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Abstract. The paper presents an algebraic framework for optimization
problems expressible as Valued Constraint Satisfaction Problems. Our
results generalize the algebraic framework for the decision version (CSPs)
provided by Bulatov et al. [SICOMP 2005].

We introduce the notions of weighted algebras and varieties, and use
the Galois connection due to Cohen et al. [SICOMP 2013] to link VCSP
languages to weighted algebras. We show that the difficulty of VCSP de-
pends only on the weighted variety generated by the associated weighted
algebra.

Paralleling the results for CSPs we exhibit a reduction to cores and rigid
cores which allows us to focus on idempotent weighted varieties. Further,
we propose an analogue of the Algebraic CSP Dichotomy Conjecture;
prove the hardness direction and verify that it agrees with known results
for VCSPs on two-element sets [Cohen et al. 2006], finite-valued VC-
SPs [Thapper and Zivny 2013], and conservative VCSPs [Kolmogorov
and Zivny 2013].

1 Introduction

An instance of the Constraint Satisfaction Problem (CSP) consists of vari-
ables (to be evaluated in a domain) and constraints restricting the evaluations.
The aim is to find an evaluation satisfying all the constraints or satisfying the
maximal possible number of constraints or approximating the maximal possible
number of satisfied constraints etc. depending on the version of the problem.
Further one can divide constraint satisfaction problems with respect to the size
of the domain, the allowed constraints or the shape of the instances.

A particularly interesting version of the CSP was proposed in a seminal paper
of Feder and Vardi [11]. In this version the CSP is defined by a language which
consists of relations over a finite set. An instance of such a CSP is allowed if all
the constraint relations are from this set. The goal is to determine whether an
instance has a solution satisfying all the constraints.
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Each language clearly defines a problem in NP; the whole family of problems
is interesting for another reason: it is robust enough to include some well stud-
ied computational problems, e.g. 2-colorability, 3-SAT, solving systems of linear
equations over Z,, and still is conjectured [11] not to contain problems of interme-
diate complexity. This conjecture (which holds for languages on two-element sets
by the result of Schaefer [18]) is known as the Constraint Satisfaction Dichotomy
Conjecture of Feder and Vardi. Confirming this conjecture would establish CSPs
as one of the largest natural subclasses of NP without problems of intermediate
complexity.

The conjecture always attracted a lot of attention, but the first results, even
very interesting ones, were usually very specialized (e.g. [12]). A major break-
through appeared with a series of papers establishing the algebraic approach to
CSP [3,7,14]. This deep connection with an independently developed branch of
mathematics introduced a new viewpoint and provided tools necessary to tackle
wide classes of CSP languages at once. At the heart of this approach lies a
Galois connection between languages and clones of operations called polymor-
phisms (which completely determine the complexity of the language).

Results obtained using these new methods include a full complexity clas-
sifications for CSPs on three-element sets [5] and those containing all unary
relations [4, 6]. Moreover, the algebraic approach to CSP allowed to propose
a boundary between the tractable and NP-complete problems: this conjecture
is known as the Algebraic Dichotomy Conjecture. Unfortunately, despite many
efforts (e.g. [5]), both conjectures remain open.

The Valued Constraint Satisfaction Problem (VCSP) further extends the
approach proposed by Feder and Vardi. The role of constraints is played by cost
functions describing the price of choosing particular values for variables as a
part of the solution. This generalization allows to construct languages modeling
standard optimization problems, for example MAX-CUT. Moreover, by allowing
oo as a cost of a tuple, a VCSP language can additionally model every problem
that CSP can model, as well as hybrid problems like MIN-VERTEX-COVER.
This makes the extended framework even more general (compare the survey [15]).

A number of classes of VCSPs have been thoroughly investigated. The under-
lying structure suggested capturing the properties of languages of cost functions
using an amalgamation of algebraic and numerical techniques [10,20]. The first
approach which provides a Galois correspondence (mirroring the Galois corre-
spondence for CSPs) was proposed by Cohen et al. [9]. A weighted clone defined
in this paper fully captures the complexity of a VCSP language.

