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Abstract

We analyse how the standard reductions between constraint satisfaction prob-
lems affect their proof complexity. We show that, for the most studied proposi-
tional, algebraic, and semi-algebraic proof systems, the classical constructions of pp-
interpretability, homomorphic equivalence and addition of constants to a core preserve
the proof complexity of the CSP. As a result, for those proof systems, the classes of
constraint languages for which small unsatisfiability certificates exist can be charac-
terised algebraically. We illustrate our results by a gap theorem saying that a con-
straint language either has resolution refutations of constant width, or does not have
bounded-depth Frege refutations of subexponential size. The former holds exactly for
the widely studied class of constraint languages of bounded width. This class is also
known to coincide with the class of languages with refutations of sublinear degree in
Sums-of-Squares and Polynomial Calculus over the real-field, for which we provide al-
ternative proofs. We then ask for the existence of a natural proof system with good
behaviour with respect to reductions and simultaneously small size refutations beyond
bounded width. We give an example of such a proof system by showing that bounded-
degree Lovász-Schrijver satisfies both requirements. Finally, building on the known
lower bounds, we demonstrate the applicability of the method of reducibilities and
construct new explicit hard instances of the graph 3-coloring problem for all studied
proof systems.

1 Introduction

The notion of an efficient reduction lies at the heart of computational complexity. However,
in some of its subareas such as proof complexity, even though the concept exists, it is
much less developed. The study of the lengths of proofs has developed mostly by studying
combinatorial statements, each somewhat in isolation. There is little theory, for instance,
explaining why the best studied families of propositional tautologies are encodings of the
pigeonhole principle or those derived from systems of linear equations over the 2-element
field. Whether there is any connection between the two is an even less explored mystery.
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Luckily this fact is subject to revision, especially if proof complexity exports its methods
to the study of problems beyond universal combinatorial statements. Consider the NP-hard
optimization problem called MAX-CUT. The objective is to find a partition of the vertices
of a given graph which maximizes the number of edges that cross the partition. The best
efficient approximation algorithm known for this problem relies on certifying a bound on the
optimum of its semidefinite programming relaxation. Once the certificate for the relaxation
is in place, a rounding procedure gives an approximate integral solution: at worst 87% of
the optimum in this case [27].

In the example of the previous paragraph, the problem that is subject to proof com-
plexity analysis is that of certifying a bound on the optimum of an arbitrary MAX-CUT
instance. The celebrated Unique Games Conjecture (UGC) can be understood as a suc-
cessful approach to explaining why current algorithms and proof complexity analyses stop
being successful where they do, and reductions play an important role there [49]. One of
the interesting open problems in this area is whether the analysis of the Sums-of-Squares
semidefinite programming hierarchy of proof systems (SOS) could be used to improve over
the 87% approximation ratio for MAX-CUT. Any improvement on this would improve the
approximation status of all problems that reduce to it, and refute the UGC [34]. For the
constraint satisfaction problem, in which all constraints must be satisfied, as well as for
its optimisation version, the analogue question was resolved recently also by exploiting the
theory of reducibility: in that arena, low-degree SOS unsatisfiability proofs exist only for
problems of bounded width [47, 25].

The goal of this paper is to develop the standard theory of reductions between constraint
satisfaction problems in a way that it applies to many of the proof systems from the literature,
including but not limited to Sums-of-Squares. Doing this requires a good amount of tedious
work, but at the same time has some surprises to offer that we discuss next.

Consider a constraint language B given by a finite domain of values, and relations over
that domain. The instances of the constraint satisfaction problem (CSP) over B are given
by a set of variables and a set of constraints, each of which binds some tuple of the variables
to take values in one of the relations of B. The literature on CSPs has focussed on three
different types of conditions that, if met by two constraint languages, give a reduction from
the CSP of one language to the CSP of the other. These conditions are a) pp-interpretability,
b) homomorphic equivalence, and c) addition of constants to the core (see [21, 14]). What
makes these three types of reductions important is that they correspond to classical alge-
braic constructions at the level of the algebras of polymorphisms of the constraint languages.
Indeed, pp-interpretations correspond to taking homomorphic images, subalgebras and pow-
ers. The other two types of reductions put together ensure that the algebra of the constraint
language is idempotent. Thus, for any fixed algorithm, heuristic, or methodM for deciding
the satisfiability of CSPs, if the class of constraint languages that are solvable byM is closed
under these notions of reducibility, then this class admits a purely algebraic characterization
in terms of identities.

Our first result is that, for most proof systems P in the literature, each of these methods
of reduction preserves the proof complexity of the problem with respect to proofs in P . Tech-
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nically, what this means is that if B′ is obtained from B by a finite number of constructions
a), b) and c), then, for any appropriate encoding scheme of the statement that an instance is
unsatisfiable, efficient proofs of unsatisfiability in P for instances of B translate into efficient
proofs of unsatisfiability in P for instances of B′. Our results hold for a very general definition
of an appropriate encoding scheme that we call local. The propositional proof systems for
which we prove these results include DNF-resolution with terms of bounded size, Bounded-
Depth Frege, and (unrestricted) Frege. The algebraic and semi-algebraic proof systems for
which we prove it include Polynomial Calculus (PC) over any field, Sherali-Adams (SA),
Lasserre/SOS, and Lovász-Schrijver (LS) of bounded and unbounded degree. This is the
object of Section 4.

Our second main result is an application: we obtain unconditional gap theorems for the
proof complexity of CSPs. Building on the bounded-width theorem for CSPs [12, 19], the
known correspondence between local consistency algorithms, existential pebble games and
bounded width resolution [35, 7], the lower bounds for propositional, algebraic and semi-
algebraic proof systems [1, 37, 16, 17, 28, 22, 23], and a modest amount of additional work
to fill in the gaps, we prove the following strong gap theorem:

Theorem 1. Let B be a finite constraint language. Then, exactly one of the following holds:

1. B has resolution refutations of constant width,

2. B has neither bounded-depth Frege refutations of subexponential size, nor PC over the
reals, nor SOS refutations of sublinear degree.

In Theorem 1 and below, the statement that the constraint language B has efficient proofs in
proof system P means that, for some and hence every local encoding scheme, all unsatisfiable
instances of B have efficient refutations in P . Also, here and below, sublinear means o(n),

sublinear-exponential means 2o(n), and subexponential means 2n
o(1)

, where n is the number
of variables of the instance.

The proof of Theorem 1 actually shows that case 1 happens precisely if B has bounded
width. As noted earlier, the collapse of Lasserre/SOS to bounded width was already known;
here we give a different proof. By a very recent result on the simulation of Polynomial
Calculus over the real-field by Lasserre/SOS [18], the collapse of Lasserre/SOS implies the
collapse of Polynomial Calculus. The proof we present does not depend on that. Instead we
exploit directly the theory of reducibility.

As an immediate corollary we get that resolution is also captured by algebra, despite the
fact that our methods fall short to prove that it is closed under reductions.

Corollary 1. Let B be a finite constraint language. The following are equivalent:

1. B has bounded width,

2. B has resolution refutations of constant width,

3. B has resolution refutation of sublinear width,

4. B has resolution refutations of polynomial size,
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5. B has resolution refutations of sublinear-exponential size,

6. B has Frege refutations of bounded depth and polynomial size,

7. B has Frege refutations of bounded depth and subexponential size,

8. B has SA, SOS, and PC refutations over the reals of constant degree,

9. B has SA, SOS, and PC refutations over the reals of sublinear degree.

The proof of this is the object of Sections 5 and 6.
Section 7 is about proof systems that operate with polynomial inequalities and that are

stronger than Lasserre/SOS. Theorem 1 raises the question of identifying a proof system that
is closed under reducibilities and that can surpass bounded width. In other words: is there a
natural proof system for which the class of languages that have efficient unsatisfiability proofs
is closed under the standard reducibility methods for CSPs, and that at the same time has
efficient unsatisfiability proofs beyond bounded width? By the bounded-width theorem for
CSPs, one way, and indeed the only way, of surpassing bounded width is by having efficient
proofs of unsatisfiability for systems of linear equations over some finite Abelian group.
A straightforward answer to our question is thus the following: Polynomial Calculus over
a field of non-zero characteristic p has efficient unsatisfiability proofs for systems of linear
equations over Zp. On the other hand, in view of the limitations of Polynomial Calculus over
the real-field, and of certain semi-algebraic proof systems that are imposed by Theorem 1, it
is perhaps a surprise that, as we show, bounded degree Lovász-Schrijver also satisfies both
requirements.

Theorem 2. Unsatisfiable systems of linear equations over the 2-element group have LS
refutations of bounded degree and polynomial size.

Proving this amounts to showing that Gaussian elimination over Z2 can be simulated by
reasoning with low-degree polynomial inequalities over R. The proof of this counter-intuitive
fact relies on earlier work in proof complexity for reasoning about gaps of the type (−∞, c]∪
[c+ 1,+∞), for c ∈ Z, through quadratic polynomial inequalities [30].

It should be pointed out that another proof system that can efficiently solve CSPs of
bounded width, and that at the same time goes beyond bounded width, is the proof system
that operates with ordered binary decision diagrams from [8]. Although it looks unlikely that
our methods could be used for this proof system, whether it is closed under the standard
CSP reductions is something that was not checked, neither in [8], nor here.

In Section 8 we demonstrate the applicability of our results. Consider the graph 3-
coloring problem seen as the CSP of a finite constraint language on a 3-element domain
in the standard way. Since it is known that 3-coloring has unbounded width, Corollary 1
applies to it, and we get 3-coloring instances that are hard for all indicated proof systems.
We open the box of the method, and elaborate on that, in order to get explicit 3-coloring
instances that are hard for Polynomial Calculus over all fields simultaneously. This gives
a new proof of the main result in [40]. Indeed, the same analysis applies to all CSPs that
are NP-complete and all proof systems that are closed under reducibilities. This way we
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solve Open Problem 5.3 in [40] that asks for explicit 3-coloring instances that are hard for
Lasserre/SOS.

This article is an extended version of [10]. Except for providing full proof details, we
generalise the main gap theorem to cover Polynomial Calculus over the reals and apply our
results to the 3-coloring problem, as explained in the paragraph above.

2 Preliminaries

2.1 Propositional logic and propositional proofs

Formulas. Fix a set of propositional variables taking values true or false. A literal is a
variable X or the negation of a variable X. We write propositional formulas out of literals
using conjunctions ∧, disjunctions ∨, and parentheses, with the usual conventions on paren-
theses. Also we implicitly think of ∧ and ∨ as commutative, associative and idempotent.
Thus the formula A∧A is viewed literally the same as A, the formula A∧B is viewed literally
the same as B ∧A, and the formula (A∧B)∧C is viewed literally the same as A∧ (B ∧C).
The same applies to disjunctions. Negation is allowed only at the level of literals, so our
formulas are written in negation normal form. If A is a formula, we define its complement A
inductively: if A is a variable X, then A = X; if A is a negated variable X, then A = X; if
A is a conjunction C∧D, then A = C∨D; if A is a disjunction C∨D, then A = C∧D. The
empty formula is denoted 0 and is always false by convention. Its complement 0 is denoted
1, and is always true by convention. We think of 0 and 1 as the neutral elements of ∨ and ∧,
respectively, and the absorbing elements of ∧ and ∨, respectively. Thus we view the formulas
0 ∨ A and 1 ∧ A as literally the same as A, and 0 ∧ A and 1 ∨ A as literally the same as 0
and 1, respectively. The size s(A) of a formula A is defined inductively: if A is 0 or 1, then
s(A) = 0; if A is a literal, then s(A) = 1; if A is a conjunction C ∧D or a disjunction C ∨D
with non-absorbing and non-neutral C and D, then s(A) = s(C) + s(D) + 1.

Propositional proof systems. We work with a Tait-style proof system for propositional
logic that we call Frege. The system manipulates formulas in negation normal form and
has the following four rules of inference called axiom, cut, introduction of conjunction, and
weakening :

A ∨ A
C ∨ A D ∨ A

C ∨D
C ∨ A D ∨B
C ∨D ∨ (A ∧B)

C

C ∨D
. (1)

In these rules, C and D could be the empty formula 0 or its complement 1. In particular 1
is an instance of an axiom rule. A Frege proof is called cut-free if it does not use the cut
rule. A Frege proof from a set of formulas F is a proof in which the formulas in F are
allowed as additional axioms. In case such a proof ends with the empty formula we call it
a Frege refutation of F . As a proof system, Frege is sound and implicationally complete,
which means that if A is a logical consequence of A1, . . . , Am, then there is a Frege proof
of A from A1, . . . , Am. We will give a proof of this in Section 2.2 that will apply also to
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certain subsystems of Frege. If C is a class of formulas, a C-Frege proof is one that has all
its formulas in the class C. The size of a proof is the sum of the sizes of the formulas in it.
The length of a proof is the number of formulas in it.

Resolution, k-DNF Frege and Bounded Depth Frege. A term is a conjunction of
literals and a clause is a disjunction of literals. A k-term or a k-clause is one with at most
k literals. A k-DNF is a disjunction of k-terms and a k-CNF is a conjunction of k-clauses.

We define the classes of Σt,k- and Πt,k-formulas inductively. For t = 1, these are just the
classes of k-DNF and k-CNF formulas, respectively. For t ≥ 2, a formula is Σt,k if it is a
disjunction of Πt−1,k-formulas, and it is Πt,k if it is a conjunction of Σt−1,k-formulas.

In this paper, we use the expression Frege proof of depth t and bottom fan-in k to mean
a Σt,k-Frege proof. Bounded-depth Frege means Σt,k-Frege for some fixed t and k. This
coincides with other definitions in the literature. Frege of depth t and bottom fan-in k,
as a proof system, is sound and implicationally complete for proving Σt,k-formulas from
Σt,k-formulas. A proof of this will follow from the general completeness theorem below.

Σ1,1 is the class of clauses. It is well-known that Σ1,1-Frege and resolution proofs are
basically the same thing (the difference is that in Σ1,1-Frege proofs we allow clause axioms
and weakening, but these can always be removed at no cost). A resolution proof which uses
only l-clauses is called a proof of width l.

