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Abstract. We investigate the isomorphism problem in the setting of definable sets (equiv-
alent to sets with atoms): given two definable relational structures, are they related by a
definable isomorphism? Under mild assumptions on the underlying structure of atoms, we
prove decidability of the problem. The core result is parameter-elimination: existence of
an isomorphism definable with parameters implies existence of an isomorphism definable
without parameters.

1. Introduction

We consider hereditarily first-order definable sets, which are usually infinite, but can be
finitely described and are therefore amenable to algorithmic manipulation. We drop the
qualifiers herediatarily first-order, and simply call them definable sets in what follows. They
are parametrized by a fixed underlying relational structure Atoms whose elements are called
atoms.

Example 1.1. Let Atoms be a countable set {1, 2, 3, . . .} equipped with the equality relation
only; we shall call this structure the pure set. Let

V = { {a, b} | a, b ∈ Atoms, a 6= b } ,
E = { ({a, b}, {c, d}) | a, b, c, d ∈ Atoms, a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d } .

Both V and E are definable sets (over Atoms), as they are constructed from Atoms using
(possibly nested) set-builder expressions with first-order guards ranging over Atoms. In
general, we allow finite unions in the definitions, and finite tuples (as above) are allowed for
notational convenience. Precise definitions are given in Section 2. The pair G = (V,E) is
also a definable set, in fact, a definable graph. It is an infinite Kneser graph (a generalization
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of the famous Petersen graph): its vertices are all two-element subsets of Atoms, and two
such subsets are adjacent iff they are disjoint.

The graph G is ∅-definable: its definition does not refer to any particular elements
of Atoms. In general, one may refer to a finite set of parameters S ⊆ Atoms to describe
an S-definable set. For instance, the set { a | a ∈ Atoms, a 6= 1 ∧ a 6= 2 } is {1, 2}-definable.
Definable sets are those which are S-definable for some finite S ⊆ Atoms.

We remark that in the pure set Atoms, every first-order formula is effectively equivalent
to a quantifier-free formula, via a simple quantifier-elimination procedure. Thus, as long as
complexity issues are ignored and decidability is the only concern, in the case of the pure
set, we can safely restrict to quantifier-free formulas, however, in general, definable sets may
include arbitrary first-order formulas.

A definable function f : X → Y is simply a function whose domain X, codomain Y , and
graph Γ(f) ⊆ X × Y are definable sets. A relational structure is definable if its signature,
universe, and interpretation function that maps each relation symbol to a relation on the
universe, are definable1. Finally, a definable isomorphism between definable structures
over the same signature is a definable bijective mapping between their universes that
preserves and reflects every relation in the signature. Likewise one introduces, e.g., definable
homomorphisms. All hereditarily finite sets (finite sets, whose elements are finite, and so
on, recursively) are definable, and every finite relational structure over a finite signature is
(isomorphic to) a definable one.

Contribution. The classical isomorphism problem asks whether two given finite structures
are isomorphic. In this paper, we consider its counterpart in the setting of definable sets (the
problem is called definable isomorphism problem in the sequel): given two definable structures
A,B over the same definable signature Σ, all over the same fixed structure Atoms, are they
related by a definable isomorphism? Note that definable structures can be meaningfully
considered as input to a computational problem since they are finitely described using the
set-builder notation and first-order formulas in the language of Atoms. The structure Atoms
is considered here in a parametric manner, not as a part of input: every structure Atoms
induces a different decision problem.

As our main result we prove, under a certain assumptions on the structure Atoms, that
the definable isomorphism problem is decidable. The key technical difficulty is to show that
every two S-definable structures related by a definable isomorphism are also related by an
S-definable one. (When S = ∅ this is parameter elimination: existence of an isomorphism
defined with parameters enforces existence of one defined without parameters.) Having
this, the problem reduces to testing whether two S-definable structures are related by an
S-definable isomorphism, which in turn reduces to the first-order satisfiability problem in
Atoms.

As witnessed by Example 2.4 below, existence of an isomorphism does not guarantee
existence of a definable one. Therefore we do not solve the isomorphism problem for definable
structures, which asks whether two given definable structures (over the same signature) are
isomorphic. In fact, the decidability status of the latter problem remains an intriguing open
question, even for Atoms being the pure set.

1A structure over a finite signature is definable in Atoms if and only if it is interpretable in Atoms, in the
model-theoretic sense.
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Motivation and related work. This paper is part of a programme aimed at generalizing
classical decision problems (for instance the homomorphism problem, studied recently
in [KKOT15, KLOT16]), and computation models such as automata [BKL14], Turing
machines [BKLT13, KLOT14] and programming languages [BBKL12, BT12, KS16, KT16],
to sets with atoms. For other applications of sets with atoms (called there nominal sets) in
computing, see [Pit13].

Isomorphism testing is at the core of many decision problems in combinatorics and
logic. In case of finite graphs it is well known to be solvable in NP, and since recently
in quasi-polynomial time [Bab16]. Whether it can be solved in P is still an extremely
challenging open question, and only special cases are shown so by now, e.g. [Luk82].

Acknowledgement. We are grateful to Pierre Simon for valuable discussions.

2. Preliminaries

Throughout the paper, fix a countable relational structure Atoms, whose elements are called
atoms. We overload the notation and use the symbol Atoms both for the relational structure
and for the set of its elements, hoping that this does not lead to confusion. We assume that
the vocabulary of Atoms is finite. We shall now formally introduce the notion of definable
sets over Atoms, following [KT17, KKOT15, KLOT16].

Definable sets. An expression is either a variable (from some fixed infinite set or variables),
or a formal finite union (including the empty union ∅) of set-builder expressions of the form

{ e | a1, . . . , an ∈ Atoms, φ } , (2.1)

where e is an expression, a1, . . . , an are pairwise different variables, and φ is a first-order
formula over the signature of Atoms. The variables a1, . . . , an are considered bound in e and
φ. The free variables in (2.1) are those free variables of e and of φ which are not among
a1, . . . , an.

For an expression e with free variables V , any valuation val : V → Atoms defines in
an obvious way a value X = e[val], which is either an atom or a set, formally defined by
induction on the structure of e. We then say that X is a definable set over Atoms, and that
it is defined by e with val. When the structure Atoms is obvious from the context, we simply
speak of definable sets without explicitly specifying Atoms. Note that one set X can be
defined by many different expressions. Finally, observe that the family of definable sets is
hereditary: every element of a definable set is a definable set (or an atom).