The present paper builds on that correspondence imitating the line of re-
search for CSPs [7]. It is organized in the following way: Section 2 contains
preliminaries and basic definitions. In Section 3 we present a reduction to cores
and rigid cores. Section 4 introduces a concept of a weighted algebra and a
weighted variety, and shows that those notions are well behaved in the context
of the Galois connection for VCSP. Reductions developed in Section 3 together
with definitions from Section 4 allow us to focus on idempotent varieties. Sec-
tion 5 states a conjecture postulating (for idempotent varieties) the division



between the tractable and NP-hard cases of VCSP. The conjecture is clearly
a strengthening of the Algebraic Dichotomy Conjecture [7]. Section 5 contains
additionally the proof of the hardness direction of the conjecture as well as the
reasoning showing that the conjecture agrees with complexity classifications for
VCSPs on two-element sets [10], with finite-valued cost functions [20], and with
conservative cost functions [16].

2 Preliminaries

2.1 The Valued Constraint Satisfaction Problem

Throughout the paper, let Q = Q U {oc}. We assume that x + co = co and
y-o00 = oo for y > 0. An r-ary relation on a set D is a subset of D", a cost
function on D of arity r is a function from D" to Q. We denote by @p the set of
all cost functions on D. A cost function which takes only finite values is called
finite-valued. A {0, co}-valued cost function is called crisp and can be viewed as
a relation.

Definition 1. An instance of the valued constraint satisfaction problem (VCSP)
is a triple T = (V,D,C) with V a finite set of variables, D a finite domain and
C a finite multi-set of constraints. Fach constraint is a pair C = (o, p) with o a
tuple of variables of length r and o a cost function on D of arity r.

An assignment for T is a mapping s: V — D. The cost of an assignment
s is given by Costz(s) =3, yec 0(5(0)) (where s is applied component-wise).
To solve T is to find an assignment with a minimal cost, called an optimal
assignment.

Any set I' C @p is called a valued constraint language over D, or simply a
language. If all cost functions from I are {0, co}-valued or finite-valued, we call
it a crisp or finite-valued language, respectively.

By VCSP(I") we denote the class of all VSCP instances in which all cost func-
tions in all constraints belong to I'. VOSP(Irisp), Where Igsp is the language
consisting of all crisp cost functions on some fixed set D, is equivalent to the
classical CSP. For an instance Z € VCSP(I") we denote by Opt(Z) the cost of
an optimal assignment. We say that a language I' is tractable if, for every finite
subset I C I', there exists an algorithm solving any instance Z € VCSP(I™)
in polynomial time, and we say that I" is NP-hard if VCSP(I") is NP-hard for
some finite IV C I.

Weighted Relational Clones. We follow the exposition of [9] and define a
closure operator on valued constraint languages that preserves tractability.

Definition 2. A cost function o is expressible over a valued constraint language
I' C &p if there exists an instance Z, € VCSP(I") and a list (v1,...,v,) of
variables of L, such that

o(x1,...,x.) = min Costz,(s).
( ! ) {s: V=D | s(vi)=z;} Z ( )



Note that the list of variables (v1,...,v;) in the definition above might con-
tain repeated entries. Hence, it is possible that there are no assignments s such
that s(v;) = x; for all i. We define the minimum over the empty set to be oco.

Definition 3. A set I' C @p is a weighted relational clone if it is closed under
expressibility, scaling by non-negative rational constants, and addition of rational
constants. We define wRelClo(I") to be the smallest weighted relational clone
containing I".

If o(x1,...,2) = 01(y1,---,¥s) + 02(21,...,2) for some fixed choice of ar-
guments yi,...,Ys, 21,--.,2¢ from amongst x1,...,x, then the cost function o
is said to be obtained by addition from the cost functions p; and gs. It is easy to
see that a weighted relational clone is closed under addition, and minimisation
over arbitrary arguments.