Σ1,k-Frege, for k ≥ 2, is the system R(k) introduced by Krajicek [36], also known as
Res(k), k-DNF resolution, and k-DNF Frege. This family of proof systems is important for
us because, by letting k range over all constants (i.e., by considering R(const)), it is the
weakest for which we can prove closure under reductions.

2.2 Completeness of Frege and its subsystems

The proof that Frege is implicationally complete is rather standard. We give a detailed proof
nonetheless because we want to have concrete bounds.

Theorem 3 (Quantitative Completeness). Let C be a class of formulas that is closed under
subformulas and complementation, and let C ′ be the closure of C under disjunctions. Let
A1, . . . , Am and A be formulas in C ′. If A1, . . . , Am logically imply A, then there is a C ′-Frege
proof of A from A1, . . . , Am. Moreover, if the formulas A1, . . . , Am and A have n variables
and size at most s, then the size of the proof is at most polynomial in n, s, m, 2n and sm.

Proof. Let X1, . . . , Xn be the variables in A1, . . . , Am and A. For c ∈ {0, 1}, let X
(c)
i denote

the negative literal Xi if c = 0, and the positive literal Xi if c = 1. For a truth assignment
b = (b1, . . . , bn) ∈ {0, 1}n, let Sb be the formula

∨n
i=1X

(1−bi)
i . First we show that, for each

formula B on the variables X1, . . . , Xn and each truth assignment b = (b1, . . . , bn) ∈ {0, 1}n,
if b satisfies B, then there is a cut-free proof of Sb ∨B from no assumptions. This is proved
by induction on the size of B. If B is a literal, say B = Xi or B = Xi, then Sb∨B is obtained
as the weakening of the axiom X

(1−bi)
i ∨X(bi)

i . If B is a conjunction, say B = C ∧D, then b
satisfies both C and D, and by induction hypothesis there are cut-free proofs of Sb ∨C and
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Sb∨D. A cut-free proof of Sb∨B then follows from applying introduction of conjunction. If
B is a disjunction, say B = C∨D, then b satisfies either C or D, and by induction hypothesis
there is a cut-free proof of either Sb ∨ C or Sb ∨D. A cut-free proof of Sb ∨ B then follows
from applying weakening. Note that the length of the proof constructed this way is bounded
by s(B), and since all the formulas in the proof have sizes bounded by n+ s(B), the size of
the proof is bounded by (n + s(B))s(B). Note also for later use that, as a consequence of
the assumption that C is closed under subformulas, the following holds: if B is a disjunction
of formulas in C, say B =

∨
iBi, then each formula in this proof is a disjunction of formulas

in C, and if B is a conjunction of formulas in C, say B =
∧
iBi, then the construction gives

a cut-free proof of Sb ∨ Bi for each Bi, and each formula in the proof of Sb ∨ Bi is again a
disjunction of formulas in C.

Now we assume that A is a logical consequence of A1, . . . , Am and we build a proof of A
from A1, . . . , Am. This proof will not yet be guaranteed to have all its formulas in C ′. We will
deal with this issue later. For each truth assignment b ∈ {0, 1}n, the following hold: 1) if b
satisfies A, then the previous paragraph gives a proof of Sb∨A, and 2) if b falsifies A, then it
also falsifies some Aj for some j ∈ [m], and the previous paragraph gives a proof of Sb ∨Aj.
From these 2n proofs, a sequence of 2n − 1 cuts followed by one weakening gives a proof of
A∨A1∨ · · · ∨Am. From there a sequence of m cuts with the m hypotheses A1, . . . , Am gives
a proof of A. Finally we argue how to turn this proof into one that uses only formulas in
C ′. For the proofs of the type Sb ∨A there is no issue because A is a disjunction of formulas
in C and the previous paragraph argues that such proofs have all its formulas in C ′. The
problem comes from the proofs of the type Sb ∨Aj. However, since each Aj is a disjunction
of formulas in C, say Aj =

∨
k∈Ij Ajk, its negation Aj is a conjunction of formulas in C,

because C is closed under complementation. This means that instead of using the proof of
Sb ∨ Aj, we could have used the proof of Sb ∨ Ajk for each k ∈ Ij. We do this for each
choice of (k1, . . . , km) ∈ I1 × · · · × Im, and what we get are proofs of A ∨A1k1 ∨ · · · ∨Amkm .
These proofs now have all their formulas in C ′. Combining these at most sm many proofs
with the hypotheses A1, . . . , Am in a sequence of at most sm cuts, we get a proof of A from
A1, . . . , Am, and all the formulas in this proof are in C ′. The size is polynomial in n, s, m,
2n and sm, and the proof is complete.

The quantitative completeness theorem applies to Σ1,k-Frege (k-DNF Frege and resolu-
tion) because if C is the class of k-terms and k-clauses, then C is closed under subformulas
and complementation, and the closure of C under disjunctions is the class of k-DNFs. It also
applies to Σt,k-Frege, for t ≥ 2, because the class Σt−1,k ∪Πt−1,k is closed under subformulas
and complementation, and its closure under disjunctions is precisely Σt,k.

2.3 Polynomials and algebraic proofs

Polynomials. We define everything for the real field R for simplicity. For algebraic proofs
the field would not matter, but for semi-algebraic proofs we need an ordered field such as R.
Let X1, . . . , Xn be n algebraic commuting variables ranging over R. We want to define
proof systems that manipulate equations of the form P = 0 and inequalities of the form
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P ≥ 0, where P is a polynomial in R[X1, . . . , Xn], the ring of polynomials with commuting
variables X1, . . . , Xn and coefficients in R. For our purposes it will suffice to assume that
the variables range over {0, 1}. Accordingly, it will also be convenient to introduce twin
variables X̄1, . . . , X̄n with the intended meaning that X̄i = 1 − Xi for i = 1, . . . , n. In all
proof systems of this section, the following axioms will be imposed on the variables:

X2
i −Xi = 0 X̄2

i − X̄i = 0 Xi + X̄i − 1 = 0. (2)

Observe that XiX̄i = 0 follows from these axioms: multiply Xi + X̄i − 1 = 0 by Xi and
subtract X2

i −Xi = 0. This sort of reasoning is captured by the proof systems we are about
to define.

Algebraic and semi-algebraic proof systems. Let P and Q denote polynomials. In
addition to the axioms in (2), consider the following inference rules called addition and
multiplication:

P = 0 Q = 0

P +Q = 0

P = 0

PQ = 0
. (3)

Clearly, these rules are sound: any assignment f : {X1, . . . , Xn, X̄1, . . . , X̄n} → R that
satisfies the equations in the premises, also satisfies the equation in the conclusions. For
semi-algebraic proofs we add the following axioms:

Xi ≥ 0 X̄i ≥ 0 1−Xi ≥ 0 1− X̄i ≥ 0 1 ≥ 0. (4)

and the following inference rules for polynomial inequalities:

P ≥ 0 Q ≥ 0

P +Q ≥ 0

P ≥ 0 Q ≥ 0

PQ ≥ 0 P 2 ≥ 0
. (5)

These rules are called addition, multiplication and positivity of squares and are also sound
for assignments f : {X1, . . . , Xn, X̄1, . . . , X̄n} → R. One could also consider additional rules
that link equalities with inequalities, such as deriving P ≥ 0 from P = 0, or deriving P = 0
from P ≥ 0 and −P ≥ 0, but if we think of an equality as two inequalities, then they are
not strictly necessary. On the other hand, some of the axioms are redundant, such as 1 ≥ 0
which can be obtained from adding Xi ≥ 0 and 1 − Xi ≥ 0, but for the sake of clarity in
writing proofs we prefer to keep them.

If H denotes a system of polynomial equations P1 = 0, . . . , Pr = 0 and P = 0 is a further
equation, an algebraic proof of P = 0 from H is a sequence of polynomial equations ending
with P = 0 where each equation in the proof is either a hypothesis equation from H, or
an axiom equation as in (2), or follows from previous equations in the sequence by one of
the inference rules in (3). If H in addition includes a system of polynomial inequalities
Q1 ≥ 0, . . . , Qs ≥ 0, then a semi-algebraic proof of Q ≥ 0 from H is defined analogously
except that we think of each equation as two inequalities, we use additionally the axioms
in (4), and we use additionally the rules in (5). Note that by writing Q = Q+ −Q−, where
Q+ and Q− have only positive coefficients, the rules in (3) are actually easily simulated by
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the rules in (5) (for the multiplication rule, this uses also the axioms in (4)). If an algebraic
proof ends with the equation 1 = 0, or similarly if a semi-algebraic proof ends with the
inequality −1 ≥ 0, we call it a refutation of H.

As proof systems for deriving new polynomial equations or inequalities that follow from
old ones on all evaluations of their variables in {0, 1}, both systems are sound and implication-
ally complete (we note, however, that without some restrictions on the domain of evaluation,
such as {0, 1} in our case, the completeness claim is not true). In Section 2.4 below we will
prove implicational completeness for two subsystems of algebraic and semi-algebraic proofs,
and hence for algebraic and semi-algebraic proofs themselves.

The main complexity measures for algebraic and semi-algebraic proofs are size and degree.
Size is measured by the number of symbols it takes to write the representations of the
polynomials in the proofs, and degree is the maximum of the total degrees of the polynomials
in the proofs. Polynomials are typically represented as explicit sums of monomials, or as
algebraic formulas or circuits. Using formulas or circuits as representations requires some
additional technicalities in the definitions of the rules, that we want to avoid (see [42, 29]).
For all our examples below, we use the representation of an explicit sum of monomials.

Some proof systems from the literature. The proofs in the Polynomial Calculus (PC)
are algebraic proofs restricted in such a way that the polynomial Q in the multiplication
rule in (3) is either a scalar or a variable [24]. In the literature, this has been called PCR
for PC with resolution (see [2]), due to the presence of twin variables, but in recent works
the shorter original name PC is used. As pointed out earlier, algebraic proofs can be defined
over arbitrary scalar-fields F beyond the real-field R. A claim about algebraic proofs in
which the field is omitted is meant to hold for all fields simultaneously. Whenever we need
to specify the field F , we speak of algebraic and PC proofs over F .

The proofs in the Lovász-Schrijver (LS) proof system are semi-algebraic proofs for which
the following restrictions apply: 1) the polynomial Q in the multiplication rule in (5) is either
a positive scalar or a variable, and 2) the positivity-of-squares rule in (5) is not allowed. When
the positivity-of-squares is also allowed, the system is called Positive Semidefinite Lovász-
Schrijver and is denoted LS+. Originally the Lovász-Schrijver proof system was defined
to manipulate quadratic polynomials only (see [41, 43]). We follow [30] and consider the
extension to arbitrary degree. For the original Lovász-Schrijver proof systems we use LS2

and LS+
2 . Degree-d Lovász-Schrijver and degree-d Positive Semidefinite Lovász-Schrijver are

denoted LSd and LS+
d , respectively. For LS and LS+ proofs, an important complexity measure

originally studied by Lovász and Schrijver is their rank, which is the maximum nesting depth
of multiplication by a variable in the proof. Note that, due to possible cancellations, the
degree of an LS proof could in principle be much smaller than its rank.

We define four additional proof systems called Nullstellensatz (NS), Sherali-Adams (SA),
Positive Semidefinite Sherali-Adams (SA+), and Lasserre/Sums-of-Squares (SOS). For NS,
SA and SA+, we define them as the subsystems of PC, LS and LS+, respectively, in which
all applications of the multiplication rule must precede all applications of the addition rule.
Due to the structural restriction in which multiplications precede additions, we can think of
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a proof from a set H of hypotheses as a static polynomial identity of the form

r∑
i=1

Pi · ci
∏
j∈Ji

Xj

∏
k∈Ki

X̄k = P, (6)

where P1, . . . , Pr are polynomials that either come from the set H of hypotheses, or they are
axiom polynomials from the lists in (2) and (4) as appropriate (i.e., from (2) for NS, and
from both (2) and (4) for SA and SA+), or are squares of polynomials when they are allowed
(i.e., for SA+), and c1, . . . , cr are scalars of the appropriate type (i.e., arbitrary when the Pi
they multiply comes from an equation, or positive when the Pi they multiply comes from
an inequality). Finally we define Lasserre/Sums-of-Squares proof system as the subsystem
of semi-algebraic proofs to which the following restrictions apply: 1) the polynomial Q is
arbitrary in the multiplication rule in (3) and it is a square polynomial in the multiplication
rule in (5), and 2) all multiplications precede all additions. Thus, in terms of static identities,
these are proofs of the form

r∑
i=1

Pi · Si = P, (7)

where P1, . . . , Pr are polynomials that either come from the set H of hypotheses, or they are
axiom polynomials from the lists (2) and (4), or they are squares, and S1, . . . , Sr are arbitrary
polynomials or square polynomials as appropriate (i.e., arbitrary if the Pi they multiply
comes from an equation, and squares if the Pi they multiply comes from an inequality).
Note that the size of an NS, SA, SA+ or SOS proof is polynomially related to the sum
of the sizes of the non-zero ci’s and Si’s in the corresponding static identities (6) and (7).
Non-static proofs are sometimes called dynamic [30]. We will avoid using this term here.

We close this section by noting the relationships between these proof systems. Clearly,
every NS proof of degree d is also a PC proof of degree d. The converse is certainly not
true, but what is true is that every PC proof of degree d and rank k can be converted into
an NS proof of degree d + k, where the rank of a PC proof is the analogue of the rank
measure for LS proofs that we defined earlier. The same relationships hold between SA and
LS, and SA+ and LS+. In all three cases, the conversions go by swapping the order in which
the addition and the multiplication rules are applied, when they appear in the wrong order.
Also, every NS proof over the reals is an SA proof, which is an SA+ proof. Finally, thanks
to the axioms (2), each SA+ proof can be easily converted to an SOS proof of twice the
degree: replace each multiplication by a variable X by a multiplication by X2, and subtract
the appropriate multiple of the axiom X2 −X = 0 to effectively simulate the multiplication
by X. See [39] for a related discussion.