Sometimes we want to emphasize those atoms that appear in the image of the valuation
val : V → Atoms. For any finite set S ⊆ Atoms of atoms with val(V ) ⊆ S we say that X is
S-definable. Clearly, an S-definable set is also T -definable whenever S ⊆ T .

As syntactic sugar, we allow atoms to occur directly in set expressions (these atoms are
called parameters). For example, what we write as the {1}-definable set {a | a ∈ Atoms, a 6=
1} is formally defined by the expression {a | a ∈ Atoms, a 6= b}, together with a valuation
mapping b to 1. With this syntactic sugar, a definable set is determined by a sole expression e
with parameters, but without valuation.

As a notational convention, when writing set-builder expressions (2.1) we omit the
formula φ when it is trivially true, and omit the enumeration a1, . . . , an ∈ Atoms when n = 0.
This allows us, in particular, to write singletons, like {1}.
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Remark 2.1. To improve readability, it will be convenient to use standard set-theoretic
encodings to allow a more flexible syntax. In particular, ordered pairs and tuples can be
encoded e.g. by Kuratowski pairs, (x, y) = {{x, y}, {x}}. We will also consider definable
infinite families of symbols, such as {Rx : x ∈ X}, where R is a symbol and X is a definable
set. Formally, such a family can be encoded as the set of ordered pairs {R} ×X, where the
symbol R is represented by some ∅-definable set, e.g. ∅ or {∅}. Here we use the fact that
definable sets (over any fixed atoms) are closed under Cartesian products.

Definable relational structures. Any object in the set-theoretic universe (a relation, a
function, a relational structure, etc.) may be definable. For example, a definable relation
on X,Y is a relation R ⊆ X × Y which is a definable set of pairs, and a definable function
X → Y is a function whose graph is definable. Along the same lines, a definable relational
signature is a definable set of symbols Σ, partitioned into definable sets Σ = Σ1]Σ2] . . .]Σl

according to the arity of symbols. We say that σ has arity r if σ ∈ Σr, and l ∈ N is thus the
maximal arity of a symbol in Σ.

For a signature Σ, a definable Σ-structure A consists of a definable universe A and a
definable interpretation function which assigns a relation σA ⊆ Ar to each relation symbol
σ ∈ Σ of arity r. (We denote structures using blackboard font, and their universes using
the corresponding symbol in italics). More explicitly, such a structure can be represented
by the tuple A = (A, I1, . . . , Il) where Ir = {(σ, a1, . . . , ar) | σ ∈ Σr, (a1, . . . , ar) ∈ σA} is a
definable set for r = 1, . . . , l. It is not difficult to see that the interpretation σA of every
fixed symbol σ ∈ Σ is definable.

Remark 2.2. As argued in [KLOT16], definable structures over finite signatures coincide,
up to definable isomorphism, with first-order interpretations with parameters in Atoms, in
the sense of model theory [Hod93].

Example 2.3. The graph G from Example 1.1 is a definable (over Atoms being the pure
set) structure over a finite signature Σ containing a single binary relation symbol. To
give an example of a definable structure over an infinite definable signature, extend G
to a structure A by infinitely many unary predicates representing the neighborhoods of
each vertex of G. To this end, define the signature Σ = {E} ∪ {Nv | v ∈ V }, where
V = { {a, b} | a, b ∈ Atoms, a 6= b } is the vertex set of G and N is a symbol (cf. Remark 2.1).
The interpretation of Nv is specified by the set I1 = { (Nv, w) | (v, w) ∈ E } (where E is
defined by the expression from Example 1.1).

Representing the input. Definable relational structures can be input to algorithms, as
they are finitely presented by expressions defining the signature, the universe, and the
interpretation function. If the input is an S-definable set X defined by an expression e with
parameters a1, . . . , an ∈ S, then we also need to represent the tuple a1, . . . , an of atoms.
For example, in the case of pure set Atoms these elements can be represented as arbitrary
pairwise distinct numbers.
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Definable isomorphism problem. Let the structure of atoms be fixed and denoted by
Atoms. Recall that a definable function f : X → Y is a function whose graph Γ(f) ⊆ X × Y
is a definable set. A definable isomorphism between definable structures A, B over the same
signature Σ is a definable bijective function h : A→ B between their universes that preserves
and reflects every relation in the signature: for every σ ∈ Σ of arity r and every r-tuple
a1, . . . , ar ∈ A of elements of A, (a1, . . . , ar) ∈ σA if, and only if (h(a1), . . . , h(ar)) ∈ σB.
Likewise one can also introduce definable homomorphisms, embeddings, etc.

We focus in this paper on the following family of decision problems (note that the
structure Atoms is fixed, and not part of input, and hence every choice of Atoms yields a
different decision problem):

Problem: Definable-isomorphism(Atoms)
Input: A definable signature Σ and two definable Σ-structures A and B.
Decide: Is there a definable isomorphism from A to B?

Example 2.4. Imposing the definability requirement on isomorphisms clearly does matter.
Let Atoms be the pure set again, and consider the following two ∅-definable graphs, each of
them being an infinite, edgeless graph:

V1 = { a | a ∈ Atoms } = Atoms V2 = { {a, b} | a, b ∈ Atoms, a 6= b } ,
E1 = ∅ E2 = ∅.

The two graphs are clearly isomorphic. On the other hand there is no definable isomorphism
between them, simply because there is no definable bijection between V1 and V2, as we will
argue in Example 5.5 in Section 5.

In this paper, we will always assume that the structure Atoms is ω-categorical. We will
also make assumptions regarding computability properties, least supports and denseness, as
introduced below.

ω-categoricity. We say that a countable structure Atoms is ω-categorical if any countable
structure Atoms′ which satisfies the same first-order sentences as Atoms is isomorphic
to Atoms. The following fundmanental theorem, due to Ryll-Nardzewski, Engeler and
Svenonius [Eng59, RN59, Sve59], gives a useful characterization of ω-categorical structures
in terms of their automorphism groups. Below, automorphisms act on the set Atomsn of all
n-tuples of elements of Atoms in a coordinatewise fashion. For each n ≥ 1, the set Atomsn is
partitioned into the orbits of this action.

Theorem 2.5. A structure Atoms is ω-categorical if, and only if for each n, the automor-
phism group of Atoms induces finitely many orbits on the set Atomsn. Moreover, if Atoms is
ω-categorical, then each orbit of this action can be defined by a first-order formula with n
free variables.