The following result shows that we can restrict our attention to languages
which are weighted relational clones.

Theorem 4 (Cohen et al. [9]). A valued constraint language I is tractable if
and only if wRelClo(I") is tractable, and it is NP-hard if and only if wRelClo(I")
is NP-hard.

Weighted polymorphisms. A k-ary operation on D is a function f: D* —
D. We denote by Op the set of all finitary operations on D and by (’)g{)
the set of all k-ary operations on D. The k-ary projections, defined for all
i € {1,...,k}, are the operations ng) such that ﬂ'gk)(xl,...,a:k) = z;. Let
f € Og) and ¢1,...,9k € Og). The l-ary operation f[gi,...,gr] defined by
flot, - s gkl(x1, ..y x) = flgi(zr, ..y 2), -y gr(T1, ..., 2;)) is called the su-
perposition of f and g1,..., gk.

A set C C Op is a clone of operations (or simply a clone) if it contains all
projections on D and is closed under superposition. The set of k-ary operations
in a clone C is denoted C®). The smallest possible clone of operations over a
fixed set D is the set of all projections on D, which we denote ITp.

Following [9] we define a k-ary weighting of a clone C' to be a function
w: C*) — Q such that Y recm w(f) =0, and if w(f) < 0 then f is a pro-
jection. The set of operations to which a weighting w assigns positive weights is
called the support of w and denoted supp(w).

A new weighting of the same clone can be obtained by scaling a weighting
by a non-negative rational, adding two weightings of the same arity and by the
following operation called superposition.

Definition 5. Let w be a k-ary weighting of a clone C and let g1,...,9x €
C® . A superposition of w and g1, ...,qr is a function wlg1y- -y gr): ch 5 Q
defined by

wlgr,- -, g1](f) = > w(/f)-

{feC® | flgi,....gx]=f"}



The sum of weights that any superposition w[gy,...,gx] assigns to the op-
erations in C is equal to zero, however, it may happen that a superposition
assigns a negative value to an operation that is not a projection. A superposition
is said to be proper if the result is a valid weighting.

A non-empty set of weightings over a fixed clone C'is called a weighted clone
if it is closed under non-negative scaling, addition of weightings of equal arity
and proper superposition with operations from C'. For any clone of operations C,
the set of all weightings over C' and the set of all zero-valued weightings of C
are weighted clones.

We say that an r-ary relation R on D is compatible with an operation
f: D¥ — D if, for any list of r-tuples X1, ...,xx € R we have f(x1,...,xx) € R
(where f is applied coordinate-wise). Let o: D™ — Q be a cost function. We
define Feas(p) = {x € D" | po(x) is finite} to be the feasibility relation of p.
We call an operation f: D¥ — D a polymorphism of o if the relation Feas(p)
is compatible with it. For a valued constraint language I" we denote by Pol(I")
the set of operations which are polymorphisms of all cost functions ¢ € I'. It is
easy to verify that Pol(I") is a clone. The set of m-ary operations in Pol(I") is
denoted Pol,, (I").

For crisp cost functions (relations) this notion of polymorphism corresponds
precisely to the standard notion of polymorphism which has played a crucial role
in the complexity analysis for the CSP [3,14].

Definition 6. Take o to be a cost function of arity r on D, and let C C Pol({o})
be a clone of operations. A weighting w: C*) — Q is called a weighted poly-
morphism of g if, for any list of r-tuples x1,...,xy € Feas(o), we have

Z w(f)~g(f(x1,...,xk)) SO

fec(k)

For a valued constraint language I we denote by wPol(I") the set of those
weightings of the clone Pol(I") that are weighted polymorphisms of all cost func-
tions g € I'. The set of weightings wPol(I") is a weighted clone [9].