Discussion on variants of NS, SA, SA+ and SOS. The polynomial identity interpreta-
tions of NS, SA, SA+ and SOS, c.f., (6) and (7), are closely related to the original definitions
by Beame et al. [15] for NS, and the settings of Sherali and Adams [46] and Lasserre [38] for
SA and SOS, respectively. In most incarnations of these proof systems the twin variables are
not present; in some others they are (e.g., [9]). If we care only about degree, the presence of
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twin variables makes no difference at all for Nullstellensatz since we can always simulate a
multiplication by X̄i by subtracting a multiplication by Xi. Note, however, that this blows
up the size exponentially in the degree. In order to make sense of Sherali-Adams without
twin variables, we need to extend the definition to allow Q in the multiplication rule to be,
besides a positive scalar or a variable Xi, a linear polynomial of the form 1−Xi. The static
form of such a proof is an identity such as

r∑
i=1

P ′i · ci
∏
j∈Ji

Xj

∏
k∈Ki

(1−Xk) = P ′, (8)

where P ′1, . . . , P
′
r and P ′ are polynomials as in (6), but without twin variables. If P ′1, . . . , P

′
r

and P ′ denote the polynomials over X1, . . . , Xn that result from the polynomials P1, . . . , Pr
and P over X1, . . . , Xn, X̄1, . . . , X̄n when each twin variable X̄i is replaced by 1 −Xi, then
any valid proof with twin variables as in (6) transforms into a valid proof without twin
variables as in (8). Thus, if we care only about degree, the versions of Sherali-Adams and
Positive Semidefinite Sherali-Adams without twin variables simulate the versions with twin
variables, for polynomials without twin variables. As for Nullstellensatz the size could blow
up exponentially in the degree. The same facts are true for Sums-of-Squares.

Two further comments are in order. For Nullstellensatz, one could consider an alternative
definition in which proofs are polynomial identities of the form

∑
i Pi · Ri = P , where the

Pi are hypotheses or axiom polynomials, and the Ri are arbitrary polynomials. However
this difference is minor since we can always write each Ri as a combination of monomials∑

j cijMij and split Pi ·Ri into
∑

j Pi ·cijMij. Second, one could consider the version of Sums-
of-Squares in which in addition to squares Si as in (7), one is also allowed multiplication
by variables. As noted earlier, such multiplications by a variable X can be simulated by
multiplications by their squares X2, thanks to the axioms X2 −X = 0 from (2), at the cost
of at most doubling the degree, and blowing up the size at most polynomially.

2.4 Completeness of Nullstellensatz and Sherali-Adams

In this section we prove the implicational completeness of Nullstellensatz and Sherali-Adams
with quantitative bounds. We start with two technical lemmas that will be used to justify
the elimination of twin variables.

Lemma 1. For every polynomial P of degree d and every variable Y , there are NS and SA
proofs of P · (1− Y − Ȳ ) = 0 and P · (Y 2 − Y ) = 0 of degree d + 1 and d + 2, respectively,
and size polynomial in the size of P .

Proof. Split P into a sum of monomials
∑

j cjMj, lift the axiom 1 − Y − Ȳ = 0 by cjMj,

and add up together to get P · (1− Y − Ȳ ) = 0.

The second technical lemma that we need formalizes the elimination of twin variables.
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Lemma 2. For every polynomial P of degree d, every scalar c and every two subsets J and
K of [n], with |J |+ |K| = `, there are NS and SA proofs of the equation

P · c
∏
j∈J

Xj

∏
k∈K

(1−Xk)− P · c
∏
j∈J

Xj

∏
k∈K

X̄k = 0 (9)

of degree d+ ` and size polynomial in 2` and the size of c and P .

Proof. Assume without loss of generality that K = [t] where t ≤ `. Let Q = cP
∏

j∈J Xj.

Define Rj = Q
∏j

k=1(1−Xk)
∏t

k=j+1 X̄k for all j ∈ [t]∪ {0}. Observe that the goal equation

is Rt −R0 = 0. For each j ∈ [t], let Tj = Q
∏j−1

k=1(1−Xk)
∏t

k=j+1 X̄k. Now:

(1−Xj − X̄j)Tj = Rj −Rj−1 (10)

for each j ∈ [t]. Lemma 1 gives proofs of (1−Xj− X̄j)Tj = 0 for every j ∈ [t]. Adding them
all together gives Rt −R0 = 0 by (10) and we are done.

We will need the following definitions. For every assignment a : {X1, . . . , Xn} → {0, 1},
define

Ja = {i ∈ [n] : a(Xi) = 1},
Ka = {i ∈ [n] : a(Xi) = 0}.

Define its indicator polynomial :

Ia(X1, . . . , Xn) :=
∏
j∈Ja

Xj

∏
k∈Ka

(1−Xk). (11)

For every polynomial P , let P (a) denote the evaluation of P when Xi is assigned a(Xi).
For a polynomial P on the variables X1, . . . , Xn, its multilinearization is the unique mul-

tilinear polynomial that agrees with P on all assignments of values in {0, 1} to its variables.
The uniqueness of the multilinearization follows from the fact that the collection of mul-
tilinear polynomials in R[X1, . . . , Xn] forms a vector space of dimension 2n for which the
monomials make a basis. Note that this holds for any field; not just R.

Lemma 3. For every polynomial P on the variables X1, . . . , Xn, there are polynomials
Q1, . . . , Qn such that the following identity holds:

P +
n∑
i=1

Qi · (X2
i −Xi) = P ∗, (12)

where P ∗ denotes the multilinearization of P . Moreover, each Qi has size polynomial in the
size of P .
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Proof. Observe that it is enough to prove the lemma for the special case of monomials.
Indeed, if P is an arbitrary polynomial, we get the identity (12) by splitting P into a sum of
monomials, applying the lemma to each monomial, and adding up the obtained identities.

Let P be a monomial. We proceed by induction on the sum of the individual degrees of
the variables. If all variables have individual degree one, there is nothing to prove. Otherwise,
some variable must have individual degree at least two. Say this variable is Xj and let P ′

and P ′′ be such that P = XjP
′ and P ′ = XjP

′′. Note that the multilinearizations of P and
P ′ are the same, and in both P ′ and P ′′ the sum of the individual degrees is strictly smaller.
The induction hypothesis applied to P ′ gives polynomials Q′1, . . . , Q

′
n such that

P ′ +
n∑
i=1

Q′i · (X2
i −Xi) = P ′

∗
= P ∗. (13)

Now the identity we want is obtained by defining Qi = Q′i for i 6= j, and Qj = Q′j − P ′′.
Indeed:

P +
∑
i

Qi · (X2
i −Xi) = P + (Q′j − P ′′) · (X2

j −Xj) +
∑
i 6=j

Q′i · (X2
i −Xi) (14)

= P +
∑
i

Q′i · (X2
i −Xi)− P ′′ ·X2

j + P ′′ ·Xj = (15)

= P ′ +
∑
i

Q′i · (X2
i −Xi), (16)

and we already proved in (13) that this last thing is P ∗.

Theorem 4. Let H be a system of polynomial equations, let I be a system of polynomial
inequalities, and let P be a polynomial, all over the same n variables. If P = 0 follows from
H on all evaluations of its variables in {0, 1}, then there is an NS proof of P = 0 from H.
Similarly, if P ≥ 0 follows from H ∪ I on all evaluations of its variables in {0, 1}, then there
is an SA proof of P ≥ 0 from H ∪ I. Moreover, in both cases the degree of the proof is at
most n+ 1, and the size is polynomial in 2n and in the size of H and H ∪ I, respectively.

Proof. Both proofs are essentially the same; first we give the proof for Sherali-Adams and
then indicate how to adapt it to Nullstellensatz. We prove the theorem when P is multilinear
and then we adapt it to the general case. Assume P is multilinear and let H ∪ I = {P1 ≥
0, . . . , Pm ≥ 0}, where we have written each equation in H as two inequalities. For every
assignment a : {X1, . . . , Xn} → {0, 1}, let ca,0, ca,1, . . . , ca,m be the real numbers defined by
cases as follows. If P (a) ≥ 0, let ca,i = P (a) for i = 0 and ca,i = 0 for i ∈ [m]. If P (a) < 0, let
i∗ be the smallest element in [m] such that Pi∗(a) < 0, which must exist by the hypothesis,
and define ca,i = P (a)/Pi(a) for i = i∗ and ca,i = 0 for each i ∈ ([m] ∪ {0}) \ {i∗}. Observe
that in all cases ca,i is non-negative. In the first case because P (a) was non-negative, and in
the second case because both Pi∗(a) and P (a) were negative, so their ratio is positive. The
choice of these reals guarantees that

ca,0 +
m∑
i=1

ca,iPi(a) = P (a). (17)

13



We need the following claim.

Claim 1. For every assignment a and every i ∈ [m], the polynomial Pi(a) · Ia is the multi-
linearization of Pi · Ia. In addition,

∑
a

(
ca,0 · Ia +

∑m
i=1 ca,i · Pi(a) · Ia

)
= P .

Proof. Since the multilinearization is unique and the polynomial Pi(a) · Ia is multilinear, it
suffices to show that Pi(a) · Ia and Pi · Ia agree on all assignments of values in {0, 1} to their
variables. But this is easy: they both evaluate to Pi(a), or both evaluate to 0, depending
on whether the assignment is a, or different from a, respectively. For the second claim we
use the same argument, and add the additional fact that P is itself multilinear: the big sum
over a is a multilinear polynomial and, by (17), it agrees with P on all assignments of values
in {0, 1} to its variables. Hence, by the uniqueness of the multilinearization, and since P is
multilinear, it is P itself.

Back to the proof, by the first part of Claim 1, for every assignment a and every i ∈ [m],
there exist polynomialsQ1

a,i, . . . , Q
n
a,i according to Lemma 3 that make the following identities

hold:

Pi · Ia +
n∑
j=1

Qj
a,i · (X2

j −Xj) = Pi(a) · Ia. (18)

We are ready to build up the proof of P ≥ 0 from P1 ≥ 0, . . . , Pm ≥ 0. We claim that the
following identity holds:

∑
a

(
ca,0 · Ia +

m∑
i=1

ca,i ·
(
Pi · Ia +

n∑
j=1

Qj
a,i · (X2

j −Xj)
))

= P. (19)

First we claim that the left-hand side can be converted into a valid SA proof (with multipli-
cations by Xj’s and 1−Xj’s, which can be simulated in our definition of Sherali-Adams as
discussed in Lemma 2). To see this, just reorder the terms and apply Lemma 1 to replace
Qj
a,i · (X2

j −Xj) by proper SA proofs. It remains to see that the identity (19) holds; this will
show that it is an SA proof of P ≥ 0 from P1 ≥ 0, . . . , Pm ≥ 0.

In order to see that (19) holds, first use equation (18) to rewrite its left-hand side:

∑
a

(
ca,0 · Ia +

m∑
i=1

ca,i · Pi(a) · Ia
)
. (20)

And now use the second part of Claim 1 to complete the proof when P is multilinear.
When P is not multilinear, it suffices to apply the above argument to get its multilin-

earization P ∗, and then apply the reverse identity in Lemma 3. Indeed,

P ∗ −
n∑
i=1

Qi · (X2
i −Xi) = P. (21)

To turn this into a proper SA proof we need to use Lemma 1 again.
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For Nullstellensatz, the argument is the same except that, in order to handle arbitrary
fields besides the real field R, the coefficients ca,i need to be redefined. Let H = {P1 =
0, . . . , Pm = 0}. If Pi(a) = 0, define ci,a = 0 for all i ∈ [m]. If Pi(a) 6= 0, let i∗ be the
smallest element in [m] such that Pi∗(a) 6= 0, which must exist by hypothesis, and define
ca,i = P (a)/Pi(a) for i = i∗ and ca,i = 0 for i ∈ ([m]∪ {0}) \ {i∗}. This choice is well-defined
over any field and guarantees (17). The rest of the proof is the same.

2.5 Constraint satisfaction problem

There are many equivalent definitions of the constraint satisfaction problem. Here we use
the definition in terms of homomorphisms. Below we introduce the necessary terminology. A
concrete example will be developed in Section 8 where we apply the method of reducibilities
to the graph k-coloring problem for k ≥ 3.

CSPs and homomorphisms. A relational vocabulary L is a set of symbols; each symbol
has an associated natural number called its arity. A relational structure B over L (or an
L-structure) is a set B, called a domain together with a set of relations over B. For each
natural number r and each relation symbol R ∈ L of arity r, there is a relation in B of arity
r denoted R(B), i.e., R(B) ⊆ Br. Sometimes we call it an interpretation of R in B. We say
that a relational structure is finite if its domain is finite and it has finitely many non-empty
relations.

Let B and B′ be L-structures, for some relational vocabulary L. A homomorphism from
B to B′ is a function h : B → B′, which preserves all the relations, that is, for every nat-
ural number r and each relation symbol R ∈ L of arity r, if (b1, . . . , br) ∈ R(B), then
(h(b1), . . . , h(br)) ∈ R(B′).

For a fixed L-structure B, the constraint satisfaction problem of B, denoted CSP(B), is the
following computational problem: given a finite L-structure A, decide whether there exists
a homomorphism from A to B. If the anwser is positive we call the instance A satisfiable;
otherwise we call it unsatisfiable. The size of an instance A is the number of elements in its
domain plus the number of tuples in all its relations. Note that if the vocabulary L is fixed
and finite, then the size of A is polynomial in the number of elements of its domain which
we denote by |A|. In the context of CSP the structure B is often called a constraint language
or a template. We usually assume that the constraint language B is finite.

Bounded-width. The existential k-pebble game is played on two relational structures A
and B over the same vocabulary by two players called Spoiler and Duplicator. The players are
given two corresponding sets of pebbles {a1, . . . , ak} and {b1, . . . , bk}. In each round Spoiler
picks one of the k pebbles a1, . . . , ak, say ai, and puts it on an element of the structure A.
Duplicator responds by picking the corresponding pebble bi and placing it on some element
of the structure B. For simplicity, in any given configuration of the game let us identify a
pebble with the element of the structure that it is placed on. Spoiler wins if at any point
during the game the partial function f : A → B defined by f(ai) = bi, for each pebbled
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element ai of A, is either not well defined (because there exist indices i, j ∈ [k] of two pebbled
elements such that ai = aj but bi 6= bj), or is not a partial homomorphism. Otherwise, the
Duplicator wins.