Examples of ω-categorical structures include:

• the pure set;
• the dense total order (Q,≤) of rational numbers;
• the universal (random) graph (the Fräıssé limit of all finite graphs [Fra53]);
• the universal partial order (the Fräıssé limit of all finite partial orders);
• a countable vector space over a finite field.
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All the structures considered in this paper as atoms are assumed to be ω-categorical.

Effectivity. We will additionally impose certain computability assumptions on Atoms.
First, we fix an encoding of elements of Atoms as strings, i.e., a surjection from {0, 1}∗ to
Atoms. Similarly, we fix an encoding of the symbols in the signature of Atoms as strings. This
allows us to represent first-order formulas, together with valuations of their free variables,
as strings. We then assume that Atoms has a decidable first-order theory, i.e., there is an
algorithm which inputs a first-order formula, together with a valuation of its free variables in
Atoms, and determines whether the valuation satisfies the formula in Atoms. We remark that
decidability of the first-order theory of Atoms implies (and is equivalent to) the existence of
an algorithm which inputs two expressions describing definable sets x and y, and decides
whether x = y. Lastly, we assume computability of the Ryll-Nardzewski function, which
maps a given number n to the number of orbits of Atomsn. We say that a structure Atoms
is effectively ω-categorical if it is ω-categorical, has a decidable first-order theory, and its
Ryll-Nardzewski function is computable. Note that effective ω-categoricity implies that there
is an algorithm which inputs a number n and outputs the orbits of Atomsn, each defined by
a first-order formula with n free variables.

Automorphisms, partial automorphisms, and self-embeddings. Automorphisms of
Atoms will be called atom automorphisms. For a finite S ⊆ Atoms, atom S-automorphisms
are those atom automorphisms π which fix all elements of S, i.e., π(a) = a for every a ∈ S.
If π is an atom automorphism and x is a definable set, defined by an expression e with
parameters a1, . . . , an, then we define the set πx as the set defined by the same expression,
and the parameters π(a1), . . . , π(an).

A partial automorphism2 of Atoms is a partial bijection f between two subsets of Atoms,
such that for every first-order formula φ(x1, . . . , xk) and every tuple a1, . . . , ak ∈ Domf ,
φ(a1, . . . , ak) holds in Atoms if, and only if φ(f(a1), . . . , f(ak)) holds in Atoms. In particular,
an automorphism is a partial automorphism whose domain and codomain are Atoms. A
self-embedding of Atoms is a partial automorphism whose domain is Atoms.

A partial automorphism is finite if its domain is finite. The following lemma is a
consequence of the theorem of Ryll-Nardzewski, Engeler, and Svenonius, specifically of the
fact that two n-tuples of atoms are in the same orbit if and only if they satisfy the same
first-order formulas.

Lemma 2.6. Every finite partial automorphism of an ω-categorical structure extends to an
automorphism of that structure.

Least supports. We say that a finite set S ⊆ Atoms supports x if every S-automorphism π
fixes x, i.e., πx = x. Note that any S-definable set x is supported by S. We say that Atoms
has least supports if every definable set x has a least (under inclusion) support. On the
face of it, admitting least supports is a rather complex condition3, in that its formulation
relies on the notion of definable sets. However, for ω-categorical structures the existence

2also called a partial elementary map.
3It can be shown to be equivalent to the conjunction of weak elimination of imaginaries and trivial

algebraic closure, which are well-studied notions in model theory.
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of least supports has an equivalent structural characterization in terms of Atoms itself, see
in [BKL14, Thm. 9.3]. Examples of atoms with least supports include:

• the pure set,
• the dense total order (Q,≤),
• the random graph,
• the universal homogeneous partial order.

Example 2.7. An example which does not have least supports is an infinite-dimensional
vector space over a finite field. The idea is that any basis of a finite-dimensional subspace is
a support of that subspace, but there is no least support.

More precisely, fix a finite field K, e.g. the two-element field. Let V be a countable vector
space over K. A concrete example is obtained by considering the set of all infinite sequences
of elements of K, with finitely many non-zero elements, with coordinatewise addition and
multiplication by scalars.

We treat V as a logical structure V equipped with the binary addition operation
x, y 7→ x+ y and unary operations x 7→ c · x, for each scalar c ∈ K. Then, automorphisms
of V correspond precisely to invertible linear maps of V . Clearly, the vector space V has
countable dimension. By basic results of linear algebra, any two countable-dimensional
vector spaces over K are isomorphic. Hence, V is an ω-categorical structure.

We argue that the structure V, treated as atoms, does not have least supports. Fix
k ≥ 0 and fix a k-dimensional subspace W of V . Then W is a definable set, as it is finite (of
cardinality |K|k).

We claim that a finite set S ⊆ Atoms is a support of W if, and only if, W is contained
in the linear span of S. In one direction, suppose that W is contained in the linear span of
S. In particular, every element w of W can be expressed as a linear combination of elements
of S. Then, every linear automorphism of V which fixes S pointwise must fix w. Since this
applies to all w ∈W , W is fixed by all S-automorphisms of V.

Conversely, suppose that W is not contained in the linear span of S, i.e., there is some
element w ∈ W which is not a linear combination of the elements of S. Then there is a
linear automorphism of V which is the identity on S and maps w to some element w′ not in
W (we use the fact that V has infinite dimension and S ∪W is finite).

In particular, a set S ⊆ V is a minimal support of W if and only if S is a basis of W .
Now, if k > 1 then every space W of dimension k has more than one basis4. In particular,
W has multiple minimal supports, and hence has no least support.

Denseness. We call the structure Atoms dense if for all finite sets T and S, where T ⊆ S ⊆
Atoms, there is a self-embedding H which fixes T pointwise, such that every automorphism
of H(Atoms) extends to an atom S-automorphism. All the structures mentioned above are
dense.

4If e1, e2, . . . , ek is a basis then so is e1 + e2, e2, . . . , ek. If k = 1 then e1 and −e1 are distinct bases, unless
K = 2.
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3. Parameter elimination

The main property that will ensure the decidability of the definable isomorphism problem is
the following parameter elimination property :

If two T -definable relational structures A and B are related by a definable
isomorphism, then they are also related by a T -definable one.

