16–27,
2006. [Online]. Available: http://dx.doi.org/10.1137/050628957

[3] A. Bulatov, P. Jeavons, and A. Krokhin, “Classifying the complexity of
constraints using finite algebras,” SIAM Journal on Computing, no. 34,
pp. 720–742, 2005.

[4] A. Bulatov, A. Krokhin, and P. Jeavons, “Constraint satisfaction prob-
lems and finite algebras,” in Proceedings of ICALP’00, no. 1853, 2000,
pp. 272–282, longer version available as an OUCL Technical Report :
http://web.comlab.ox.ac.uk/oucl/publications/tr/tr-4-99.html.

[5] L. Barto and M. Kozik, “Absorbing subalgebras, cyclic terms, and the
constraint satisfaction problem,” Log. Meth. Comp. Sci., vol. 8(1), 2012.

[6] V. Pestov, “On free actions, minimal flows, and a problem by Ellis,”
Trans. Amer. Math. Soc., vol. 350, pp. 4149–4165, 1998.

[7] A. Kechris, V. Pestov, and S. Todorcevic, “Fraı̈ssé limits, Ramsey
theory, and topological dynamics of automorphism groups,” Geometric
& Functional Analysis GAFA, vol. 15, no. 1, pp. 106–189, 2005.

[8] J. Cai, M. Fürer, and N. Immerman, “An optimal lower bound on the
number of variables for graph identifications,” Combinatorica, vol. 12,
no. 4, pp. 389–410, 1992.

[9] L. Barto and M. Pinsker, “The basic CSP reductions revisited,”
announced Nov. 2014. [Online]. Available: http://www.karlin.mff.cuni.
cz/∼barto/Articles/Banff Barto.pdf

[10] B. Klin, S. Lasota, J. Ochremiak, and S. Toruńczyk, “Turing machines
with atoms, constraint satisfaction problems, and descriptive complex-
ity,” in Procs. of CSL-LICS’14, 2014, pp. 58:1–58:10.

[11] M. H. Freedman, “K-sat on groups and undecidability,” in Procs. STOC,
ser. STOC ’98, 1998, pp. 572–576.

[12] H. Chen, “Periodic constraint satisfaction problems: Tractable sub-
classes,” Constraints, vol. 10, no. 2, pp. 97–113, 2005.

[13] S. S. Dantchev and F. D. Valencia, “On the computational limits of
infinite satisfaction,” in Procs. (SAC), 2005, pp. 393–397.

[14] M. Bodirsky and J. Nesetril, “Constraint satisfaction with countable
homogeneous templates,” J. Log. Comput., vol. 16, no. 3, pp. 359–373,
2006.

[15] M. Bodirsky, “Cores of countably categorical structures,” Logical Meth-
ods in Computer Science, vol. 3, no. 1, 2007.

[16] M. Bodirsky and M. Pinsker, “Topological birkhoff,” CoRR, vol.
abs/1203.1876, 2012. [Online]. Available: http://arxiv.org/abs/1203.1876

[17] M. Bodirsky and J. Kára, “The complexity of temporal constraint
satisfaction problems,” J. ACM, vol. 57, no. 2, 2010.

[18] M. Bodirsky and M. Pinsker, “Schaefer’s theorem for graphs,” in Procs.
STOC, 2011, pp. 655–664.

[19] M. Bodirsky and V. Dalmau, “Datalog and constraint satisfaction with
infinite templates,” J. Comput. Syst. Sci., vol. 79, no. 1, pp. 79–100,
2013.

[20] M. Bodirsky and M. Pinsker, “Reducts of ramsey structures,” CoRR,
vol. abs/1105.6073, 2011.

[21] A. M. Pitts, Nominal Sets: Names and Symmetry in Computer Science.
Cambridge University Press, 2013, vol. 57.

[22] M. Bojańczyk and S. Toruńczyk, “Imperative programming in sets with
atoms,” in Procs. FSTTCS 2012, ser. LIPIcs, vol. 18, 2012, pp. 4–15.

[23] M. Bojańczyk, B. Klin, and S. Lasota, “Automata theory in nominal
sets,” Log. Meth. Comp. Sci., vol. 10, 2014.

[24] M. Bojanczyk, B. Klin, S. Lasota, and S. Torunczyk, “Turing machines
with atoms,” in LICS, 2013, pp. 183–192.

[25] W. Hodges, Model Theory, ser. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1993, no. 42.

[26] M. Bojańczyk, L. Braud, B. Klin, and S. Lasota, “Towards nominal
computation,” in Procs. POPL 2012, 2012, pp. 401–412.

[27] M. Bodirsky, M. Pinsker, and T. Tsankov, “Decidability of definability,”
The Journal of Symbolic Logic, vol. 78, no. 04, pp. 1036–1054, 2013.

[28] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel, “Structure and
importance of logspace-mod-classes.” in Procs. STACS, ser. Lecture
Notes in Computer Science, vol. 480, 1991, pp. 360–371.

[29] P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard,
“Tractability and learnability arising from algebras with few subpowers,”
in Logic in Computer Science, 2007. LICS 2007. 22nd Annual IEEE
Symposium on, July 2007, pp. 213–224.

http://dx.doi.org/10.1137/050628957
http://web.comlab.ox.ac.uk/oucl/publications/tr/tr-4-99.html
http://www.karlin.mff.cuni.cz/~barto/Articles/Banff_Barto.pdf
http://www.karlin.mff.cuni.cz/~barto/Articles/Banff_Barto.pdf
http://arxiv.org/abs/1203.1876

[30] J. Berman, P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and
R. Willard, “Varieties with few subalgebras of powers,” Transactions
of The American Mathematical Society, vol. 362, pp. 1445–1473, 2009.

[31] B. Larose and L. Zádori, “Bounded width problems and algebras,”
Algebra universalis, vol. 56, no. 3-4, pp. 439–466, 2007.

[32] L. Barto and M. Kozik, “Constraint satisfaction problems solvable by
local consistency methods,” J. ACM, vol. 61, no. 1, pp. 3:1–3:19, Jan.
2014.

[33] M. Kozik, A. Krokhin, M. Valeriote, and R. Willard, “Characterizations
of several Maltsev conditions,” Algebra Universalis, 2015, to appear.

[34] V. Dalmau and B. Larose, “Maltsev + datalog –> symmetric datalog,”
in Proceedings of the Twenty-Third Annual IEEE Symposium on Logic
in Computer Science (LICS 2008). IEEE Computer Society Press, June
2008, pp. 297–306.

[35] N. Immerman, Descriptive complexity, ser. Graduate texts in computer
science. Springer, 1999.

[36] ——, “Upper and lower bounds for first order expressibility,” J. Comput.
Syst. Sci., vol. 25, no. 1, pp. 76–98, 1982.

[37] M. Y. Vardi, “The complexity of relational query languages (extended
abstract),” in Procs. STOC, 1982, pp. 137–146.

[38] C. M. Papadimitriou, Computational complexity. Addison-Wesley,
1994.

APPENDIX

A. Proofs from Section II

1) Proof of Theorem 10: The statement (1) follows from
the observation that if X is defined by an expression e without
free variables, then π · X = X by definition. As mentioned,
this implies that Aut(A) acts on X , since π · x ∈ π ·X = X
for π ∈ Aut(A), x ∈ X .

In the rest of the proof, the following notion will be useful.
The quantifier-free type of a valuation val : V → A is the
formula

τval =
∧

v,w∈V :
val(v)=val(w)

(v = w) ∧
∧

v,w∈V :
val(v)6=val(w)

(v 6= w).

(In general, the quantifier-free type of a valuation val : V → A
in a relational structure A is the conjunction of all literals l
with free variables contained in V such that A, val |= l. Here,
A is the structure (A,=).)

Note that for a given finite set V , each quantifier-free type
is of a polynomially bounded size with respect to |V |. In
particular, there are finitely many quantifier-free formulas with
free variables V , and the set {τval : val : V → A} is finite and
computable.

The statement (2) is an immediate consequence of the
following result, which is known as quantifier-elimination
among model theorists.

Fact 45. Every first order formula φ can be translated in
polynomial space into a quantifier-free formula φ′, such that
φ and φ′ are equivalent in the structure (A,=).

Proof. The proof proceeds by induction on the size of a first
order formula φ. If φ is quantifier-free, we are done. In the
inductive step, it is enough to consider the case when φ is of
the form ∃x.ψ and ψ is already quantifier-free; the other case
when φ is a boolean combination of quantifier-free formulas
is trivial.

Let V be the set of free variables of the formula ψ. By
homogeneity of (A,=), the formula φ = ∃x.ψ is equivalent
to the formula

φ′ =
∨
τ

ψτ ,

where τ ranges over all (finitely many) quantifier-free types of
valuations val : V → A, and ψτ is the formula ψ, with every
predicate x = v replaced by > or ⊥, depending on whether
τ |= (x = v) or not.

We prove the statement (3). The interesting case is when X
is defined by an expression of the form

{e | a1, . . . , an ∈ A, φ}

(no valuation is needed, since by assumption, the entire
expression has no free variables).

Let V denote the set of free variables of the expression e,
i.e.,

V = {a1, . . . , an}.

It follows from homogeneity of (A,=) that if val1, val2 : V →
A are two valuations with the same quantifier-free type (i.e.,
τval1 = τval2), then e[val1] and e[val2] are in the same orbit
with respect to Aut(A). It follows that each orbit of X is
defined by an expression of the form

{e | a1, . . . , an ∈ A, φ ∧ τ},

where τ is a quantifier-free type of valuations val : V → A.
Moreover, there are only finitely many orbits.

This yields the third statement, and also the last one, since
if Y is equivariant, then it is a union of orbits of X under the
action of Aut(A).

2) Proof of Proposition 11: Given expressions e, d, one
can compute first order formulas τ∈e,d, τ⊆e,d and τ=

e,d such that
for any valuation val,
• τ∈e,d[val] holds iff e[val] ∈ d[val],
• τ⊆e,d[val] holds iff e[val] ⊆ d[val],
• τ=

e,d[val] holds iff e[val] = d[val].
These formulas are computed by mutual recursion. The most
interesting case is where both e and d are set-builder expres-
sions, say:

e = {e′ | v1, . . . , vn ∈ A, φ}
d = {d′ | w1, . . . , wm ∈ A, ψ},

where we define:

τ∈e,d = ∃w1. · · · ∃wm.(ψ ∧ τ=
e,d′)

τ⊆e,d = ∀v1. · · · ∀vn.(φ→ τ∈e′,d)

τ=
e,d = τ⊆e,d ∧ τ

⊆
d,e.

By quantifier elimination, these formulas are decidable in
polynomial space.

3) Proof of Lemma 12: Let X1, . . . , Xn denote the orbits of
X . It follows from the proof of Theorem 10 that the sequence
X1, . . . , Xn can be effectively computed (possibly with rep-
etitions), and from Proposition 11 it follows that repetitions
can be removed. Moreover, each orbit Xi is represented by an
expression of the form

{e : a1, . . . , an ∈ A, τ},

where τ is a satisfiable quantifier-free type. As a repre-
sentative of the orbit Xi, pick the element e[val], where
val : {a1, . . . , an} → {1, . . . , n} is any assignment satisfy-
ing τ .

B. Proofs from Section III

1) Proof of Lemma 15: Here we do not assume I or T to
be definable or equivariant.

For any x ∈ I , let V (x) ⊆ T be the set of possible values of
x in all solutions of I. Since I is constrained and T is locally
finite, every V (x) is finite.

The set of functions:

F (I,T) = {f : I → T | f(x) ∈ V (x) for x ∈ I}

equipped with the product topology inherited from T I , is a
topological product of discrete finite spaces:

F (I,T) =
∏
x∈I

V (x)

therefore (by Tychonoff’s theorem) it is compact. Note that
hom(I,T) ⊆ F (I,T).

Consider any f ∈ F (I,T) that is not a solution of I. This
means that there is a constraint ((x1, . . . , xn), R) in I such
that (f(x1), . . . , f(xn)) 6∈ R. Then, for J = {x1, . . . , xn},
we have

BJ(f) ∩ hom(I,T) = ∅.

As a result, hom(I,T) is a closed subspace of the compact
space F (I,T), hence it is itself compact.

2) Proof of Lemma 16: Atom permutations π ∈ Aut(A)
act on functions f : I → T by:

(π · f)(x) = π · (f(π−1 · x)).

We want to show that if f is a solution of I then so is π ·f . To
this end, consider any constraint (x̄, R) in I, with x̄ of length
n. Since I is equivariant,

(π−1 · x̄, π−1 ·R)

is also a constraint in I. Then, since f is a solution of I:

fn(π−1 · x̄) ∈ π−1 ·R

and finally:
(π · fn)(x̄) ∈ R.

This proves that Aut(A) acts on hom(I,T). We will now
check that this action is continuous.

To this end, consider any solution f of I and its basic open
neighbourhood BJ(f) as in (1). The inverse image of BJ(f)
along the action is:

←−−−
BJ(f) = {(π, g) | ∀x ∈ J. π · f(x) = g(π · x)}

and we need to show that it is open in Aut(A)× hom(I,T).
To this end, recall that I is defined by a set expression.

This means that each variable x ∈ I is also defined by an
expression e with a valuation val; let Sx ⊆fin A be the range
of val. Note that Sx supports x, i.e., for any atom permutation
π, the value π · x depends only on how π acts on Sx.

Moreover, since I is constrained and f is a solution, the
element f(x) ∈ T appears in the definition of I, therefore it
is also definable, hence supported by some finite Sf(x) ⊆ A.

Now pick any (π, g) ∈
←−−−
BJ(f) and define:

S =
⋃
x∈J

Sx ∪ Sf(x) ⊆fin A

K = {π · x | x ∈ J} ⊆fin I.

Then, for any σ ∈ BS(π) and h ∈ BK(g), we have:

σ · f(x) = π · f(x) = g(π · x) = h(π · x) = h(σ · x)

therefore (σ, h) ∈
←−−−
BJ(f). As a result:

BS(π)× BK(g) ⊆
←−−−
BJ(f)

therefore
←−−−
BJ(f) is indeed open and the action is continuous.

3) Proof of Lemma 18: Assume that I is defined by a set
expression e as explained in Section II-A. By Lemma 12 it is
possible to compute a system of representatives of the orbits of
I with respect to monotone atom permutations. Note that every
monotone-equivariant function from I to T is fully determined
by its values on the representatives.

Since T is locally finite and I is constrained, for any variable
x ∈ I there are only finitely many elements in T that can be
values of x in a solution of I. Moreover, all these elements
can be effectively enumerated, given a definiton of I.

Altogether, this means that there are finitely many candi-
dates for monotone-equivariant solutions of I and that they
can be effectively enumerated.

Finally, given a monotone-equivariant function f : I → T , it
can be effectively checked whether it is a solution of I. To this
end, one computes representatives of the orbits of constraints
in I; it is enough to check that all representative constraints
are satisfied, and for a given constraint it is straightforward to
check whether f satisfies it.

4) Proof of Theorem 22: For simplicity, we will assume
that all languages are over B = {0, 1}, and all complexity
classes concern languages over B.

Let L ∈ exp(C). We have to show how to reduce L to
CSP-Inf(T). By the definition of exp(C), there is a natural
number k such that padk(L) ∈ C. Since CSP(T) is C-hard,
there is a logspace (for the proof to work it is enough to
assume polylogspace) Turing machine M which, given a word
w ∈ B∗, produces an instance I(w) of CSP(T) such that I(w)
is satisfiable iff w ∈ padk(L). Without loss of generality, we
can assume that each variable in I(w) is indexed by p(n)
bits, where p is a fixed polynomial, and n is the logarithm of
the length of w (so that positions in w can be addressed by
elements of Bn).

We can assume that M , instead of producing an instance,
receives an input (i, b1, . . . , bri , w), where ri is the arity of
Ri and b1, . . . , bri are words of length p(n), and accepts iff
the instance I(w) includes the constraint

(
(xb1 , . . . , xbri), Ri

)
.

Furthermore, we can also change M so that w is not given
as an input, but via an oracle. The machine M has a question
tape where it can write an address j ∈ Bn, and the oracle
answers whether wj = 1. Such a machine M runs in space
polynomial in its input (not counting the oracle).

Recall that a classical PSPACE-complete problem is
QBF [38]. We can encode the working of M on words of
length n using a QBF formula φ of length polynomial in n,
which additionally has an access to i, all the bits of b1, . . . , bri ,
and an additional logical operation Input(x1, . . . , xn) which is
true iff w contains 1 at the position addressed by the sequence
of bits (x1, . . . , xn). The instance I(w) can be defined in terms
of this formula thus:{(

(xb1 , . . . , xbri), Ri
)

: φ[w](b
1, . . . , bri)

}
,

where φ[w] is the formula φ where every occurrence of
Input(x1, . . . , xn) is resolved to 0 or 1 according to w. In

the next paragraph we explain how the QBF formula φ is
generated.

We can transform M running in PSPACE into one running in
alternating polynomial time (the usual proof of PSPACE = AP
proceeds with no change in the presence of an oracle), and then
transform the alternating time machine running in time t(n)
and space s(n) (both polynomial) into a formula by listing
all the t(n) configurations of length s(n), using universal and
existential quantifiers for alternations, and binary connectives
to check whether the run is correct.

Now, let v ∈ Bm. Let n = mk be the logarithm of the length
of padk(v). We have to construct an instance I∗(v) of CSP-
Inf(T) such that v ∈ L iff I∗(v) is satisfiable. We construct
I∗(v) as follows: the variables are indexed by (p(n)+1)-tuples
of atoms (formally, they are (p(n) + 1)-tuples of atoms), and
for each relation Ri ∈ T, we take the constraints

{(
(xa,a11...a1p(n)

, . . . , xa,ari1 ,...a
ri
p(n)

), Ri
)

: [φ](a, a1
1, . . . , a

ri
p(n))

}
where the first order formula with equality [φ] is obtained from
φ and w recursively in the following way:
• [bij] = (a = aij)
• [∃xψ] = ∃ax[ψ], [∀xψ] = ∀ax[ψ]
• [x] = (a = ax)
• [ψ1 ∨ψ2] = [ψ1]∨ [ψ2], [ψ1 ∧ψ2] = [ψ1]∧ [ψ2], [¬ψ1] =
¬[ψ1]

• [Input(x1, . . . , xn)] is the formula ρ(a, ax1
, . . . , axn

)
which is true iff the (b1 . . . bn)-th symbol of w = padk(v)
is 1, where bi = 1 iff axi = a. It is straightforward to
construct such ρ of size polynomial in m; indeed, we just
have to take a disjunction of m clauses of form

b1 = j1 ∧ b2 = j2 ∧ . . . ∧ blogm = jlogm

for the (j1, . . . , jlogm) such that wj = 1.
The following conditions are then equivalent:
• v ∈ L,
• padk(v) ∈ padk(L),
• I(padk(v)) is satisfiable,
• I∗(v) is satisfiable,

which completes the proof.

C. Proofs from Section IV
1) Proof of Lemma 24: The equivalence (1↔2) is standard,

so we omit it. The implication (2→3) is obvious, so it remains
to show the opposite implication.

Let R = Φ(T) for some generalized pp-formula Φ = (I, α),
with some α : X → I, where X = {x1, . . . , xn} is the set
of free variables. Assume that for each x ∈ X , the element
α(x) is not isolated in I (i.e., appears in some constraint), as
the general case reduces to this case easily.

Let c0, c1, . . . , be a sequence of all the constraints in I, and
let In be the subinstance of I induced by the constraints ci
with i < n, and containing the variables α(x), for x ∈ X i.e.,
• the variables of In are the variables which appear in

any of the constraints c0, c1, . . . , cn−1, together with all
variables α(x) for x ∈ X ,

• the constraints of In are c0, . . . , cn−1.
Let Φn be the generalized pp-formula (In, α), for i = 1, 2,

By assumption that for each x ∈ X the variable α(x) is not
isolated, and since X is finite, there is a number m0 such that
each α(x) appears in a constraint ci with i < m0.

By local finiteness of T, it follows that the relation Φm0(T)
is finite. Therefore, the sequence Φm(T), for m > m0, is a
descending sequence of finite relations, so it stabilizes at some
point m1, i.e., Φm(T) = Φm1

(T) for m > m1.
The following equation

Φ(T) =

∞⋂
n=1

Φn(T) (2)

then implies that R = Φ(T) = Φm1(T), so R is defined by a
finite generalized pp-definition.

It remains to prove equation (2). The left-to-right inclusion
is clear, since every homomorphism from I to T induces a
homomorphism from In to T. For the right-to-left inclusion,
suppose that (t1, . . . , tn) ∈ Φn(T) for all n. Let f0 : I0 → T
be defined by f0(α(xi)) = ti for i = 1, . . . , n. Then for each
n there is a homomorphism fn : In → T extending f0 : I0 →
T. Applying Lemma 25 yields a homomorphism f : I → T
extending f0, which is a witness of (t1, . . . , tn) ∈ Φ(T).

2) Proof of Lemma 25: We show the right-to-left implica-
tion, as the other one is obvious. We assume that the structure
I is constrained, i.e., it does not have isolated nodes, and that
the substructures In are finite (the general case reduces to this
case easily).

Take any element x ∈ I . Since I is constrained, x appears
on the j-th coordinate of some tuple t constrained to some
relation R from T. Let Ux be the projection of R on the j-th
coordinate. It is not difficult to see that if for every n ≥ 0 there
exists a homomorphism from In to T then for every n ≥ 0
there exists one that, for every x ∈ In, maps x to an element
of Ux.

Consider the compact subspace
∏
x∈I Ux of T I . For every

In let Sn be the set of all those mappings f ∈
∏
x∈I Ux

for which f |In is a homomorphisms from In to T. Every
Si is a nonempty, closed subset of

∏
x∈I Ux. Therefore,

the descending sequence S1 ⊇ S2 ⊇ . . . has a nonempty
intersection. Since

⋃
n In = I, every mapping f : I → T

which belongs to this intersection is a homomorphism from I
to T.

3) Proof of Proposition 26: Let R be the family of
relations of B. Since the set R is definable, it is orbit-
finite with respect to the action of monotone permutations.
Let R1, . . . , Rn be representatives of the orbits of R. By
assumption, R1, . . . , Rn ∈ ppDef C. For i = 1, . . . , n, let
Φi = (Ii, αi) be a finite generalized pp-formula such that
Φi(C) = Ri.

We may assume that the domains of Ii are pairwise disjoint,
and that their elements are indexed by integers. Since each
constraint in Ii uses a finite relation in C, these constraints
are definable sets with atoms, and, in effect, Φi is a definable
set with atoms.

We now describe how to convert a finite instance I = (I, C)
over B to an instance I′ = (I ′, C ′) over C.

For each constraint c = ((x1, . . . , xn), R) in I, choose
Ri which is in the same orbit as R, and any monotone-
permutation πc which maps Ri to R (such a permutation
can be computed as a piecewise-linear monotone bijection of
the rational numbers). Apply πc to the finite generalized pp-
formula Φi, yielding a finite generalized pp-formula

Φc = πc · Φi

(recall that Φi is a definable set with atoms). By equivariance
of C,

Φc(C) = (πc · Φi)(C) = πc · Φi(C) = πc ·Ri = R.