We say that a finite relational structure B has width k if, for every finite structure A of
the same vocabulary as B, if there is no homomorphism from A to B, then Spoiler wins the
existential k-pebble game on A and B. The structure B has bounded width if it has width k
for some k. Structures of bounded width are exactly those structures for which CSP(B) can
be solved by a local consistency algorithm [35].

2.6 Propositional and polynomial encodings

To reason about proof systems for CSPs we encode the fact that a finite structure A maps
homomorphically to a finite structure B, over the same vocabulary, as a CNF or a system of
polynomial inequalities or/and equations. In the proofs we will use concrete fixed encodings
but our results hold for a whole class of encodings which we call local.

Local encodings. First let us fix some notation. In the context of propositional proof
systems, for any sets A and B by V (A,B) we denote a set of propositional variables: for
every a ∈ A and every b ∈ B there is a variable X(a, b) in the set V (A,B). Truth valuations
of the variables in V (A,B) and relations on A×B have a natural one-to-one correspondence:
a variable X(a, b) is assigned the truth value 1 if and only if the pair (a, b) belongs to the
relation. Recall that a function f from A to B is a relation {(a, f(a)) : a ∈ A} on A × B.
Hence, a homomorphism from an L-structure A to an L-structure B is a relation on A×B.

Fix a finite relational vocabulary L and a finite structure B over L.
A propositional encoding scheme E for CSP(B) is a mapping which assigns to every L-

structure A a set of clauses E(A) over the variables in V (A,B) in such a way that there
is a one-to-one correspondence between the truth valuations of the variables in V (A,B)
satisfying E(A) and the homomorphisms from A to B.

In the context of algebraic and semi-algebraic proof systems we additionally assume the
presence of twin variables. For every a ∈ A and every b ∈ B there is both the algebraic
variable X(a, b) and the algebraic variable X̄(a, b) in the set V (A,B), and an analogous
bijective correspondence holds between relations of A × B and those evaluations of the
variables from V (A,B) in {0, 1} which satisfy the axioms from (2): a pair (a, b) belongs
to the relation if and only if the variable X(a, b) is assigned the value 1 if and only if the
variable X̄(a, b) is assigned the value 0.

An algebraic encoding scheme E over a field F for CSP(B) is a mapping which assigns to
every L-structure A a set of polynomial equations E(A) over the variables in V (A,B) in such
a way that there is a one-to-one correspondence between the evaluations of the variables form
V (A,B) in {0, 1} satisfying E(A) and the axioms from (2) over F , and the homomorphisms
from A to B. Finally, a semi-algebraic encoding scheme E for CSP(B) is a mapping which
assigns to every L-structure A a set of polynomial inequalities E(A) over the variables in
V (A,B) in such a way that there is a one-to-one correspondence between the evaluations of
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the variables form V (A,B) in {0, 1} satisfying E(A) and the axioms from (2) and (4), and
the homomorphisms from A to B. Observe that every algebraic encoding scheme over the
real-field is also a semi-algebraic encoding scheme.

An encoding scheme E is invariant under isomorphisms if, whenever f : A → A′ is an
isomorphism from an L-structure A to an L-structure A′, it holds that E(A′) = f(E(A)),
where f(E(A)) is obtained from E(A) by substituting each variable X(a, b) by X(f(a), b)
(and each variable X̄(a, b) by X̄(f(a), b) if necessary).

Next we define the key notion of local encoding scheme. We need two pieces of notation.
If the structure A has a single element and each of its relations is empty, we denote the
encoding E(A) by E(a). If the structure A has a single non-empty relation R(A) with
a single tuple (a1, . . . , ar) in it, and its domain is {a1, . . . , ar}, then we denote E(A) by
E(R(a1, . . . , ar)). Since the vocabulary L is finite, up to isomorphism there are only finitely
many structures of one of the above-mentioned two kinds. Therefore, for any relational
structure B over a finite vocabulary L and any encoding scheme E that is invariant under
isomorphisms, the size of encodings of the form E(a) or E(R(a1, . . . , ar)) is bounded by a
constant. We call it the local bound of the encoding scheme.

An encoding scheme E in local if it is invariant under isomorphisms and, for every L-
structure A, the encoding E(A) is a sum of E(a) over all a ∈ A and E(R(a1, . . . , ar)) over
all R ∈ L and (a1, . . . , ar) ∈ R(A). For our purposes all local encodings of the same kind
(i.e., propositional, algebraic or semi-algebraic) are essentially equivalent, as formalized by
the following result.

Lemma 4. Let B be a finite structure over a finite vocabulary L, and let (E,E ′), (F, F ′) and
(G,G′) be pairs of local encoding schemes for B that are propositional, algebraic and semi-
algebraic, respectively. There exists a positive integer p such that for every finite L-structure
A it holds that:

1. every clause in E ′(A) has a resolution proof from E(A) of size bounded by p,

2. every equation in F ′(A) has an NS proof from F (A) of size and degree bounded by p,

3. every inequality in G′(A) has an SA proof from G(A) of size and degree bounded by p.

Proof. For 1, let s and s′ be the local bounds of E and E ′, respectively. Take a clause C from
E ′(A). The clause C belongs to a subset of E ′(A) of the form E ′(a) or E ′(R(a1, . . . , ar)),
so the size of C is bounded by s′. Without loss of generality suppose that C belongs to
a set E ′(R(a1, . . . , ar)). The corresponding subset E(R(a1, . . . , ar)) of E(A) has size at
most s. The satisfying truth valuations for E(R(a1, . . . , ar)) and E ′(R(a1, . . . , ar)) are the
same. Therefore, since C is an element of E ′(R(a1, . . . , ar)), we have that E(R(a1, . . . , ar))
logically implies C. It follows from the quantitative completeness theorem for resolution
(cf. Theorem 3) that the clause C has a resolution derivation from E(R(a1, . . . , ar)) of size
bounded by a function of s and s′.

The proofs of 2 and 3 are analogous. The completeness theorem for Nullstellensatz and
Sherali-Adams (cf. Theorem 4) needs to be used instead of Theorem 3.
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Three specific examples. The results of this paper hold for arbitrary local encoding
schemes. However, in the proofs it is often convenient to be specific. We now introduce
three concrete encoding schemes that, in addition, are defined uniformly with respect to the
template B.

For every structures A and B over the same vocabulary, let CNF(A,B) be a set of clauses
with:

1. a clause
∨
b∈BX(a, b) for each a ∈ A,

2. a clause X(a, b0) ∨X(a, b1) for each a ∈ A and (b0, b1) ∈ B2 with b0 6= b1,

3. a clause
∨
i∈[r]X(ai, bi) for each natural number r, each R ∈ L of arity r, each

(a1, . . . , ar) ∈ R(A), and each (b1, . . . , br) ∈ Br \R(B).

Note that the mapping that to an L-structure A assigns CNF(A,B) is a local encoding
scheme for CSP(B). Since this definition is uniform with respect to B we call it simply the
CNF encoding scheme. We use it to reason about propositional proof systems for CSP(B).

There are two standard ways of encoding a clause into a system of inequalities: multi-
plicatively and additively. These give rise to two local encoding schemes which we use to
reason about algebraic and semi-algebraic proof systems in the context of CSP. Specifically,
the multiplicative and additive encodings of a clause C = X1 ∨ · · · ∨ X` ∨ X`+1 ∨ · · · ∨ Xk

are the following equation and inequality, respectively:

X1 · · ·X`X̄`+1 · · · X̄k = 0 and X̄1 + · · ·+ X̄` +X`+1 + · · ·+Xk − 1 ≥ 0.

Let EQ(A,B) be the system of polynomial equations that are multiplicative encodings of
the clauses in CNF(A,B), that is:

1.
∏

b∈B X̄(a, b) = 0 for each a ∈ A,

2. X(a, b0)X(a, b1) = 0 for each a ∈ A and (b0, b1) ∈ B2 with b0 6= b1,

3.
∏r

i=1X(a, bi) = 0 for each natural number r, each R ∈ L of arity r, each (a1, . . . , ar) ∈
R(A), and each (b1, . . . , br) ∈ Br \R(B).

The mapping that to an L-structure A assigns EQ(A,B) is a local encoding scheme for
CSP(B). Note that this scheme makes sense over any field. We call it the EQ encoding
scheme. It is used in Section 4 to reason both about algebraic and semi-algebraic proof
systems, and in Section 6 while discussing lower bounds for SOS.

Similarly, let INEQ(A,B) be a system of of linear inequalities that are additive encodings
of the clauses in CNF(A,B), that is:

1.
∑

b∈BX(a, b)− 1 ≥ 0 for each a ∈ A,

2. X̄(a, b0) + X̄(a, b1)− 1 ≥ 0 for each a ∈ A and (b0, b1) ∈ B2 with b0 6= b1,

3.
∑r

i=1 X̄(a, bi) − 1 ≥ 0 for each natural number r, each R ∈ L of arity r, each
(a1, . . . , ar) ∈ R(A), and each (b1, . . . , br) ∈ Br \R(B).
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The mapping that to an L-structure A assigns INEQ(A,B) is a local encoding scheme for
CSP(B). We call it the INEQ encoding scheme. It is used in Section 7 to reason about
semi-algebraic proof systems.

In Section 8 we will discuss one more local semi-algebraic encoding scheme that was used
in [40] to prove PC lower bounds for graph coloring.

3 General proof complexity facts

Substitutions will play a central role in showing that certain propositional and semi-algebraic
proof systems behave well with respect to the classical CSP reductions. In the case of propo-
sitional proof systems we will consider substitutions of variables by bounded-DNF formulas
with a bounded number of terms, and in the case of algebraic and semi-algebraic proof sys-
tems we will use substitutions by polynomials with bounded degree and a bounded number
of monomials. We now prove some key technical lemmas regarding such substitutions.

3.1 Substitutions in Frege

In the case of propositional proof systems, a substitution is a mapping from variables to
formulas. Applying a substitution to a formula means replacing all variables by the corre-
sponding formulas, simultaneously all at once. Since our formulas are in negation normal
form, it is implicit that the result of applying the substitution X 7→ F to a negative literal
X is the formula dual to F , i.e., F .

Lemma 5. Let k, d and m be positive integers, let A be a k-term and let A+ be the result
of replacing each variable in A by a (possibly different) d-DNF with at most m many terms.
Then A+ is logically equivalent to a k(d+m)-DNF with at most mkdkm many terms.

Proof. Let p and n be the numbers of positive and negative literals in A, respectively. After
applying the substitution, the k-term becomes a conjunction of p many d-DNFs and n many
negations of d-DNFs, where each d-DNF has at most m many terms. Applying the De
Morgan rules to the negated d-DNFs, what we get is a formula of the following schematic
form: (

p∧ m∨ d∧)
∧

(
n∧ m∧ d∨)

. (22)

In the left subformula in (22), distributing the outer conjunction over the disjunction gives
a disjunction of at most mp many pd-terms. In the right subformula in (22), distributing
the two outer conjunctions over the disjunction gives a disjunction of at most dnm many
nm-terms. Schematically: (

mp∨ p∧ d∧)
∧

(
dnm∨ nm∧)

. (23)
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Finally, in formula (23), distributing the outer conjunction over the disjunctions gives a
disjunction of mpdnm many (pd+mn)-terms:

mpdnm∨ pd+mn∧
. (24)

Using p+ n ≤ k we get the result.

Lemma 6. Fix any positive integers q, d, m and p. Let F and G be sets of clauses with at
most q variables each, and let σ be a substitution of the variables of F into d-DNFs with at
most m many terms on the variables of G. For any positive integers k, s and any t ≥ 2,
if F has a Frege refutation of depth t, bottom fan-in k, and size s, and for each formula in
F its substitution is a logical consequence of at most p many clauses from G, then G has a
Frege refutation of depth t, bottom fan-in k(d+m), and size polynomial in 2k and s.

Proof. Fix some positive integers q, d, m and p. Assume that F has a Σt,k-Frege refutation,
for some k and t ≥ 2. Let ` = k(d+m).

We now define an operator which maps formulas in Σt,k to formulas in Σt,`. If a formula
D is a variable or the negation of a variable, then we define D+ simply as the d-DNF or
d-CNF obtained by applying the substitution σ to D. For a k-DNF D, we put D+ to be
the `-DNF that one gets from applying Lemma 5 to each k-term in D with the substitution
σ and then taking the disjunction of the resulting DNFs. For a k-CNF D, we define D+ as
the complement of (D)+. In this case D+ is an `-CNF. Clauses and terms are treated as
1-DNFs and 1-CNFs, respectively. Finally, if D is a formula from Σt,k of depth at least 3,
then we define D+ to be the formula constructed by replacing each maximal subformula E
of D of depth at most 2 by E+. By Lemma 5, the size of D+ is at most polynomial in 2k

and the size of D.
If D and E are both formulas in Σt,k, then (D ∨ E)+ = D+ ∨ E+. Moreover, for any D

it holds that (D)+ = (D+). Hence also (D ∧ E)+ = D+ ∧ E+. This means that the result
of applying our operator to the premises and conclusion of any of the rules of Frege is an
instance of the same rule.

Let D1, D2, . . . , Dt be a Σt,k-Frege refutation of F of size s. In order to transform the
sequence of formulas D+

1 , D
+
2 , . . . , D

+
t into a valid Σt,`-Frege refutation of G we need to prove

that for each non-logical axiom Di, the formula D+
i has constant size Σt,`-Frege proof from

G.
Each non-logical axiom Di is a q-clause C from F . By assumption, the substitution σ(C)

and hence also C+ is a logical consequence of at most p many q-clauses of G. Moreover, the
size of C+ is bounded by a function of d, m and q, and the total size of the p many q-clauses
of G that imply C+ is bounded by a function of p and q. The quantitative completeness
theorem for Σt,`-Frege does the rest: D+

i has a Σt,`-Frege derivation from G of size bounded
by a function of d, m, p and q.
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3.2 Substitutions in algebraic and semi-algebraic proof systems

In the case of algebraic and semi-algebraic proof systems, a substitution is a mapping from
variables to polynomials. Applying a substitution to an equation or inequality means replac-
ing all variables by the corresponding polynomials, simultaneously all at once.

For every set of polynomial equations F , by Eq(F ) we denote the union of F and all the
axiom polynomial equations from (2) for the variables in F , i.e., for each variable X or X̄
appearing in one of the equations from F , we add to F the polynomial equations X2−X = 0,
X̄2 − X̄ = 0 and X + X̄ − 1 = 0.