An operation f is idempotent if f(x,...,x) = z. A weighted polymorphism is
called idempotent if all operations in its support are idempotent. An operation
fe Og) is cyclic if for every xy,...,2; € D we have that f(z1,x2,...,2%) =
f(za, ...,z x1). A weighted polymorphism is called cyclic if its support is non-
empty and contains cyclic operations only.

A cost function p is said to be improved by a weighting w if w is a weighted
polymorphism of p. For any set W of weightings over a fixed clone C' C Op
we denote by Imp(W) the set of cost functions on D which are improved by all
weightings w € W.

By the result of Cohen et al. [9] for any finite valued constraint language I,
we have Imp(wPol(I')) = wRelClo(I"). This fact, together with Theorem 4,
implies that tractable valued constraint languages can be characterized by their
weighted polymorphisms.



2.2 Algebras and varieties

An algebraic signature is a set of function symbols together with (finite) arities.
An algebra A over a fixed signature X', has a universe A, and a set of basic
operations that correspond to the symbols in the signature, i.e., if the signature
contains a k-ary symbol f then the algebra has a basic operation f*, which is
a function fA: AF — A.

A subset B of the universe of an algebra A is a subuniverse of A if it is
closed under all operations of A. An algebra B is a subalgebra of A if B is a
subuniverse of A and the operations of B are restrictions of all the operations
of A to B. Let (A;);cr be a family of algebras (over the same signature). Their
product Il;c;A; is an algebra with the universe equal to the cartesian product
of the A;’s and operations computed coordinate-wise. For two algebras A and B
(over the same signature), a homomorphism from A to B is a function h: A — B
that preserves all operations. It is easy to see, that an image of an algebra under
a homomorphism h: A — B is a subalgebra of B.

Let K be a class of algebras over a fixed signature Y. We denote by S(K)
the class of all subalgebras of algebras in K, by P(K) the class of all products of
algebras in KC, by P, (K) the class of all finite products, and by H(K) the class
of all homomorphic images of algebras in K. If = {A} we write S(A), P(A),
and H(A) instead of S({A}), P({A}), and H({A}), respectively.

A wariety V(K) is the smallest class of algebras closed under all three op-
erations. For an algebra A the variety V({A}) (denoted V(A)) is the variety
generated by A, and Vi (A) is the class of finite algebras in V(A). Due to a
result of Tarski [19] we know that for any finite algebra A, we have

V(A) =HSP(A) and Vji,(A) =HSP;;,(A).

We say that an equivalence relation ~ on A is a congruence of A if it is a
subalgebra of A%, Every congruence ~ of A determines a quotient algebra A /.

A term t in a signature X is a formal expression built from variables and
symbols in Y that syntactically describes the composition of basic operations.
For an algebra A over X a term operation t* is an operation obtained by com-
posing the basic operations of A according to ¢. Let s and ¢ be a pair of terms
in a signature Y. We say that A satisfies the identity s =~ t if the term opera-
tions s® and tA are equal. We say that a class of algebras V over X satisfies the
identity s ~ t if every algebra in V does.

It follows from Birkhoff’s theorem [2] that the variety V(A) is the class of
algebras that satisfy all the identities satisfied by A. An algebra A is finitely
generated if there exists a finite subset F' of its domain such that the only
subalgebra of A containing F'is A. If A is finite then V(A) is locally finite, i.e.,
every finitely generated algebra in V(A) is finite.

3 Core Valued Constraint Languages

For each valued constraint language I there is an associated algebra. It has uni-
verse D and the set of operations Pol(I"). If all operations of any given algebra



satisfy the identity f(z,...,z) = z (i.e. are idempotent) then we call the algebra
idempotent. In this section we prove that every valued constraint language which
is finite has a computationally equivalent valued constraint language whose as-
sociated algebra is idempotent.

Positive Clone. Those polymorphisms of a given language I" which are assigned
a positive weight by some weighted polymorphisms w € wPol(I") are of special
interest in the rest of the paper. We begin this section by proving that they form
a clone.