Roughly speaking, the lemma says that in a definition of an isomorphism between T -definable
structures, one can eliminate parameters outside of T , possibly at the price of modifying the
isomorphism. The following example shows that even in very simple situations, constructing
a T -definable isomorphism from a given definable one may be nontrivial.

Example 3.1. Let Atoms be the pure set, put T = ∅, and consider sets (qua relational
structures over the empty vocabulary):

A = B = Atoms2 + Atoms.

Fix an atom c ∈ Atoms, and define f : A→ B by:

f(a) = (a, c), f(a, c) = a, f(a, b) = (a, b)

for every a ∈ Atoms and b ∈ Atoms−{c}. This is a {c}-definable bijection between A and B
which needs to be “smoothed out” to yield a ∅-definable one (in this case, e.g. the identity
function). Note that this requires altering f even at some arguments that do not contain c
in their supports.

To prove parameter elimination, even for atoms being the pure set, in Section 6 we will
provide an iterative procedure for “smoothing out isomorphisms” by gradual elimination of
parameters. This is the main technical result of this paper. More precisely, we prove:

Theorem 3.2. Any dense, ω-categorical structure Atoms with least supports has the param-
eter elimination property.

Theorem 3.2 is proved in Section 6. We now show how the parameter elimination
property yields decidability:

Lemma 3.3. Suppose that Atoms is effectively ω-categorical and has the parameter elimi-
nation property. Then Definable-isomorphism(Atoms) is decidable.

Proof. By the parameter elimination property, Definable-isomorphism(Atoms) reduces to
testing whether given T -definable Σ-structures A, B are related by a T -definable isomorphism.
In turn, as we show now, testing of the latter condition reduces to evaluation of first-order
formulas in Atoms. Let the given structures be A = (A, I1, . . . , Il) and B = (B, J1, . . . , Jl).
We follow the lines of the proof of Thm. 12 in [KKOT15]; in particular, we build on the
following fact, which follows from effective ω-categoricity of Atoms (cf. [Boj, Lemma 5.27]):

Lemma 3.4. Suppose that Atoms are effectively ω-categorical. For any finite set T of atoms,
a T -definable set X has only finitely many T -definable subsets, and expressions defining
them can be computed effectively from an expression defining X.

To verify existence of a T -definable isomorphism from A to B, apply Lemma 3.4 to
X = A×B and for every T -definable subset R ⊆ A×B, test the validity of the first-order
formula

∀a ∈ A ∃!b ∈ B R(a, b) ∧ ∀b ∈ B ∃!a ∈ A R(a, b)
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ensuring that R is the graph of a bijection; and for every i = 1, . . . , l, test the validity of the
fomula

∀σ ∈ Σi ∀a1, . . . , ai ∈ A
∀b1, . . . , bi ∈ B

∧
1≤j≤i

R(ai, bi) =⇒
(
Ii(σ, a1, . . . , ai) ⇐⇒ Ji(σ, b1, . . . , bi)

)
ensuring that the function is an isomorphism. Evaluation of first-order formulas of the above
form reduces to evaluation of first order formulas in Atoms, see [BT12, KKOT15] for further
details.

Theorem 3.2 and Lemma 3.3 together prove:

Theorem 3.5. Definable-isomorphism(Atoms) is decidable whenever Atoms is an effec-
tive ω-categorical structure which is dense and has least supports.

Remark 3.6. In this paper we consider purely relational signatures, but nothing changes
if function symbols are allowed: the proofs of Theorem 3.2 and Lemma 3.3 (and thus of
Theorem 3.5) are still valid when some signature symbols are enforced to be interpreted as
functions.

4. On the necessity of the assumptions

Before proving Theorem 3.2, we review the assumptions it uses: denseness and least
supports. Note that effective ω-categoricity is not used in Theorem 3.2, but only in the
proof of Theorem 3.5, i.e., in Lemma 3.3 (we do, however, always assume ω-categoricity).

An essential assumption that makes Theorem 3.2 go through is the denseness of Atoms.
Dropping it would invalidate the lemma, in view of the following counterexample:

Example 4.1. Let Atoms be the set of rational numbers with the so-called cyclic order
relation, which is a ternary relation R defined by:

R(a, b, c) if and only if a < b < c or b < c < a or c < a < b.

(Note that the binary order relation itself is not in the vocabulary of Atoms.) These atoms
can be visualized as densely distributed on an oriented circle, so that one cannot say whether
one atom is “smaller” or “greater” than another, but one can say whether three atoms a, b, c
follow each other in the clockwise direction:

•
a

•b

•c

•
d

e.g.
(a, b, c) ∈ R, (b, d, a) ∈ R
(a, c, b) 6∈ R, (b, d, c) 6∈ R

(4.1)

For example, in the drawing above, there is an atom automorphism that maps the ordered
pair (a, b) to (c, d) (that is, it maps a to b and c to d), there is also one that maps (a, b) to
(d, c) and one that maps (a, b, c) to (b, c, d), but there is no atom automorphism that maps
(a, b, c) to (a, d, c).

This structure of atoms is effectively ω-categorical (in fact, it is definable in (Q,≤)).
It is also not difficult to check, using the criterion of [BKL14, Thm. 9.3], that is admits
least supports. However, it is not dense. To see this, fix some a ∈ Atoms and put T = ∅
and S = {a}. Let H be an embedding of Atoms into Atoms that avoids a, and pick some
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b 6= c in H(Atoms), i.e. the image of H. Since H(Atoms) is isomorphic to Atoms, there is
some automorphism of it that swaps b and c. This automorphism does not extend to any
{a}-automorphism of Atoms, since no {a}-automorphism can swap b and c.

We shall now show that parameter elimination fails for the structure Atoms. Put T = ∅,
and define a directed graph A so that:

• the set of vertices is the relation R; more explicitly, vertices are ordered triples (a, b, c) ∈
Atoms3 such that (a, b, c) ∈ R,
• from each vertex (a, b, c) there is exactly one directed edge, ending in the vertex (b, c, a).

As a directed graph, A is an infinite disjoint family of directed triangles.
Furthermore, define a graph B as obtained from A by inverting all arrows; that is, from

each vertex (a, b, c) in B there is exactly one directed edge, ending in the vertex (c, a, b).
Clearly, A and B are isomorphic as graphs. However, no ∅-definable isomorphism between

them exists. Indeed, such an automorphism π would have to map a vertex (a, b, c) to one of
three candidates: (a, b, c), (b, c, a) or (c, a, b). If the first is chosen then, by ∅-definability, π
has to map (b, c, a) to (b, c, a), but on the other hand, since π must preserve edges, it must
map (b, c, a) to (c, a, b), which is a contradiction. The other two candidates for π(a, b, c) are
excluded by analogous arguments.