Lemma 7. Fix any positive integers d, m, p, and q. Let F and G be sets of polynomial
equations of the form P = 0, where P is a monomial of degree at most q with coefficient 1,
and let σ be a substitution of the variables of F into polynomials on the variables of G of
degree at most d, with at most m many monomials and every coefficient equal 1. For P
being the Nullstellensatz or Polynomial Calculus proof system over any field, and for any
positive integers k and s, if F has a P refutation of degree k, size s, and for each equation
in Eq(F ) its substitution follows from at most p many equations from G on all evaluations
of its variables in {0, 1} over the underlying field, then G has a P refutation of degree linear
in k and size polynomial in 2k and s.

Proof. Let us fix some positive integers d, m, p, and q. Let F and G be sets of polynomial
equations of the form P = 0, where P is a monomial of degree at most q with coefficient 1,
and let σ be a substitution of the variables of F into polynomials on the variables of G of
degree at most d, with at most m many monomials and every coefficient equal 1. If for
each equation in Eq(F ) its substitution follows from at most p many equations from G on
all evaluations of its variables in {0, 1}, then by Theorem 4 for every equation in Eq(F )
its substitution has an NS derivation from G. The size and degree of this derivation are
bounded by some constants which depend on d, m, p, and q.

Suppose that P is the Nullstellensatz proof system and assume that for some positive
integers k and s, the set of equations F has an NS refutation of degree k, size s. The
refutation of F is of the form

r∑
i=1

Pi · ci
∏
j∈Ji

Xj

∏
k∈Ki

X̄k = −1, (25)

where P1, . . . , Pr are polynomials such that the equation Pi = 0 is in the set Eq(F ), and
c1, . . . , cr are scalars. We substitute the variables in the above equality according to σ and
substitute the polynomials from the set Eq(F ) by their NS derivations. This way we obtain
an NS refutation of G of degree linear in k and size polynomial in 2k and s.

Suppose that P is the Polynomial Calculus proof system and assume that for some
positive integers k and s, the set of equations F has a PC refutation of degree k, size s.
The PC refutation of G goes as follows: first for each equation in Eq(F ) we derive its
substitution in the Nullstellensatz proof system, and then we simulate the subsequent steps
of the refutation of F . Applications of addition and multiplication by scalars remain as
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they were, and applications of multiplication by variables are simulated in several steps.
Since after applying the substitution to the variables they become polynomials of degree at
most d, with at most m many monomials and every coefficient equal 1, we can simulate
multiplication by a variable by at most md multiplication steps and at most m−1 additions.
The substitution of variables causes a blow-up in size which is polynomial in 2k, and the
simulation additionally increases the size by a constant factor. Altogether, the degree of the
PC refutation of G described above is linear in k and its size is polynomial in 2k and s.

For every set of polynomial inequalities F , by Ineq(F ) we denote the union of F and
all the axiom polynomial inequalities and equations from (4) and (2) for the variables in F ,
i.e., for each variable X or X̄ appearing in one of the equations from F , we add to F the
polynomial equations X2 − X = 0, X̄2 − X̄ = 0, X + X̄ − 1 = 0, and inequalities X ≥ 0,
X̄ ≥ 0, 1−X ≥ 0, 1− X̄ ≥ 0, 1 ≥ 0.

Lemma 8. Fix any positive integers d, m, p, and q. Let F and G be sets of polynomial
equations of the form P = 0, where P is a monomial of degree at most q with coefficient 1,
and let σ be a substitution of the variables of F into polynomials on the variables of G of
degree at most d, with at most m many monomials and every coefficient equal 1. For P being
the Sherali-Adams, Positive Semidefinite Sherali-Adams, Sums-of-Squares, Lovász-Schrijver
or Positive Semidefinite Lovász-Schrijver proof system, and for any positive integers k and s,
if F has a P refutation of degree k, size s, and for each inequality and equation in Ineq(F ) its
substitution follows from at most p many equations from G on all evaluations of its variables
in {0, 1}, then G has a P refutation of degree linear in k and size polynomial in 2k and s.

Proof. Let us fix some positive integers d, m, p, and q. Let F and G be sets of polynomial
equations of the form P = 0, where P is a monomial of degree at most q with coefficient 1,
and let σ be a substitution of the variables of F into polynomials on the variables of G of
degree at most d, with at most m many monomials and every coefficient equal 1. If for an
inequality or equation in Ineq(F ) its substitution follows from at most p many equations
from G on all evaluations of its variables in {0, 1}, then by Theorem 4 such substitution has
an SA derivation from G. Moreover, the size and degree of those derivations are bounded
by some constants which depend on d, m, p, and q.

Suppose that P is the Sherali-Adams or Positive Semidefinite Sherali-Adams proof system
and assume that for some positive integers k and s, the set of equations F has an SA (or
SA+) refutation of degree k, size s. The refutation of F is of the form

r∑
i=1

Pi · ci
∏
j∈Ji

Xj

∏
k∈Ki

X̄k = −1, (26)

where c1, . . . , cr are reals and P1, . . . , Pr are polynomials such that the equation Pi = 0 or
the inequality Pi ≥ 0 is in the set Ineq(F ), or they are squares of polynomials when they
are allowed (i.e., for SA+). We substitute the variables in the above equality according to σ
and substitute the polynomials from the set Ineq(F ) by their SA derivations. This way we
obtain an SA (or SA+) refutation of G of degree linear in k and size polynomial in 2k and s.
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Suppose that P is the Sum-of-Squares proof system and assume that for some positive
integers k and s, the set of equations F has an SOS refutation of degree k, size s. The
refutation of F is of the form

r∑
i=1

Pi · Si = −1, (27)

where P1, . . . , Pr are polynomials such that either the equation Pi = 0 or the inequality Pi ≥ 0
is in the set Ineq(F ), or they are squares, and S1, . . . , Sr are arbitrary polynomials. We
substitute the variables in the above equality according to σ and substitute the polynomials
from the set Ineq(F ) by their SA derivations. This way we obtain an SOS refutation of
degree linear in k and size polynomial in 2k and s.

Suppose that P is the Lovász-Schrijver or Positive Semidefinite Lovász-Schrijver proof
system and assume that for some positive integers k and s, the set of equations F has an
LS (or LS+) refutation of degree k, size s. The refutation of G goes as follows: first for each
equation and inequality in Ineq(F ) we derive its substitution in the Sherali-Adams proof
system, and then we simulate the subsequent steps of the refutation of F . Applications
of addition and multiplication by positive reals as well as positivity-of-squares when it is
allowed (i.e. for LS+) remain as they were, and applications of multiplication by variables are
simulated in several steps. Since after applying the substitution to the variables they become
polynomials of degree at most d, with at most m many monomials and every coefficient
equal 1, we can simulate multiplication by a variable by at most md multiplication steps
and at most m − 1 additions. The substitution of variables causes a blow-up in size which
is polynomial in 2k, and the simulation additionally increases the size by a constant factor.
Altogether, the degree of the LS (or LS+) refutation of G described above is linear in k and
its size is polynomial in 2k and s.

3.3 Simulations

At a later section we will need to use the known fact that both Polynomial Calculus and
Sherali-Adams efficiently simulate resolution. If C is the clause

∨
i∈I Xi ∨

∨
j∈J Xj, let

M(C) :=
∏
i∈I

Xi

∏
j∈J

X̄j. (28)

Note that, under the axioms (2), the clause C is encoded by the equation M(C) = 0 or, in
the context of semi-algebraic proofs, by the pair of inequalities M(C) ≥ 0 and −M(C) ≥ 0.
In Section 2.6 we called this the multiplicative encoding of C.

Lemma 9. If C is a clause that has a resolution derivation of width k and size s from
clauses C1, . . . , Cm, then the equation M(C) = 0 has a PC proof over any field from M(C1) =
0, . . . ,M(Cm) = 0 and an SA proof from M(C1) = 0, . . . ,M(Cm) = 0 of degree linear in k
and size polynomial in s and k.

Proof. Assume that C has a resolution derivation of width k and size s. Before we describe
the conversions we need to apply a light pre-processing to the resolution derivation. Convert
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each resolution step deriving D∨E from D∨X and E ∨X into a symmetric resolution step
in which first D ∨E ∨X and D ∨E ∨X are derived by weakenings from D ∨X and E ∨X,
respectively, and then D ∨ E is derived from these by resolving on X. Let D1, D2, . . . , Dt

be the resulting resolution derivation. The proofs for Polynomial Calculus and for Sherali-
Adams are quite different because the latter one is a static proof system while the former
one is not.

For Polynomial Calculus, we derive the equation M(Di) = 0 for i = 1, . . . , t, by induction
on i. When Di is a clause from the set {C1, . . . , Cm}, there is nothing to do. Assume now
that Di is derived by a symmetric resolution step from Dj = Di∨X and Dk = Di∨X, where
j, k < i. By induction hypothesis the equations M(Di)X̄ = 0 and M(Di)X = 0 have already
been derived. Add these equations to the lift of the axiom 1−X − X̄ = 0 by M(Di) to get
the equation M(Di) = 0. Next assume that Di is derived by a weakening step from Dj, say
Di = Dj ∨X or Di = Dj ∨X. By induction hypothesis the equation M(Dj) = 0 has already
been derived. Lift this equation by X or X̄ as appropriate to get M(Di) = 0. Clearly, the
degree of this proof is linear in k and the size is polynomial in s and k.

For Sherali-Adams the proof is quite different. For each Di in the resolution derivation
we produce an inequality Qi ≥ 0 as follows. If Di is an initial clause, let Qi := −M(Di) so
that Qi ≥ 0 is one of the given inequalities. If Di is obtained as a one-variable weakening
step deriving Dj ∨X from Dj, let Qi := M(Dj)−M(Dj ∨X) and derive Qi ≥ 0 by lifting
the axiom 1 − X̄ ≥ 0. If Di is obtained as a one-variable weakening step deriving Dj ∨ X
from Dj, let Qi := M(Dj)−M(Dj ∨X) and derive Qi ≥ 0 by lifting the axiom 1−X ≥ 0.
If Di is obtained as a symmetric resolution step deriving Di from Di ∨ X and Di ∨ X, let
Qi := M(Di∨X)+M(Di∨X)−M(Di) and derive Qi ≥ 0 by lifting the axiom X̄+X−1 ≥ 0.
Next consider the DAG of the resolution derivation oriented from the initial clauses towards
the conclusion Dt. We assign a weight ci to each Di in this DAG inductively: the conclusion
Dt gets weight 1, and if all immediate successors of Di have already been assigned weights,
then Di gets as weight the sum of the weights of its immediate successors. Next multiply each
inequality Qi ≥ 0 by its weight ci and add them together. This could cause the coefficients
in the SA proof to go exponentially big, but their bitsize is still polynomial. The result is
an SA proof of −M(C) ≥ 0 since the only monomial that survives is the conclusion. The
reverse inequality M(C) ≥ 0 follows from lifting the axiom 1 ≥ 0. This gives an SA proof of
M(C) = 0 as required. The degree of this proof is linear in k and its size is polynomial in s
and k.

4 Closure under reductions

Three types of reductions are often considered in the context of constraint satisfaction prob-
lems: a) pp-interpretability, b) homomorphic equivalence, c) addition of constants to a core.
In this section we give their precise definitions and show that many proof systems behave
well with respect to those types of reductions.
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4.1 Reductions.

Let B and B′ be finite relational structures over finite vocabularies L and L′, respectively.
We say that the structure B′ is pp-definable in the structure B if it has the same domain
and for every relation symbol T ∈ L′ the relation T (B′) is definable in B by a pp-formula.
Recall that a primitive positive formula over L, or pp-formula, is a first-order formula which
uses only symbols from L, equality, conjunction, and first-order existential quantification.
A relation T ⊆ Br is definable in B by a pp-formula, or pp-definable in B, if there exists a
pp-formula φ(x1, . . . , xr) over L, with free variables x1, . . . , xr, such that

T = {(b1, . . . , br) ∈ Br : B |= φ(x1/b1, . . . , xr/br)}.

Pp-interpretability is a generalization of pp-definability which allows for changing the
domain of a CSP language. Given two relational structures B and B′ in finite vocabularies L
and L′, respectively, we say that B′ is pp-interpretable in B if there exist a positive integer n
and a surjective partial function f : Bn → B′ such that the preimages of all relations in B′
(including the equality relation) and the domain of f are pp-definable in B. Showing that a
CSP over a language B′ pp-interpretable in the language B is not harder than the CSP of
the language B itself [21] is one of the fundamental results of the so-called algebraic approach
to constraint satisfaction problem, which led to many break-through results in the area.

Probably the simplest of all the constructions is the homomorphic equivalence. Struc-
tures B and B′ over a vocabulary L are homomorphically equivalent if there exists a homo-
morphism from B to B′ and a homomorphism from B′ to B. Obviously, if L-structures B
and B′ are homomorphically equivalent, then any L-structure A maps homomorphically to
B if and only if it maps homomorphically to B′. So the CSP problems over both languages
are the same.

Homomorphic equivalence allows us to focus on studying constraint satisfaction problems
of well-behaved structures which in this context turn out to be those exhibiting little sym-
metry. A finite relational structure is called a core if all its endomorphisms are surjective.
It is known that every relational structure has a homomorphically equivalent substructure
that is a core. Core structures can be extended by one-element unary relations which we
refer to as constants, without increasing the complexity of the language [21].

The importance of the constructions a), b) and c) follows from the fact that classes of
constraint languages closed under those constructions can be studied via the corresponding
algebras of polymorphisms, that is algebras of operations which preserve all the relations
in the language (for details see e.g. the survey [13]). Here we show that bounded-DNF
Frege, bounded-depth Frege, Frege, Polynomial Calculus, Sherali-Adams, Sums-of-Squares
and Lovász-Schrijver of bounded and unbounded degree behave well with respect to those
three types of reductions. This allows us to apply (in Section 6) strong results based on the
algebraic approach to CSP.
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4.2 Results

Let us fix relational structures B and B′ over finite vocabularies L and L′, respectively, such
that B′ is obtained from B by a finite sequence of constructions a), b) and c). In the following
we recall the known polynomial-time computable transformation that maps instances A of
CSP(B′) to instances A′ of CSP(B) such that A′ is satisfiable if and only if A is satisfiable,
and the size of A′ is linear in the size of A. The notation is supposed to remind the reader
that once a template B′ is constructed from a template B, the transformation of instances
goes in the other direction: from an instance A of CSP(B′) we build an instance A′ of CSP(B)
satisfying the above mentioned conditions.