Let C be a weighted clone over a set D. The following proposition shows that
the set | J,,csupp(w), together with the set of projections IIp, is a clone. We
call it the positive clone of C and denote by CT (if C is wPol(I") then C* is
denoted by Pol™*(I)).

Proposition 7. If C is a weighted clone then CT is a clone.

Cores. Let I' be a valued constraint language with a domain D. For S C D
we denote by I'[S] the valued constraint language defined on a domain S and
containing the restriction of every cost function g € I' to S.

By generalizing the arguments for finite-valued languages given in [13,20],
we show that I" has a computationally equivalent valued constraint language I
such that Poll+ (I'") contains only bijective operations. Such a language is called
a core. Moreover, I'" can be chosen to be equal to I'[S] for some S C D.

Proposition 8. For every valued constraint language I' there exists a core lan-
guage I'', such that the valued constraint language I is tractable if and only if
I is tractable, and it is NP-hard if and only if I'" is NP-hard.

For core languages we characterize the set of unary weighted polymorphisms
as consisting of all weightings that assign positive weights only to bijective op-
erations preserving all cost functions.

The proposition below witnesses the importance of the positive clone and
is used to prove further results in the subsequent sections. Let I" be a valued
constraint language over a domain D which is finite and a core. For each arity
m we fix an enumeration of all the elements of D™ . This allows us to treat every
m-ary operation f € Ogn) as a |D™|-tuple. We define a |D™|-ary cost function
in wRelClo(I") that precisely distinguishes the m-ary operations in the positive
clone from all the other m-ary polymorphisms.

Proposition 9. Let I' be a valued constraint language over a domain D which
s finite and a core. For every m there exists a cost function p: O(Dm) - Q

in wRelClo(I"), and a rational number P, such that for every f € Og") the
following conditions are satisfied:

1. o(f) = P,
2. o(f) < o0 if and only if f € Pol(I'),
3. o(f) = P if and only if f € Pol™(I).



Rigid cores. We further reduce the class of languages that we need to con-
sider. Let I" be a valued constraint language over an mn-element domain D =
{dy,...,d,} which is finite and a core. For each i € {1,...,n}, let

i\&r) =
oo otherwise,

and let I'. denote the valued constraint language obtained from I by adding
all cost functions N;. Observe that Pol(I}.) = IdPol(I"), where by IdPol(I") we
denote the set of idempotent polymorphisms of the language I". Hence, the only
unary polymorphism of I, is the identity, which also means that there is only one
unary weighted polymorphism of I, — the zero-valued weighted polymorphism.

A valued constraint language I is a rigid core if there is exactly one unary
polymorphism of I', which is the identity. This notion corresponds to the clas-
sical notion of a rigid core considered in CSP [7]. The following proposition,
together with Proposition 8, implies that for each finite language I, there is a
computationally equivalent language that is a rigid core.

Proposition 10. Let I' be a valued constraint language which is finite and a
core. The valued constraint language I'. is a rigid core. Moreover, I' is tractable
if and only if I, is tractable, and I" is NP-hard if and only if I'. is NP-hard.

If I' is a core language then the positive clone of I'. contains precisely the
idempotent operations from the positive clone of I".

4 Weighted varieties

One of the fundamental results of the algebraic approach to CSP [3,7,17] says
that the complexity of a crisp language I" depends only on the variety generated
by the algebra (D, Pol(I")). We generalize this fact to VCSP.

A k-ary weighting w of an algebra A is a function that assigns rational weights
to all k-ary term operations of A in such a way, that the sum of all weights is 0,
and if w(f) < 0 then f is a projection. A (proper) superposition w(gi,...,gk] of
a weighting w with a list of l-ary term operations g1, ..., gr from A is defined
the same way as for clones (see Definition 5). An algebra A together with a set
of weightings closed under non-negative scaling, addition of weightings of equal
arity and proper superposition with term operations from A is called a weighted
algebra.