To summarize, for each constraint c = ((x1, . . . , xn), R)
of I, there is a finite generalized pp-formula Φc = (Ic, αc)
such that R = Φc(C). Moreover, the pp-formula Φc can be
computed in polynomial time from c.

The rest of the construction is standard. We define the
structure J as the disjoint union

J = I ∪
∐
c∈C

Ic,

where I is treated as a set with no relations. Define I′ as the
quotient J/ ∼, where ∼ is the smallest equivalence relation
such that v ∼ x iff v ∈ I and there is a constraint c =
((x1, . . . , xn), R) in I and i ∈ {1, . . . , n} where
• v = xi, and
• x is the i-th free variable of the generalized pp-formula

Φc.
The structure I′ can be computed in polynomial time from I.
It is easy to check that I maps to B if and only if I′ maps to
C.

4) Proof of Proposition 27: In this abstract proof, it will
be convenient to use the following conventions. If X is a set
and f : A → B is a function then by fX : AX → BX we
denote the function defined by fX(α) = α; f . For each x ∈ X
the projection πx : AX → A is defined by πx(f) = f(x). In
the case when X = {1, . . . , n} for some natural number then
AX and fX are denoted by An and fn, respectively. For a
function f : Y → AX , by f [: X → AY we denote its
transpose, defined by f [(x)(y) = f(y)(x) for x ∈ X, y ∈ Y .

In this proof, relations and functions have set-arities which
are finite sets, rather than natural numbers. Formally, if A is a
set and X is a finite set, then a relation with set-arity X on A
is a subset of AX , and a function (or operation) with set-arity
X on A is a function f : AX → A.

If n is a natural number, then identifying An with A{1,...,n}

allows to interpret relations of arity n on A as relations with
set-arity {1, . . . , n} (and similarly for operations). Conversely,
to view relations with set-arities as normal relations, fix for
every finite set X a bijection from X to {1, . . . , n} where
n = |X|, thus identifying AX with An.

We now proceed to the proof of Proposition 27. Let Y be
the set-arity of R, i.e. R ⊆ AY .

For the left-to-right implication, let Φ = (I, α) be a
generalized pp-formula with variables Y such that R = Φ(T).
We show that R is invariant under every polymorphism of
T. Let g : TX → T be a polymorphism. Consider any X-
tuple of tuples in R, i.e., a function u : X → R ⊆ TY . Let
u[: Y → TX be the transpose of u. We need to show that
the composition (u[; g) : Y → T belongs to R = Φ(T), i.e.
is of the form α; k for some homomorphism k : I→ T.

For every x ∈ X , u(x) is a tuple in R = Φ(T), i.e. is of the
form α;h for some homomorphism h ∈ hom(I,T). Using the
axiom of finite choice, there is a function f : X → hom(I,T)
such that u(x) = α; f(x) for all x ∈ X . Its transpose is
a homomorphism f [: I → TX such that u[= α; f [. The
composition k = (f [; g) : I → T is again a homomorphism,
so u[; g = α; k indeed belongs to Φ(T) = R.

For the right-to-left implication, suppose that R is invariant
under the polymorphisms of T. We show that

R = {i[; f | f : TR → T is a polymorphism},

where i : R → TY is the inclusion mapping. The above
equation immediately implies that R is definable by the
generalized pp-formula Ψ = (TR, i[). Lemma 24 then implies
that R is pp-definable. It therefore remains to prove the above
equation.

For the right-to-left inclusion, observe that if f : TR → T is
a polymorphism, then by our assumption f preserves R, so in
particular (i[; f) ∈ R. The left-to-right inclusion is also clear,
since for any r ∈ R, we have r = i[;πr where πr : TR → T
is the projection polymorphism defined by πr(t) = t(r).

5) Proof of Proposition 30: We separately show the equiv-
alences (1↔3) and (1↔2).

(1→3). Let f : T|A → T|A be an endomorphism; we
show that it is mono. It suffices to show that f extends to
an endomorphism f̂ of T. Indeed, by the the assumption (1),
the mapping f̂ is a monomorphism, so its restriction f must
be mono as well.

Consider the generalized pp-definition Φ = (T, α), where
α : A → T is the inclusion. Let R = Φ(T) ⊆ TA. The
relation R is finite, as there are no isolated nodes in T, so R ∈
ppDef(T), by Lemma 24. By definition of T|A, the restriction
R|A of R to A is a relation of T|A, and therefore is preserved
by f . Clearly, the identity mapping idA belongs to R|A, and
since f preserves R|A, it follows that f = f ; idA ∈ R|A. This
means that f extends to an endomorphism f̂ of T. This proves
the implication (1→3).

(3→1). Let f be an endomorphism of T, and let x, y be
two distinct elements of T. We show that f(x) 6= f(y). Since
T has no isolated vertices, there are finite, pp-definable unary
predicates U, V ∈ ppDef T such that x ∈ U and y ∈ V . Then
T|U∪V is a core by (3), and f induces its endomorphism; in
particular f(x) 6= f(y).

We now proceed to the proof of the equivalence (1↔2).
The left-to-right implication is immediate. To prove other
the implication, assume that f is an endomorphism which is
not mono. We prove that there exists a monotone-equivariant

endomorphism h which is not mono. The proof invokes
Pestov’s theorem, as described below.

Let x, y ∈ T be distinct elements such that f(x) = f(y).
By assumption that T does not have isolated nodes, there is a
(finite) relation R of T, such that x appears on some coordinate
of some tuple in R. By taking the appropriate projection of R,
we obtain a finite unary relation U ∈ ppDef T which contains
x. Similarly, there is finite, unary relation V ∈ ppDef T which
contains y. We claim that, without loss of generality, we may
assume that U = V .

Indeed, if x ∈ V , then we can simply replace U by V .
Assume now that x 6∈ V . Since f is an endomorphism, f(x) ∈
U and f(y) ∈ V , so f(x) = f(y) ∈ U ∩ V . Because U ∩ V
is finite and preserved by f , there is a finite number n such
that fn is idempotent on U ∩ V , i.e., f2n(v) = fn(v) for
v ∈ U ∩ V . Take y′ = fn(x), we have:
• y′ ∈ U ∩ V ⊆ U because f(x) ∈ U ∩ V and f preserves
U ∩ V

• x 6= y′ because x 6∈ U ∩ V ,
• fn(x) = fn(y′) because fn is idempotent on U ∩ V .

Replacing f by fn, y by y′ and V by U , we get that f(x) =
f(y), x 6= y and x, y ∈ U , where U is a finite, unary relation
in ppDef T.

Let G = Aut(A, <) denote the group of monotone atom
permutations. By equivariance of T under the action of G, the
orbit of U , i.e.,

G · U def
= {π · U | π ∈ G},

is a family of unary predicates which is contained in ppDef T.

Claim 46. There is an endomorphism g whose restriction to
V is not mono, for all V ∈ G · U .

Let us choose a sequence π1, π2, . . . ∈ G of monotone
permutations such that G · U = {πn · U : n = 1, 2, . . .}.
For n = 1, 2, . . ., let Un = πn · U . We define fn inductively
for n = 0, 1, 2, . . ., so that fn is an endomorphism of T whose
restriction to Ui is not mono, for i = 1, 2, . . . , n. Let f0 = f .
Assuming that fn is already defined, fn+1 is defined as the
composition (πn+1 · f); fn. Then fn+1 satisfies the required
property.

By Lemma 15, the sequence of mappings f0, f1, f2, . . .
contains a convergent subsequence, whose limit is an endo-
morphism g whose restriction to any unary predicate V ∈ G·U
is not mono. This proves the claim.

Claim 47. There is a monotone-equivariant endomorphism h
which is not mono.

Consider the G-orbit G · g of the mapping g. Note that
all mappings in this set are not mono when restricted to U .
The topological closure G · g of the orbit G ·g is a monotone-
equivariant, closed set of endomorphisms, and all mappings in
this set are also not mono when restricted to U – this follows
from the fact that not being mono when restricted to U is a
closed property, as U is finite. By Pestov’s theorem, there is a
monotone-equivariant endomorphism h ∈ G · g. This mapping
is not mono, since its restriction to U is not mono.

Reassuming, if there exists an endomorphism f of T which
is not mono, then there exists also a monotone-equivariant
one. This finishes the proof of the implication (2→1). of
Proposition 30.

Turing Machines with Atoms,
Constraint Satisfaction Problems,

and Descriptive Complexity

Bartek Klin ∗ Sławomir Lasota* Joanna Ochremiak † Szymon Toruńczyk*

University of Warsaw
{klin,sl,ochremiak,szymtor}@mimuw.edu.pl

Abstract
We study deterministic computability over sets with atoms. We
characterize those alphabets for which Turing machines with atoms
determinize. To this end, the determinization problem is expressed
as a Constraint Satisfaction Problem, and a characterization is ob-
tained from deep results in CSP theory. As an application to De-
scriptive Complexity Theory, within a substantial class of rela-
tional structures including Cai-Fürer-Immerman graphs, we pre-
cisely characterize those subclasses where the logic IFP+C captures
order-invariant polynomial time computation.

Categories and Subject Descriptors F.1.1 [Models of Computa-
tion]: Turing machines; F.4.1 [Mathematical Logic]: Logic and
constraint programming; F.2.2 [Nonnumerical Algorithms and
Problems]: Computations on discrete structures

Keywords Sets with atoms, Turing machines, Constraint Satisfac-
tion Problems, Descriptive Complexity Theory

1. Introduction
Imagine Turing machines which can manipulate not only binary
digits, but also atoms which come from an infinite, countable set.
Moreover, input letters can be finite structures built of atoms. Typ-
ical letters include ordered quadruples of atoms, unordered sets of
eight atoms, or graphs with ten atoms as nodes. Such machines are
called Turing machines with atoms [4], or TMAs for short.

A TMA is allowed to read and write letters on a tape and store
them as parts of its internal state, but it is required to be invariant
with respect to bijective atom renaming. For example, if a machine
in a state that stores a set of two atoms {a, b}, upon reading a
letter {b, c} produces the letter {a, c}, then in a similar state storing
some other set {d, e}, upon reading {e, f}, it must produce {d, f}.
Intuitively, atoms have no discernible structure except equality, and

∗ Supported by ERC Starting Grant “Sosna”.
† Supported by the Polish National Science Centre (NCN) grant
2012/07/B/ST6/01497.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603135

a machine may base its actions on comparisons between atoms,
but not on the identity of particular atoms. It follows that the
language accepted by a TMA is always closed under bijective atom
renaming. For example, over the alphabet of unordered pairs of
atoms, there is a deterministic TMA recognizing the language of
those words which, understood as lists of edges of an undirected
graph, describe connected graphs.

In contrast to classical Turing machines, some TMAs do not
determinize. In [4], a certain language, over a particular alphabet
with each letter built of six atoms, was proved to be recognizable by
a nondeterministic TMA (in polynomial time), but not recognizable
by any deterministic one. An alphabet for which such a language
exists is called nonstandard. On the other hand, alphabets such as
tuples or finite sets of atoms, are standard: every TMA over them
does determinize.

This raises a few questions: how to check whether an alpha-
bet is standard? Is it a decidable property of alphabets? Is the six-
atom alphabet of [4] the simplest nonstandard one? In this paper we
tackle these questions, and in the process we reveal connections of
computation with atoms to some well-studied areas of Theoretical
Computer Science, in particular to the theory of Constraint Satis-
faction Problems (CSP) [8].

First, we recall from [4] that an alphabet A is standard if and
only if a deterministic TMA, given words v and w over A, can
decide whether v can be obtained from w by a bijective atom
renaming. Then we show that if any deterministic TMA decides
this problem then it may be decided by a specific algorithm akin to
consistency algorithms studied in CSP theory.

Exploring this connection further, we show how to encode a
given alphabet as a finite relational template in the sense of CSP,
so that the alphabet is standard if and only if the template is “easy”
in a certain well-known sense (specifically, if it admits a majority
polymorphism). The latter property is clearly decidable, which
gives an effective characterization of standard alphabets. As a direct
application, we show that all alphabets with letters built of up to five
atoms are standard, so the nonstandard alphabet of [4] is indeed a
minimal one. (However, other six-atom nonstandard alphabets do
exist.)

The nonstandard alphabet and language defined in [4] resem-
ble the well-known CFI graphs, introduced in [6] to show a limited
power of a logic IFP+C over unordered structures (more precisely,
an equivalent logic LFP+C was used). We explain this connection
by showing that for an alphabet A with atoms, any word defines
a relational structure, and over the class of structures obtained in
this way, the logic IFP+C captures exactly polynomial time com-
putations by deterministic TMAs. Our results yield a characteriza-
tion of those classes of structures obtained from words with atoms,
over which IFP+C captures polynomial time computations, in the

sense used in Descriptive Complexity. This result can be seen as a
common generalization of the Immerman-Vardi and the Cai-Fürer-
Immerman theorems. In Section 7 we discuss relations with a paper
of Atserias, Bulatov and Dawar [1] and also with the graph isomor-
phism problem for bounded color classes.

2. Turing Machines with Atoms
We begin by recalling some basic notions of sets with atoms [3, 4],
also known as Fraenkel-Mostowski sets [10] or nominal sets [14].
Sets with atoms. Fix a countably infinite set A of atoms. A set with
atoms is any set that can contain atoms or other sets with atoms, in a
well-founded way. Formally, sets with atoms are defined by ordinal
induction: the empty set is the only set at level 0, and sets at level
α either are atoms (which contain no elements) or contain sets at
levels smaller than α.

Examples of sets with atoms include:

• any classical set without atoms,
• the set A itself,
• for any n ∈ N, the set An of all n-tuples and A(n) of non-

repeating n-tuples of atoms (tuples may be encoded by usual
set-theoretic constructions),
• the set

(A
n

)
of sets of atoms of size n,

• the set A∗ of finite words over A,
• the set PfinA of all finite subsets of A, etc.

Bijective atom renaming acts on sets with atoms in a canonical
way; for instance, it acts coordinatewise on A(n). For a set with
atoms X and a bijection π : A → A, by π(X) we denote the set
obtained by consistently replacing atoms in X and in its elements
according to π (formally, this is again defined by ordinal induction).
We say that a set S ⊆ A supports X if X = π(X) for every π
which is the identity on S. For example, a tuple (a, b, c) ∈ A3 is
supported by the set {a, b, c} ⊆ A, but also by any larger set.

A set with atoms is hereditarily finitely supported if it has some
finite support, each of its elements has some finite support, and so
on recursively. In this paper we only consider hereditarily finitely
supported sets, and so in the following we omit this qualification.

It is not difficult to prove (see e.g. [10, Proposition 3.4]) that
every set with atoms has the least finite support with respect to
inclusion. By the support of a set with atoms X we will mean the
least finite support; we denote it by sup(X). If X is a finite set of
atoms, a finite set of such sets or so on, then sup(X) is the set of
those atoms that appear in X .
Equivariance. A set with atoms is equivariant if its support is
empty (note that its elements need not have the empty support).
The example sets listed above are all equivariant.

A relationR ⊆ X×Y between two equivariant sets with atoms
can be seen as a set with atoms itself. It is equivariant if and only if
it is closed under the action of atom renaming, i.e., if for any x ∈ X
and y ∈ Y ,

(x, y) ∈ R implies (π(x), π(y)) ∈ R

for any bijection π : A → A. If the relation is (the graph of) a
function f : X → Y , this translates to:

f(π(x)) = π(f(x))

for any bijection π : A → A and any x ∈ X; i.e., equivariant
functions are those that commute with atom renaming. It follows
that for any x ∈ X the support of f(x) is contained in the support
of x, since a permutation π which fixes x will also fix f(x).
The notion of an equivariant function formalizes the intuition of

a function that only cares about atom equality, and does not depend
on any other structure of the atoms.

For example, the only equivariant function from A to A is the
identity, the only equvariant functions from A(n) to A are the n
projections, and the only equivariant function from A to An is the
diagonal. There is no equivariant function from

(A
2

)
to A. Indeed,

suppose that f :
(A

2

)
→ A is such that, say,

f({a, b}) = a

for some a 6= b ∈ A. Then f is not equivariant, since for a bijection
π that swaps a and b:

f(π({a, b})) = f({a, b}) = a 6= b = π(a) = π(f({a, b})).

Intuitively, there is no way of choosing one atom out of two when
all one has is atom equality. However,{

({a, b}, a) | a, b ∈ A, a 6= b
}

is an equivariant relation between
(A

2

)
and A. Note that it relates

{a, b} both to a and b.
Notational convention. Most often we will make a pragmatic
distinction between those sets that we consider as collections of
interesting elements (for example, the sets A, A(n), etc.), and those
that serve mostly as elements of other sets (such as particular atoms,
tuples of atoms, etc.). The former will usually be equivariant, and
will be denoted by capital letters X , Y , A, and referred to as sets
with atoms. The latter will often have nonempty least support, and
will be denoted by small letters x, y, a, b, etc., and referred to as
elements.
Orbit-finite sets. Elements naturally fall into disjoint orbits: x and
y are in the same orbit if π(x) = y for some bijection π : A→ A.
A set is equivariant if and only if it is a union of orbits. For example,
A, A(n) and

(A
n

)
comprise one orbit each. The set A2 decomposes

into two orbits – the diagonal and its complement – and A∗ and
PfinA have infinitely many orbits. In sets with atoms, sets with
finitely many orbits (or orbit-finite sets) play the role of finite sets.
The dimension of a set A, denoted dimA, is the maximal size of
the support of any of its elements. Every orbit-finite set has a finite
dimension.

For every element x there is a unique single-orbit set – called
the orbit of x – which contains x, namely the set of all elements of
the form π(x), where π is an atom permutation. For any finite set
of elements there is a smallest equivariant set containing it, which
is orbit-finite. Every orbit-finite set arises in this way, so orbit-finite
sets indeed are “finite up to atom renaming”.
Automorphisms of elements. Let x be an element. A permuta-
tion π of supx is an automorphism of x if x is fixed by some
(equivalently, every) permutation of atoms which extends π. Auto-
morphisms of x form a group of permutations of sup(x), denoted
Aut(x). For example, if x is an unordered pair {a, b} of distinct
atoms, then Aut(x) is the symmetric group on {a, b}. On the other
hand, if x is the ordered pair (a, b), then Aut(x) is the trivial group
acting on {a, b}. If x is a finite relational structure with atoms as
nodes, such as a graph, then Aut(x) is the classical automorphism
group of x.

When x and y are in the same orbit then Aut(x) and Aut(y)
are isomorphic as permutation groups. The converse almost holds:
if Aut(x) and Aut(y) are isomorphic as permutation groups, then
the orbit of x maps equivariantly and bijectively to the orbit of
y. This means that orbit-finite sets can be presented (up to equiv-
ariant bijection) by finite collections of finite permutation groups.
Moreover, properties of orbit-finite sets, such as the standardness
of orbit-finite alphabets, can be considered as properties of finite
permutation groups.

Turing machines. Following [4], a Turing machine with atoms
(TMA) is defined exactly as an ordinary Turing machine, but with
finite sets replaced by orbit-finite sets with atoms. Thus a TMA
consists of an input alphabet A, a work alphabet B ⊇ A, and set of
states Q with distinguished subsets of initial and accepting states,
all these orbit-finite sets with atoms, and an equivariant transition
relation

δ ⊆ Q×B ×Q×B × {−1, 0, 1}
where the last atomless component encodes possible moves of the
machine head as usual. An input is a finite word w ∈ A∗, and the
definitions of a machine configuration, transition between configu-
rations, machine run, acceptance and the language recognized by a
machine are as in the classical case. A machine is deterministic if
the transition relation is a partial function and there is exactly one
initial state.

Some examples of TMAs were given in [4]; we follow with a
few more to illustrate TMA determinization issues.

Example 2.1. Consider the alphabet A2 of ordered pairs of atoms;
a word over this alphabet may be seen as a finite directed (multi-
)graph with atoms as vertices. TMAs can decide all standard graph-
theoretic properties of such words in a uniform way. Indeed, let
the working alphabet of a machine M additionally contain single
atoms as letters. The machine, given an input word w, may begin
by deterministically computing (and writing to its tape) an ordered
list of all atoms in w, in the order of appearance. This is done
by checking, for each letter (a, b) of the input, whether a (and,
further, b) appear in the list constructed so far, and if not, by adding
them to the list. For this, it is important that a deterministic TMA,
given a letter (a, b), may compute the atoms a and b; indeed, both
projections from A2 to A are equivariant functions.

Once an ordered list of all atoms in w is computed, the ma-
chine M may simulate any classical, atomless algorithm on finite
directed (multi-)graphs, representing every atom in w by the num-
ber of its position in the list. If the simulated algorithm is determin-
istic, then so is M .

Example 2.2. Consider now the alphabet
(A

2

)
of unordered pairs

of atoms. By analogy to the previous example, a word may now
be seen as a finite undirected (multi-)graph. The simple approach
sketched above does not work as it is. Indeed, as we explained
before, there is no equivariant function that, given a letter {a, b},
returns the atom a. As a result, a deterministic TMA cannot, in
general, compute a total order of atoms that appear in a word over(A

2

)
.
Fortunately, in this case the problem may be overcome rather

easily. Note that taking the intersection, or the difference, of two
sets of atoms is an equivariant function. Therefore, if some atom
appears in one letter but not in another, then a deterministic TMA
can detect this, and output this atom at the end of the tape. This
way, the machine outputs all vertices of all non-isolated edges, in
some order. Based on this order, a machine may again simulate
any classical algorithm on finite undirected (multi-)graphs as in
Example 2.1, with the only difference that it must remember that
the input graph has a certain number of isolated edges that are not
represented in the computed list of atoms.

Example 2.3. Consider the alphabet A of unordered pairs of dis-
joint, ordered pairs of atoms. Its letters are of the form

l = {(a, c), (b, d)}
for distinct a, b, c, d ∈ A, and we may draw them as graphs:

Above, the same letter is depicted in four different ways, depending
on the ordering of atoms chosen in the picture. It has a four-element

support and two automorphisms:

sup(l) = {a, b, c, d} Aut(l) = {(), (a b)(c d)}.
Here and in the following, we use the usual cycle decomposition
notation to describe finite permutations.

Given a letter as above, we shall call the set {a, b} its left bag
and {c, d} its right bag. Consider the language L ⊆ A∗ of words
l1l2 · · · ln such that:

(i) for 1 ≤ i < n, the right bag of li equals the left bag of li+1,
(ii) the right bag of ln equals the left bag of l1,

(iii) otherwise, bags are pairwise disjoint, and
(iv) it is possible to choose one pair of atoms (an “edge”) from each

li so that the chosen edges form a directed cycle of length n.

For example, the four-letter word on the left belongs to L, and the
one on the right does not, as it fails the condition (iv):

An equivalent (slightly informal) phrasing of condition (iv) is that
the atoms can be arranged in such a way, that the letters have no
crossings.