We prove that if E and E ′ are any local propositional encoding schemes for CSP(B) and
CSP(B′), respectively, then this transformation satisfies the following:

Theorem 5. For any positive integers t, k and s, and any L′-structure A, if there is a Frege
refutation of E(A′) of depth t, bottom fan-in k, and size s, then there is a Frege refutation
of E ′(A) of depth t, bottom fan-in polynomial in k, and size polynomial in 2k, s and the size
of A.

As a special case of the above theorem, by taking t = 1 we obtain that bounded-DNF
Frege behaves well with respect to the classical CSP reductions:

Corollary 2. For any positive integers k and s, and any L′-structure A, if there is a k-DNF
Frege refutation of E(A′) of size s, then there is an `-DNF Frege refutation of E ′(A) of size
polynomial in 2k, s and the size of A, where ` is polynomial in k.

Notice also that a Frege refutation of depth t and bottom fan-in k can be seen as a Frege
refutation of depth t + 1 and bottom fan-in 1. Therefore, Theorem 5 implies the following
statement, which will be crucial for obtaining lower bounds in Section 6:

Corollary 3. For any positive integers t and s, and any L′-structure A, if there is a Frege
refutation of E(A′) of depth t and size s, then there is a Frege refutation of E ′(A) of depth
t+ 1 and size polynomial in s and the size of A.

One more consequence of Theorem 5 concerns proofs in Frege proof system without any
bounds on the depth. Corollary 3 above immediately implies that Frege is well-behaved with
respect to the classical CSP reductions, that is:

Corollary 4. For any positive integer s, and any L′-structure A, if there is a Frege refutation
of E(A′) of size s, then there is a Frege refutation of E ′(A) of size polynomial in s and the
size of A.

In the case of algebraic proof systems, if E and E ′ are any local algebraic encoding
schemes over a field F for CSP(B) and CSP(B′), respectively, we show that:

Theorem 6. For any positive integers k and s, and any L′-structure A, if there is a PC
refutation over F of E(A′) of degree k and size s, then there is a PC refutation over F of
E ′(A) of degree linear in k and size polynomial in 2k, s and the size of A.
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Finally, if E and E ′ are any local semi-algebraic encoding schemes for CSP(B) and
CSP(B′), respectively, then:

Theorem 7. For any positive integers k and s, and any L′-structure A, if there is an SA,
SA+, SOS, LS or LS+ refutation of E(A′) of degree k and size s, then there is, respectively,
an SA, SA+, SOS, LS or LS+ refutation of E ′(A) of degree linear in k and size polynomial
in 2k, s and the size of A.

We point out that Theorem 7 in the case of the Sherali-Adams and Sums-of-Squares
proof systems and the EQ encoding scheme can be extracted from [48] and [47].

The main idea in proving the above theorems for all the proof systems under consideration
is the same. The refutation for an instance A′ of CSP(B) is transformed into a refutation for
an instance A of CSP(B′) by substituting the variables of E(A′) by DNFs with a bounded
number of terms and a bounded number of literals in each term, or by polynomials with
bounded degree, a bounded number of monomials and all coefficients equal 1. The additional
condition we need to ensure is that each element of E(A′) after applying the substitution is a
logical consequence of a subset of E ′(A) of a bounded size. This way we can use Lemmas 6,
7 and 8 from Section 3 to control the growth of the size and depth/degree of the refutations.
This argument, however, fails if one of the steps in constructing B′ from B is adding the
equality relation (which is a special case of a pp-definition). We deal with this by showing
that equality propagation can be done in bounded-width resolution.

We prove Theorems 5, 6 and 7 for CNF and EQ encoding schemes in a series of lemmas
below. It follows from Lemma 4 that this suffices to obtain the theorems in full generality.
Let us see how to argue this for propositional proof systems. The reasoning in the case of
algebraic and semi-algebraic proof systems is analogous.

Proof of Theorem 5. Assume that the statement of the theorem holds for E and E ′ being
the CNF encoding scheme. Let now E and E ′ be arbitrary local propositional encoding
schemes for CSP(B) and CSP(B′), respectively.

By Lemma 4 there exist positive integers p and p′ such that for each L-structure A′, every
clause in E(A′) has a resolution proof from CNF(A′,B) of size bounded by p, and for each
L′-structure A, every clause in CNF(A,B′) has a resolution proof from E(A) of size bounded
by p′.

Take an L′-structure A, and assume that there is a Frege refutation of E(A′) of depth t,
bottom fan-in k, and size s. Since every clause in E(A′) has a resolution proof from
CNF(A′,B) of size bounded by p, it follows that CNF(A′,B) has a Frege refutation of depth
t, bottom fan-in k, and size linear in s. The statement of the theorem holds for the CNF
encoding schemes, so CNF(A,B′) has a Frege refutation of depth t, bottom fan-in polynomial
in k, and size polynomial in 2k, s and the size of A. Since every clause in CNF(A,B′) has a
resolution proof from E(A) of size bounded by p′, it follows that E(A) has a Frege refutation
of depth t, bottom fan-in polynomial in k, and size polynomial in 2k, s and the size of A.

In the subsequent sections we consider one by one the cases when B′ is constructed
from B using a), b) and c). We begin with pp-definability, with which we deal in three
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steps: by considering the equality relation, pp-formulas using conjunction only and existential
quantification only.

4.3 Equality

Suppose that none of the relation symbols in L interprets in B as the equality relation. For
a binary relation symbol E not in L, let L′ = L ∪ {E}. Assume that B′ is the L′-structure
with domain B, all relation symbols from L interpreted as in B, i.e., R(B′) = R(B) for
every R ∈ L, and the relation symbol E interpreted as the equality relation over B, i.e.,
E(B′) = {(b, b) : b ∈ B}.

For every instance of the CSP of the language B′, that is for every finite L′-structure A,
there is a natural corresponding instance A′ of the CSP over the language B. If ≡ is the
smallest equivalence relation on A which contains E(A), then define A′ to be the L-structure
whose domain A′ is the set of the equivalence classes of the relation ≡ and every relation
symbol R ∈ L is interpreted as {([a1]≡, . . . , [ar]≡) : (a1, . . . , ar) ∈ R(A)}, where r is the arity
of R. It is not difficult to see that A maps homomorphically to B′ if and only if A′ maps
homomorphically to B.

Lemma 10. There exists a positive integer c such that the following holds. For any positive
integers t, k and s and every finite L′-structure A, if there is a Frege refutation of CNF(A′,B)
of depth t, bottom fan-in k and size s, then there is a Frege refutation of CNF(A,B′) of
depth t, bottom fan-in k and size at most (c|A|+ 1)s.

Proof. Let F denote CNF(A′,B) and let G denote CNF(A,B′). For each [a]≡ ∈ A′, we choose
one element of [a]≡ denoted by a∗, and consider the substitution σ of variables in F defined
by:

X([a]≡, b) := X(a∗, b),

for every [a]≡ ∈ A′ and b ∈ B. We show that, for a constant c to be determined later, for
every clause C from F , the substituted formula σ(C) has a resolution proof from G of size
at most c|A|. It follows that G has a Frege refutation of depth t, bottom fan-in k and size
at most (c|A|+ 1)s.

Let C be any of the clauses in F . Note that if C is of type 1 or 2 then by applying the
substitution we obtain a clause in G, so there is nothing to be proved. Now, let us assume
that C is a clause of type 3, i.e., C = X([a1]≡, b1) ∨ · · · ∨ X([ar]≡, br) for some R ∈ L of
arity r, ([a1]≡, . . . , [ar]≡) ∈ R(A′) and (b1, . . . , br) ∈ Br \ R(B). The following claim will
finish the proof. We state the bound on width because it will be useful later. By q we denote
the number of elements in B.

Claim 2. There are constants c and d such that the clause σ(C) has a resolution derivation
from G of width at most d and size at most c|A|.

To prove this claim the following observation will be helpful.
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Claim 3. There is a constant e such that for every a, a′ ∈ A such that a ≡ a′, and every
b′ ∈ B, there is a resolution proof of X(a, b′) from X(a′, b′) and clauses in G of width at
most e, length at most (2q + 1)|A| and size at most (2q + 1)2|A|.

We use Claim 3 to prove Claim 2. Note that for every i ∈ [r] there exists a′i ∈ [ai]≡
such that (a′1, . . . , a

′
r) ∈ R(A). Therefore, the clause X(a′1, b1) ∨ · · · ∨ X(a′r, br) belongs

to G. Now, since a∗1 ≡ a′1, it follows from Claim 3 that there is a resolution derivation of
width at most e, length at most (2q + 1)|A| and size bounded by (2q + 1)2|A| of X(a∗1, b1)
from X(a′1, b1) and clauses in G. If we reproduce exactly the same derivation starting with
the clause X(a′1, b1) ∨ · · · ∨X(a′r, br) instead of X(a′1, b1), what we get is a valid resolution
derivation of X(a∗1, b1) ∨X(a′2, b2) ∨ · · · ∨X(a′r, br) of width at most e + r and size at most
(2q+1)2|A|+(2q+1)(2r−2)|A|. We repeat the same construction r−1 more times starting
with the last clause derived and get a resolution derivation of σ(C) whose width is bounded
by re and whose size is bounded by ((2q + 1)2r + (2q + 1)(2r− 2)r)|A|. It remains to prove
Claim 3.

Proof of Claim 3. First let us show that for every a, a′ ∈ A such that (a, a′) ∈ E(A) or
(a′, a) ∈ E(A), and every b′ ∈ B there is a resolution proof of width at most q, length at most
2q+ 1 and size bounded by (2q+ 1)2 of X(a, b′) from X(a′, b′) and the clauses in G. Indeed,
the cut rule applied to X(a′, b′) and the formula

∨
b∈BX(a′, b) from G gives

∨
b∈B′ X(a′, b),

where B′ = B \ {b′}. Then by a sequence of q − 1 cuts with formulas X(a, b′) ∨X(a′, b), for
b ∈ B′, we derive X(a, b′). The total number of formulas in this sequence is 2q+ 1, and each
has width at most q and size at most 2q + 1.

Now, let a = a1, . . . , am = a′ be a sequence of elements of A such that (ai, ai+1) ∈ E(A)
or (ai+1, ai) ∈ E(A), and let us assume that this is one of the shortest sequences with this
property. The statement of the claim then follows from the fact that m ≤ |A|.

Lemma 11. Let P be Polynomial Calculus, Sherali-Adams, Positive Semidefinite Sherali-
Adams, Sums-of-Squares, Lovász-Schrijver or Positive Semidefinite Lovász-Schrijver. For
any positive integers k and s, and every finite L′-structure A, if there is a P refutation of
EQ(A′,B) of degree k and size s, then there is a P refutation of EQ(A,B′) of degree linear
in k and size polynomial in |A| and s.

Proof. Let F denote EQ(A′,B) and let G denote EQ(A,B′). Analogously as in the proof
of Lemma 10 above, for each [a]≡ ∈ A′, we choose one element of [a]≡ denoted by a∗, and
consider the substitution σ of the variables in F defined by:

X([a]≡, b) := X(a∗, b), X̄([a]≡, b) := X̄(a∗, b),

for every [a]≡ ∈ A′ and b ∈ B.
We show that every equation from Eq(F ) after applying the substitution σ has a PC

derivation from Eq(G) of constant degree and size polynomial in |A|. Once we have this,
the proof for P being the Polynomial Calculus proof system follows the same lines as the
proof of Lemma 7. Similarly, for (Positive Semidefinite) Sherali-Adams, Sums-of-Squares or
(Positive Semidefinite) Lovász-Schrijver proof systems, the proof follows the same lines as
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the proof of Lemma 8 once we show that every inequality from Ineq(F ) after applying the
substitution σ has an SA derivation from Ineq(G) of constant degree and size polynomial
in |A|.

Note that by applying the substitution to equations of type 1 and 2, and to the axiom
equations and inequalities we obtain equations and inequalities from Eq(G) and Ineq(G) so
there is nothing to be proved. Now, consider an equation of type 3 from F , i.e., X([a1]≡, b1) ·
. . . ·X([ar]≡, br) = 0 for some R ∈ L of arity r, ([a1]≡, . . . , [ar]≡) ∈ R(A′) and (b1, . . . , br) ∈
Br \ R(B). In the terminology of Section 3.3, this equality is the multiplicative encoding
M(C) = 0 of the corresponding clause C from CNF(A′,B). Note that σ(C) is again a clause
because σ is a substitution by variables. Let us call this clause D. The substitution of the
equation we are considering is the multiplicative encoding M(D) = 0 of the clause D. Now,
by Claim 2 that we proved inside the proof of Lemma 10, there is a resolution derivation of
D from G of some constant width d and size linear in |A|. Since G is the set of multiplicative
encodings of the clauses in CNF(A,B′), Lemma 9 applies and we get both PC and SA proofs
of M(D) = 0 from G of degree linear in d and size polynomial in |A|. This is a constant
degree, and the proof is complete.

4.4 Conjunction

We now consider the case when the structure B′ is pp-definable from B by adding a single
relation pp-definable using conjunction only. Let S and P be relation symbols in L, let T
be a relation symbol not in L, let L′ = L ∪ {T}, and assume that B′ is the expansion of B
with the relation T (B′) defined using a pp-formula φ(x1, . . . , xr), where r is the arity of T ,
that is made of a conjunction of one atom on S and one atom on P . That is, R(B′) = R(B)
for every R ∈ L, and T (B′) = {(b1, . . . , br) ∈ Br : B |= φ(x1/b1, . . . , xr/br)}. To focus our
attention let us assume that S and P are binary, T is ternary, and that the pp-formula that
defines T is φ(x1, x2, x3) = S(x1, x2) ∧ P (x2, x3). The proof of the general case will be the
same.