On the other hand, for any fixed atom d ∈ Atoms, a {d}-definable isomorphism π : A→ B
exists and is defined as follows. For any set {a, b, c} ⊆ Atoms, we shall define a {d}-definable
isomorphism between directed graphs

(a, b, c)

��

BB

(c, a, b) (b, c, a)oo

and

(a, b, c)

��

BB

(b, c, a) (c, a, b),oo

which are fragments of A and B, respectively.
First, consider the case where d 6∈ {a, b, c}. Then exactly one of the triples

(a, d, b), (b, d, c), (c, d, a)

belongs to the relation R. (This becomes clear by looking at the drawing (4.1) above, where
(c, d, a) ∈ R.) One of the triples (a, b, c), (b, c, a) and (c, a, b) is thus singled out by d, and
the isomorphism of the above triangles that fixes that triple and swaps the other two, is
{d}-definable.

If on the other hand d ∈ {a, b, c}, then one of the triples (a, b, c), (b, c, a) and (c, a, b) is
even more directly singled out by d, and a {d}-definable automorphism is defined as before.

Altogether we have constructed ∅-definable graphs A and B that are related by a
definable isomorphism, but not by a ∅-definable one.

We now discuss the necessity of the assumption on least supports. Removing this
assumption also causes Theorem 3.2 to fail, as witnessed below.

Example 4.2. Fix a finite field K. Let A be a countable affine space over K. This can be
defined for example as follows.

Let V be a countable vector space over K, cf. Example 2.7. Intuitively, A is the vector
space V with the origin point forgotten. Formally, for each scalar c ∈ K, let Rc ⊆ V 4 consist
of all tuples (a1, a2, b1, b2) ∈ V 4 with a1 − a2 = c · (b1 − b2). We call the structure A with
domain V and relations Rc, for c ∈ K, the affine space modelled on V . The fundamental
property of A is that its automorphisms are the affine automorphisms, i.e., the permutations
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of V which are of the form a 7→ b0 + π(a − a0), for some a0, b0 ∈ A and some linear
automorphism π of V .

Since A is definable in terms of the ω-categorical structure V, by Theorem 2.5, A itself
is ω-categorical5. It is also not difficult to check that the structure A is dense.

By a similar argument as in Example 2.7, the structure A does not have least supports.
Indeed, any affine line contained in the affine space is supported by any two of its points.
(For the special case K = Z2 this is not a counterexample yet, as an affine line in this case
consists of only two points. In this case, a counterexample is obtained by looking at planes:
a two-dimensional plane is supported by any three of its points.)

We now show that the structure A, treated as atoms, does not have parameter elimination.
To this end, we show two ∅-definable sets over A such that there is a definable bijection
between them, but no ∅-definable bijection.

The first set is the domain A of A itself. The second set B is essentially (an isomorphic
copy of) the vector space V underlying A. Formally, it is defined as the set of equivalence
classes of pairs (a, b) ∈ A2, where (a, b) is equivalent to (a′, b′) iff b − a = b′ − a′. This
equivalence relation is clearly definable. The set B has a ∅-definable element 0, namely the
equivalence class of a pair (a, a). The set A has no ∅-definable point, since such a point
would be invariant under all automorphisms of A, and affine automorphisms act transitively
on A. As any ∅-definable bijection f : B → A would map the ∅-definable point 0 ∈ B to a
∅-definable point f(0) ∈ A, no such bijection can exist.

On the other hand, for any fixed a ∈ A, there is a {a}-definable bijection between A
and B, namely the function mapping b ∈ A to the equivalence class of the pair (a, b).

5. Definable sets via the action of atom automorphisms

For the proof of Theorem 3.2 it will be more convenient to take a different perspective on
definable sets, namely via the action of atom automorphisms. This view emphasises that
definable sets are always orbit-finite (cf. Lemma 5.3 below). In this section we provide the
necessary definitions and properties that will be useful in the proof of Theorem 3.2 in the
next section. All further missing details can be found in [Boj].

Definable sets contain, as elements, either other definable sets or atoms a ∈ Atoms. The
group of atom automorphisms acts naturally on such sets, by renaming all atoms appearing
as elements, as elements of elements, etc. The action preserves definable sets: a definable
set is mapped to a definable set. By πx we denote the result of the action of an atom
automorphism π on a definable set x. For instance, consider the pure set Atoms as atoms
and the atom automorphism π that swaps 0 with 1, and 3 with 4, and preserves all other
atoms. Then

π { a | a ∈ Atoms, a 6= 1 ∧ a 6= 2 } = { a | a ∈ Atoms, a 6= 0 ∧ a 6= 2 } π{0, 1, 2} = {0, 1, 2}.
The action defines a partition of all definable sets into orbits : x and x′ are in the same orbit
if πx = x′ for some atom automorphism π. In the same vein, for every finite set S ⊆ Atoms,
the action of the subgroup of atom S-automorphisms defines a finer partition of all definable
sets into S-orbits (∅-orbits are just orbits). In particular, the set Atoms of atoms is itself
also partitioned in S-orbits.

5Indeed, all automorphisms of V remain automorphisms of A, so An has at most as many orbits under the
action of affinie automorphisms as Vn has under the action of linear automorphisms, i.e., finitely many.
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By inspecting the syntactic form of definable sets, one easily verifies the following basic
fact:

Lemma 5.1. Every S-definable set is closed under the action of atom S-automorphisms on
its elements, i.e., is a union of S-orbits.

We will intensively use the following consequence of Lemma 5.1:

Lemma 5.2. Every S-definable function h commutes with atom S-automorphisms: for
every atom S-automorphism π, hπ = πh.

It is not difficult to prove, by induction on the structure of set-builder expressions, that
ω-categoricity of Atoms guarantees finiteness in the statement of Lemma 5.1:

Lemma 5.3. Assume that the structure of atoms is ω-categorical. Then every S-definable
set is a finite union of S-orbits.