To investigate the recognizability of L, note that functions that
return the left and the right bag of a given letter:

{a, b} ← [{(a, c), (b, d)} 7→ {c, d}
are equivariant, and therefore computable in a single step by a
deterministic TMA. Since comparing two bags for equality (and
checking whether they are disjoint) is also deterministically com-
putable, it is clear that a deteministic TMA can check conditions
(i)-(iii) in the definition of L. These conditions ensure that the in-
put word has the shape of a circular band; the remaining condition
(iv) says that it is a simple band, and not a “Möbius strip”.

A nondeterministic TMA can check the condition (iv) easily,
guessing one edge from each letter of the input, writing them on the
tape, and then deterministically checking that they form a directed
cycle. For this, the work alphabet should be extended to include
single edges, i.e., ordered pairs of atoms.

Although a deterministic TMA is unable to guess an edge from
a letter of the alphabet A, condition (iv) can still be checked deter-
ministically. To this end, note that two letters of A that share a bag,
may be deterministically composed with an equivariant function
that acts as follows:

A deterministic machine can sequentially compose the input letters
from the input in this way, storing intermediate results in its state,
and finally check that the structure obtained at the end is of the
form:

.

The above deterministic construction relies on the fact that non-
local dependencies on bags in the input word may be encoded as
small structures of atoms (i.e. intermediate results of the composi-
tion process). In [4], an alphabet was proposed where this fortunate
property fails, and as a consequence, TMAs do not determinize. We
briefly recall that example now.

Example 2.4. Generalizing Example 2.3, consider an alphabet A
whose letters are four-element sets of atom triples of the following
shape, containing six atoms altogether:

l = {(a, c, e), (a, d, f), (b, c, f), (b, d, e)}.

It is straightforward to check that l has four automorphisms:

sup(l) = {a, b, c, d, e, f}
Aut(l) = {(), (a b)(c d), (a b)(e f), (c d)(e f)}.

A letter like this may be depicted in eight different ways, as a
hyperedge on six vertices, with a positive or negative sign:

The rule is that each time a pair of atoms at some corner exchanges
positions, the sign changes. This is analogous to Example 2.3,
where each time a pair exchanges positions, then a crossing in the
graph either appears or disappears.

In the alphabet of Example 2.3, an automorphism of a letter
could swap a pair of atoms in a bag if and only if it swapped
the remaining atoms as well. Here, the situation is a little more
complicated: there are three exchangeable pairs of atoms in a letter,
and an automorphism can perform a swap in any two (but not all
three) of them. This enables much more complicated dependencies
between bags. In [4], letters of A were used to cover a surface
(specifically, a torus) as depicted below (atoms are represented by
dots):

One then considers the language of words whose letters form
such a torus (where the correct shape is ensured by conditions
analogous to (i)-(iii) in Example 2.3) and satisfy an additional
requirement analogous to (iv) in Example 2.3: that one can swap
the atoms in such a way that each letter gets a positive sign. Note
that swapping a pair of atoms changes the signs of both letters
which contain this pair. A nondeterministic TMA can recognize
this language similarly to Example 2.3, but, as is proved with
a geometric argument, a deterministic TMA cannot recognize it.
More details on this can be found in [4].

Example 2.5. Another way of arranging six atoms in a letter is a
two-element set of disjoint three-element sets:

l =
{
{a, b, c}, {d, e, f}

}
which may be presented as an undirected graph:

A letter like this has support {a, b, c, d, e, f} and 3! · 3! · 2 = 72
automorphisms. As we will show in Section 5, TMAs over this
alphabet A do not determinize. On the other hand, as will also
easily follow from our results, machines over ordered pairs of
disjoint three-element sets of atoms, or over two-element sets of
disjoint ordered triples of atoms, do determinize.

An alphabet will be called standard if all nondeterministically
recognizable languages over it are also deterministially decidable;
otherwise it is nonstandard. Our aim is to provide an effective
characterization of these properties.

3. Word isomorphism and (k, l)-consistency
Recall that for any element x, an automorphism of x is a bijection
on its support which extends to a bijection of atoms that fixes x.

More generally, an isomorphism from x to y is a bijection from
sup(x) to sup(y) which extends to an atom bijection that maps x
to y. Note that x and y are isomorphic in this sense if and only if
they are in the same orbit.

The word isomorphism problem for an orbit-finite alphabet A is
the language

IsoA = {vw ∈ A∗ | v is isomorphic to w}.

We recall the following theorem from [4]:

Theorem 3.1. An alphabet A is standard if and only if the lan-
guage IsoA is decidable by a deterministic TMA.

We will now study the word isomorphism problem in more
detail. As a first step to test isomorphism, a TMA may determine
whether two words are similar, as described below.

3.1 Word similarity

Bags. We say that two atoms coappear in a word w ∈ A∗ if they
belong to its support and belong to the supports of exactly the same
letters of w. Coappearance is an equivalence relation on sup(w),
and its equivalence classes will be called bags of w, a notion that
appeared in Example 2.3. A bag is either disjoint from or contained
in the support of any letter of w, moreover it is determined by
the sequence of letters which contain it. The set of all bags in w
will be denoted by Bags(w). It inherits a total ordering from the
lexicographic ordering on subsequences of w.
Similar words. Suppose that two words v and w over A have the
same length and the same number of bags. We say that a letter of
v corresponds to a letter of w if they are on the same positions in
those words. Similarly a bag B in v corresponds to a bag B̃ in w if
for every letter of v which contains B, the corresponding letter in
w contains B̃, and vice versa.

We say that the words v and w are similar if each bag of v has
a corresponding bag of the same size in w, and vice versa. Similar
words induce a bijective correspondence between their bags. When
v and w are understood from the context, we denote by B̃ the bag
in w corresponding to a bag B in v.

Lemma 3.2. There exists a deterministic TMA which determines
whether two input words w, v ∈ A∗ are similar.

Note that similar words are not necessarily isomorphic, as wit-
nessed by the two four-letter words in Example 2.3.

3.2 Consistency
We now go beyond local interactions between intersecting letters
and proceed to a more refined analysis of the structure of the words
v and w. In this section, fix two similar words v and w over A.
Translations. An isomorphism σ from v to w decomposes into
a family of bijections – one bijection σB from B to B̃ per each
bag in v. In this section, we study families of bijections between
corresponding bags which are “candidates” for forming a global
isomorphism from v to w.

Let B = {B1, . . . , Bn} be some family of bags of v. A trans-
lation on domain B is a family of bijections σ = (σB)B∈B, where
σB is a bijection from B to B̃. The size of σ is the size of its do-
main. A translation σ covers a letter l of the word v, if its domain
contains all the bags of l.
Local consistency. A translation σ is locally consistent if it induces
an isomorphism of every letter of v which it covers to the corre-
sponding letter in w. Note that an isomorphism between v and w
induces a locally consistent translation on the domain of all bags
of v. Conversely, any locally consistent translation on that domain
gives an isomorphism from v to w.

Example 3.1. Consider the pair of words v, w from Exam-
ple 2.3. Both have four bags: {a, b}, {c, d}, {e, f}, {g, h}. For
i = 1, 2, 3, 4, let σi map the ith bag of v identically to the ith bag
of w. The translation (σ1, σ2) is locally consistent: it covers the
first letter of v, and maps it isomorphically to the corresponding
letter ofw. However, the translation (σ1, σ2, σ3) is not locally con-
sistent, as it fails to map the second letter of v to the second letter
of w.

A consistency algorithm. We now sketch a variant of the (k, l)-
consistency algorithm (see e.g. [2, 8]), adjusted to finding word
isomorphisms. The relationship to the standard (k, l)-consistency
algorithm will become clear in Sec. 4.

The algorithm has two natural numbers k < l as parameters,
and takes a pair of similar words v and w as input.

Let F be a collection of locally consistent translations of size at
most l. We say that F is (k, l)-consistent if:

(1) F is downward-closed: if σ ∈ F is a translation and B is a
subset of its domain, then the restriction (σB)B∈B is in F .

(2) F is weakly upward-closed: if σ ∈ F is a translation of size at
most k and B is a family of at most l bags of v that contains the
domain of σ, then there is a translation σ̄ ∈ F with domain B
which extends σ.

Given two input words v, w, the (k, l)-consistency algorithm
computes the largest (k, l)-consistent collection of locally consis-
tent translations. The algorithm starts with the collection of all
locally consistent translations of size at most l, and repeatedly
removes all translations σ that falsify condition (1) or (2), un-
til a fixpoint is reached. The result of this procedure is denoted
consk,l(vw).

The algorithm for computing consk,l(vw) can be carried out by
a deterministic TMA, where letters of the work alphabet include
families of consistent translations over a common domain of size
at most l. This work alphabet is (contained in) an orbit-finite set,
and admits the operations needed for the fixpoint computation of
consk,l(vw).

If v and w are isomorphic then consk,l(vw) 6= ∅. Indeed, an
isomorphism from v to w induces a locally consistent translation
on the domain of all bags, and all its subfamilies of size at most l
form a (k, l)-consistent collection.

We say that the alphabet A has width (k, l) if the other im-
plication holds, i.e., if for any pair of similar words v, w ∈ A∗,
consk,l(vw) 6= ∅ if and only if v and w are isomorphic.

The following theorem says that the (k, l)-consistency algo-
rithms are in a sense “universal” for recognizing IsoA.

Theorem 3.3. For any alphabetA, the language IsoA is recognized
by a deterministic TMA if and only if there exist numbers k, l such
that A has width (k, l).

One implication is easy: if A has width (k, l) then the lan-
guage IsoA is deterministically recognizable (in polynomial time)
by the TMA which computes consk,l(vw) and tests whether the
result is nonempty. For the other implication, suppose that IsoA
is recognized by a deterministic TMA M and that the family
F = consk,l(vw) is nonempty (for sufficiently large k, l, depend-
ing on M). Roughly, one then shows that an accepting run of M
over the word vv can be translated, using the family F , into an
accepting run over vw, implying that vw ∈ IsoA. Details can be
found in Appendix A.

Together with Theorem 3.1, this gives a characterization of
standard alphabets in terms of width. However, it may not be
clear how the existence of a finite width might be decided. In the
next section, we encode the existence of an isomorphism between

similar words as a constraint satisfaction problem, to draw on the
rich body of results known about those.

4. Constraint Satisfaction Problems
An instance of a Constraint Satisfaction Problem (CSP) [8] consists
of a set of variables, a set of values, called its domain, and a
family of constraints. Each constraint is of the form (v̄, R), where
v̄ = (v1, . . . , vn) is a tuple of variables, and R is an n-ary relation
over the domain; we say that the tuple v̄ is constrained to R. For
a given instance, a partial assignment is a partial mapping of the
variables to the domain. A partial assignment f is called a partial
solution if it satisfies all the constraints, i.e., if v̄ is constrained to
R and f is defined over v̄, then (f(v1), . . . , f(vn)) ∈ R. We drop
the qualifier partial if the mapping is total.

We will be interested in the case where all the above sets are
finite.

4.1 Instances
Fix an orbit-finite alphabet A. The aim is to reduce the word
isomorphism problem over A to a CSP. More precisely, given two
similar words v and w over A, we will construct an instance which
has a solution if and only if v and w are isomorphic. The idea is
that each bag in v is a variable, and an assignment will assign to
it a bijection to the corresponding bag in w. In order to describe
bijections between bags using elements of a finite domain, we need
to introduce canonical representations of various bags. The precise
definition follows.
Maps and atlases. For a bag B, define [B] = [n] = {1, 2, . . . , n}
where n is the size ofB. A map of a bagB is any bijection fromB
to [B], or equivalently, an ordering of the elements of B. An atlas
α on a word v over A is a family of maps: one map αB per each
bag B of v.

Fix two similar words v and w over A, and let α and β be their
atlases. Then [B] =

[
B̃
]

for any bag B in v, and any permutation
τB of [B] induces a bijection σB from B to B̃:

σB = αB · τB · (βB̃)−1 (1)

(we use left-to-right function composition here). The correspon-
dence of σB and τB is bijective. Our aim is to define a CSP in-
stance whose solutions are families (τB)B∈Bags(v), where each
τB is a permutation of [B], such that the corresponding transla-
tion (σB)B∈Bags(v) is locally consistent, and so induces an iso-
morphism from v to w.
The instance. For fixed atlases α and β, we define the following
instance, denoted Iv,αw,β . Its variables are all bags of v. Its domain is
the disjoint union:

DA = S[1] + S[2] + S[3] + · · ·+ S[dimA] (2)

where S[n] is the group of all permutations of [n]. Note that dimA
is the maximal possible size of a bag in a word over A.

Most importantly, there are the constraints. They correspond to
letters of v as follows. For a letter l of v, let B1, . . . , Bn be its
bags in increasing order. The tuple (B1, . . . , Bn) is constrained to
the set Rl of tuples (τ1, . . . , τn) ∈ S[B1] × · · · × S[Bn] such that
the translation (σ1, . . . , σn) induced via (1) is locally consistent,
i.e., forms an isomorphism from l to the corresponding letter of w.
Note that Rl can be seen as an n-ary relation over DA. Such are
the constraints of the instance Iv,αw,β .

The construction implies that partial assignments for Iv,αw,β cor-
respond bijectively to translations from v to w. Moreover, a partial
assignment is a partial solution if and only if the corresponding
translation is locally consistent. The correspondence preserves in-
clusions of partial assignments and translations.

Example 4.1. Over the alphabet consisting of letters {(a, c), (b, d)},
consider the two words v, w from Example 2.3, depicted below
with most atoms represented by dots. Some atlases α, β of v, w are
given; they assign numbers to atoms.

1

2

1 1

2

1

22

1

2

1 1

2

1

22

The instance has four variables B1, B2, B3, B4 corresponding to
the four bags of v. There are four constraints, corresponding to
the letters of v. The first letter constrains the pair (B1, B2) to
the set of pairs R = {(id, id), (σ, σ)} ⊆ S[2] × S[2] (where σ
denotes the transposition on [2]) because only these correspond
to isomorphisms from the first letter of v to the first letter of w.
The pair (B2, B3), however, is constrained to the set of pairs
R′ = {(id, σ), (σ, id)}.

The resulting instance Iv,αw,β is drawn below. Solid edges repre-
sent the constraint R, the dashed edge – the constraint R′.

For different atlases on the same v and w the instance may look
different, but it will always have one or three dashed edges.

4.2 Templates
If T = (D,R1, R2, . . . , Rn) is a relational structure, then we
say that an instance is over the template T if its domain is D
and each relation occurring in a constraint is one of the relations
R1, . . . , Rn.

Fix an orbit-finite alphabet A. We define the template TA as the
set DA from (2) together with all relations on DA which appear
in the constraints of all instances of the form Iv,αw,β . There are only
finitely many such relations because each of them has arity at most
dimA. Moreover, each relation in TA has a special structure: it is
a coset.

If G is a group, then a coset in G is any subset of the form
H · g = {h · g : h ∈ H}, for a subgroup H of G and g ∈ G.

Lemma 4.1. Let v, w be similar words over A and α, β their
atlases. For any letter l of v with bags B1, . . . , Bn, the relation
Rl is a coset in the group S[B1] × · · · × S[Bn], and a subgroup if
v = w and α = β.

Example 4.2. Let A be the alphabet from the previous example.
Then DA = S[1] + S[2] + S[3] + S[4]. Some of the relations of TA
include the binary relations R,R′ ⊆ S[2] × S[2] which appeared
in Example 4.1. Note that R is a subgroup and R′ is its coset in
S[2]×S[2]. Other relations in TA include a unary relation U which
is a subgroup of S[4] isomorphic to Aut(l), where l is a letter of
A. The relation U arises in the instance Il,αl,α , where α is some map
on l.

4.3 Templates of bounded width
Given an instance I , the well-known (k, l)-consistency algorithm
(see e.g. [2, 8]) is completely analogous to the one in Sec. 3.2, but it
computes partial solutions instead of locally consistent translations.
We say that a template T has width (k, l) if for any instance I
over T , consk,l(I) 6= ∅ if and only if I has a solution. A template
of bounded width is a template of width (k, l), for some natural
numbers k, l.

By construction of the instance Iv,αw,β , its partial solutions corre-
spond to locally consistent translations, so we have:

Fact 4.2. For any words v, w over A and their atlases α, β,
consk,l(vw) 6= ∅ if and only if consk,l(Iv,αw,β) 6= ∅.

It is also not difficult to prove the following.

Proposition 4.3. Fix an alphabet A, and let k, l be natural num-
bers. Then the following conditions are equivalent:

1. The alphabet A has width (k, l),
2. The template TA has width (k, l).

The implication from (2) to (1) is immediate from Fact 4.2, since
any pair of words v, w induces an instance Iv,αw,β over TA, and the
consistency algorithm over Iv,αw,β simulates the algorithm over vw.
The converse implication is similar, and uses the the fact that an
arbitrary instance I over TA can be converted into a homomor-
phically equivalent instance of the form Iv,αw,β . The details are in
Appendix B.

4.4 Majority polymorphisms
The bounded width property is decidable for any template [2, 13],
but for templates TA it can be analyzed further using the following
fundamental notions of CSP theory.

Consider a template T over a domain D and a function f :
Dn → D. A relation R in T is compatible with f if by applying f
(coordinatewise) to n tuples from R, we get a tuple in R. We say
that f is a polymorphism of T if all the relations in T are compatible
with f . A majority polymorphism m is a ternary polymorphism
such that for all x, y ∈ D we have

m(x, x, y) = m(x, y, x) = m(y, x, x) = x. (3)

Another example of a ternary polymorphism is a Maltsev poly-
morphism M which for all x, y ∈ D satisfies

M(x, x, y) = M(y, x, x) = y. (4)

For every alphabetA, the template TA has a Maltsev polymorphism
M defined by:

M(x, y, z) = xy−1z, if x, y, z ∈ S[n] for some n,

and for other arguments defined arbitrarily but satisfying (4). This
is a polymorphism since, by Lemma 4.1, every relation in TA is a
coset.

A relational structure is a core if every endomorphism of it is a
bijection. Every relational structure T has an induced substructure
C which is a core and which is a retract of T , i.e. there is a
homomorphism from T onto C which is the identity on C. We
call C the core of T (a core is unique up to isomorphism).

The key technical result of CSP theory that we need is:

Theorem 4.4 ([7]). If a core template has a Maltsev polymorphism
and has bounded width, then it has a majority polymorphism.

The following lemma does not hold for arbitrary relational tem-
plates, but it does for templates TA:

Lemma 4.5. For any alphabet A, the template TA has a majority
polymorphism if and only if its core has a majority polymorphism.

From this we deduce:

Lemma 4.6. For any alphabet A, the template TA has bounded
width if and only if TA has a majority polymorphism.

Proof. The right-to-left implication is classical [8] and holds for
any template T . To prove the left-to-right implication, let C be the
core of TA, and let r be a homomorphism of TA onto C which is
the identity on C. Then C has a Maltsev polymorphism r ◦ M ,
where M is a Maltsev polymorphism of TA. It is well known (and
easy to see) that a template has bounded width if and only if its
core has; therefore, C has bounded width. By Theorem 4.4, C

has a majority polymorphism. Therefore, by Lemma 4.5, TA has
a majority polymorphism.

We arrive at the main result of this paper:

Theorem 4.7. An alphabetA is standard if and only if its template
TA has a majority polymorphism.

Proof. Follows from Theorems 3.1 and 3.3, Proposition 4.3, and
Lemma 4.6.

5. Applications
Theorem 4.7 gives a decidable (in the classical sense) characteri-
zation of standard alphabets. Indeed, given A represented as a fi-
nite collection of finite permutation group, the template TA can be
computed, since all relations in it arise from words of bounded size.
Then one can try every ternary function on the domain of TA for the
polymorphism property and majority equations. (Note that there are
also more efficient, polynomial time procedures of testing whether
a template has bounded width [2, 13].) Rather than illustrate this
tedious procedure, we show on examples how the existence of a
majority polymorphism, or the lack thereof, may be deduced by
studying the structure of a template TA.

5.1 Alphabets of dimension up to five are standard
We will show that any alphabet A of dimension (at most) five is
standard. The domain of the template TA of such an alphabet has
(at most) five components:

DA = S[1] + S[2] + S[3] + S[4] + S[5].

By definition of TA, every relation in it is of the form:

R ⊆ S[n1] × S[n2] × · · · × S[nk] (5)

where
∑k
i=1 ni ≤ 5. Moreover, R is always a coset in the product

group on the right.
For a function m : D3

A → DA to be a polymorphism, it is
required that every relationR in TA is compatible withm, i.e., that
whenever the first three rows below are tuples in R, the resulting
tuple also is in R, where ρi = m(σi, τi, νi):

m

σ1 σ2 σ3 · · · σk ∈ R
τ1 τ2 τ3 · · · τk ∈ R
ν1 ν2 ν3 · · · νk ∈ R
ρ1 ρ2 ρ3 · · · ρk ∈ R.

We will show that there exists a majority function for which all
coset relations R as in (5) are compatible, thereby proving that
every alphabet of dimension A is standard.

According to (5), every relation R determines a tuple of com-
ponents S[ni] so that ith element of a tuple in R belongs to the ith
component. As a result, to define a polymorphism m on TA, it is
enough to define m(x, y, z) for x, y and z in the same S[n]. On
the remaining triples m may be defined arbitrarily, without com-
promising the polymorphism property.

We shall now study the structure of coset relations R as in (5)
in some more detail. First, consider a relation R where some ni
in (5) equals 1, and letR−i be the projection ofR to all coordinates
except i. Clearly, R−i is a coset relation. It is easy to see that R is
compatible with a given majority function m if and only if R−i is.
As a result, such relationsRmay safely be excluded when checking
the polymorphism property on all coset relations.

On the other hand, assumeR is unary. Call a ternary functionm
conservative if m(σ, τ, ν) ∈ {σ, τ, ν} for all arguments σ, τ and
ν. It is easy to see that all unary relations are compatible with every
conservative function. Therefore, for any conservative m, we may
disregard all unary relations in TA as well.

Now consider binary relations R ⊆ S[2] × S[2] in TA. S[2]

has two elements, so there is only one way to define a majority
function on this component: the majority equations determine it
fully. It is easy to check that every binary relation on a two-element
set is compatible with the unique majority function on it, so such
relations may also be disregarded.

The only remaining case is binary relations R ⊆ S[2] × S[3].
Arranging the elements of S[2] and S[3] in a diagram:

() (1 2) ∈ S[2]

() (1 2) (1 3) (2 3) (1 2 3) (1 3 2) ∈ S[3]

we may draw any R as a bipartite graph. Recall that any R in
TA is a subgroup or a coset in the group S[2] × S[3]. Let us
consider subgroups first; all are depicted here (dots correspond to
permutations as drawn above)

•
(i)

•

• • • • • •

•
(ii)

•

• • • • • •

•
(iii)

•

• • • • • •

•
(iv)

•

• • • • • •

•
(v)

•

• • • • • •

•
(vi)

•

• • • • • •

•
(vii)

•

• • • • • •

•
(viii)

•

• • • • • •

•
(ix)

•

• • • • • •

with the exception of two conjugate subgroups per each of (ii), (iv)
and (vi), which are isomorphic to them as bipartite graphs. Recall
that there is only one way to define a majority function on S[2]; the
question is whether we can extend it with a majority function m on
S[3] so that all relations above are compatible with it. It is easy to
see that, as far as such exentions are concerned:

• (i)-(iv) and (vi) are compatible with any majority function,
• (v) is compatible with any conservative function,
• (vii) and (ix) are compatible with any function.