For a finite L′-structure A the corresponding L-structure A′ has the same domain and
all the relation symbols except for S and P interpreted the same as in A. Moreover,
S(A′) = S(A) ∪ {(a1, a2) : (a1, a2, a3) ∈ T (A) for some a3}, and P (A′) = P (A) ∪ {(a2, a3) :
(a1, a2, a3) ∈ T (A) for some a1}. It is easy to see that A maps homomorphically to B′ if and
only if A′ maps homomorphically to B.

Lemma 12. For any positive integers t, k and s, and every finite L′-structure A, if there is
a Frege refutation of CNF(A′,B) of depth t, bottom fan-in k and size s, then there is a Frege
refutation of CNF(A,B′) of depth t, bottom fan-in k and size linear in s.

Proof. Let F denote CNF(A′,B) and let G denote CNF(A,B′). Observe that the variables
of F and G as well as the clauses of type 1 and 2 are the same. Below we show that every
clause C of type 3 in F is a logical consequence of a bounded number of clauses of G. It
follows that every clause C of type 3 in F has a resolution derivation from G of size bounded
by some constant c, hence G has a Frege refutation of depth t, bottom fan-in k and size at
most cs+ s.
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Let C be a clause X(a1, b1) ∨ · · · ∨ X(ar, br) for some natural number r, R ∈ L of
arity r, (a1, . . . , ar) ∈ R(A′), and (b1, . . . , br) ∈ Br \ R(B). If R 6∈ {S, P} then C is also
a clause of G and there is nothing to be proved. Without loss of generality let us assume
that R = S and hence C is of the form X(a1, b1) ∨ X(a2, b2) where (a1, a2) ∈ S(A′), and
(b1, b2) ∈ B2 \ S(B). Now if (a1, a2) ∈ S(A) then C is a clause of G and we are done.
Otherwise, there exists a3 ∈ A′ such that (a1, a2, a3) ∈ T (A) and for every b3 ∈ B there is
a clause X(a1, b1) ∨ X(a2, b2) ∨ X(a3, b3) in G. Indeed, since (b1, b2) ∈ B2 \ S(B) we have
that (b1, b2, b3) ∈ B3 \ T (B′). The number of such clauses is bounded by q`, where q is the
number of elements in B and ` is the arity of T . Those clauses together with the clause of
type 1 for a3 logically imply C.

Lemma 13. Let P be Polynomial Calculus, Sherali-Adams, Positive Semidefinite Sherali-
Adams, Sums-of-Squares, Lovász-Schrijver or Positive Semidefinite Lovász-Schrijver. For
any positive integers k and s, and every finite L′-structure A, if there is a P refutation of
EQ(A′,B) of degree k and size s, then there is a P refutation of EQ(A,B′) of degree linear
in k and size linear in s.

Proof. Let F denote EQ(A′,B) and let G denote EQ(A,B′). Observe that the variables of
F and G as well as the equations of type 1 and 2, and the axiom equations and inequalities
are the same. Below we show that each equation of type 3 in F follows from a bounded
number of equations in Eq(G) on all evaluations of its variables in {0, 1}. The way to show
this is analogous as in Lemma 12 above. It follows that every equation in F has NS and
SA derivations from G of degrees and sizes bounded by some constants. Similarly as in the
proofs of Lemmas 7 and 8, this implies that G has a P refutation of degree linear in k and
size linear in s.

Let P = 0 be an equation X(a1, b1) · . . . ·X(ar, br) = 0 for some natural number r, R ∈ L
of arity r, (a1, . . . , ar) ∈ R(A′), and (b1, . . . , br) ∈ Br \R(B). If R 6∈ {S, P} then the equation
P = 0 is also in G and there is nothing to be proved. Without loss of generality let us assume
that R = S and hence P = 0 is of the form X(a1, b1)X(a2, b2) = 0 where (a1, a2) ∈ S(A′),
and (b1, b2) ∈ B2 \ S(B). Now if (a1, a2) ∈ S(A) then the equation P = 0 is in G and we
are done. Otherwise, there exists a3 ∈ A′ such that (a1, a2, a3) ∈ T (A) and for every b3 ∈ B
there is an equation X(a1, b1)X(a2, b2)X(a3, b3) = 0 in G. The number of such equations
is bounded by q`, where q is the number of elements in the domain of B and ` is the arity
of T . The equation in question follows on all evaluations of its variables in {0, 1} from the
set Eq(G′), where G′ is the set of those at most q` equations together with the equation of
type 1 for a3.

4.5 Existential quantification

We now consider the case when the structure B′ is pp-definable from B by adding a single
relation definable using existential quantification only. Let S be a relation symbol in L, let T
be a relation symbol not in L, let L′ = L ∪ {T}, and assume that B′ is the expansion of B
with the relation T (B′) defined using a pp-formula φ(x1, . . . , xr), where r is the arity of T ,
that is made of the existential quantification of one variable over an atom on S. That is,
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R(B′) = R(B) for every R ∈ L, and T (B′) = {(b1, . . . , br) ∈ Br : B |= φ(x1/b1, . . . , xr/br)}.
To focus our attention let us assume that S is ternary, T is binary, and that the pp-formula
that defines T is φ(x1, x2) = ∃yS(x1, x2, y).

For a finite L′-structure A the corresponding L-structure A′ has domain A extended by
a set of witnesses for S. For each (a1, a2) ∈ T (A), we add to A a new point y(a1, a2) so the
domain A′ is equal to A ∪ {y(a1, a2) : (a1, a2) ∈ T (A)}. All the relation symbols from L
except for S are interpreted in A′ the same as in A, and S(A′) = S(A)∪ {(a1, a2, y(a1, a2)) :
(a1, a2) ∈ T (A)}. It is not difficult to see that A maps homomorphically to B′ if and only
if A′ maps homomorphically to B.

Lemma 14. For any positive integers t, k and s, and every finite L′-structure A, if there is
a Frege refutation of CNF(A′,B) of depth t, bottom fan-in k and size s, then there is a Frege
refutation of CNF(A,B′) of depth t, bottom fan-in polynomial in k and size polynomial in 2k

and s.

Proof. Let F denote CNF(A′,B) and let G denote CNF(A,B′). Assume for this proof that
B = [q]. For each b ∈ [q] we define a subset F (b) of T (B′) inductively as follows:

F (b) =
{

(i, j) ∈ [q]2 : (i, j, b) ∈ S(B′)
}
\ (F (1) ∪ · · · ∪ F (b− 1)).

Note that F (1), . . . , F (q) cover T (B′) and are pairwise disjoint. In other words, they partition
T (B′); note however that some F (b)’s may be empty.

Consider the substitution σ defined by the identity on all variables of G and defined as
follows for every variable in F that is not in G:

X(y(a1, a2), b) :=
∨

(b1,b2)∈F (b)

X(a1, b1) ∧X(a2, b2),

for every (a1, a2) ∈ T (A) and b ∈ [q]. Note that this is an `-DNF with at most q` many
terms, where ` is the arity of T . By Lemma 6 it suffices to check that, for each clause C of F ,
the substituted formula σ(C) is a logical consequence of a bounded number of clauses of G.

To argue this, let C be any of the clauses in F , say
∨
b∈[q]X(a, b) for a in the domain

of A′. If a is not of the form y(a1, a2), then the clause is left untouched by the substitution.
Since the same clause is also in G, there is nothing to prove. Suppose now that a is y(a1, a2).
The substituted formula is then the following:∨

b∈[q]

∨
(b1,b2)∈F (b)

X(a1, b1) ∧X(a2, b2).

Since the sets F (1), . . . , F (q) cover T (B′), this is indeed equivalent to∨
(b1,b2)∈T (B′)

X(a1, b1) ∧X(a2, b2).

Note now that this formula is a logical consequence of the following clauses of G: those of
type 1 for a1 and a2, and all those of type 3 for (a1, a2) and the relation symbol T . These
are at most q` + 2 many clauses, where ` is the arity of T , and we are done for this case.
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Suppose now that C is the clause X(a, b)∨X(a, b′) for a in the domain of A′ and (b, b′) ∈
B2 with b 6= b′. As in the previous case, if a is not of the form y(a1, a2), then the clause
is left untouched by the substitution and there is nothing to prove. Suppose now that a is
y(a1, a2). By applying the substitution σ and converting the resulting formula into negation
normal form we obtain the following:( ∧

(b1,b2)∈F (b)

X(a1, b1) ∨X(a2, b2)
)
∨
( ∧
(b1,b2)∈F (b′)

X(a1, b1) ∨X(a2, b2)
)
.

This formula says that the tuple (a1, a2) is either not mapped to any tuple in F (b) or not
mapped to any tuple in F (b′). Since the sets F (b) and F (b′) are disjoint, this is a logical
consequence of at most 2q2 many clauses of G: those of type 2 for a1 and a2. Indeed, those
clauses imply that the tuple (a1, a2) can be mapped to at most one tuple from B2.

Now, let C be the clause X(a1, b1) ∨ · · · ∨ X(ar, br) for some natural number r, R ∈ L
of arity r, (a1, . . . , ar) ∈ R(A′), and (b1, . . . , br) ∈ Br \ R(B). If (a1, . . . , ar) ∈ Ar then the
same argument as above shows that there is nothing to be proved. Observe that the only
other case is when R = S and C is of the form X(a1, b1)∨X(a2, b2)∨X(y(a1, a2), b3), where
(a1, a2) ∈ T (A) and (b1, b2, b3) ∈ B3 \ S(B). The substituted formula (after converting to
negation normal form) is then the following:

X(a1, b1) ∨X(a2, b2) ∨
∧

(b,b′)∈F (b3)

X(a1, b) ∨X(a2, b′).

There are two possibilities. If (b1, b2) ∈ B2 \ T (B′), then the formula above is the logical
consequence of the clause X(a1, b1) ∨ X(a2, b2) from G. Otherwise, we have that (b1, b2) ∈
T (B′), but (b1, b2, b3) ∈ B3 \ S(B) which means that (b1, b2) 6∈ F (b3). Observe that the
substituted formula says that the tuple (a1, a2) is not mapped to the tuple (b1, b2) or it is not
mapped to any tuple from F (b3). Similarly to the previous case, this is a logical consequence
of at most 2q2 many clauses of G: those of type 2 for a1 and a2. This is because those clauses
imply that the tuple (a1, a2) can be mapped to at most one tuple from B2.

Lemma 15. Let P be Polynomial Calculus, Sherali-Adams, Positive Semidefinite Sherali-
Adams, Sums-of-Squares, Lovász-Schrijver or Positive Semidefinite Lovász-Schrijver. For
any positive integers k and s, and every finite L′-structure A, if there is a P refutation of
EQ(A′,B) of degree k and size s, then there is a P refutation of EQ(A,B′) of degree linear
in k and size polynomial in 2k and s.

Proof. Let F denote EQ(A′,B) and let G denote EQ(A,B′). Assume that B = [q]. For each
b ∈ [q] define a subset F (b) of T (B′) as in Lemma 14 above. Consider the substitution σ
defined by the identity on all variables of G and defined as follows for every variable in F
that is not in G:

X(y(a1, a2), b) :=
∑

(b1,b2)∈F (b)

X(a1, b1)X(a2, b2),

X̄(y(a1, a2), b) :=
∑

(b1,b2)∈B2\F (b)

X(a1, b1)X(a2, b2),
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for every (a1, a2) ∈ T (A) and b ∈ [q]. Note that those are polynomials of degree m with at
most qm many monomials and all coefficients equal 1, where m is the arity of T . We will
show that for each equation in F and for each axiom inequality and equation, its substitution
follows on all evaluations of its variables in {0, 1} from a bounded number of equations in
Eq(G). By Lemmas 7 and 8 this implies the statement of the lemma. The way to show this
is analogous as in Lemma 14 above.

Let P = 0 be any of the equations in F , say
∏

b∈B X̄(a, b) = 0 for a in the domain of A′.
If a is not of the form y(a1, a2), then the equation is left untouched by the substitution and
there is nothing to prove. Suppose now that a is y(a1, a2). The substituted equation is then
the following: ∏

b∈B

( ∑
(b1,b2)∈B2\F (b)

X(a1, b1)X(a2, b2)
)

= 0.

This equation follows on all evaluations of its variables in {0, 1} from the set Eq(G′), where
G′ contains the following equations of G: those of type 1 and 2 for a1 and a2, and all those of
type 3 for (a1, a2) and the relation symbol T . Indeed, take any evaluation satisfying Eq(G′).
It corresponds to a mapping from {a1, a2} to B, where (a1, a2) is mapped to a pair (b1, b2)
in T (B′). Since the sets F (1), . . . , F (q) form a partition of T (B′), there is b ∈ B such that
(b1, b2) ∈ F (b). For such b it holds that X(a1, b1)X(a2, b2) = 0 whenever (b1, b2) ∈ B2 \F (b).
There are at most q` + 2q2 + 2 many equations in G′, where ` is the arity of T , so we are
done for this case.

Suppose now that P = 0 is the equation X(a, b)X(a, b′) = 0 for a in the domain of A′
and (b, b′) ∈ B2 with b 6= b′. As in the previous case, if a is not of the form y(a1, a2), then
the equation is left untouched by the substitution and there is nothing to prove. Suppose
now that a is y(a1, a2). By applying the substitution σ we obtain the following:( ∑

(b1,b2)∈F (b)

X(a1, b1)X(a2, b2)
)
·
( ∑
(b1,b2)∈F (b′)

X(a1, b1)X(a2, b2)
)

= 0.

Since the sets F (b) and F (b′) are disjoint, this equation follows on all evaluations of its
variables in {0, 1} from the set of equations of type 2 for a1 and a2. Indeed, those equations
imply that at most one of the pairs (b1, b2) ∈ B2 the product X(a1, b1)X(a2, b2) is 1.

Now, let P = 0 be the equation X(a1, b1) · . . . ·X(ar, br) = 0 for some natural number r,
R ∈ L of arity r, (a1, . . . , ar) ∈ R(A′), and (b1, . . . , br) ∈ Br \ R(B). If (a1, . . . , ar) ∈ Ar

then the same argument as above shows that there is nothing to be proved. Observe that
the only other case is when R = S and the equation is of the form

X(a1, b1)X(a2, b2)X(y(a1, a2), b3) = 0,

where (a1, a2) ∈ T (A) and (b1, b2, b3) ∈ B3 \ S(B). The substituted equation is then the
following:

X(a1, b1)X(a2, b2) ·
( ∑
(b,b′)∈F (b3)

X(a1, b)X(a2, b
′)
)

= 0.