For an S-orbit O and an S-definable set X, if O ⊆ X we say that O is an S-orbit
inside X; on the other hand, whenever x ∈ O we say that O is the S-orbit of x, and write
O = orbitS(x). The converse of Lemma 5.2 is also true when Atoms is ω-categorical, as
follows from Theorem 2.5:

Lemma 5.4. Assume that the structure of atoms is ω-categorical. Then every function h
that commutes with atom S-automorphisms, with Dom(h) and Codom(h) being S-definable,
is itself S-definable.

Example 5.5. Lemma 5.2 can be used to prove the claim formulated in Example 2.4 in
Section 2: there is no definable bijection between the following two sets

V1 = { a | a ∈ Atoms } = Atoms V2 = { {a, b} | a, b ∈ Atoms, a 6= b } .
Suppose the contrary, and let f : V1 → V2 be an S-definable bijection. Consider any
a, b, c ∈ Atoms− S with f(a) = {b, c}, and any atom S-automorphism π that swaps b and c
and does not preserve a, say π(a) = a′. Note that such π always exists, e.g., when a = b
then a′ = c. By Lemma 5.2 we obtain: f(a′) = fπ(a) = πf(a) = π{b, c} = {b, c} = f(a),
which is in contradiction with bijectivity of f .

We will also need some basic properties involving least supports. Recall that we
assume that the structure Atoms has least supports, and that sup(x) ⊆ Atoms denotes
the least support of x. First, we observe that the support function commutes with atom
automorphisms.

Lemma 5.6. For every definable set x and atom automorphism π, we have sup(πx) =
π(sup(x)).

The cardinality of sup(x) will be called the dimension of x.

Corollary 5.7. Every two elements in the same ∅-orbit have supports of same dimension.

Moreover, the action of an atom automorphism π on x depends only on the restriction
of π to sup(x):

Lemma 5.8. If atom automorphisms π, π′ coincide on sup(x), then πx = π′x.

We observe the relationship between the least support of a function, its argument and
value:
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Lemma 5.9. Let f be a definable function and let a ∈ Dom(f). Then sup(f(x)) ⊆
sup(f) ∪ sup(x).

6. Proof of Theorem 3.2

In this section we prove Theorem 3.2. Consider two T -definable structures A and B related
by an S-definable isomorphism f and assume, w.l.o.g., that S ⊇ T . We are going to modify
suitably the isomorphism in order to obtain a possibly different one which will be T -definable.
For the sake of readability we elaborate the proof in a special but crucial case, under the
following assumptions:

• T = ∅,
• the signature contains just one binary symbol.

Thus we assume the structures A, B to be ∅-definable directed graphs. The proof adapts
easily to the general case, as discussed at the end of this section.

Consider therefore two ∅-definable directed graphs A = (A,E) and B = (B,F ), where A
and B are sets of nodes, and E ⊆ A×A and F ⊆ B ×B are sets of directed edges, together
with an S-definable isomorphism f : A→ B of graphs. Assume w.l.o.g. that the node sets
A and B are disjoint. By Lemma 5.3, the set A of nodes of A, being itself ∅-definable, splits
into finitely many ∅-orbits. Likewise the set B of nodes of B splits into finitely many ∅-orbits,
but a priori it is not clear whether the numbers of ∅-orbits inside A and B are equal. As a
side conclusion of our proof, it will be made clear that they really are.

We apply denseness of Atoms. Fix in the sequel an embedding H : Atoms→ Atoms such
that every automorphism of H(Atoms) extends to an S-automorphism of Atoms. Atoms in
H(Atoms) will be called S-independent. Along the same lines, a node x ∈ A ∪ B will be
called S-independent if sup(x) ⊆ H(Atoms). By ω-categoricity and denseness of atoms we
have:

Claim 6.1. Every ∅-orbit inside A ∪B contains an S-independent node.

(The claim, as well as few other claims formulated below, will be proved below once the
proof of Theorem 3.2 is outlined.)

We are going to construct an ∅-definable bijection h : A→ B which will be later shown
to be an isomorphism; to this end we will define inductively a sequence of ∅-definable partial
bijections

hi : A→ B,

for i = 0, 1, . . . ,m, where m is the number of ∅-orbits inside A (or B, as made explicit
below), such that the domain Dom(hi+1) of every hi+1 extends the domain Dom(hi) of hi
by one ∅-orbit inside A. The required bijection will be h = hm. The order of adding ∅-orbits
to the domain of h will be relevant for showing that h is an isomorphism.

We start easily by taking as h0 the empty function. For the induction step, suppose
that hn is already defined. Among the remaining ∅-orbits of A and B, i.e., among those
which are not included in Dom(hn) ∪ Codom(hn), choose an orbit O whose elements have
maximal dimension (cf. Corollary 5.7). W.l.o.g. assume that O ⊆ A (if O ⊆ B, change the
roles of A and B, and replace f and all hi for i ≤ n by their inverses). Choose an arbitrary
S-independent node x0 ∈ O. We observe that the S-orbit of x0 does not depend on the
choice of x0:

Claim 6.2. All S-independent nodes in O belong to the same S-orbit.
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We call this S-orbit M ⊆ O the starting S-orbit inside O, and all its elements starting nodes.
Intuitively, an obvious idea would be to declare hn+1(x0) = f(x0) and then to close

under atom automorphisms to lift the definition of hn+1 to the full orbit O. However, it
might be the case that y0 = f(x0) ∈ B is already contained in Codom(hn). In such case we
return back to A using hn

−1, which yields x1 := hn
−1(y0) ∈ Dom(hn). Continuing in this

way, we define a sequence x0, y0, x1, y1, x2, . . . of nodes, alternating between nodes of A and
nodes of B, by the following equalities:

hn(xi+1) = yi = f(xi). (6.1)

In words, yi is obtained from xi by applying f , and xi+1 is obtained from yi by applying
(hn)−1. Clearly, the latter application is well-defined only when yi ∈ Codom(hn). We thus
stop generating the sequence as soon as yi /∈ Codom(hn). We need however to prove that
this will eventually happen, i.e., that the sequence is finite:

Claim 6.3. yl /∈ Codom(hn), for some l ≥ 0.

(In particular, when n = 0 the claim necessarily holds for l = 0.) The S-orbit M ′

of yl will be called the starting S-orbit inside the ∅-orbit O′ of yl (A and B are treated
symmetrically here). The number l will be called the length of the starting orbit M , and
n + 1 will be called its order; we write order(M) = n + 1, and length(M) = l. By abuse
of notation, we will also assign the same order and length to the ∅-orbit O, and to every
element of O.