The only remaining case is (viii). The group S[3] contains three
even permutations (), (1 2 3) and (1 3 2), and three odd ones (1 2),
(1 3), and (2 3). We say that a function m : S3

[3] → S[3] is odd-
even-majority ifm(π1, π2, π3) is even whenever at least two of π1,
π2, π3 are even, and odd otherwise. It is easy to check that:

• (viii) is compatible with any odd-even-majority function.

Cosets in S[2] × S[3] do not pose additional problems. Indeed,
all cosets of (i)-(vii) are isomorphic to their respective subgroups
as bipartite graphs, and they are compatible with functions listed
above for their respective subgroups. The full group (ix) has no
cosets, and the unique coset of (viii) is its complement as a bipartite
graph, and it is compatible with every odd-even-majority function.

Altogether we have proved that every ternary function on DA
that is conservative, a majority, and an odd-even-majority when
restricted to S3

[3], is a polymorphism on TA. It is easy to define a
function with all these properties, and as a result, TA has a majority
polymorphism, so A is standard.

5.2 Some nonstandard alphabets of dimension six
As one could expect, there are standard alphabets of dimensions
greater than five. For instance, the alphabet

(A
k

)
of k-element sets

of atoms is standard for any k. It is easy to see this by looking at
their templates, but there is an even simpler argument: over such an
alphabet, two words are isomorphic if and only if they are similar.

However, there are nonstandard alphabets of dimension six.
Consider the alphabet from Example 2.4. We depict a fragment of
a word v over this alphabet (with atoms anonymized as dots as in

Example 4.1), where the letter in the center intersects three other
letters, splitting it into three bags:

Consider the instance Iv,αv,α , where α is any atlas on v (its choice
will not affect the following). The triple of bags is constrained
to a ternary relation R on S[2] that consists of those triples of
permutations where the swap σ = (1 2) ∈ S[2] appears zero or
two times.

As S[2] has only two elements, there is exactly one majority
function m on S3

[2]. As it turns out, it is not compatible with R:

m

() σ σ ∈ R
σ () σ ∈ R
σ σ () ∈ R
σ σ σ 6∈ R,

hence m is not a polymorphim of TA and the alphabet from Ex-
ample 2.4 is nonstandard. The reader should enjoy comparing this
short argument with the pain suffered in [4] to prove the same result
directly, without using CSP theory.

Now consider Example 2.5, and a fragment of a word v with
a letter split into two bags of size two and four (the left and right
atoms are in one bag), together with an atlas α as below:

1

2

2

3

4

1

In the instance Iv,αv,α , the two bags of this letter are constrained to
a binary relation R{1,2} ⊆ S[4] × S[2] which is the graph of the
partial function f{1,2} : S[4] → S[2] such that

f{1,2}(π) =

{
() iff π preserves the set {1, 2},
σ iff π maps {1, 2} to {3, 4}.

For the same word but different atlases other relations R{1,3} and
R{1,4}, which are graphs of partial functions f{1,3} and f{1,4}
defined analogously to f{1,2}, can be obtained.

Assume any majority function m on the domain of TA. For the
following permutations in S[4]:

π1 = (1 2)(3 4) π2 = (1 3)(2 4) π3 = (1 4)(2 3)

consider the value χ = m(π1, π2, π3). Since f{1,2}(π1) = (),
f{1,2}(π2) = σ, and f{1,2}(π3) = σ, if m where a polymorphism
then we would have f{1,2}(χ) = m((), σ, σ) = σ. Analogously
we can prove that f{1,3}(χ) = f{1,4}(χ) = σ. This means that
the permutation χ maps each of sets {1, 2}, {1, 3}, {1, 4} to their
complements, which is impossible. As a result, m cannot be a
polymorphism, hence the alphabet of Example 2.5 is nonstandard.

6. Descriptive Complexity
We relate our results concerning TMAs to logics over relational
structures. To this end, we first describe a class of finite relational
structures which correspond to words with atoms. We then describe
how TMAs over such words correspond, in terms of expressive
power, to certain logics over these relational structures.

In this section we consider both classical Turing machines and
TMAs, but only deterministic ones.

6.1 Linearly patched structures
Below we consider finite relational structures over a finite vocab-
ulary, assuming without loss of generality that the domains of the
structures are subsets of the set A of atoms.

A patched structure is a relational structure M together with a
collection of substructures of M (not necessarily induced substruc-
tures) which we call patches of M, such that M is covered by its
patches, i.e. the domain and relations of M are the set-theoretical
unions (not necessarily disjoint) of the domains and relations of its
patches, respectively. We say that M is linearly patched if a linear
order on its patches is provided. For a finite family P of relational
structures, we say that M is linearly P-patched, if every patch of
M is isomorphic to some structure in P .

In order to evaluate logical formulas on a linearly patched struc-
ture, we add the set of patches to its domain; additionally, we in-
clude a binary relation witch connects each patch with all its ver-
tices, and also for each relation R of arity n we add a relation R̂
which contains all tuples (p, v1, . . . , vn) consisting of a patch p
and n vertices, such thatR(v1, . . . , vn) holds in p. This allows for-
mulas to quantify both over vertices and patches. Finally, we allow
formulas to refer to the linear order on patches.

Example 6.1. Let P be the singleton family containing the graph
with two vertices and one undirected edge. Then a linearly P-
patched structure is the same thing as an undirected graph without
isolated vertices, together with a linear order on its edges. As a
purely relational structure, this is represented as the union of the
set of vertices and the set of edges, together with a linear order on
the set of edges, and a ternary relation which says that two given
vertices are endpoints of a given edge.

Example 6.2. The CFI graphs [6] can be constructed from three-
regular graphs, by replacing each vertex by a certain gadget G
with ten nodes, which correspond to the six atoms and four triples
of the letter {(a, c, e), (a, d, f), (b, c, f), (b, d, e)} from Exam-
ple 2.4, and with edges connecting each triple with its elements.
Neighboring gadgets are then connected by identifying two ex-
changeable pairs of atoms. If the original three-regular graph is or-
dered, then the resulting structure is a linearly P-patched struc-
ture, where P = {G}.

6.2 Linearly patched structures and words with atoms
For a relational structure M consider the set AM of all relational
structures isomorphic to M. Then AM is a single-orbit set.

Fact 6.1. Every single-orbit set is related by an equivariant bijec-
tion to AM, for some finite relational structure M.

For a finite collection P of finite relational structures, let AP
denote the disjoint union of the alphabets AM, for M ∈ P .

Linearly P-patched structures correspond to words over the al-
phabet AP . Indeed, a word w induces a linearly patched structure
with sup(w) as the domain and the letters of w as patches. Con-
versely, a linearly P-patched structure defines a word whose letters
are the patches. This allows us to move freely between structures
and words, and to view TMAs over AP as recognisers of linearly
P-patched structures. For instance, by Fact 6.1, Theorem 3.1 may
be reformulated as:

Lemma 6.2. For every fixed finite collection P , isomorphism of
linearly P-patched structures is recognizable by a deterministic
TMA if and only if the alphabet AP is standard.

6.3 Order-invariant classical polynomial time
Let us come back to the world of classical (atomless) computa-
tions. Any relational structure has a description, i.e., a list of iden-
tifiers (one unique binary string per each element of the universe)

and for each relation, a list of its tuples, referred via the identi-
fiers. Note that a fixed structure has many descriptions, depending
on the chosen identifiers and orderings. In this non-unique way, re-
lational structures are presented as inputs for classical Turing ma-
chines. We assume that these descriptions use a fixed finite alpha-
bet, say {0, 1}.

A classical Turing machine is order-invariant if given on input
a description of a relational structure, the output of the machine
does not depend on the chosen description. For example, a Turing
machine which checks whether a graph is connected is order-
invariant, whereas a Turing machine which checks whether the first
two vertices are adjacent is not.

Order-invariant Turing machines can be therefore viewed as rec-
ognizers of relational structures; however, it is undecidable whether
a given Turing machine is order-invariant. One of the main open
questions in Finite Model Theory, and in Descriptive Complex-
ity Theory in particular, is whether there is a logic which captures
order-invariant polynomial time. Such a logic is a class of formulas
with decidable syntax, such that every formula can be effectively
translated into a polynomial time order-invariant Turing machine
accepting the same structures, and conversely: every property rec-
ognized by a polynomial time order-invariant Turing machine is
definable by a formula. For example, first order logic satisfies only
half of the requirements: a formula, such as ∀x∃y.E(x, y), gives
rise to a polynomial time algorithm, which is order-invariant; how-
ever, graph connectedness is not definable by a first order formula.

One can relativize the above definitions to a class of structures
C, to say that a logic captures order-invariant polynomial time
Turing machines over C.

Observe that we can use two types of Turing machines to accept
linearly P-patched structures: deterministic TMAs, and classical
Turing machines, which are order-invariant. The latter ones are – a
priori – more powerful, as they have access to a linear ordering
of the elements of the structure, which comes from the chosen
description of the structure. On the other hand TMAs only have
access to a linear ordering of the patches. Our results allow to
characterize those families P for which the two types of machines
are equally expressive. Furthermore, we relate these machines to
the IFP logic.

6.4 IFP and IFP+C

We roughly describe the logics IFP and IFP+C. They are extensions
of first order logic, which capture order-invariant polynomial time
over some classes of structures, but not over all structures. For
precise definitions and overviews of the cited results, see e.g. [11].

Instead of providing the precise definition of IFP, we give an
illustrative example, and then roughly sketch the general form of
the syntax.

Example 6.3. Consider structures over a relational language with
one binary symbolE; they can be seen as directed graphs (possibly
with self-loops). The following formula, with free variables x, y,
says that there is a directed path from x to y:(

IFPR,z
[
(z = x) ∨ ∃v : R(v) ∧ E(v, z)

])
(y) (�)

The semantics is as follows. Let x, y be vertices of a graph. Start
with R being the empty set of vertices, treated as a unary relation.
Repeat indefinitely the following inflationary step:

Add to R those vertices z which satisfy the subformula
of (�) delimited by the brackets [].

The formula (�) holds for the pair of vertices (x, y) if y belongs
to R in some step of the loop. Observe that the property described
by (�) is not first-order definable.

The general form of the construct is IFPR,z̄[φ(x̄, z̄)](ȳ). Com-
paring to (�), there can be tuples of variables x̄, ȳ, z̄ instead of sin-
gle variables x, y, z, under the restriction that ȳ and z̄ have the same
length, say n. Then R is interpreted as an n-ary relation which is
computed in an inflationary manner, starting from the empty rela-
tion.

The logic IFP+C further extends IFP by a construct #x̄φ(x̄, ȳ)
which allows to count (using a special counting sort) the number of
assignments for x̄ satisfying φ(x̄, ȳ).

It is not difficult to prove that a formula of IFP+C can be
effectively translated into an equivalent polynomial time Turing
machine, which is automatically order-invariant. The polynomial
bound is a consequence of the fact that for finite models, due to the
inflationary mode of computation, stabilization is reached after a
polynomial number of steps.

The Immerman-Vardi theorem states that IFP (and, in conse-
quence, IFP+C) captures order-invariant polynomial time over lin-
early ordered structures [12, 15]. On the other hand, IFP+C does
not capture order-invariant polynomial time over all graphs, as
proved in [6] using the CFI graphs. Our aim is to generalize both
these results, using TMAs. How can TMAs be useful for studying
the logic IFP?
IFP over linearly P-patched structures. In the Immerman-Vardi
theorem, instead of linearly ordered structures, one could equiv-
alently use graphs (without isolated vertices) whose set of edges
is linearly ordered. This is more consistent with linearly patched
structures (see Example 6.1). The following proposition is then
a generalization of the Immerman-Vardi theorem to linearly P-
patched structures instead of graphs with ordered edges, and TMAs
instead of Turing machines.

Proposition 6.3. The logics IFP and IFP+C capture polynomial
time TMAs over linearly P-patched structures.

6.5 Main result
The main result of this section is:

Theorem 6.4. The logic IFP captures order-invariant polynomial
time over linearly P-patched structures if and only if the alphabet
AP is standard.

Observe that IFP can be replaced by IFP+C in the above the-
orem, since those logics are equivalent over linearly P-patched
structures by Proposition 6.3. Also, this proposition allows us to
use polynomial time TMAs instead of the logic IFP in the proof.

Proof. Fix a finite family P of structures, and let AP be the corre-
sponding alphabet with atoms.

We first show the left-to-right implication. Assume that poly-
nomial time deterministic TMAs capture classical order-invariant
Turing machines over linearly P-patched structures. Then, in par-
ticular, deterministic TMAs can express the isomorphism problem
of linearly P-patched structures, according to Lemma 6.5 below.
Lemma 6.2 then implies that the alphabet AP is standard, proving
the left-to-right implication.

Lemma 6.5. Isomorphism of linearly P-patched structures is de-
cidable by an order-invariant polynomial time Turing machine.

Proof. As shown in Section 4, the isomorphism problem for lin-
early P-patched structures reduces to the CSP problem over the
template TAP . For a fixed alphabet AP , the reduction is polyno-
mial. It is known [5] that for a template with a Maltsev polymor-
phism, the induced CSP is in polynomial time.

For the proof of the other implication, we show that if AP is
standard, then polynomial time TMAs are equally expressive as
classical order-invariant polynomial time Turing machines.

Consider the language DP containing all words of the form
w#desc, where w ∈ A∗P and desc ∈ {0, 1}∗ is a description
(cf. Section 6.3) of the linearly P-patched relational structure cor-
responding to w. Reusing the (k, l)-consistency algorithm for rec-
ognizing the language DP , we get the following:

Lemma 6.6. If the alphabet AP is standard, then the language
DP is recognized by a polynomial time TMA.

The following lemma shows that if AP is standard, then not
only descriptions can be recognized, but also produced in polyno-
mial time (i.e., there is a polynomial time canonisation algorithm).

Lemma 6.7. Using a machine for the language DP as blackbox,
a polynomial time TMA can produce, for an input word w ∈ A∗P ,
a description desc ∈ {0, 1}∗ of the structure corresponding to w.

Proof. This can be done by finding descriptions of longer and
longer prefixes of w. There is no need of backtracking, since any
description of a prefix can be extended to a description of the whole
word. Moreover, to extend the description of a prefix by one letter,
the machine needs to check only constantly many possible candi-
date strings over {0, 1} and for each candidate, run the machine
for DP (the constant depends on the alphabet AP but not on the
length of the input).

Suppose that AP is standard and let L be a property of linearly
P-patched structures, recognized by a classical polynomial time
Turing machine M . Then a TMA over AP can decide, for an input
word w, whether the structure corresponding to w has property L,
in the following two steps. In the first step, the machine produces a
description of the structure corresponding to the wordw, according
to Lemmas 6.6 and 6.7. In the second step the machine simulates,
on that description, the order-invariant polynomial time Turing
machine M recognizing L.

This proves the right-to-left implication of Theorem 6.4.

Many results of the previous sections can be translated into re-
sults about logic. For example, from Section 5.1 and Theorem 6.4,
we get:

Corollary 6.8. If no structure in P has more than five elements,
then IFP captures order-invariant polynomial time computations
over linearly P-patched structures.

As a byproduct of the proof of Theorem 6.4 we obtain a “logic”
that captures order-invariant polynomial time over linearly P-
patched structures (even ifAP is nonstandard), namely TMAs with
an oracle for the language DP . This can be converted to a more
reasonable logic (as in Proposition 6.3), namely, an extension of
IFP+C by a construct which tests whether two linearly P-patched
structures are isomorphic.

7. Related work
The paper [1] also studies a relationship between the logic IFP+C
and templates of bounded width. The emphasis there is to deter-
mine for which templates T there exists a formula of IFP+C which
holds in a given structure (instance) I over the signature of T if
and only if I maps homomorphically to T . It follows from that pa-
per (see Corollary 23) and from later deep results from algebraic
CSP theory [2] that this happens precisely when T has bounded
width. In our paper, a similar, but weaker result is implicit (see The-
orem 3.3, Proposition 4.3 and Proposition 6.3): it concerns only
templates of the form TA, where A is an alphabet. In particular,
those templates have a Maltsev polymorphism.
Graph Isomorphism problem. The graph isomorphism problem
with bounded color classes is the problem of deciding whether

there is a color-preserving isomorphism between two given colored
graphs G,H , where the coloring is such that at most k vertices
get the same color (where k is a fixed parameter). This problem is
the first restricted version of the graph isomorphism problem to be
shown in PTime using group theoretic methods [9].

Colored graphs whose color classes have size at most k can be
seen as patched structures, where the patches are the subgraphs
induced by any pair of colors. Therefore, each patch is a graph
with at most 2k vertices. Let P be the family of all graphs on ver-
tices {1, . . . , 2k}. Then the isomorphism problem of such colored
graphs reduces to the isomorphism problem for linearly P-patched
structures – the patches are linearly ordered according to an arbi-
trary linear ordering of the set of pairs of colors. It therefore follows
from Lemma 6.5 that this can be done in polynomial time (and in
logarithmic space if the alphabet AP is standard, using [7]). Our
proof does not rely on group theory, but instead uses the polyno-
mial algorithm for solving CSPs over a template admitting a Malt-
sev polymorphism [5].

Acknowledgments
We are grateful to Marcin Kozik for guiding us in the land of Con-
straint Satisfaction Problems, to Mikołaj Bojańczyk for inspiring
discussions on sets with atoms, and to anonymous reviewers for
insightful comments.

References
[1] A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations

and counting infinitary logic. Theoretical Computer Science, 410(18):
1666 – 1683, 2009.

[2] L. Barto and M. Kozik. Constraint satisfaction problems of bounded
width. In Procs. FOCS’09, pages 595–603. IEEE Computer Society,
2009.

[3] M. Bojańczyk, B. Klin, and S. Lasota. Automata with group actions.
In Proc. LICS’11, pages 355–364, 2011.

[4] M. Bojańczyk, B. Klin, S. Lasota, and S. Toruńczyk. Turing machines
with atoms. In Proc. LICS’13, pages 183–192, 2013.

[5] A. A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev
constraints. SIAM J. Comput., 36(1):16–27, 2006.

[6] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the
number of variables for graph identifications. Combinatorica, 12(4):
389–410, 1992.

[7] V. Dalmau and B. Larose. Maltsev + Datalog –> symmetric Datalog.
In Procs. LICS, pages 297–306. IEEE Computer Society, 2008.

[8] T. Feder and M. Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: A study through Datalog and
group theory. SIAM J. Comput., 28(1):57–104, 1998.

[9] M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for
permutation groups. In Proceedings of the 21st Annual Symposium
on Foundations of Computer Science, SFCS ’80, pages 36–41. IEEE
Computer Society, 1980.

[10] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

[11] M. Grohe. Descriptive complexity, canonisation, and de-
finable graph structure theory, December 2013. URL
http://www.automata.rwth-aachen.de/~grohe/cap/index.en.

[12] N. Immerman. Upper and lower bounds for first order expressibility.
J. Comput. Syst. Sci., 25(1):76–98, 1982.

[13] B. Larose, M. Valeriote, and L. Zádori. Omitting types, bounded width
and the ability to count. Int. J. Algebra and Computation, 19(5):647–
668, 2009.

[14] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science.
Cambridge University Press, 2013.

[15] M. Y. Vardi. The complexity of relational query languages (extended
abstract). In STOC, pages 137–146, 1982.

A. Proofs for Section 3
A.1 Proof of Theorem 3.1 (sketch)
Since IsoA is easily decidable by a nondeterministic TMA, the
right-to-left implication is the only interesting one.

In [4] we considered providing TMAs with the fresh oracle
that, whenever requested, returns an atom that does not appear in
the current global configuration. A machine with the fresh oracle
accepts a word if the oracle can respond so that the resulting run is
accepting. By [4, Prop. VI.1], addition of the fresh oracle does not
change the computing power of deterministic TMAs, for any input
alphabet.

Consider a language L recognized by a nondeterministic TMA
M . A deterministic TMA that recognizes L may work as follows.
Given an input word w ∈ A∗, use the fresh oracle multiple times,
to generate as many fresh atoms as there are in the support of w.
Write all these atoms on the tape, thus obtaining a total order on
them. Then exhaustively generate, one by one, all words over A,
of length equal to the length of w, built of the freshly generated
atoms. (There are exponentially but finitely many such words). At
least one of these words, say v, is isomorphic to w; find v using
a deterministic test for the word isomorphic problem IsoA that we
assume to exist.

The machine M may then be run on the word v. However, now
that the atoms in v are totally ordered, M may be simulated by
a classical non-atomic computation, with every atom replaced by
its number in the total order. The resulting machine can then be
determinized using the classical backtracking construction.

A.2 Proof of Lemma 3.2
A deterministic TMA may compute the bags of a given w: first
write down the support of every letter, and then calculate intersec-
tions and differences of these supports in an obvious manner. By
writing down each bag as a work alphabet letter on its tape, our ma-
chine naturally computes the total ordering on bags as well. (Note
that bags are of a bounded size, as each of them is contained in
the support of a letter from A). Having computed the total orders
of bags of v and w in this manner, checking whether v and w are
similar is straightforward.

A.3 Proof of Theorem 3.3
One direction is immediate: if A has width (k, l), then the Turing
machine computes consk,l(vw) and accepts if and only if the re-
sulting family is nonempty. To this end, it is enough to extend the
work alphabet of the machine to include all possible translations of
size at most l; this is possible since these families are of a bounded
size.

For the other direction, we will need a few auxiliary notions.
Symbolic representations of orbits. We describe how the orbits
of A∗ can be designated in a way which does not use atoms. One
way of describing an orbit of A∗ is by providing any word w in
this orbit; however, this representation uses atoms. Instead, we use
symbolic representations of words.

A symbolic representation of a letter a ∈ A is a word over a
finite, atomless alphabet, for instance {0, 1}. It starts with some
fixed identifier – a binary string – of the orbit of the letter a. Then
comes a list of identifiers – binary strings – one for each element of
the support of a. Additionally, the representation contains a list of
automorphisms of the letter a; each automorphism is described as
a permutation of identifiers to which it corresponds.

A symbolic representation of a word w consists of symbolic
representations of each of its letters, with the requirement that if an
atom appears in several letters, then it has the same identifier in the
representations of these letters. Observe that a word w has several
representations, depending on the chosen identifiers and their order.

Below we use an ambiguous notation rep(w) to denote any of the
representations.