For a variety V over a signature X and a term ¢t we denote by [t]y the
equivalence class of ¢ under the relation =~y such that ¢ ~y s if and only if the
variety V satisfies the identity ¢ ~ s (we skip the subscript, writing [¢] instead of
[t]y, whenever the variety is clear from the context). Observe that if the variety
is locally finite then there are finitely many equivalence classes of terms of a
fixed arity [8].



Definition 11. Let V be a locally finite variety over a signature X. A k-ary
weighting w of V is a function that assigns rational weights to all equivalence
classes of k-ary terms over X in such a way, that the sum of all weights is 0,
and if w([t]) < O then V satisfies the identity t(z1,...,z5) = x; for some i €
{1,...,k}. The variety V together with a nonempty set of weightings is called a
weighted variety.

Take any finite algebra B € V. A k-ary weighting w of V induces a weighting
wB of B in a natural way:

P = Y w(l)
{1 | =1}

If w([t]) < O then the term operation tB is a projection, and hence the weighting
wB is proper. For a weighted variety V, by B € V we mean the algebra B
together with the set of weightings induced by V.

For every weighting w of a finite weighted algebra A there is a corresponding
weighting w of the variety V(A) defined by w([t]) = w(t?). It follows from
Birkhoff’s theorem that it is well defined. A weighted variety V(A) generated
by a weighted algebra A is the variety V(A) together with the set of weightings
corresponding to the weightings of A.

We prove that every finite algebra B € V(A) together with the set of weight-
ings induced by V(A) is a weighted algebra. The only non-trivial part is to show
that B is closed under proper superpositions.

Proposition 12. For a finite weighted algebra A over a fized signature X and a
finite algebra B € V(A) let wB be a k-ary weighting of B induced by the weighted
variety V(A). If for some list fB,..., fE of l-ary term operations from B the
composition wB[fE, ..., f,f] is proper then it is induced by some valid weighting

of V(A).
For a finite weighted algebra A let Imp(A) denote the set of those cost
functions on A that are improved by all weightings of A. We prove that for each

finite weighted algebra B € V(A) the valued constraint language Imp(B) is not
harder then Imp(A) i.e.:

Lemma 13. Let A be a finite weighted algebra and let
B e Pyin(A) or Be S(A) or Be H(A) or finally Be V(A)

then a VOSP defined by any finite subset of Imp(B) reduces in polynomial-time
to a VCSP for some finite subset of Imp(A).

Therefore the complexity of I depends only on the weighted variety gener-
ated by the weighted algebra (D, wPol(I)).



5 Dichotomy conjecture

An operation ¢ of arity k is called a Taylor operation of an algebra (or a variety),
if ¢t is idempotent and for every j < k it satisfies an identity of the form

t(Dl,DQ, - -7|:|k) ~ t(Al, AQ’ .. .,Ak)7

where all O;s and A\;s are substituted with either « or y, but U; is « whenever
Aj is y. In this section we prove the following theorem:

Theorem 14. Let I' be a finite core valued constraint language. IfPol+(F) does
not have a Taylor operation, then I' is NP-hard.

We conjecture? that these are the only cases of finite core languages which
give rise to NP-hard VCSPs.

Conjecture. Let I" be a finite core valued constraint language. If Polt (I) does
not have a Taylor operation, then I' is NP-hard. Otherwise it is tractable.

For crisp languages Pol™ (I") = Pol(I"). Therefore Theorem 14 generalizes the
well-known result of Bulatov, Jeavons and Krokhin [3,7] concerning crisp core
languages. Similarly the above conjecture is a generalization of The Algebraic
Dichotomy Conjecture for CSP. Later on we show that it is supported by all
known partial results on the complexity of VCSPs.

To prove Theorem 14 we use Proposition 9 and argue that any relation com-
patible with Pol™ (I") can be found as a set of tuples with minimal costs for some
cost function improved by wPol(I"). Tt is easy to notice that if Pol™(I") does not
have a Taylor operation, then such a relation with NP-complete CSP can be
constructed.