We are now ready to define the bijection hn+1 with Dom(hn+1) = Dom(hn) ∪ O. It
agrees with hn on Dom(hn); on the orbit O, we define hn+1 by extending the mapping
x0 7→ yl to all of O. We claim that there is a (unique) ∅-definable bijection between the
∅-orbit O of x0 and the ∅-orbit O′ of yl that maps x0 to yl:

Claim 6.4. The set of pairs { (πx0, πyl) |π is an atom automorphism } is an ∅-definable
bijection between O and O′.

This completes the induction step of the definition of h.
Before proving that h is an isomorphism, we formulate a concise equality describing

h; the equality will be useful later. The definition of hn+1 in the induction step does not
depend on the choice of the S-independent node x0 ∈M . To see this, observe that Claim 6.3
holds, with the same value l, for every other choice of x0 ∈M ; indeed, both f and (hn)−1

are S-definable, and hence by Lemma 5.2 they preserve the relation of belonging to the
same S-orbit; thus, no matter which S-independent node x0 ∈M is chosen, it will always
belong to the same S-orbit (by Claim 6.2), hence the node yl will always belong to the same
S-orbit (and hence to the same ∅-orbit) inside B. Thus by Lemma 5.2 and by the definition
of h we have, for every starting node x ∈ A, the following equality:

h(x) =
[
f ◦ (h−1 ◦ f)l

]
(x)

where l = length(x); or equivalently (as f and h are bijections)

(h−1 ◦ f)l+1(x) = x. (6.2)

(In the special case of starting nodes x of order(x) = 1 (recall that 1 is the minimal possible
order) we have length(x) = 0, and thus the above equality reduces to h(x) = f(x). Thus h
agrees with f on the starting S-orbit of order 1.)
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Now we shall prove that h is an isomorphism, i.e., that for every two nodes x, x′ ∈ A,

(x, x′) ∈ E if, and only if (h(x), h(x′)) ∈ F. (6.3)

The proof is by induction on the orders of x and x′. Let n = order(x) and n′ = order(x′).
For the induction step, suppose that (6.3) holds for all pairs y, y′ of starting nodes with
〈m,m′〉 = 〈order(y), order(y′)〉 pointwise strictly smaller than 〈n, n′〉. Thus we assume that
the claim holds for y, y′ whenever m ≤ n, m′ ≤ n′, but either m < n or m′ < n′. Let
l = length(x) and l′ = length(x′).

We first prove (6.3) in the special case when both x and x′ are starting nodes. (Recall
that in the special case n = n′ = 1 we have h(x) = f(x) and h(x′) = f(x′), and the claim
follows since f is an isomorphism.) Consider two sequences of nodes,

x0, y0, x1, y1, . . . , and x′0, y
′
0, x
′
1, y
′
1, . . .

where x0 = x and x′0 = x′, alternating between nodes of A and B, determined by the
equalities analogous to (6.1):

h(xi+1) = yi = f(xi) h(x′i+1) = y′i = f(x′i).

Analogously as before, the sequence is obtained by alternating applications of f and h−1. In
particular, xi+1 = h−1(f(xi)) and x′i+1 = h−1(f(x′i)). Consider the smallest k > 0 such that
xk = x and x′k = x′. Observe that equality (6.2) guarantees that such k exists, for instance
k = (l + 1)(l′ + 1) works. Note that the equality (6.2) implies also that

h(x) = yk−1 and h(x′) = y′k−1. (6.4)

Since f is an isomorphism, for every i ≥ 0 we have:

(xi, x
′
i) ∈ E if, and only if (yi, y

′
i) ∈ F. (6.5)

Using the inductive assumption we want to prove additionally

(xi+1, x
′
i+1) ∈ E if, and only if (yi, y

′
i) ∈ F, (6.6)

for every i such that 0 < i + 1 < k. By the definition of h we know that order(xi) ≤ n
and order(x′i) ≤ n′ for every i ≥ 0. Furthermore, observe that for every 0 < i < k we have
order(xi) < n or order(x′i) < n′; indeed, the equalities order(xi) = n and order(x′i) = n′,
together with the bijectivity of (h−1 ◦ f)i, would imply xi = x and x′i = x′. In consequence,
the induction assumption (6.3) applies for every pair (xi+1, x

′
i+1) where 0 < i+ 1 < k, which

proves the equivalences (6.6). Combining (6.5) with (6.6) we get

(x, x′) ∈ E if, and only if (yk−1, y
′
k−1) ∈ F

which, by (6.4), is exactly (6.3), as required.
Now we proceed to proving (6.3) for arbitrary nodes x, x′ ∈ A. To this end we will use

the following fact, easy to prove using ω-categoricity and denseness of Atoms:

Claim 6.5. For every two nodes x, x′ ∈ A there is an atom automorphism π such that both
πx and πx′ are starting nodes.
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For any π in Claim 6.5 we have the following sequence of equivalences:

(x, x′) ∈ E iff

(πx, πx′) ∈ E iff

(h(πx), h(πx′)) ∈ F iff

(πh(x), πh(x′)) ∈ F iff

(h(x), h(x′)) ∈ F .

(6.7)

The first and the last equivalence hold as the relations E and F , being ∅-definable, are
closed under atom automorphisms (cf. Lemma 5.1); the second equivalence has been treated
previously as both πx an πx′ are starting nodes; and the third equivalence holds as the
function h is ∅-definable (cf. Lemma 5.2). Theorem 3.2 is thus proved, once we prove the
yet unproven Claims 6.1–6.5.

Proof of Claim 6.1. Consider an ∅-orbit O ⊆ A ∪ B. We will use the embedding H :
Atoms → Atoms. Take any node x ∈ O and consider the restriction of H to the finite set
sup(x) ⊆ Atoms. As H is an embedding, the restriction is a finite partial isomorphism which
extends, by ω-categoricity of Atoms (c.f. Lemma 2.6), to an atom automorphism, say π. Then
πx is an S-independent node in O, as sup(πx) = πsup(x) ⊆ H(Atoms) (cf. Lemma 5.6).

Proof of Claim 6.2. Let x, x′ ∈ O be two S-independent nodes, thus sup(x) ∪ sup(x′) ⊆
H(Atoms). Take an atom automorphism π such that πx = x′. By Lemma 5.6 we have
πsup(x) = sup(x′). The restriction of π to sup(x) is a finite partial isomorphism, and
hence it extends to an automorphism of H(Atoms), which in turn extends to an atom
S-automorphism τ , by denseness. Thus τx = x′ (we use Lemma 5.8 here) and hence x and
x′ are in the same S-orbit.