It is easy to see that two words v, w ∈ A∗ admit the same
representation if and only if they are isomorphic. Moreover, there is
a (polynomial time) nondeterministic TMA which given a word w
on input, outputs its representation. As a result, the representation
language

RepA = {w#rep(w) : w ∈ A∗ and rep(w) is a repr. of w}.
is recognizable by a polynomial time nondeterministic TMA.
Proof of Theorem 3.3, ctd. Suppose that the alphabet A is stan-
dard. Then the language RepA is recognized by a deterministic
TMA. Let M be such a machine. Let k, l be two numbers depend-
ing on M , whose precise value we will specify later in the proof.

Let v, w ∈ A∗ be two words. Denote by F the family
consk,l(vw). We will show that if F is nonempty then v and w
are isomorphic. This will imply that A has width (k, l).

The idea is as follows. Let rep(v) ∈ {0, 1}∗ be some represen-
tation of the word v. Then v#rep(v) is accepted by the machine
M ; let ρ be the accepting run. We will show that the family F
can be used to translate ρ into an accepting run F(ρ) of M over
the word w#rep(v). By the definition of RepA, this will imply that
rep(v) is a representation of the wordw, sow and v are isomorphic.

Let x be an element whose support is contained in the support
of v. Let y be some other element. For a translation σ we write fσ
for its union, seen as a partial bijection of atoms. We write x F−→ y
if for every translation σ in F , whenever fσ is defined over the
support of x then fσ maps x to y, i.e. extends to a bijection of
atoms which maps x to y.

We will apply the relation F−→ to single elements of configura-
tions of M , such as states or tape letters. It will suffice that l is at
least as big as the dimension of the work alphabet plus the dimen-
sion of the state space, and k at least as big as the maximum of the
two dimensions. The relation F−→ will be also pointwise applied to
whole configurations, or runs (sequences of configurations).

Lemma A.1. Let ρ be a partial run ofM over the word v#rep(v),
let ρ′ be a partial run of M over the word w#rep(v). Suppose that
ρ and ρ′ have the same length n. Then ρ F−→ ρ′.

Proof. By induction on n. The induction base follows immediately
from the fact that F contains exclusively locally consistent transla-
tions. Note that rep(v), being atomless, is preserved by translations.

For the inductive step, consider the last configurations of ρ and
ρ′, related by F−→ due to the induction assumption. In particular,
the current head positions are necessarily exactly the same in both
configurations. Let q, q′ be the states of the configurations, and a, a′

the tape contents at the head position. We will prove below that the
next machine states are related by F−→. Similarly one argues for
the values written to the tape, or head moves, which is sufficient to
complete the induction step.

The next states p, p′ of the machine M are the result of the
equivariant transition function

p = δ(q, a) p′ = δ(q′, a′).

In order to show p
F−→ p′ consider any translation σ ∈ F such

that the domain of fσ includes the support of p. It is enough to
demonstrate that fσ maps p to p′, written shortly σ(p) = p′ below.
Using downward closure ofF , restrict σ to a sub-translation of size
at most k whose domain still includes the support of p (note that k
is at least as big as the size of the support of p). Since p = δ(q, a),
where δ is an equivariant function, the support of p is contained
in the support of (q, a). Therefore, by weak upward closure of F
we know that the restriction of σ extends to a translation σ̄ ∈ F

whose domain includes the support of (q, a) (l is at least as big
as the size of the support of q plus the size of the support of a).
As by the induction assumption (q, a)

F−→ (q′, a′), we know that
σ̄(q, a) = (q′, a′). Hence, by equivariance of δ we deduce

σ̄(p) = p′.

Knowing that σ and σ̄ coincide on the support of p, we obtain

σ(p) = p′

as required.

In particular, it follows that if there is an accepting run over
v#rep(v) then the run of the same length over w#rep(v) is also
accepting. Hence w and v are isomorphic. This finishes the proof
of Theorem 3.3.

B. Proofs for Section 4
B.1 Proof of Lemma 4.1
Proof. In the special case when v = w and α = β, for each
letter l the constraint relation Rl in the instance Iv,αv,α is a subgroup
of S[B1] × · · · × S[Bn]. We will denote it by Gv,αl . In general,
the constraint relations Rl which appear in the constraints of an
instance Iv,αw,β are cosets of Gv,αl in the group S[B1] × · · · × S[Bn],
to be proved now.

Let l be a letter of v, and let B1, . . . , Bn be its bags. For
an atlas α we denote by αl the tuple (αB1 , . . . , αBn). Every
locally consistent translation σ with domain {B1, . . . , Bn} induces
a bijection fσ from the disjoint union of Bi’s to the disjoint union
of B̃i’s. We identify this bijection with the tuple (σB1 , . . . , σBn).
Let Fl be the set of all bijections of this form. In the special case
when v = w, the set Fl is a subgroup of SB1 × · · · × SBn where
SBi is the symmetric group of all permutations of Bi. This group
will be denoted Gl.

The tuples in Rl are in bijective correspondence with elements
of Fl. More precisely each τ ∈ Rl is of the form τ = α−1

l ·
(σB1 , . . . , σBn) · βl, where {σBi : i = 1, . . . , n} is locally
consistent. Hence,

Rl = α−1
l · Fl · βl.

Fix any σ ∈ Fl. Then Fl = Gl · σ. Therefore,

Rl = α−1
l ·Gl · σ · βl = α−1

l ·Gl · αl · α
−1
l · σ · βl.

Since Gv,αl = α−1
l ·Gl · αl is a subgroup of S[B1] × · · · × S[Bn],

we have that Rl = Gv,αl · τ , where τ = α−1
l · σ · βl. Thus, Rl is

a coset in S[B1] × · · · × S[Bn]. If v = w and α = β this gives us
Rl = Gv,αl .

B.2 Proof of Proposition 4.3
One implication of Proposition 4.3, namely from (2) to (1), is
immediate from Fact 4.2. We concentrate now on the converse
implication. We need some auxiliary notions.
Homomorphically equivalent instances. It is convenient to think
of an instance I over a template T , as a relational structure over the
vocabulary of all relations R of T . The elements of the relational
structure are the variables of the instance. Every constraint C =
(x̄, R) in I is then understood as the formal relation R relating the
tuple x̄ of elements of the relational structure. More importantly,
(partial) solutions to I coincide with (partial) homomorphisms
from the relational structure to the template. This setting allows us
to speak of homomorphically equivalent instances over the same
template, i.e., instances I, I ′ admitting two homomorphisms

h : I → I ′ and h′ : I ′ → I (6)

of relational structures.

The implication from (1) to (2) of Proposition 4.3 is shown
using the following lemma:

Lemma B.1. Let I be an instance over the template TA, such
that consk,l(I) 6= ∅. There exist words v, w ∈ A∗ and their
atlases α, β, for which the instance I ′ = Iv,αw,β is homomorphically
equivalent to I .

Indeed, suppose consk,l(I) 6= ∅ for an instance I over TA.
Due to the lemma one obtains an instance I ′ = Iv,αw,β , and a
homomorphism h′ : I ′ → I that allows us to translate consk,l(I)
to a nonempty (k, l)-consistent family of partial solutions to I ′,
by pre-composing with h′. Since the alphabet A has width (k, l),
this family enforces the existence of a solution to I ′, which is
then translated back, by pre-composing with a homomorphism
h : I → I ′, to a solution to I , as required.

It remains to show Lemma B.1. We call an instance I distin-
guishing, if:

• there are no non-constrained variables in I , i.e., every variable
appears in some constraint of I ,
• for every two variables y, z of I , there is a constraint C =

(x̄, R) such that exactly one of the variables y, z appears in the
constrained tuple x̄ of variables.

We say that the constraint C in the definition above distinguishes y
and z. For instance, every unary constraint (x,R) distinguishes x
from any other variable.

Lemma B.1 follows immediately from the following two facts:

Claim B.1.1. For every instance I over some template T , there is
a distinguishing instance Id over the same template homomorphi-
cally equivalent to I .

Claim B.1.2. Let I be a distinguishing instance over the template
TA, such that consk,l(I) 6= ∅. There exist words v, w ∈ A∗ and
their atlases α, β, for which the instance I ′ = Iv,αw,β is isomorphic
(as a relational structure) to I .

Proof of Lemma B.1. Starting with an instance I over TA such
that consk,l(I) 6= ∅, using Claim B.1.1 one gets a distinguishing
instance Id. Similarly as before, one uses a homomorphism hd :
Id → I to show that consk,l(Id) 6= ∅. This allows us to apply
Claim B.1.2 to Id, in order to derive v, w, α and β as required.

Proof of Claim B.1.1. Let I be an arbitrary instance over some
template T . We define a distinguishing instance Id as follows. All
the variables which appear in any constraint of I are variables of
Id. Additionally, for every variable y of I that is constrained by a
non-unary constraint C = (x̄, R) of I , i.e. such that y appears in
x̄ = (x1, . . . , xn) and n > 1, add to Id a primed variable y′. All
the constraints of I are constraints of Id. Additionally, for every
non-unary constraint C = (x̄, R) as above, add n new constraints
to Id, each obtained by replacing one of the variables xi in C by its
primed version. For instance, for n = 3, the following three new
constraints are added to Id:

((x′1, x2, x3), R)

((x1, x
′
2, x3), R)

((x1, x2, x
′
3), R).

It remains to verify that Id is distinguishing. The first condition
is obviously satisfied. It is also easy to see that every two vari-
ables, being primed or not, are distinguished by some constraint.
For instance, the constraint ((x′1, x2, x3), R) distinguishes x1 and
x2, and also x1 and x′1, but does not distinguish x2 and x3. As
another example, the original constraint ((x1, x2, x3), R) of I dis-
tinguishes x1 and y′, for any primed variable y′.

If there are no non-constrained variables in I , then I is a subin-
stance of Id, and the embedding is a homomorphism. If there are
any non-constrained variables the homomorphism can map them
to arbitrarily chosen variables of Id. For the other direction, the
function that maps every primed variable y′ to y, and preserves all
non-primed variables, is a homomorphism from Id to I . Thus I and
Id are homomorphically equivalent.

Proof of Claim B.1.2. Given a distinguishing instance I over the
template TA, we construct similar words v, w and their atlasesα, β.

Recall from Section 4.1 that every relationR appearing in some
constraint C = ((x1, . . . , xn), R) of I is a coset in a group of the
form S[k1] × · · · × S[kn]. Thus the constraint associates, to every
variable xi, the cardinality ki. We can assume that the cardinalities
associated to a variable by different constraints are the same, as
otherwise consk,l(I) = ∅, contrary to the assumption.

Choose, for every variable x of I , some sets Bx and B̃x of
atoms, of size equal to the cardinality kx associated to x. We
assume that the sets Bx and B̃x are pairwise disjoint. The sets Bx
will be the bags in the word v, and the sets B̃x will be the bags in
the word w. Furthermore, choose some arbitrary maps:

αx : Bx → [Bx] = [kx]

βx : B̃x → [B̃x] = [kx].

The maps will form atlases of v and w, respectively. Note that any
permutation τ of [kx] induces a bijection σ from Bx to B̃x:

σ = αx · τ · (βx)−1. (7)

In order to build the words v and w, we start with the empty
words and consider sequentially all the constraints of I . For every
constraint C, we append one letter lC to v and one letter l̃C to w.
Fix a constraint C = ((x1, . . . , xn), R). Note that R ⊆ S[k1] ×
· · · × S[kn]. Define lC and l̃C as two arbitrary letters satisfying

sup(lC) = Bx1 ∪ . . . ∪Bxn
sup(l̃C) = B̃x1 ∪ . . . ∪ B̃xn

and such that the set of those tuples (σ1, . . . , σn) that induce an
isomorphism from lC to l̃C corresponds bijectively, via (7), to the
set of tuples (τ1, . . . , τn) ∈ R. Note that by the construction in
Section 4.1 such letters lC , l̃C exist for every relation R in the
template TA. This ends the construction of the words v, w. The
atlases α, β are derived from the maps αx and βx.

We claim that the bags of v are exactly the sets Bx. Indeed, by
the assumption that I is distinguishing, for every variable x there
is a letter of v that contains Bx. Moreover, for every two variables
x, y there is a letter of v whose support contains exactly one of
the sets Bx, By and is disjoint from the other. Thus every set Bx
is uniquely determined by the sequence of letters which contain it.
Similarly, the bags of w are exactly the sets B̃x. Moreover, the bag
B̃x corresponds to the bag Bx.

We now argue that I is isomorphic, as a relational structure, to
the instance I ′ = Iv,αw,β . Indeed, there is a one-to-one correspon-
dence between variables of I and variables of I ′ given by x 7→ Bx.
Moreover, for any constraint C = ((x1, . . . , xn), R) of I there is
a corresponding letter lC in v with bags Bx1 , . . . , Bxn (the corre-
spondence is again bijective). Finally, the constraints of the instance
I ′ correspond to letters lC , and it follows from the construction that
the tuple (Bx1 , . . . , Bxn) is constrained to the relation R.

B.3 Proof of Lemma 4.5
Let C be a core of TA, and let r be a homomorphism of TA
onto C which is the identity on C. If the template TA has a

majority polymorphism m then the function r ◦ m is a majority
polymorphism of the core C.

For the opposite implication let m be a majority polymorphism
of C. We define a function m′ : D3 → D. For any x, y ∈ D let
m′(x, x, y) = m′(x, y, x) = m′(y, x, x) = x and if x, y, z ∈ D
are pairwise distinct put m′(x, y, z) = m(r(x), r(y), r(z)).

Relations in the template TA are cosets. Let R be a set of
relations which are cosets of some fixed subgroup G in a group
S[n1] × · · · × S[nk]. The set R forms a partition of S[n1] × · · · ×
S[nk]. Take any R ∈ R and consider three tuples x̄, ȳ, z̄ that
belong to R. Observe that m′(x̄, ȳ, z̄) ∈ S[n1] × · · · × S[nk]

and therefore, m′(x̄, ȳ, z̄) ∈ R′ for some R′ ∈ R. Suppose that
R′ 6= R. We have that r(m′(x̄, ȳ, z̄)) ∈ R′. On the other hand,
r(m′(x̄, ȳ, z̄)) = m(r(x̄), r(ȳ), r(z̄)). Hence, r(m′(x̄, ȳ, z̄)) ∈
R and we obtain a contradiction since R and R′ are disjoint.

C. Proofs for Section 6
C.1 Proof of Proposition 6.3
For one direction, we show how an IFP sentence φ can be converted
into a TMA, by induction on the size of φ. To proceed with the
induction, we describe how a TMA can simulate a formula φ
with free variables. For convenience, instead of linearly P-patched
structures, we speak of words over AP (cf. Subsection 6.2).

Let φ(x̄, ȳ) be a formula. This notation indicates that x̄ =
(x1, . . . , xk) is a tuple of variables ranging over positions, and that
ȳ = (y1, . . . , yl) is a tuple of variables ranging over atoms. Let
w = a1 . . . an be an input word. By φ[w] we denote the (k+ l)-ary
function which associates to a (k+ l)-tuple (i1, . . . , ik, j1, . . . , jl)
of positions of w, the set of those elements ū ∈ sup(aj1) × · · · ×
sup(ajl) such that w, ī, ū |= φ(x̄, ȳ).

In particular, if φ is a sentence, then φ[w] is a 0-ary function – a
constant – which is either the empty set (if w 6|= φ) or the singleton
consisting of the empty tuple (if w |= φ).

Lemma C.1. Let φ(x̄, ȳ) be a formula of IFP. Then there exists a
polynomial time TMA Mφ which, for an input word w, computes
the function φ[w].

Proof. Easy induction on the size of φ.

We now proceed to the second part of the proof of Proposi-
tion 6.3. Assume that M is a polynomial time TMA, and let p be
a polynomial bounding its running time. Let k be an integer such
that p(x) ≤ xk for x ≥ 2. Let B be the work alphabet and Q be
the state space of the machine M . Without loss of generality (c.f.
Fact 6.1), we assume that the sets B and Q are of the form AR, for
some finite family of structuresR.

The following lemma is useful for showing that a single step of
the computation of a deterministic TMA can be simulated by a first
order formula.

Lemma C.2. Let M0 and N0 be two finite relational structures.
Let f : AM0 → AN0 be an equivariant function. Then, for any
structure M ∈ AM0 , the structure f(M) interprets in M0 via a
first order interpretation which depends only on f .

Proof. Recall that for any equivariant function f , the result f(M)
is supported by the support of M. In this case, this means that the
domain of the structure f(M) is contained in the domain of the
structure M. As a consequence, if R is an n-ary relation of the
structure f(M), then R is a subset of (sup(M))n. Moreover, R is
invariant under the automorphisms of M: if π ∈ Aut(M), then π
extends to a bijection of atoms which fixes M, so it fixes f(M),
and therefore π fixes the relation R.

To finish the proof, observe that an n-ary relation R in a finite
structure M is invariant under the automorphisms of M if and only
if R is first-order definable.

Since the alphabets Q and B are finite unions of alphabets of
the form AM, we get the following.

Corollary C.3. The transition function δ of the TMA M is first-
order definable.

This allows us to simulate one step of the computation of a TMA
by a first-order formula. To simulate the entire run, we use IFP, as in
the standard proof of the Immerman-Vardi theorem (see e.g. [11]).

Algebraic Properties of Valued Constraint
Satisfaction Problem

Marcin Kozik1 and Joanna Ochremiak2,?

1 Jagiellonian University
2 University of Warsaw

Abstract. The paper presents an algebraic framework for optimization
problems expressible as Valued Constraint Satisfaction Problems. Our
results generalize the algebraic framework for the decision version (CSPs)
provided by Bulatov et al. [SICOMP 2005].

We introduce the notions of weighted algebras and varieties, and use
the Galois connection due to Cohen et al. [SICOMP 2013] to link VCSP
languages to weighted algebras. We show that the difficulty of VCSP de-
pends only on the weighted variety generated by the associated weighted
algebra.

Paralleling the results for CSPs we exhibit a reduction to cores and rigid
cores which allows us to focus on idempotent weighted varieties. Further,
we propose an analogue of the Algebraic CSP Dichotomy Conjecture;
prove the hardness direction and verify that it agrees with known results
for VCSPs on two-element sets [Cohen et al. 2006], finite-valued VC-
SPs [Thapper and Živný 2013], and conservative VCSPs [Kolmogorov
and Živný 2013].

1 Introduction

An instance of the Constraint Satisfaction Problem (CSP) consists of vari-
ables (to be evaluated in a domain) and constraints restricting the evaluations.
The aim is to find an evaluation satisfying all the constraints or satisfying the
maximal possible number of constraints or approximating the maximal possible
number of satisfied constraints etc. depending on the version of the problem.
Further one can divide constraint satisfaction problems with respect to the size
of the domain, the allowed constraints or the shape of the instances.

A particularly interesting version of the CSP was proposed in a seminal paper
of Feder and Vardi [11]. In this version the CSP is defined by a language which
consists of relations over a finite set. An instance of such a CSP is allowed if all
the constraint relations are from this set. The goal is to determine whether an
instance has a solution satisfying all the constraints.

? The first author was supported by the Polish National Science Centre (NCN) grant
2011/01/B/ST6/01006; the second author was supported by the Polish National
Science Centre (NCN) grant 2012/07/B/ST6/01497.

Each language clearly defines a problem in NP; the whole family of problems
is interesting for another reason: it is robust enough to include some well stud-
ied computational problems, e.g. 2-colorability, 3-SAT, solving systems of linear
equations over Zp, and still is conjectured [11] not to contain problems of interme-
diate complexity. This conjecture (which holds for languages on two-element sets
by the result of Schaefer [19]) is known as the Constraint Satisfaction Dichotomy
Conjecture of Feder and Vardi. Confirming this conjecture would establish CSPs
as one of the largest natural subclasses of NP without problems of intermediate
complexity.

The conjecture always attracted a lot of attention, but the first results, even
very interesting ones, were usually very specialized (e.g. [12]). A major break-
through appeared with a series of papers establishing the algebraic approach to
CSP [3,7,14]. This deep connection with an independently developed branch of
mathematics introduced a new viewpoint and provided tools necessary to tackle
wide classes of CSP languages at once. At the heart of this approach lies a
Galois connection between languages and clones of operations called polymor-
phisms (which completely determine the complexity of the language).

Results obtained using these new methods include a full complexity clas-
sifications for CSPs on three-element sets [5] and those containing all unary
relations [4, 6]. Moreover, the algebraic approach to CSP allowed to propose
a boundary between the tractable and NP-complete problems: this conjecture
is known as the Algebraic Dichotomy Conjecture. Unfortunately, despite many
efforts (e.g. [5]), both conjectures remain open.

The Valued Constraint Satisfaction Problem (VCSP) further extends the
approach proposed by Feder and Vardi. The role of constraints is played by cost
functions describing the price of choosing particular values for variables as a
part of the solution. This generalization allows to construct languages modeling
standard optimization problems, for example MAX-CUT. Moreover, by allowing
∞ as a cost of a tuple, a VCSP language can additionally model every problem
that CSP can model, as well as hybrid problems like MIN-VERTEX-COVER.
This makes the extended framework even more general (compare the survey [15]).

A number of classes of VCSPs have been thoroughly investigated. The under-
lying structure suggested capturing the properties of languages of cost functions
using an amalgamation of algebraic and numerical techniques [10, 22]. The first
approach which provides a Galois correspondence (mirroring the Galois corre-
spondence for CSPs) was proposed by Cohen et al. [9]. A weighted clone defined
in this paper fully captures the complexity of a VCSP language.

The present paper builds on that correspondence imitating the line of re-
search for CSPs [7]. It is organized in the following way: Section 2 contains
preliminaries and basic definitions. In Section 3 we present a reduction to cores
and rigid cores. Section 4 introduces a concept of a weighted algebra and a
weighted variety, and shows that those notions are well behaved in the context
of the Galois connection for VCSP. Reductions developed in Section 3 together
with definitions from Section 4 allow us to focus on idempotent varieties. Sec-
tion 5 states a conjecture postulating (for idempotent varieties) the division

between the tractable and NP-hard cases of VCSP. The conjecture is clearly
a strengthening of the Algebraic Dichotomy Conjecture [7]. Section 5 contains
additionally the proof of the hardness direction of the conjecture as well as the
reasoning showing that the conjecture agrees with complexity classifications for
VCSPs on two-element sets [10], with finite-valued cost functions [22], and with
conservative cost functions [17].

2 Preliminaries

2.1 The Valued Constraint Satisfaction Problem

Throughout the paper, let Q = Q ∪ {∞}. We assume that x +∞ = ∞ and
y · ∞ = ∞ for y ≥ 0. An r-ary relation on a set D is a subset of Dr, a cost
function on D of arity r is a function from Dr to Q. We denote by ΦD the set of
all cost functions on D. A cost function which takes only finite values is called
finite-valued. A {0,∞}-valued cost function is called crisp and can be viewed as
a relation.

Definition 1. An instance of the valued constraint satisfaction problem (VCSP)
is a triple I = (V,D, C) with V a finite set of variables, D a finite domain and
C a finite multi-set of constraints. Each constraint is a pair C = (σ, %) with σ a
tuple of variables of length r and % a cost function on D of arity r.

An assignment for I is a mapping s : V → D. The cost of an assignment
s is given by CostI(s) =

∑
(σ,%)∈C %(s(σ)) (where s is applied component-wise).