As the Taylor operation is difficult to work with, in the reminder of the
section we use a characterization of Taylor algebras as the algebras possessing
a cyclic term. If I is a finite core constraint language then (D,IdPol™(I")) is a
finite idempotent algebra. It follows that IdPol*(I"), and hence also Pol™(I"),
has a Taylor operation if and only if it has an idempotent cyclic operation [1].

5.1 Two-element domain

A complete complexity classification for valued constraint languages over a two-
element domain was established in [10]. All tractable languages have been de-
fined via multimorphisms, which are a more restricted form of weighted poly-
morphisms. A k-ary multimorphism of a language I', specified as a k-tuple
(f1,..., fr) of k-ary operations on D, is a k-ary weighted polymorphism w of
I such that for each i € {1,...,k}, we have that w(m;) = —%, and w(f;) = £,
where [ is the number of times the operation f; appears in the tuple.

3 The conjecture was suggested in a conversation by Libor Barto, however it might
have appeared independently earlier.



An operation f € O(Dg) is called a majority operation if for every z,y € D
we have that f(z,z,y) = f(x,y,2) = f(y,2z,x) = . Similarly, an operation f €
Og) is called a minority operation if for every xz,y € D it satisfies f(z,z,y) =
f(z,y,x) = f(y,z,z) =y. We show the following proposition:

Proposition 15. Let I' be a finite core valued constraint language on D =
{0,1}. Then Pol™(I") has an idempotent cyclic operation if and only if I' ad-
mits at least one of the following siz multimorphisms: (min, min), (max, max),
(min, max), (Mjrty, Mjrty, Mjrty), (Mnrty, Muorty, Marty), (Mjrty, Mjrty, Mnorty).

The proposition fully agrees with the classification of VCSP languages on
two-element domain in [10].

5.2 Finite-valued languages

Theorem 16 (Thapper and Zivny [20]). Let I' be a finite-valued constraint
language which is a core. If I' admits an idempotent cyclic weighted polymor-
phism of some arity m > 1, then I' is tractable. Otherwise it is NP-hard.

To show that our conjecture agrees with the above complexity classification
we prove the following result (which holds for general-valued languages):

Proposition 17. Let I' be a core valued constraint language. Then I' admits
an idempotent cyclic weighted polymorphism of some arity m > 1 if and only if
Pol+(F) contains an idempotent cyclic operation of the same arity.

5.3 Conservative languages

A valued constraint language I" over a domain D is called conservative if it con-
tains all {0, 1}-valued unary cost functions on D. An operation f € Ogc) is con-
servative if for every x1,...,xx € D we have that f(x1,...,2x) € {z1,..., 21},
and a weighted polymorphism is conservative if its support contains conservative
operations only.

A Symmetric Tournament Pair (STP) is a conservative binary multimor-
phism (M,1), where both operations are commutative, i.e., M(z,y) = MN(y,x)
and M(z,y) = N(y,x) for all ,y € D, and moreover M(x,y) # U(x,y) for all
x #y. A MJN is a ternary conservative multimorphism (Mj;, Mj,, Mn3), such
that Mj,, Mj, are majority operations, and Mng is a minority operation.

Theorem 18 (Kolmogorov and Zivny [16]). Let I" be a conservative con-
straint language over a domain D. If I' admits a conservative binary multimor-
phism (M,U) and a conservative ternary multimorphism (Mj;, Mjs, Mng), and
there is a family M of two-element subsets of D, such that:

— for every {z,y} € M, (M,U) restricted to {x,y} is an STP,
— for every {z,y} & M, (Mj;, Mj,, Mng) restricted to {x,y} is an MJN,
then I' is tractable. Otherwise it is NP-hard.

In this case, as well as in the others, it can be shown that the existence of an
idempotent cyclic polymorphism in Pol*(I") is equivalent (for conservative I')
to the tractability conditions from the theorem above.
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