Proof of Claim 6.3. It is enough to prove that the nodes y0, y1, . . . belong to different S-
orbits inside B (as B has finitely many S-orbits, and so does Codom(hn), and the claim
follows). With this aim consider the sequence of S-orbits:

orbitS(x0), orbitS(y0), orbitS(x1), . . .

and suppose, towards contradiction, that some S-orbit O in B repeats in the sequence,
say orbitS(yk) = orbitS(yj) for some indices j < k. Recall that A and B are disjoint, and
that yi = f(xi) and xi+1 = h−1n (yi), for every i. Since f is S-definable, and hn, being
∅-definable, is also S-definable, by Lemma 5.2 they both (preserve and) reflect the relation
of belonging to the same S-orbit; therefore orbitS(yk−α) = orbitS(yj−α) for α = 1, . . . , j,
and in consequence the first orbit O necessarily repeats in the sequence:

orbitS(x0) = orbitS(xi) (6.8)

for i = k− j > 0. Recall that xi = (h−1n ◦ f)i to observe that the equality (6.8) is impossible:
xi ∈ Dom(hn) while x0 /∈ Dom(hn), and Dom(hn), being the union of ∅-orbits, is also the
union of S-orbits.

Proof of Claim 6.4. Relying on Lemma 5.4 it is enough to demonstrate that the set of pairs

{ (πx0, πyl) |π is an atom automorphism }
is (the graph of) a bijection. In other words, it is enough to prove that for every two atom
automorphism π, π′, the equality πx0 = π′x0 holds if, and only if the equality πyl = π′yl
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holds. This is equivalent to the following condition:

for every atom automorphism π, πx0 = x0 iff πyl = yl. (6.9)

Recall that yl = g(x0), where g =
[
f ◦ (h−1n ◦ f)l

]
; as both f and hn are S-definable (partial)

bijections, their composition g is also an S-definable bijection, and hence the condition (6.9)
holds for all atom S-automorphisms π. Our aim is to prove (6.9) for all atom automorphisms,
using S-independence of x0.

Define the S-support as suppS(x)
def
= sup(x) − S. Let U = sup(x0). We claim

that sup(yl) = U as well, i.e., yl is S-independent too. To demonstrate this, we first
observe using Lemma 5.9 that the mapping g, being S-definable, can only decrease the
S-support: suppS(x0) ⊇ suppS(yl). But g−1, being also S-definable, has the same property
and hence suppS(x0) = suppS(yl). Furthermore, x0 is S-independent and thus satisfies
suppS(x0) = sup(x0), which yields U = suppS(yl) ⊆ sup(yl). Finally, the dimension of
yl is at most equal to the dimension of x0 (because the node x0 has been chosen as one
with the maximal dimension), i.e., to the cardinality of U , therefore we deduce the equality
U = sup(yl).

We are now ready to prove (6.9); we focus on the left-to-right implication, as the other
one is proved similarly. Consider any atom automorphism π satisfying πx0 = x0. By
Lemma 5.6 we know that π preserves the set U , i.e., πU = U . We claim that some atom
S-automorphism π′ coincides with π on U . Indeed, the restriction of π to U extends, as
a finite partial isomorphism inside H(Atoms), to an automorphism of H(Atoms); and the
latter extends to an atom S-automorphism π′, by denseness of Atoms. As π and π′ coincide
on U = sup(x0), by Lemma 5.8 we have π′x0 = πx0 = x0. We can apply (6.9) to the atom
S-automorphism π′, thus obtaining π′yl = yl. Finally, again by Lemma 5.8 applied to π and
π′, coinciding on U = sup(yl), we deduce πyl = π′yl. This entails πyl = yl as required.

Proof of Claim 6.5. Similarly as in the proof of Claim 6.1, we use the embedding H :
Atoms → Atoms. The restriction of H to the finite set sup(x) ∪ sup(x′) ⊆ Atoms is
necessarily a finite partial isomorphism which extends, by ω-categoricity of Atoms, to an
atom automorphism π, such that the nodes πx and πx′ are both S-independent and hence,
by Claim 6.2, also starting.

The general case. The additional assumptions imposed in the proof are not essential, and
the proof easily adapts to the general case. To get rid of the assumption T = ∅, one just
needs to replace the atoms by the structure Atoms′ obtained from Atoms by introducing
constant symbols for each element of T . Then, every set x which is T -definable in Atoms
becomes ∅-definable in Atoms′. Moreover, Atoms′ remains effectively ω-categorical, dense,
and still has least supports.

One also easily gets rid of the assumption that the signature has just one binary symbol.
First, to deal with (possibly infinitely) many symbols, in the inductive argument towards h
being an isomorphism one treats each symbol separately. In case symbols of arity other than
2, say r, the induction is with respect to the r-tuples of orders, instead of pairs thereof. The
inductive argument itself, as well as Claim 6.5, adapt easily to r-tuples. Finally, in case of a
(possibly infinite) T -definable signature, one needs to modify the sequence of equalities (6.7)
appropriately, in order to take into account the action of atom automorphisms on signature
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symbols. For a signature symbol σ, denote by σA, σB the interpretation of σ in A, B,
respectively. Then the sequence of equalities (6.7) is adapted as follows:

(x1, . . . , xr) ∈ σA iff

(πx1, . . . , πxr) ∈ π(σA) iff

(πx1, . . . , πxr) ∈ (πσ)A iff

(h(πx1), . . . , h(πxr)) ∈ (πσ)B iff

(h(πx1), . . . , h(πxr)) ∈ π(σB) iff

(πh(x1), . . . , πh(xr)) ∈ π(σB) iff

(h(x1), . . . , h(xr)) ∈ σB.
We consider here the action πσ on the signature symbol σ, as well as the action on the
interpretation of the signature symbol, π(σA) or π(σB). In particular, (πσ)A denotes the
interpretation of the signature symbol πσ in A. As π is a T -automorphism, the first, the
second, the fourth and the last equivalence follow by T -definability of A and B (cf. Lemma 5.1);
the third equivalence is proved previously, as πx1, . . . , πxr are starting nodes; and the fifth
equivalence holds since the function h is T -definable (cf. Lemma 5.2).
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