To solve I is to find an assignment with a minimal cost, called an optimal
assignment.

Any set Γ ⊆ ΦD is called a valued constraint language over D, or simply a
language. If all cost functions from Γ are {0,∞}-valued or finite-valued, we call
it a crisp or finite-valued language, respectively.

By VCSP(Γ) we denote the class of all VSCP instances in which all cost func-
tions in all constraints belong to Γ . VCSP(Γcrisp), where Γcrisp is the language
consisting of all crisp cost functions on some fixed set D, is equivalent to the
classical CSP. For an instance I ∈ VCSP(Γ) we denote by OptΓ (I) the cost of
an optimal assignment. We say that a language Γ is tractable if, for every finite
subset Γ ′ ⊆ Γ , there exists an algorithm solving any instance I ∈ VCSP(Γ ′)
in polynomial time, and we say that Γ is NP-hard if VCSP(Γ ′) is NP-hard for
some finite Γ ′ ⊆ Γ .

Weighted Relational Clones. We follow the exposition of [9] and define a
closure operator on valued constraint languages that preserves tractability.

Definition 2. A cost function % is expressible over a valued constraint language
Γ ⊆ ΦD if there exists an instance I% ∈ VCSP(Γ) and a list (v1, . . . , vr) of
variables of I%, such that

%(x1, . . . , xr) = min
{s : V→D | s(vi)=xi}

CostI%(s).

Note that the list of variables (v1, . . . , vr) in the definition above might con-
tain repeated entries. Hence, it is possible that there are no assignments s such
that s(vi) = xi for all i. We define the minimum over the empty set to be ∞.

Definition 3. A set Γ ⊆ ΦD is a weighted relational clone if it is closed under
expressibility, scaling by non-negative rational constants, and addition of rational
constants. We define wRelClo(Γ) to be the smallest weighted relational clone
containing Γ .

If %(x1, . . . , xr) = %1(y1, . . . , ys) + %2(z1, . . . , zt) for some fixed choice of ar-
guments y1, . . . , ys, z1, . . . , zt from amongst x1, . . . , xr then the cost function %
is said to be obtained by addition from the cost functions %1 and %2. It is easy to
see that a weighted relational clone is closed under addition, and minimisation
over arbitrary arguments.

The following result shows that we can restrict our attention to languages
which are weighted relational clones.

Theorem 4 (Cohen et al. [9]). A valued constraint language Γ is tractable if
and only if wRelClo(Γ) is tractable, and it is NP-hard if and only if wRelClo(Γ)
is NP-hard.

Weighted polymorphisms. A k-ary operation on D is a function f : Dk →
D. We denote by OD the set of all finitary operations on D and by O(k)

D

the set of all k-ary operations on D. The k-ary projections, defined for all

i ∈ {1, . . . , k}, are the operations π
(k)
i such that π

(k)
i (x1, . . . , xk) = xi. Let

f ∈ O(k)
D and g1, . . . , gk ∈ O(l)

D . The l-ary operation f [g1, . . . , gk] defined by
f [g1, . . . , gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl)) is called the su-
perposition of f and g1, . . . , gk.

A set C ⊆ OD is a clone of operations (or simply a clone) if it contains all
projections on D and is closed under superposition. The set of k-ary operations
in a clone C is denoted C(k). The smallest possible clone of operations over a
fixed set D is the set of all projections on D, which we denote ΠD.

Following [9] we define a k-ary weighting of a clone C to be a function
ω : C(k) → Q such that

∑
f∈C(k) ω(f) = 0, and if ω(f) < 0 then f is a pro-

jection. The set of operations to which a weighting ω assigns positive weights is
called the support of ω and denoted supp(ω).

A new weighting of the same clone can be obtained by scaling a weighting
by a non-negative rational, adding two weightings of the same arity and by the
following operation called superposition.

Definition 5. Let ω be a k-ary weighting of a clone C and let g1, . . . , gk ∈
C(l). A superposition of ω and g1, . . . , gk is a function ω[g1, . . . , gk] : C(l) → Q
defined by

ω[g1, . . . , gk](f ′) =
∑

{f∈C(k) | f [g1,...,gk]=f ′}

ω(f).

The sum of weights that any superposition ω[g1, . . . , gk] assigns to the op-
erations in C(l) is equal to zero, however, it may happen that a superposition
assigns a negative value to an operation that is not a projection. A superposition
is said to be proper if the result is a valid weighting.

A non-empty set of weightings over a fixed clone C is called a weighted clone
if it is closed under non-negative scaling, addition of weightings of equal arity
and proper superposition with operations from C. For any clone of operations C,
the set of all weightings over C and the set of all zero-valued weightings of C
are weighted clones.

We say that an r-ary relation R on D is compatible with an operation
f : Dk → D if, for any list of r-tuples x1, . . . ,xk ∈ R we have f(x1, . . . ,xk) ∈ R
(where f is applied coordinate-wise). Let % : Dr → Q be a cost function. We
define Feas(%) = {x ∈ Dr | %(x) is finite} to be the feasibility relation of %.
We call an operation f : Dk → D a polymorphism of % if the relation Feas(%)
is compatible with it. For a valued constraint language Γ we denote by Pol(Γ)
the set of operations which are polymorphisms of all cost functions % ∈ Γ . It is
easy to verify that Pol(Γ) is a clone. The set of m-ary operations in Pol(Γ) is
denoted Polm(Γ).

For crisp cost functions (relations) this notion of polymorphism corresponds
precisely to the standard notion of polymorphism which has played a crucial role
in the complexity analysis for the CSP [3,14].

Definition 6. Take % to be a cost function of arity r on D, and let C ⊆ Pol({%})
be a clone of operations. A weighting ω : C(k) → Q is called a weighted poly-
morphism of % if, for any list of r-tuples x1, . . . ,xk ∈ Feas(%), we have∑

f∈C(k)

ω(f) · %(f(x1, . . . ,xk)) ≤ 0.

For a valued constraint language Γ we denote by wPol(Γ) the set of those
weightings of the clone Pol(Γ) that are weighted polymorphisms of all cost func-
tions % ∈ Γ . The set of weightings wPol(Γ) is a weighted clone [9].

An operation f is idempotent if f(x, ..., x) = x. A weighted polymorphism is
called idempotent if all operations in its support are idempotent. An operation

f ∈ O(k)
D is cyclic if for every x1, . . . , xk ∈ D we have that f(x1, x2, . . . , xk) =

f(x2, . . . , xk, x1). A weighted polymorphism is called cyclic if its support is non-
empty and contains cyclic operations only.

A cost function % is said to be improved by a weighting ω if ω is a weighted
polymorphism of %. For any set W of weightings over a fixed clone C ⊆ OD
we denote by Imp(W) the set of cost functions on D which are improved by all
weightings ω ∈W .

By the result of Cohen et al. [9] for any finite valued constraint language Γ ,
we have Imp(wPol(Γ)) = wRelClo(Γ). This fact, together with Theorem 4,
implies that tractable valued constraint languages can be characterized by their
weighted polymorphisms.

2.2 Algebras and varieties

An algebraic signature is a set of function symbols together with (finite) arities.
An algebra A over a fixed signature Σ, has a universe A, and a set of basic
operations that correspond to the symbols in the signature, i.e., if the signature
contains a k-ary symbol f then the algebra has a basic operation fA, which is
a function fA : Ak → A.

A subset B of the universe of an algebra A is a subuniverse of A if it is
closed under all operations of A. An algebra B is a subalgebra of A if B is a
subuniverse of A and the operations of B are restrictions of all the operations
of A to B. Let (Ai)i∈I be a family of algebras (over the same signature). Their
product Πi∈IAi is an algebra with the universe equal to the cartesian product
of the Ai’s and operations computed coordinate-wise. For two algebras A and B
(over the same signature), a homomorphism from A to B is a function h : A→ B
that preserves all operations. It is easy to see, that an image of an algebra under
a homomorphism h : A→ B is a subalgebra of B.

Let K be a class of algebras over a fixed signature Σ. We denote by S(K)
the class of all subalgebras of algebras in K, by P(K) the class of all products of
algebras in K, by Pfin(K) the class of all finite products, and by H(K) the class
of all homomorphic images of algebras in K. If K = {A} we write S(A), P(A),
and H(A) instead of S({A}), P({A}), and H({A}), respectively.

A variety V(K) is the smallest class of algebras closed under all three op-
erations. For an algebra A the variety V({A}) (denoted V(A)) is the variety
generated by A, and Vfin(A) is the class of finite algebras in V(A). Due to a
result of Tarski [20] we know that for any finite algebra A, we have

V(A) = HSP(A) and Vfin(A) = HSPfin(A).

We say that an equivalence relation ∼ on A is a congruence of A if it is a
subalgebra of A2. Every congruence ∼ of A determines a quotient algebra A/∼.

A term t in a signature Σ is a formal expression built from variables and
symbols in Σ that syntactically describes the composition of basic operations.
For an algebra A over Σ a term operation tA is an operation obtained by com-
posing the basic operations of A according to t. Let s and t be a pair of terms
in a signature Σ. We say that A satisfies the identity s ≈ t if the term opera-
tions sA and tA are equal. We say that a class of algebras V over Σ satisfies the
identity s ≈ t if every algebra in V does.

It follows from Birkhoff’s theorem [2] that the variety V(A) is the class of
algebras that satisfy all the identities satisfied by A. An algebra A is finitely
generated if there exists a finite subset F of its domain such that the only
subalgebra of A containing F is A. If A is finite then V(A) is locally finite, i.e.,
every finitely generated algebra in V(A) is finite.

3 Core Valued Constraint Languages

For each valued constraint language Γ there is an associated algebra. It has uni-
verse D and the set of operations Pol(Γ). If all operations of any given algebra

satisfy the identity f(x, . . . , x) ≈ x (i.e. are idempotent) then we call the algebra
idempotent. In this section we prove that every valued constraint language which
is finite has a computationally equivalent valued constraint language whose as-
sociated algebra is idempotent.

Positive Clone. Those polymorphisms of a given language Γ which are assigned
a positive weight by some weighted polymorphisms ω ∈ wPol(Γ) are of special
interest in the rest of the paper. We begin this section by proving that they form
a clone.

Let C be a weighted clone over a set D. The following proposition shows that
the set

⋃
ω∈C supp(ω), together with the set of projections ΠD, is a clone. We

call it the positive clone of C and denote by C+ (if C is wPol(Γ) then C+ is
denoted by Pol+(Γ)). Details can be found in Appendix A.1.

Proposition 7. If C is a weighted clone then C+ is a clone.

Cores. Let Γ be a valued constraint language with a domain D. For S ⊆ D
we denote by Γ [S] the valued constraint language defined on a domain S and
containing the restriction of every cost function % ∈ Γ to S.

By generalizing the arguments for finite-valued languages given in [13, 22],
we show (see Appendix A.2) that Γ has a computationally equivalent valued
constraint language Γ ′ such that Pol+1 (Γ ′) contains only bijective operations.
Such a language is called a core. Moreover, Γ ′ can be chosen to be equal to Γ [S]
for some S ⊆ D.

Proposition 8. For every valued constraint language Γ there exists a core lan-
guage Γ ′, such that the valued constraint language Γ is tractable if and only if
Γ ′ is tractable, and it is NP-hard if and only if Γ ′ is NP-hard.

For core languages we characterize the set of unary weighted polymorphisms
as consisting of all weightings that assign positive weights only to bijective op-
erations preserving all cost functions (see Appendix A.3).

The proposition below witnesses the importance of the positive clone and
is used to prove further results in the subsequent sections. Let Γ be a valued
constraint language over a domain D which is finite and a core. For each arity
m we fix an enumeration of all the elements of Dm. This allows us to treat every

m-ary operation f ∈ O(m)
D as a |Dm|-tuple. We define a |Dm|-ary cost function

in wRelClo(Γ) that precisely distinguishes the m-ary operations in the positive
clone from all the other m-ary polymorphisms. Details are in Appendix A.4.

Proposition 9. Let Γ be a valued constraint language over a domain D which

is finite and a core. For every m there exists a cost function % : O(m)
D → Q

in wRelClo(Γ), and a rational number P , such that for every f ∈ O(m)
D the

following conditions are satisfied:

1. %(f) ≥ P ,
2. %(f) <∞ if and only if f ∈ Pol(Γ),
3. %(f) = P if and only if f ∈ Pol+(Γ).

Rigid cores. We further reduce the class of languages that we need to con-
sider. Let Γ be a valued constraint language over an n-element domain D =
{d1, . . . , dn} which is finite and a core. For each i ∈ {1, . . . , n}, let

Ni(x) =

{
0 if x = di,

∞ otherwise,

and let Γc denote the valued constraint language obtained from Γ by adding
all cost functions Ni. Observe that Pol(Γc) = IdPol(Γ), where by IdPol(Γ) we
denote the set of idempotent polymorphisms of the language Γ . Hence, the only
unary polymorphism of Γc is the identity, which also means that there is only one
unary weighted polymorphism of Γc – the zero-valued weighted polymorphism.

A valued constraint language Γ is a rigid core if there is exactly one unary
polymorphism of Γ , which is the identity. This notion corresponds to the classical
notion of a rigid core considered in CSP [7]. The following proposition, together
with Proposition 8, implies that for each finite language Γ , there is a computa-
tionally equivalent language that is a rigid core. For details see Appendix A.5.

Proposition 10. Let Γ be a valued constraint language which is finite and a
core. The valued constraint language Γc is a rigid core. Moreover, Γ is tractable
if and only if Γc is tractable, and Γ is NP-hard if and only if Γc is NP-hard.

If Γ is a core language then the positive clone of Γc contains precisely the
idempotent operations from the positive clone of Γ (see Appendix A.6).

4 Weighted varieties

One of the fundamental results of the algebraic approach to CSP [3, 7, 18] says
that the complexity of a crisp language Γ depends only on the variety generated
by the algebra (D,Pol(Γ)). We generalize this fact to VCSP.

A k-ary weighting ω of an algebra A is a function that assigns rational weights
to all k-ary term operations of A in such a way, that the sum of all weights is 0,
and if ω(f) < 0 then f is a projection. A (proper) superposition ω[g1, . . . , gk] of
a weighting ω with a list of l-ary term operations g1, . . . , gk from A is defined
the same way as for clones (see Definition 5). An algebra A together with a set
of weightings closed under non-negative scaling, addition of weightings of equal
arity and proper superposition with term operations from A is called a weighted
algebra.

For a variety V over a signature Σ and a term t we denote by [t]V the
equivalence class of t under the relation ≈V such that t ≈V s if and only if the
variety V satisfies the identity t ≈ s (we skip the subscript, writing [t] instead of
[t]V , whenever the variety is clear from the context). Observe that if the variety
is locally finite then there are finitely many equivalence classes of terms of a
fixed arity [8].

Definition 11. Let V be a locally finite variety over a signature Σ. A k-ary
weighting ω of V is a function that assigns rational weights to all equivalence
classes of k-ary terms over Σ in such a way, that the sum of all weights is 0,
and if ω([t]) < 0 then V satisfies the identity t(x1, . . . , xk) ≈ xi for some i ∈
{1, . . . , k}. The variety V together with a nonempty set of weightings is called a
weighted variety.

Take any finite algebra B ∈ V. A k-ary weighting ω of V induces a weighting
ωB of B in a natural way:

ωB(f) =
∑

{[t] | tB=f}

ω([t]).

If ω([t]) < 0 then the term operation tB is a projection, and hence the weighting
ωB is proper. For a weighted variety V, by B ∈ V we mean the algebra B
together with the set of weightings induced by V.

For every weighting ω of a finite weighted algebra A there is a corresponding
weighting ω of the variety V(A) defined by ω([t]) = ω(tA). It follows from
Birkhoff’s theorem that it is well defined. A weighted variety V(A) generated
by a weighted algebra A is the variety V(A) together with the set of weightings
corresponding to the weightings of A.

We prove that every finite algebra B ∈ V(A) together with the set of weight-
ings induced by V(A) is a weighted algebra. The only non-trivial part is to show
that B is closed under proper superpositions (cf. Appendix B.1).

Proposition 12. For a finite weighted algebra A over a fixed signature Σ and a
finite algebra B ∈ V(A) let ωB be a k-ary weighting of B induced by the weighted
variety V(A). If for some list fB1 , . . . , f

B
k of l-ary term operations from B the

composition ωB[fB1 , . . . , f
B
k] is proper then it is induced by some valid weighting

of V(A).

For a finite weighted algebra A let Imp(A) denote the set of those cost
functions on A that are improved by all weightings of A. We prove that for each
finite weighted algebra B ∈ V(A) the valued constraint language Imp(B) is not
harder then Imp(A) i.e.:

Lemma 13. Let A be a finite weighted algebra and let

B ∈ Pfin(A) or B ∈ S(A) or B ∈ H(A) or finally B ∈ V(A)

then a VCSP defined by any finite subset of Imp(B) reduces in polynomial-time
to a VCSP for some finite subset of Imp(A).

Therefore the complexity of Γ depends only on the weighted variety gener-
ated by the weighted algebra (D,wPol(Γ)). Details are in Appendix B.2.

5 Dichotomy conjecture

An operation t of arity k is called a Taylor operation of an algebra (or a variety),
if t is idempotent and for every j ≤ k it satisfies an identity of the form

t(�1,�2, . . . ,�k) ≈ t(41,42, . . . ,4k),

where all �is and 4is are substituted with either x or y, but �j is x whenever
4j is y. In this section we prove the following theorem:

Theorem 14. Let Γ be a finite core valued constraint language. If Pol+(Γ) does
not have a Taylor operation, then Γ is NP-hard.

We conjecture3 that these are the only cases of finite core languages which
give rise to NP-hard VCSPs.

Conjecture. Let Γ be a finite core valued constraint language. If Pol+(Γ) does
not have a Taylor operation, then Γ is NP-hard. Otherwise it is tractable.

For crisp languages Pol+(Γ) = Pol(Γ). Therefore Theorem 14 generalizes the
well-known result of Bulatov, Jeavons and Krokhin [3, 7] concerning crisp core
languages. Similarly the above conjecture is a generalization of The Algebraic
Dichotomy Conjecture for CSP. Later on we show that it is supported by all
known partial results on the complexity of VCSPs.

To prove Theorem 14 we use Proposition 9 and argue that any relation com-
patible with Pol+(Γ) can be found as a set of tuples with minimal costs for some
cost function improved by wPol(Γ). It is easy to notice that if Pol+(Γ) does not
have a Taylor operation, then such a relation with NP-complete CSP can be
constructed. Details can be found in Appendix C.1.

As the Taylor operation is difficult to work with, in the reminder of the
section we use a characterization of Taylor algebras as the algebras possessing
a cyclic term. If Γ is a finite core constraint language then (D, IdPol+(Γ)) is a
finite idempotent algebra. It follows that IdPol+(Γ), and hence also Pol+(Γ),
has a Taylor operation if and only if it has an idempotent cyclic operation [1].

5.1 Two-element domain

A complete complexity classification for valued constraint languages over a two-
element domain was established in [10]. All tractable languages have been de-
fined via multimorphisms, which are a more restricted form of weighted poly-
morphisms. A k-ary multimorphism of a language Γ , specified as a k-tuple
〈f1, . . . , fk〉 of k-ary operations on D, is a k-ary weighted polymorphism ω of
Γ such that for each i ∈ {1, . . . , k}, we have that ω(πi) = − 1

k , and ω(fi) = l
k ,

where l is the number of times the operation fi appears in the tuple.

3 The conjecture was suggested in a conversation by Libor Barto, however it might
have appeared independently earlier.

An operation f ∈ O(3)
D is called a majority operation if for every x, y ∈ D

we have that f(x, x, y) = f(x, y, x) = f(y, x, x) = x. Similarly, an opera-

tion f ∈ O(3)
D is called a minority operation if for every x, y ∈ D it satisfies

f(x, x, y) = f(x, y, x) = f(y, x, x) = y. We show the following proposition (see
Appendix C.2):

Proposition 15. Let Γ be a finite core valued constraint language on D =
{0, 1}. Then Pol+(Γ) has an idempotent cyclic operation if and only if Γ ad-
mits at least one of the following six multimorphisms: 〈min,min〉, 〈max,max〉,
〈min,max〉, 〈Mjrty,Mjrty,Mjrty〉, 〈Mnrty,Mnrty,Mnrty〉, 〈Mjrty,Mjrty,Mnrty〉.

The proposition fully agrees with the classification of VCSP languages on
two-element domain in [10].

5.2 Finite-valued languages

Theorem 16 (Thapper and Živný [22]). Let Γ be a finite-valued constraint
language which is a core. If Γ admits an idempotent cyclic weighted polymor-
phism of some arity m > 1, then Γ is tractable. Otherwise it is NP-hard.

To show that our conjecture agrees with the above complexity classification
in Appendix C.3 we prove the following result (which holds for general-valued
languages):

Proposition 17. Let Γ be a core valued constraint language. Then Γ admits
an idempotent cyclic weighted polymorphism of some arity m > 1 if and only if
Pol+(Γ) contains an idempotent cyclic operation of the same arity.

5.3 Conservative languages

A valued constraint language Γ over a domain D is called conservative if it con-

tains all {0, 1}-valued unary cost functions on D. An operation f ∈ O(k)
D is con-

servative if for every x1, . . . , xk ∈ D we have that f(x1, . . . , xk) ∈ {x1, . . . , xk},
and a weighted polymorphism is conservative if its support contains conservative
operations only.

A Symmetric Tournament Pair (STP) is a conservative binary multimor-
phism 〈u,t〉, where both operations are commutative, i.e., u(x, y) = u(y, x)
and u(x, y) = u(y, x) for all x, y ∈ D, and moreover u(x, y) 6= t(x, y) for all
x 6= y. A MJN is a ternary conservative multimorphism 〈Mj1,Mj2,Mn3〉, such
that Mj1,Mj2 are majority operations, and Mn3 is a minority operation.

Theorem 18 (Kolmogorov and Živný [17]). Let Γ be a conservative con-
straint language over a domain D. If Γ admits a conservative binary multimor-
phism 〈u,t〉 and a conservative ternary multimorphism 〈Mj1,Mj2,Mn3〉, and
there is a family M of two-element subsets of D, such that:

– for every {x, y} ∈M , 〈u,t〉 restricted to {x, y} is an STP,

– for every {x, y} 6∈M , 〈Mj1,Mj2,Mn3〉 restricted to {x, y} is an MJN,

then Γ is tractable. Otherwise it is NP-hard.

In this case, as well as in the others, it can be shown (cf. Appendix C.4) that
the existence of an idempotent cyclic polymorphism in Pol+(Γ) is equivalent (for
conservative Γ) to the tractability conditions from the theorem above.

Acknowledgments

We are grateful to Libor Barto and Jakub Bulin for inspiring discussions on VCSP.

References

1. Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms, and the
constraint satisfaction problem. Logical Methods in Computer Science, 8(1), 2012.

2. G. Birkhoff. On the structure of abstract algebras. In Proceedings of the Cambridge
Philosophical Society, volume 31, pages 433–454, 1935.

3. Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

4. Andrei A. Bulatov. Tractable conservative constraint satisfaction problems. In
Proc. of the 18th Symposium on Logic in Computer Science, page 321, 2003.

5. Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on
a 3-element set. J. ACM, 53(1):66–120, 2006.

6. Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems.
ACM Trans. Comput. Logic, 12(4):24:1–24:66, 2011.

7. Andrei A. Bulatov, Andrei A. Krokhin, and Peter Jeavons. Constraint satisfaction
problems and finite algebras. In Proc. ICALP ’00, pages 272–282, 2000.

8. S. Burris and H.P. Sankappanavar. A course in universal algebra. Graduate texts
in mathematics. Springer-Verlag, 1981.

9. David A. Cohen, Martin C. Cooper, Páid́ı Creed, Peter G. Jeavons, and Stanislav
Živný. An algebraic theory of complexity for discrete optimization. SIAM J.
Comput., 42(5):1915–1939, 2013.

10. David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The
complexity of soft constraint satisfaction. Artif. Intell., 170(11):983–1016, 2006.

11. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: A study through datalog and group
theory. SIAM J. Comput., 28(1):57–104, 1999.

12. Pavol Hell and Jaroslav Nešetřil. On the complexity of h-coloring. Journal of
Combinatorial Theory, Series B, 48(1):92 – 110, 1990.

13. Anna Huber, Andrei Krokhin, and Robert Powell. Skew bisubmodularity and
valued CSPs. In Proc. SODA ’13, pages 1296–1305. SIAM, 2013.

14. Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints.
J. ACM, 44(4):527–548, 1997.

15. Peter Jeavons, Andrei Krokhin, and Stanislav Živný. The complexity of valued
constraint satisfaction. Bulletin of the EATCS, 113:21–55, 2014.

16. Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear
programming for general-valued CSPs. CoRR, abs/1311.4219, 2013.

17. Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued
CSPs. J. ACM, 60(2):10:1–10:38, 2013.

18. Benoit Larose and Pascal Tesson. Universal algebra and hardness results for con-
straint satisfaction problems. Theor. Comput. Sci., 410:1629 – 1647, 2009.

19. Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. of the 10th
ACM Symp. on Theory of Computing, STOC ’78, pages 216–226, 1978.

20. Alfred Tarski. A remark on functionally free algebras. Annals of Mathematics,
47(1):163–166, 1946.

21. Walter Taylor. Varieties obeying homotopy laws. Canad. J. Math., 29(3):498527,
1997.

22. Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. In
Proc. of the 45th ACM Symp. on Theory of Computing, STOC ’13, pages 695–704,
2013.

A Proofs for Section 3

A.1 Proof of Proposition 7

We will use the following technical lemma (Lemma 6.5 from [9]). It implies that
any weighting that can be expressed as a weighted sum of arbitrary superpo-
sitions can also be expressed as a superposition of a weighted sum of proper
superpositions.

Lemma 19. Let C be a weighted clone, and let ω1 and ω2 be weightings in C, of
arity k and l respectively. For any m-ary operations f1, . . . , fk, g1, . . . , gl of C:

c1ω1[f1, . . . , fk] + c2ω2[g1, . . . , gl] = ω[f1, . . . , fk, g1, . . . , gl],

where
ω = c1ω1[π

(k+l)
1 , . . . , π

(k+l)
k] + c2ω2[π

(k+l)
k+1 , . . . , π

(k+l)
k+l].

Proof. (of Proposition 7) We need to show that the set C+ is closed under
superposition. Take a k-ary operation f and a list of l-ary operations g1, . . . , gk
that all belong to C+.

If f is a projection there is nothing to prove. Otherwise there is a weighting
ω ∈ C such that ω(f) > 0. Similarly for each gi which is not a projection we
find ωi such that ωi(gi) > 0 (if gi is a projection we put ωi to be the zero-valued
l-ary weighting).

Now, there exist non-negative rational numbers ij such that the sum

ω[g1, . . . , gk] + i1ω1[πl1, . . . , π
l
l] + · · ·+ ikωk[πl1, . . . , π

l
l]

is a valid weighting. By Lemma 19 this weighting can be obtained as a superpo-
sition of a sum of proper superpositions and therefore belongs to C which finishes
the proof.

A.2 Proof of Proposition 8

We need an auxiliary lemma.

Lemma 20. For a valued constraint language Γ , let f ∈ Pol+1 (Γ) and let I ∈
VCSP(Γ). If s is an optimal assignment for I, then f(s) is also optimal.

Proof. Let f , I and s be like in the statement of the lemma. Observe that
CostI (see Definition 1) can be seen as a cost function whose arity is equal to
the number of variables in I. Moreover, CostI belongs to wRelClo(Γ) as it is
clearly expressible over Γ . If CostI(s) = ∞ then there is no assignment with a
finite cost and we are done.

Assume that CostI(s) < ∞, which means that s ∈ Feas(CostI). If f 6= id,
then there exists a weighted polymorphism ω with ω(f) > 0. By definition the
following inequality is satisfied:∑

g∈Pol1(Γ)

ω(g) · CostI(g(s)) ≤ 0.

Without loss of generality we can assume that ω(id) = −1. Then we have that∑
g∈supp(ω) ω(g) = 1 and the inequality above can be rewritten as∑

g∈supp(ω)

ω(g) · CostI(g(s)) ≤ CostI(s).

On the other hand,∑
g∈supp(ω)

ω(g) · CostI(g(s)) ≥
∑

g∈supp(ω)

ω(g) · CostI(s) = CostI(s).

Therefore CostI(g(s)) = CostI(s) for each operation g ∈ supp(ω). Since f ∈
supp(ω) and s is optimal, f(s) is also optimal.

Proof. (of Proposition 8) Let Γ be a valued constraint language over a domain D.
Suppose that there is a unary polymorphism f ∈ Pol+(Γ) that is not bijective.
Let Γ ′ = Γ [f(D)], where f(D) D denotes the range of f . There is a natu-
ral correspondence between instances of VCSP(Γ ′) and instances of VCSP(Γ),
induced by the correspondence between functions in Γ and their restrictions in
Γ ′. For any instance I ′ of VCSP(Γ ′) the corresponding instance I of VCSP(Γ)
has the same variables. The cost function %′ in each constraint is replaced by
any cost function % from Γ , which is equal to %′ when restricted to f(D). We
show that OptΓ (I) = OptΓ ′(I ′).

Any assignment for I ′ is also an assignment for I, and hence OptΓ (I) ≤
OptΓ ′(I ′). Furthermore, by Lemma 20 for each s that is an optimal assignment
for I, we have

CostI(s) = CostI(f(s)) = CostI′(f(s)).

Therefore, OptΓ (I) ≥ OptΓ ′(I ′).
It follows that VCSP(Γ) is tractable if and only if VCSP(Γ ′) is tractable,

and it is NP-hard if and only if VCSP(Γ ′) is NP-hard. Moreover, the valued
constraint language Γ ′ is defined over a smaller domain. We replace Γ with Γ ′

and repeat this procedure, until we obtain a language Γ ′ that is a core.

A.3 Unary weighted polymorphisms of a core language

Proposition 21. Let Γ be a core valued constraint language. A unary weighting
ω is a weighted polymorphism of Γ if and only if it assigns positive weights only
to such bijective operations f ∈ Pol1(Γ) that, for all cost functions % ∈ Γ , satisfy
% ◦ f = %.

Proof. If a valid unary weighting ω assigns positive weights only to such opera-
tions f ∈ Pol1(Γ) that, for all cost functions % ∈ Γ , satisfy % ◦ f = %, then for
each % ∈ Γ and a tuple x ∈ Feas(%)∑

f∈Pol1(Γ)

ω(f) · %(f(x)) =
∑

f∈Pol1(Γ)

ω(f) · %(x) = 0,

and ω is clearly a weighted polymorphism of Γ .
For the other direction, let ω be a unary weighted polymorphism of Γ , such

that supp(ω) 6= ∅. Without loss of generality assume that ω(id) = −1. Since Γ
is a core language, the operations g ∈ supp(ω) are bijective. For % ∈ Γ and a
tuple x ∈ Feas(%) for which % takes the minimal value, we have∑

g∈supp(ω)

ω(g) · %(g(x)) + ω(id) · %(x) ≤ 0, hence

%(x) ≥
∑

g∈supp(ω)

ω(g) · %(g(x)) ≥
∑

g∈supp(ω)

ω(g) · %(x) = %(x).

Therefore %(g(x)) = %(x) for each g ∈ supp(ω), which means that the operations
in the support preserve the minimal weight.

Note that, since each g ∈ supp(ω) is bijective, it determines a bijection of the
set Feas(%). We have shown that this bijection preserves the set of tuples with
minimal weight. It can be similarly shown by induction that it preserves the set
of tuples with any other fixed weight. Hence, we have proved that % ◦ g = % for
all g ∈ supp(ω).

A.4 Proof of Proposition 9

We need the following technical lemma, which is a variant of the well known
Farkas’ Lemma used in linear programming:

Lemma 22 (Farkas). Let S and T be finite sets of indices, where T is a disjoint
union of two subsets, T≥ and T=. For all i ∈ S, and all j ∈ T , let ai,j and bj be
rational numbers. Exactly one of the following holds:

– Either there exists a set of non-negative rational numbers {zi | i ∈ S} and a
rational number C such that

for each j ∈ T≥,
∑
i∈S

ai,jzi ≥ bj + C,

for each j ∈ T=,
∑
i∈S

ai,jzi = bj + C.

– Or else there exists a set of rational numbers {yj | j ∈ T} such that
∑
j∈T yj =

0 and
for each j ∈ T≥, yj ≥ 0,

for each i ∈ S,
∑
j∈T

yjai,j ≤ 0,

and
∑
j∈T

yjbj > 0.

The set {yj | j ∈ T} defined in the lemma is called a certificate of unsolv-
ability.

Proof. (of Proposition 9) The cost function % is given by a sum of all cost func-
tions in Γ with positive coefficients that we define later on.

Like in the classical CSP, a cost function whose feasibility relation contains
exactly those |Dm|-tuples which are m-ary polymorphisms of Γ is defined by:∑

%∈Γ
(a1,...,am)∈(Feas(%))m

%(xb1 , . . . , xbr),

where bi(j) = aj(i), and r is the arity of %. For each summand we introduce a
variable z%,a1,...,am and, for each f ∈ Pol+m(Γ) we write:∑

%∈Γ
(a1,...,am)∈(Feas(%))m

z%,a1,...,am%(f(b1), . . . , f(br)) = 0 + C,

while for each f ∈ Polm(Γ) \ Pol+m(Γ):∑
%∈Γ

(a1,...,am)∈(Feas(%))m

z%,a1,...,am%(f(b1), . . . , f(br)) ≥ 1 + C,

where bi(j) = aj(i), and r is the arity of %.
By putting the above equalities and inequalities together we obtain a system

of linear inequalities and equations. By Lemma 22 there are two mutually exclu-
sive possibilities. First, there may exist a set of non-negative rational numbers
z%,a1,...,am and a rational number C, such that this system is satisfied. Then the
proposition is proved: items 1. and 3. follow trivially from construction. Item 2.
follows by definition of the cost function.

Otherwise, there exists a set {yf | f ∈ Polm(Γ)} which forms the certificate
of unsolvability. Then let us consider a weighting defined by ω(f) = yf . If ω is
a valid weighting, then it is an m-ary weighted polymorphism of Γ . Moreover,
ω assigns to all operations in Polm(Γ) \Pol+m(Γ) non-negative weights that sum
up to a positive number. Hence, for some h ∈ Polm(Γ) \ Pol+m(Γ), we have
ω(h) > 0, which contradicts h /∈ Pol+m(Γ). If it happens that yg < 0 for some
operation g ∈ Pol+m(Γ) that is not a projection, then there exists an m-ary
weighted polymorphism of Γ which assigns a positive weight to g. By scaling
it and adding to ω (as in the proof of Proposition 7), we obtain the weighted
polymorphism needed for the contradiction.

A.5 Proof of Proposition 10

Proof. Let Γ be a finite core valued constraint language over a domain D =
{d1, . . . , dn}. It follows from Proposition 9 that there exist an n-ary cost function
N ∈ wRelClo(Γ), and positive rational numbers P < Q, such that the following
conditions are satisfied:

– N(x1, . . . , xn) = P if and only if the unary operation g defined by di 7→ xi
belongs to Pol+(Γ),

– N(x1, . . . , xn) > Q if and only if the unary operation g defined by di 7→ xi
belongs to Pol(Γ) \ Pol+(Γ),

– otherwise N(x1, . . . , xn) =∞.

Assume without loss of generality that N ∈ Γ . We show a polynomial-time
Turing reduction from VCSP(Γc) to VCSP(Γ).

Let Ic = (Vc, D, Cc) be an instance of VCSP(Γc). The set of variables V in
the new instance I is a disjoint union of Vc and {v1, . . . , vn}. For every constraint
of the form ((v), Ni) in Cc we:

– add a constraint ((v, vi), %=), where

%=(x, y) =

{
0 if x = y,

∞ otherwise

(this cost function is expressible over every valued constraint language, so
without loss of generality we can assume that %= ∈ Γ),

– remove the constraint ((v), Ni) from Cc.

We obtain a new set of constraints C1, where all cost functions are already
from Γ .

Let C be the sum of weights that all cost functions in all constraints in C1
assign to all tuples in their feasibility relations. The final set of constraints C
additionally contains m constraints of the form ((v1, . . . , vn), N), where m is big
enough to ensure that m · (Q− P) > C.

There are three possibilities:

– If OptΓ (I) =∞ then no assignment for Ic has a finite cost. Suppose other-
wise and let sc be an assignment for Ic with a finite cost. Then sc gives rise
to an assignment s for I with a finite cost. It coincides with sc on Vc and
for each i ∈ {1, . . . , n}, we set s(vi) = di.

– The optimal assignment s for I satisfies N(s(v1, . . . , vn)) = P . Then the
tuple s(v1, . . . , vn) determines a unary operation g, defined by di 7→ s(vi).
The operation g, by the definition of the cost function N , belongs to the
positive clone Pol+(Γ). Hence, g−1 also belongs to the positive clone. Since
Γ is a core, the assignment g−1(s) is optimal for I. Its restriction onto Vc is
an optimal assignment for Ic.

– The optimal assignment s for I satisfies N(s(v1, . . . , vn)) > Q. While there
are m constraints of the form ((v1, . . . , vn), N), we have

CostI(s) ≥ m ·Q > m · P + C.

If there was any assignment sc for Ic with a finite cost, the corresponding
assignment s for I would satisfy CostI(s) < m · P + C, which gives a
contradiction, and implies that OptΓc

(Ic) =∞.

A.6 Positive clone of a rigid core

Proposition 23. Let Γ be a valued constraint language which is a core. Then
IdPol+(Γ) = Pol+(Γc).

We first prove the following lemma:

Lemma 24. Let Γ be a core valued constraint language. For every weighted
polymorphism ω ∈ wPol(Γ) there exists an idempotent weighted polymorphism
ω′ ∈ wPol(Γ) such that supp(ω)∩ IdPol(Γ) ⊆ supp(ω′). Moreover, if ω is cyclic
then ω′ can be chosen to be cyclic.

Proof. Consider a weighted polymorphism ω ∈ wPol(Γ). Take a non-idempotent
operation g ∈ supp(ω) and let h be a unary operation defined by h(x) =
g(x, . . . , x). Since Pol+(Γ) is a clone of operations, h ∈ Pol+(Γ). Then by Propo-
sition 21 the operation h is bijective and preserves all cost functions in Γ . We
modify the weighted polymorphism ω by adding ω(g) to the weight of the idem-
potent operation h−1 ◦ g and then assigning weight 0 to the operation g. It is
straightforward to check that the new weighting is a weighted polymorphism of
Γ . If g is cyclic then so is h−1 ◦ g. Hence if ω is cyclic then so is the new weight-
ing. We repeat this construction for every non-idempotent operation in supp(ω).
Finally, we obtain an idempotent weighted polymorphism ω′ which satisfies the
conditions of the lemma.

Proof. (of Proposition 23) Clearly both sets contain all the projections. Let us
take f ∈ Pol+(Γc) that is not a projection and let ω be a weighted polymorphism
of Γc such that f ∈ supp(ω). There is a corresponding weighted polymorphism
ω′ of Γ , which is equal to ω on the idempotent operations and equal 0 otherwise.
Then we have f ∈ supp(ω′). Since f is idempotent it follows that f ∈ IdPol+(Γ).

To prove the reverse inclusion consider f ∈ IdPol+(Γ) that is not a pro-
jection. Let ω be a weighted polymorphism of Γ such that f ∈ supp(ω). By
Lemma 24 there exists an idempotent weighted polymorphism ω′ of Γ such that
supp(ω)∩IdPol(Γ) ⊆ supp(ω′). The weighting ω′′, defined as a restriction of ω′ to
the idempotent operations, is a weighted polymorphism of Γc with f ∈ supp(ω′′).
Hence f ∈ Pol+(Γc).

B Proofs for Section 4

B.1 Proof of Proposition 12

In the proof we use Gordan’s Theorem.

Theorem 25 (Gordan). Let S and T be finite sets of indices. For all i ∈ S,
and all j ∈ T , let ai,j be rational numbers. Exactly one of the following holds:

– Either there exists a set of non-negative rational numbers {zi | i ∈ S} such
that

for some i ∈ S, zi > 0,

for each j ∈ T,
∑
i∈S

ai,jzi = 0.

– Or else there exists a set of rational numbers {yj | j ∈ T} such that

for each i ∈ S,
∑
j∈T

yjai,j > 0.

Proof. (of Proposition 12) Let ωB and fB1 , . . . , f
B
k be as in the statement of the

proposition. Assume that the weighting ωB[fB1 , . . . , f
B
k] is proper.

Notice that the following conditions are equivalent:

– the operation fBi is the projection πj on the j-th coordinate,
– there exists a term t such that tB = fBi and tA is the projection πj on the
j-th coordinate.

For each i ∈ {1, . . . , k} consider the set Fi of equivalence classes of terms over
Σ defined by

Fi =

{
{[t] | tA = πj} if fBi = πj ,

{[t] | tB = fBi } otherwise

(observe that if fBi is a projection then Fi contains a single equivalence class).
Take ω to be some k-ary weighting of A that induces ωB, and let

W = {ω[tA1 , . . . , t
A
k] | [ti] ∈ Fi}.

Suppose that for some choice of equivalence classes [ti] ∈ Fi the superposition
ω[tA1 , . . . , t

A
k] is proper. The weighting ω[tA1 , . . . , t

A
k] of A induces a weighting of

B which is equal to ωB[fB1 , . . . , f
B
k], thus in this case the proof is concluded.

This shows that a superposition of ωB with any list of projections is always
induced by some weighting of A.

Now let us deal with the case when none of the weightings in W is proper.
Without loss of generality we can assume that the operations fB1 , . . . , f

B
k are

pairwise distinct (otherwise we replace ωB by its superposition with a suitable
list of projections) and hence the sets Fi are disjoint. Let F =

⋃
Fi. We remove

from F the element of Fi if fBi is a projection. The removed elements cannot
cause a problem and therefore we assume that for every [t] ∈ F the operation
tA is not a projection. We apply Gordan’s Theorem to the following system of
linear equations: ∑

ν∈W
ν(tA) · zν − z[t] = 0, for each [t] ∈ F.

If this system has a non-zero solution in non-negative rational numbers then
zν > 0 for some ν ∈ W . Observe that the weighting υ =

∑
ν∈W ν · zν is proper.

Indeed, by the definition of a superposition the only non-projections that could
be assigned negative weights by υ are the operations tA where [t] ∈ F . But each
such operation tA is assigned a non-negative weight z[t]. Hence, by Lemma 19
the weighting υ is equal to a proper superposition of some weighting of A with a
list of l-ary term operations of A. Finally, let p =

∑
ν∈W zν > 0. The weighting

1
pυ of A induces a weighting of B which is equal to ωB[fB1 , . . . , f

B
k].

Otherwise, there exists a set {y[t] | [t] ∈ F} of rational numbers, such that

for each ν ∈W,
∑
[t]∈F

y[t] · ν(tA) > 0,

and y[t] < 0 for each [t] ∈ F . For every i ∈ {1, . . . , k} let us choose [ti] ∈ Fi
satisfying y[ti] = max{y[t] | [t] ∈ Fi} (if fBi is a projection then we choose
[ti] ∈ Fi to be the only element of Fi and put y[ti] = 0) and consider the
weighting υ = ω[tA1 , . . . , t

A
k]. Notice that υ may assign negative weights only to

operations tAi . Since∑
[t]∈F1

y[t] · υ(tA) + · · ·+
∑

[t]∈Fk

y[t] · υ(tA) > 0,

then
∑

[t]∈Fi
y[t] · υ(tA) > 0 for some i ∈ {1, . . . , k}. Hence

0 <
∑
[t]∈Fi

y[t] · υ(tA) ≤
∑
[t]∈Fi

y[ti] · υ(tA) = y[ti] ·
∑
[t]∈Fi

υ(tA).

It follows that
∑

[t]∈Fi
υ(tA) < 0, which is a contradiction, since

∑
[t]∈Fi

υ(tA)

is the weight that the proper weighting ωB[fB1 , . . . , f
B
k] assigns to the operation

fBi (which is not a projection).

B.2 Proof of Lemma 13

The proof consists of a sequence of lemmas.

Lemma 26. Let A be a finite weighted algebra. For any B ∈ Pfin(A), there is
a polynomial-time reduction of VCSP(Imp(B)) to VCSP(Imp(A)).

Proof. Let An be the universe of B and let Γ be a finite subset of Imp(B).
Take % ∈ Γ to be an r-ary cost function. There is a natural way of defining
a corresponding cost function of arity n · r on the set A. We denote this cost
function by %′.

Let ω be a k-ary weighting of the weighted algebra A. The corresponding
k-ary weighting ωB of B is a weighted polymorphism of %. Then it is not hard
to show that ω is a weighted polymorphism of %′, as the basic operations of B
are the operations of A computed coordinate-wise. Hence, each weighting of A
is a weighted polymorphism of %′, which means that %′ ∈ Imp(A).

For each % ∈ Γ we have defined a corresponding %′ ∈ Imp(A). Let Γ ′ ⊆
Imp(A) be the (finite) set of all those cost functions.

Now take an arbitrary instance I = (V,An, C) of VCSP(Γ). Replace the
domain An by A, and each variable vi ∈ V by a set of n variables {v1i , . . . , vni },
obtaining a new set of variables V ′. In each constraint (σ, %) ∈ C, where % is an r-
ary cost function, replace the r-tuple σ of variables from V by the corresponding
nr-tuple of variables from V ′, and the cost function % by the corresponding
cost function %′ from Γ ′. The new instance I ′ = (V ′, A, C′) is an instance of
VCSP(Γ ′). It is easy to see that there is a one-to-one correspondence between
the optimal assignments for I and the optimal assignments for I ′.

Lemma 27. Let A be a finite weighted algebra. For any B ∈ S(A), there is a
polynomial-time reduction of VCSP(Imp(B)) to VCSP(Imp(A)).

Notice that Imp(B) ⊆ Imp(A), so there is nothing to be proved.

Lemma 28. Let A be a finite weighted algebra. For any B ∈ H(A), there is a
polynomial-time reduction of VCSP(Imp(B)) to VCSP(Imp(A)).

Proof. By the isomorphism theorem we can consider B to be a quotient algebra
A/∼ rather than a homomorphic image of A. Let A/∼ be the universe of B and
let Γ be a finite subset of Imp(B). Take % ∈ Γ to be a r-ary cost function. We
define a corresponding cost function %′ of arity r on the set A by %′(x1, . . . , xr) =
%([x1]∼, . . . [xr]∼).

Let ω be a k-ary weighting of the weighted algebra A. The corresponding
k-ary weighting ωB of B is a weighted polymorphism of %. It is not hard to
show that ω is a weighted polymorphism of %′. Hence, each weighting of A is a
weighted polymorphism of %′, which means that %′ ∈ Imp(A).

For each % ∈ Γ we have defined a corresponding %′ ∈ Imp(A). Let Γ ′ ⊆
Imp(A) be the (finite) set of all those cost functions.

Now take an arbitrary instance I = (V,A/∼, C) of VCSP(Γ). Replace the
domain A/∼ by A. In each constraint (σ, %) ∈ C replace the cost function % by
a corresponding cost function %′ from Γ ′. The new instance I ′ = (V,A, C′) is an
instance of VCSP(Γ ′).

If s′ : V → A is an optimal assignment for I ′, then s : V → A/∼ defined by
s(v) = [s′(v)]∼ is an optimal assignment for I. On the other hand, if s : V → A/∼
is an optimal assignment for I, then any assignment s′ : V → A, such that for
each v ∈ V , we have s′(v) ∈ s(v), is optimal for I ′.

C Proofs for Section 5

C.1 Proof of Theorem 14

To prove Theorem 14 we use the following characterization of algebras possessing
a Taylor operation:

Theorem 29 (Taylor [21]). Let A be a finite idempotent algebra, then the
following are equivalent:

– A has a Taylor operation,
– V(A) (equivalently HS(A)) does not contain a two-element algebra whose

every term operation is a projection.

First let us prove an auxiliary lemma.

Lemma 30. Let Γ be a finite core valued constraint language over a domain
D, and let R be an r-ary relation which is compatible with every polymorphism
from Pol+(Γ). Then there exists a cost function %R in wRelClo(Γ), such that
for every r-tuple x the following conditions are satisfied:

– %R(x) ≥ 0 and
– %R(x) = 0 if and only if x ∈ R.

Proof. Let R = {x1, . . . ,xm} be a relation as in the statement of the lemma.

By Proposition 9 there exists a cost function %′ : O(m)
D → Q in wRelClo(Γ), and

a rational number P , such that for every f ∈ O(m)
D :

– %′(f) ≥ P ,
– %′(f) <∞ if and only if f ∈ Pol(Γ),
– %′(f) = P if and only if f ∈ Pol+(Γ).

Consider the coordinates b1, . . . ,br, such that bi(j) = xj(i). Minimising the
cost function %′ over all the other coordinates we obtain a cost function %, such
that for every r-tuple x the following conditions are satisfied:

– %(x) ≥ P and
– %(x) = P if and only if x ∈ R.

Since wRelClo(Γ) is closed under addition of rational constants, we can add the
rational number −P to the cost function % obtaining a cost function %R which
satisfies the conditions given by the lemma.

Proof. (of Theorem 14) Let Γ be a finite core valued constraint language over a
domain D, and let Γc be a rigid core of Γ . Suppose that Pol+(Γ) does not have
a Taylor operation. By Proposition 23 we have that IdPol+(Γ) = Pol+(Γc).
Therefore, Pol+(Γc) does not have a Taylor operation. Below we prove that
VCSP(Γc) is NP-hard. This implies, by Proposition 10, that VCSP(Γ) is NP-
hard which concludes the proof.

Let A denote the idempotent algebra Pol+(Γc) over the universe D. By
Taylor’s theorem HS(A) contains a two-element algebra B whose every term
operation is a projection. By the isomorphism theorem we can consider B to
be a quotient algebra rather than a homomorphic image of a subalgebra of A.
In other words, there exists a binary relation S compatible with A, which is an
equivalence relation on some subuniverse D′ of D and has two equivalence classes
[d0]S and [d1]S . Moreover, the term operations defined on the set of equivalence
classes of S using their arbitrarily chosen representatives are all projections.

Every relation is compatible with a two-element algebra whose every term
operation is a projection. Consider the relation R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
It corresponds to the One-in-Three Sat problem, which is NP-complete [19].
We define a ternary relation S1in3 on D′ by:

S1in3 = {(x1, x2, x3) : exactly one of x1, x2, x3 belongs to [d1]S}.

This relation is compatible with A. Hence, there exists a cost function %S1in3

in wRelClo(Γc) satisfying the conditions given by Lemma 30. It follows from
Theorem 4 that the valued constraint language Γc is NP-hard if and only if the
language Γc ∪ {%S1in3

} is NP-hard.

Now, for every instance of One-in-Three Sat it is easy to construct (in
polynomial time) an instance I of VCSP(Γc ∪ {%S1in3

}) such that the instance
of One-in-Three Sat has a solution if and only if the cost of an optimal
assignment for I is 0 (the instance I uses only the cost function %S1in3

). This
finishes the reduction.

C.2 Proof of Proposition 15

On D = {0, 1} there are precisely two constant operations, which we denote
by Const0 and Const1. By Inv we denote the inversion operation defined by
Inv(0) = 1 and Inv(1) = 0. To prove Proposition 15 we use the following theorem:

Theorem 31 (Cohen et al. [9]). Let W be a weighted clone on D = {0, 1}
that contains a weighting which assigns positive weight to at least one operation
that is not a projection. Then W contains one of the following nine weightings:

1. 〈Const0〉,
2. 〈Const1〉,
3. 〈Inv〉,
4. 〈min,min〉,
5. 〈max,max〉,
6. 〈min,max〉,
7. 〈Mjrty,Mjrty,Mjrty〉,
8. 〈Mnrty,Mnrty,Mnrty〉,
9. 〈Mjrty,Mjrty,Mnrty〉.

Proof. (of Proposition 15) Each of the operations min, max, Mjrty and Mnrty is
idempotent and cyclic. If Γ admits at least one of the six multimorphisms listed
in the statement of the proposition then obviously Pol+(Γ) has an idempotent
cyclic operation.

For the other direction, let Γ be a finite core valued constraint language on
D = {0, 1} such that Pol+(Γ) has an idempotent cyclic operation. Let Γc be a
rigid core of Γ . By Proposition 23 we have that IdPol+(Γ) = Pol+(Γc). There-
fore, the weighted clone wPol(Γc) contains a weighting which assigns positive
weight to at least one operation that is not a projection. Then wPol(Γc) con-
tains one of the nine weightings listed in Theorem 31. Since the first three of
them are not idempotent, it follows that Γc, and hence Γ , admits one of the six
remaining multimorphisms, which finishes the proof.

C.3 Proof of Proposition 17

One implication is strightforward: if Γ admits an idempotent cyclic weighted
polymorphism of some arity m > 1 then Pol+(Γ) contains an idempotent cyclic
operation. To show the other implication we use a technique of constructing
weighted polymorphism introduced in [16].

The construction of a new weighted polymorphism of arity m is based on

grouping operations in O(m)
D into so-called collections and working with weight-

ings that assign the same weight to every operation in a collection.

Let G be a fixed set of collections, i.e., subsets of O(m)
D , and let G∗ ⊆ G be

a set of collections satisfying some desired property. An expansion operator Exp
takes a collection g ∈ G and produces a probability distribution δ over G. We
say that Exp is valid for a language Γ if, for any % ∈ Γ and any g ∈ G, the
probability distribution δ = Exp(g) satisfies

∑
h∈G

∑
h∈h

δ(h)

|h|
%(h(x1, . . . ,xm)) ≤

∑
g∈g

1

|g|
%(g(x1, . . . ,xm)),

for any x1, . . . ,xm ∈ Feas(%). We say that the operator Exp is non-vanishing
(with respect to the pair (G,G∗)) if, for any g ∈ G, there exists a sequence of
collections g0,g1, . . . ,gr with g0 = g, such that for each i ∈ {0, . . . , r − 1} the
collection gi+1 is assigned a non-zero probability by Exp(gi), and gr ∈ G∗.

Lemma 32 (Expansion Lemma [16]). Let Exp be an expansion operator
which is valid for the language Γ and non-vanishing with respect to (G,G∗). If
Γ admits a weighted polymorphism ω with supp(ω) ⊆

⋃
G, then it also admits

a weighted polymorphism ω∗ with supp(ω∗) ⊆
⋃
G∗.

Proof. (of Proposition 17) In order to show the remaining implication assume
that Pol+(Γ) contains an idempotent cyclic operation f of arity m > 1. There
exists a weighted polymorphism ω of Γ such that f ∈ supp(ω).

We define ∼ to be the smalles equivalence relation on O(m)
D such that g ∼ g′

if g(x1, x2, . . . , xk) = g′(x2, . . . , xk, x1). Observe that if g ∼ g′ and g ∈ Pol(Γ)
then also g′ ∈ Pol(Γ). Let G consist of the equivalence classes of the relation ∼
restricted to Pol(Γ), and let G∗ ⊆ G be the set of all one-element equivalence
classes, i.e., each g ∈ G∗ contains a single cyclic operation.

We now define the expansion operator Exp. Take an arbitrary g ∈ G\G∗ (for
g ∈ G∗ we produce the probability distribution choosing g with probability 1)
and choose a single operation g ∈ g. Notice that g = {g1, g2, . . . , gm}, where
g1 = g and gi(x1, . . . , xn) = g(xi, xi+1, . . . , xi−1) for i ∈ {2, . . . ,m}. Consider a
weighting

ν = c · (ω[g1, g2, . . . , gm] + ω[g2, . . . , gm, g1] + · · ·+ ω[gm, g1, . . . , gm−1]),

where c is a suitable positive rational, which we define later on4.

The weighting ν assigns a positive weight to a cyclic operation f [g1, g2, . . . , gm].
This proves that ν is not zero-valued, and hence in the above definition c can be
chosen so that the sum of positive weights in ν equals 1. We say that a weighting
ω is weight-symmetric if ω(g) = ω(g′) whenever g ∼ g′. It is easy to check that

4 Note that the definition of ν does not depend on the choice of g from g.

ν is weight-symmertic. We define Exp(g) to be a probability distribution δ on
G such that

δ(h) =

{
|h| · ν(h) if h ⊆ supp(ν),

0 otherwise,

where h is any of the operations in h. We have already pointed out that ν assigns
a positive weight to a cyclic operation f [g1, g2, . . . , gm]. It follows that Exp(g) as-
signs non-zero probability to the one-element equivalence class {f [g1, g2, . . . , gm]}.
Therefore, Exp is non-vanishing.

It remains to show that Exp is valid for Γ . Observe that ν assigns negative
weights only to the operations in g. Since it is weight-symmetric, ν(g) = − 1

|g|
for every g ∈ g. The weighting ν might not be valid but it is not difficult to see
that it satisfies the condition characterizing weighted polymorphisms, i.e., for
any cost function % ∈ Γ , and any list of tuples x1, . . . ,xm ∈ Feas(%), we have∑

f∈Polm(Γ)

ν(f) · %(f(x1, . . . ,xm)) ≤ 0, hence

∑
h∈supp(ν)

ν(h) · %(h(x1, . . . ,xm)) ≤
∑
g∈g

1

|g|
· %(g(x1, . . . ,xm)), but

∑
h∈supp(ν)

ν(h) · %(h(x1, . . . ,xm)) =
∑
h∈G

∑
h∈h

δ(h)

|h|
· %(h(x1, . . . ,xm)).

This proves that Exp is valid, so by Lemma 32 the language Γ admits a weighted
polymorphism ω∗ whose support contains only cyclic m-ary operations. More-
over, it follows from the proof of the Expansion Lemma in [16] that ω∗ can be
constructed so that f ∈ supp(ω∗). By Lemma 24 there exists an idempotent
weighted polymorphism ω′ of Γ such that supp(ω∗) ∩ IdPol(Γ) ⊆ supp(ω′). Its
support is non-emply and contains cyclic operations only. This concludes the
proof.

C.4 Conservative languages case

Observe that every weighted polymorphism of a conservative language Γ is con-
servative. Indeed, consider a k-ary weighted polymorphism ω ∈ wPol(Γ) and
take any x1, . . . , xk ∈ D. Let % ∈ Γ be a unary cost function such that %(xi) = 0
for i ∈ {1, . . . , k} and %(x) = 1 otherwise. Then∑

g∈supp(ω)

ω(g) · %(g(x1, . . . , xk)) =
∑

g∈Pol1(Γ)

ω(g) · %(g(x1, . . . , xk)) ≤ 0,

hence for each g ∈ supp(ω) we have that %(g(x1, . . . , xk)) = 0, so g(x1, . . . , xk) ∈
{x1, . . . , xk}. This implies that the positive clone of a conservative language is
idempotent, and hence every conservative language is a core.

We show that our conjecture agrees with the complexity classification for
conservative valued constraint languages:

Proposition 33. Let Γ be a conservative constraint language over a domain
D. Then Pol+(Γ) has an idempotent cyclic operation if and only if Γ admits a
conservative binary multimorphism 〈u,t〉 and a conservative ternary multimor-
phism 〈Mj1,Mj2,Mn3〉, and there is a family M of two-element subsets of D,
such that:

– for every {x, y} ∈M , 〈u,t〉 restricted to {x, y} is an STP,
– for every {x, y} 6∈M , 〈Mj1,Mj2,Mn3〉 restricted to {x, y} is an MJN.

Proof. Let Γ ′ be the language Γ together with all {0,∞}-valued unary cost
functions on D. For every weighted polymorphism ω ∈ wPol(Γ) there is a corre-
sponding weighted polymorphism of Γ ′, which is equal to ω on the conservative
operations. Therefore Pol+(Γ ′) = Pol+(Γ), and Γ admits a conservative mul-
timorphism 〈f1, . . . , fk〉 if and only if Γ ′ does. Now let % : D → Q be any
general-valued unary cost function. Observe that % ∈ wRelClo(Γ ′). It follows
that without loss of generality we can assume that Γ contains all general-valued
unary cost functions. We do so in the rest of the proof. Observe that every
polymorphism of such language is conservative.

Assume that Γ admits the two conservative multimorphisms 〈u,t〉 and
〈Mj1,Mj2,Mn3〉 described in the statement of the proposition. There are only
four idempotent operations on a two-element domain {x, y}, namely: max, min,
π1 and π2 (we assume that {x, y} = {0, 1}). Each of the operations u, t restricted
to any two-element subset {x, y} of D must be equal to one of those four. There-
fore it is not difficult to prove, using {0, 1}-valued unary cost functions, that for
every two-element subset {x, y} of D:

– either 〈u,t〉 restricted to {x, y} is an STP,
– or u restricted to {x, y} is equal to π1 and t restricted to {x, y} is equal to
π2 (possibly the other way round).

Let M ′ be the set of those two-element subsets {x, y} of D, for which 〈u,t〉
restricted to {x, y} is an STP. Obviously M ⊆M ′.

Let t(x, y, z) = ((x u y) t (x u z)) t (z u y). For every {x, y} ∈ M ′ we have
that t restricted to {x, y} is the majority operation. For every other two-element
subset {x, y} of D the operation t restricted to {x, y} is equal to π2 or π3. Now
let us define m to be

m(x, y, z) = Mj1(t(x, y, z), t(y, z, x), t(z, x, y)).

Since the operation Mj1 is idempotent, for every {x, y} ∈ M ′ the operation m
restricted to {x, y} is the majority operation. Moreover, if {x, y} does not belong
to M ′ then m restricted to {x, y} is equal to Mj1 (with permuted arguments).
But Mj1 restricted to {x, y} is the majority operation. Therefore, m is a majority
operation on the whole domain D. If there is a majority operation in the idem-
potent clone Pol+(Γ) then there is also an idempotent cyclic operation. This
finishes the proof of the right-to-left implication.

The proof of the other implication consists of a sequence of claims and heavily
relies on the results of [17].

Assume that Pol+(Γ) has an idempotent cyclic operation. Let M be a set of
all two-element subsets {x, y} of D for which there exists no binary cost function
% ∈ wRelClo(Γ) such that

(x, y), (y, x) ∈ Feas(%), and %(x, x) + %(y, y) > %(x, y) + %(y, x).

We prove that Γ admits a conservative binary multimorphism 〈u,t〉 and a
conservative ternary multimorphism 〈Mj1,Mj2,Mn3〉 such that:

– for every {x, y} ∈M , 〈u,t〉 restricted to {x, y} is an STP,
– for every {x, y} 6∈M , 〈Mj1,Mj2,Mn3〉 restricted to {x, y} is an MJN.

Consider the weighted algebra (D,wPol(Γ)). Observe that every two-element
subset {x, y} ⊆ D is a subuniverse ofD and let B be the subalgebra with universe
B = {x, y}.

Claim 1. Every two-element weighted subalgebra B of (D,wPol(Γ)) contains
the weighting 〈min,max〉 or 〈Mjrty,Mjrty,Mnrty〉 (we assume that B = {0, 1}).

Proof. The weighted algebra (D,wPol(Γ)) contains a weighting which assigns a
positive weight to an idempotent cyclic operation. Therefore its weighted sub-
algebra B contains a weighting which assigns a positive weight to at least one
operation that is not a projection, and hence it contains one of the nine weight-
ings listed in Theorem 31. The first three of them are not idempotent. More-
over, for each of the weightings: 〈min,min〉, 〈max,max〉, 〈Mjrty,Mjrty,Mjrty〉,
〈Mnrty,Mnrty,Mnrty〉 it is easy to find a {0, 1}-valued unary cost function that
is not improved by it. We conclude that B contains the weighting 〈min,max〉 or
〈Mjrty,Mjrty,Mnrty〉, which finishes the proof of Claim 1.

Claim 2. Let {x, y} be a two-element subset of D. There exists no binary cost
function % ∈ wRelClo(Γ) such that

(x, y), (y, x) ∈ Feas(%), and %(x, x) + %(y, y) > %(x, y) + %(y, x),

and at least one of the pairs (x, x), (y, y) belong to Feas(%).

Proof. Consider the weighted subalgebra B of (D,wPol(Γ) with the universe
B = {x, y}. Assume that {x, y} = {0, 1}. By Claim 1 the weighted subalgebra
B contains the weighting 〈min,max〉 or 〈Mjrty,Mjrty,Mnrty〉.

Suppose that B contains the weighting 〈Mjrty,Mjrty,Mnrty〉 and let ω be
the weighted polymorphims of Γ that induces 〈Mjrty,Mjrty,Mnrty〉. Let % be a
binary cost function like in the statement of the claim. Without loss of generality
assume that (x, x) ∈ Feas(%). Then∑
g∈Pol3(Γ)

ω(g) · %(g((x, y), (y, x), (x, x))) =
1

3

(
2%(Mjrty((x, y), (y, x), (x, x)))+

+ %(Mnrty((x, y), (y, x), (x, x)))− %(x, y)− %(y, x)− %(x, x)
)

=

=
1

3

(
2%(x, x) + %(y, y)− %(x, y)− %(y, x)− %(x, x)

)
=

=
1

3

(
%(x, x) + %(y, y)− %(x, y)− %(y, x)

)
> 0.

It follows that % is not improved by ω, so % 6∈ wRelClo(Γ). Similarly we show
that if B contains the weighting 〈min,max〉 and ω is the weighted polymorphims
of Γ that induces 〈min,max〉, then % is not improved by ω.

Claim 2 together with Theorem 9 of [17] implies that Γ admits a conservative
binary multimorphism 〈u,t〉 such that:

– for every {x, y} ∈M , 〈u,t〉 restricted to {x, y} is an STP,
– if {x, y} 6∈ M then u restricted to {x, y} is equal to π1 and t restricted to
{x, y} is equal to π2.

Claim 3. There exists an operationm in Pol+(Γ) which is a majority operation.

Proof. First we prove that there exists an operation Mj in Pol+(Γ) such that for
every {x, y} 6∈M the operation Mj restricted to {x, y} is the majority operation.
To this end, take any {x, y} 6∈ M . By the definition of M there exists a binary
cost function % ∈ wRelClo(Γ) such that

(x, y), (y, x) ∈ Feas(%), and %(x, x) + %(y, y) > %(x, y) + %(y, x).

Moreover, by Claim 2 none of the pairs (x, x), (y, y) belongs to Feas(%). There-
fore:

1. there is no operation in Pol+(Γ) that restricted to {x, y} is the max or min
operation (such an operation would not even be a polymorphism of %), and

2. it follows from Claim 1 that there exists an operation f in Pol+(Γ) such
that f restricted to {x, y} is the majority operation.

By Proposition 3.1 of [6] it follows from the conditions 1 and 2 above that there
exists an operation Mj in Pol+(Γ) such that for every {x, y} 6∈M the operation
Mj restricted to {x, y} is the majority operation.

Let t(x, y, z) = ((x u y) t (x u z)) t (z u y). For every {x, y} ∈ M we have
that t restricted to {x, y} is the majority operation. For every other two-element
subset {x, y} of D the operation t restricted to {x, y} is equal to π3. Now let us
define m to be

m(x, y, z) = Mj(t(x, y, z), t(y, z, x), t(z, x, y)).

Since Mj is idempotent, for every {x, y} ∈M the operation m restricted to {x, y}
is the majority operation. Moreover, if {x, y} does not belong to M then m
restricted to {x, y} is equal to Mj (with permuted arguments). But Mj restricted
to {x, y} is the majority operation. Therefore, m is a majority operation on the
whole domain D.

By [17] it follows from Claims 2 and 3 that Γ admits a conservative ternary
multimorphism 〈Mj1,Mj2,Mn3〉 such that for every {x, y} 6∈M , 〈Mj1,Mj2,Mn3〉
restricted to {x, y} is an MJN, which finishes the proof of Proposition 33.

	PHD
	Constraint satisfaction problems
	Sets with atoms
	Overview of the results

	locfin
	Introduction
	Sets with atoms
	Definable sets
	Group actions, equivariant sets and orbits
	Order-definable sets

	Infinite instances
	General decidability
	Finite templates

	Finite instances
	Algebraic foundations
	Pp-formulas
	The Inv-Pol connection
	Core structures

	From finite to locally finite templates
	From locally finite to finite templates

	Order-invariant logics
	References
	Appendix
	Proofs from Section II
	Proof of Theorem 10
	Proof of Proposition 11
	Proof of Lemma 12

	Proofs from Section III
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 18
	Proof of Theorem 22

	Proofs from Section IV
	Proof of Lemma 24
	Proof of Lemma 25
	Proof of Proposition 26
	Proof of Proposition 27
	Proof of Proposition 30

	alfabety
	vcsp