There are two possibilities. If (b1, b2) ∈ B2 \ T (B′), then the equation above follows on
all evaluations of its variables in {0, 1} from the equation X(a1, b1)X(a2, b2) = 0 from G.
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Otherwise, we have that (b1, b2) ∈ T (B′), but (b1, b2, b3) ∈ B3 \ S(B) which means that
(b1, b2) ∈ B2 \ F (b3). In this case, the substituted equation follows on all evaluations of its
variables in {0, 1} from the set of all equations of type 2 for a1 and a2, which imply that for
at most one of the pairs (b1, b2) ∈ B2 the product X(a1, b1)X(a2, b2) is 1.

Let us consider the axiom equation X(a, b)2 − X(a, b) = 0 for a in the domain of A′
and b ∈ B. If a is not of the form y(a1, a2), then the equation is left untouched by the
substitution and there is nothing to prove. Suppose now that a is y(a1, a2). By applying the
substitution σ we obtain the following:( ∑

(b1,b2)∈F (b)

X(a1, b1)X(a2, b2)
)2 − ∑

(b1,b2)∈F (b)

X(a1, b1)X(a2, b2) = 0.

This equation follows on all evaluations of its variables in {0, 1} from Eq(G′) where G′ is the
set of equations of type 1 and 2 for a1 and a2.

Let us consider the axiom equation X(a, b) + X̄(a, b) − 1 = 0 for a in the domain of A′
and b ∈ B. If a is not of the form y(a1, a2), then the equation is left untouched by the
substitution and there is nothing to prove. Suppose now that a is y(a1, a2). By applying the
substitution σ we obtain the following:∑

(b1,b2)∈B2

X(a1, b1)X(a2, b2)− 1 = 0.

This equation follows on all evaluations of its variables in {0, 1} from Eq(G′) where G′ is the
set of equations of type 1 and 2 for a1 and a2.

Let us consider the axiom inequality 1−X(a, b) ≥ 0, for a in the domain of A′ and b ∈ B.
If a is not of the form y(a1, a2), then the inequality is left untouched by the substitution and
there is nothing to prove. Suppose now that a is y(a1, a2). By applying the substitution σ
we obtain the following:

1 −
∑

(b1,b2)∈F (b)

X(a1, b1)X(a2, b2) ≥ 0.

This inequality follows on all evaluations of its variables in {0, 1} from Eq(G′) where G′ is
the set of equations of type 1 and 2 for a1 and a2. They imply that at most one of the
products X(a1, b1)X(a2, b2) for (b1, b2) ∈ F (b) is equal 1. The same way we deal with the
case, when the inequality in question is the axiom inequality 1 − X̄(a, b) ≥ 0, for a in the
domain of A′ and b ∈ B.

Finally, the axiom inequalities X(a, b) ≥ 0 and X̄(a, b) ≥ 0, for a in the domain of A′ and
b ∈ B, after applying the substitution σ are always satisfied on evaluations of their variables
in {0, 1}.

4.6 All together: pp-interpretations

Let B′ be a finite L′-structure pp-interpretable in B, and let f : Bn → B′ be a surjec-
tive partial function such that the domain of f is defined by a pp-formula δ(x1, . . . , xn)
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in the language L, i.e,. f−1(B′) = {(b1, . . . , bn) ∈ Bn : B |= δ(x1/b1, . . . , xn/bn)}, the
preimage of the equality relation on B′ is defined by a pp-formula ε(x1, . . . , x2n) in the
language L, i.e., f−1({(b′, b′) : b′ ∈ B′}) = {((b1, . . . , bn), (bn+1, . . . , b2n)) ∈ (Bn)2 : B |=
ε(x1/b1, . . . , x2n/b2n)}, and for every relation symbol R ∈ L′ of arity r, the preimage of the
relation R(B′) is defined by a pp-formula ϕR(x1, . . . , xrn) in the vocabulary L, i.e.,

f−1(R(B′)) = {((b1, . . . , bn), . . . , (bnr−n+1, . . . , bnr)) ∈ (Bn)r : B |= ϕR(x1/b1, . . . , xrn/brn)}.

Consider the set f−1(B′) ⊆ Bn quotiented by the equivalence relation f−1({(b′, b′) :
b′ ∈ B′}) ⊆ (Bn)2. For every equivalence class [(b1, . . . , bn)] we choose a representative
(b1, . . . , bn)∗. The L′-structure whose domain is the set of all representatives and for each
R ∈ L′ of arity r the relation R interpreted as {((b1, . . . , bn)∗, . . . , (bnr−n+1, . . . , bnr)

∗) : B |=
ϕR(x1/b1, . . . , xrn/brn)} is isomorphic to B′. From now on whenever we talk about the
structure B′ we mean the structure that we have just defined.

We now define a structure B′′ pp-definable in B and show intuitively that small refutations
for B′′ imply small refutations for B′. By the results of previous sections it follows that small
refutations for B imply small refutations for B′. To this end, for every relation symbol R ∈ L′
of arity r, let R̂ be a relation symbol of arity nr, and let L′′ = {R̂ : R ∈ L′}. We define B′′ to
be the finite L′′-structure with domain B and relations defined by R̂(B′′) = {(b1, . . . , brn) ∈
Brn : B |= ϕR(x1/b1, . . . , xrn/brn)}, for each R̂ ∈ L′′ of arity rn.

For every instance A of the CSP of the language B′, that is, for every finite L′-structure
A, the corresponding instance of the CSP of the language B′′ is the L′′-structure A′′ whose
domain A′′ is A× [n] and whose relations are defined by

R̂(A′′) = {((a1, 1), . . . , (a1, n), (a2, 1), . . . . . . . . . , (ar, n)) : (a1, . . . , ar) ∈ R(A)},

for each R̂ ∈ L′′ of arity rn. It is not difficult to see that A maps homomorphically to B′ if
and only if A′′ maps homomorphically to B′′.

Lemma 16. For any positive integers t, k and s, and every finite L′-structure A, if there
is a Frege refutation of CNF(A′′,B′′) of depth t, bottom fan-in k and size s, then there is a
Frege refutation of CNF(A,B′) of depth t, bottom fan-in polynomial in k and size polynomial
in 2k and s.

Proof. Let F denote CNF(A′′,B′′), let G denote CNF(A,B′), and let q denote the number
of elements in B. For each i ∈ [n] and each b ∈ B we define F (b, i) to be the set of those
tuples in B′ ⊆ Bn which have b on their i-th coordinate, i.e.,

F (b, i) = {(b1, . . . , bn) ∈ B′ : bi = b}.

Observe that for a fixed i the sets F (b, i) are disjoint subsets of B′ and they cover the
whole B′. In other words, they partition B′; note however that some F (b, i)’s may be empty.

Consider the following substitution σ of the variables of F :

X((a, i), b) :=
∨

(b1,...,bn)∈F (b,i)

X(a, (b1, . . . , bn)).
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Note that this is a clause with at most qn−1 many literals, and hence a 1-DNF with at
most qn−1 many terms. By Lemma 6 it suffices to check that, for each clause C of F , the
substituted formula σ(C) is a logical consequence of a bounded number of clauses of G.

To argue this, let C be any of the clauses in F , say
∨
b∈BX((a, i), b) for (a, i) ∈ A× [n].

The substituted formula is then the following:∨
b∈B

∨
(b1,...,bn)∈F (b,i)

X(a, (b1, . . . , bn)).

Since for each i ∈ [n] the sets F (b, i) partition B′, this is equivalent to∨
(b1,...,bn)∈B′

X(a, (b1, . . . , bn)),

which is the clause of type 1 for a in G. Hence, we are done for this case.
Suppose now that C is the clause X((a, i), b) ∨ X((a, i), b′) for (a, i) ∈ A × [n] and

(b, b′) ∈ B2 with b 6= b′. If either of the sets F (b, i) or F (b′, i) is empty, then X((a, i), b)
(or X((a, i), b′) respectively) is substituted by the empty formula and σ(C) is true so there
is nothing to be proved. Otherwise, the substituted formula (after converting to negation
normal form) is the following:( ∧

(b1,...,bn)∈F (b,i)

X(a, (b1, . . . , bn))
)
∨
( ∧
(b1,...,bn)∈F (b′,i)

X(a, (b1, . . . , bn))
)
,

and it says that either a is not mapped to any of the elements in F (b, i), or it is not mapped
to any of the elements in F (b′, i). Since the sets F (b, i) and F (b′, i) are disjoint, this formula
is a logical consequence of qn(qn − 1)/2 clauses of G: those of type 2 for a. Indeed, those
clauses imply that the element a can be mapped to at most one tuple from B′.

Now, let C be the clause X((a1, 1), b1)∨ · · · ∨X((ar, n), bnr) for some R̂ ∈ L′′ of arity nr,
(a1, . . . , ar) ∈ R(A), and (b1, . . . , bnr) ∈ Bnr \ R̂(B′′). If for some j ∈ [r] and some i ∈ [n]
the set F (bnj−n+i, i) is empty, then the variable X((aj, i), bnj−n+i) is substituted by the
empty formula, in which case σ(C) is true, and there is nothing to be proved. Otherwise,
the substituted formula is a qn−1-DNF: for each j ∈ [r] and each i ∈ [n] there is a term
which says that aj is not mapped to any tuple from F (bnj−n+i, i), that is, aj is not mapped
to any tuple in B′ which has bnj−n+i on the i-th coordinate. There are two cases: either
the tuple ((b1, . . . , bn), . . . , (bnr−n+1, . . . , bnr)) belongs to (B′)r or not. In the second case
without loss of generality let us assume that (b1, . . . , bn) 6∈ B′. In particular this means that⋂
i∈[n] F (bi, i) = ∅. Then we argue that the formula( ∧

(b′1,...,b
′
n)∈F (b1,1)

X(a1, (b′1, . . . , b
′
n))
)
∨ · · · ∨

( ∧
(b′1,...,b

′
n)∈F (bn,n)

X(a1, (b′1, . . . , b
′
n))
)
,

and hence also the substituted formula σ(C) is a logical consequence of qn(qn − 1)/2 + 1
clauses of G: those of type 1 and 2 for a1. Indeed, those qn(qn − 1)/2 + 1 clauses imply
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that a1 is mapped to exactly one element from B′. Since
⋂
i∈[n] F (bi, i) = ∅, this in turn

implies that there exist i such that a1 is not mapped to any tuple from F (bi, i) and we are
done. Otherwise, if the tuple ((b1, . . . , bn), . . . , (bnr−n+1, . . . , bnr)) belongs to (B′)r, then the
substituted formula is a logical consequence of at most rqn(qn − 1)/2 + 1 clauses of G: the
clauses of type 2 for a1, . . . , ar and the clause of type 3 for R ∈ L′, (a1, . . . , ar) ∈ R(A), and
((b1, . . . , bn), . . . , (bnr−n+1, . . . , bnr)) ∈ (B′)r \ R(B′). This is not very difficult to see since
those rqn(qn − 1)/2 + 1 clauses imply that the tuple (a1, . . . , ar) is mapped to at most one
tuple from (B′)r and is not mapped to ((b1, . . . , bn), . . . , (bnr−n+1, . . . , bnr)). This in turn
implies that for some j ∈ [r] and some i ∈ [n], aj is not mapped to any tuple in B′ which
has bnj−n+i on the i-th coordinate, and we are done. More formally, the rqn(qn − 1)/2 + 1
clauses in question imply that for every j ∈ [r] at most one of the variables in⋃

i∈[n]

{X(aj, (b
′
1, . . . , b

′
n)) : (b′1, . . . , b

′
n) ∈ F (bnj−n+i, i)}

is true. Since for every j ∈ [r], we have that
⋂
i∈[n] F (bnj−n+i, i) = {(bnj−n+1, . . . , bnj)}, and at

least one of the variables X(a1, (b1, . . . , bn)), . . . , X(ar, (bnr−n+1, . . . , bnr)) is false, this implies
that there exists j ∈ [r] such that for some i ∈ [n] each of the variables in {X(aj, (b

′
1, . . . , b

′
n)) :

(b′1, . . . , b
′
n) ∈ F (bnj−n+i, i)} is false, which finishes the proof in this case.

Lemma 17. Let P be Polynomial Calculus, Sherali-Adams, Positive Semidefinite Sherali-
Adams, Sums-of-Squares, Lovász-Schrijver or Positive Semidefinite Lovász-Schrijver. For
any positive integers k and s, and every finite L′-structure A, if there is a P refutation of
EQ(A′′,B′′) of degree k and size s, then there is a P refutation of EQ(A,B′) of degree linear
in k and size polynomial in 2k and s.

Proof. Let F denote EQ(A′′,B′′) and let G denote EQ(A,B′). For each i ∈ [n] and each
b ∈ B we define F (b, i) as in the proof of Lemma 16 above, and we consider the following
substitution σ of the variables of F :

X((a, i), b) :=
∑

(b1,...,bn)∈F (b,i)

X(a, (b1, . . . , bn)),

X̄((a, i), b) :=
∑

(b1,...,bn)∈B′\F (b,i)

X(a, (b1, . . . , bn)).

Those are polynomials of degree 1 with at most qn many monomials and all coefficients
equal 1. We will show that for each equation in F and for each axiom inequality and
equation, its substitution follows on all evaluations of its variables in {0, 1} from a bounded
number of equations in Eq(G). By Lemmas 7 and 8 this implies the statement of the lemma.

Let P = 0 be any of the equations in F , say
∏

b∈B X̄((a, i), b) = 0 for (a, i) ∈ A × [n].
The substituted equation is then the following:∏

b∈B

( ∑
(b1,...,bn)∈B′\F (b,i)

X(a, (b1, . . . , bn))
)

= 0.
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Since for each i ∈ [n] the sets F (b, i) partition B′, this equation follows on all evaluations of
its variables in {0, 1} from the set of equations of type 2 for a. This set of equations implies
that X(a, (b1, . . . , bn)) is 1 for at most one element of B′.

Suppose now that P = 0 is the equation X((a, i), b)X((a, i), b′) = 0 for (a, i) ∈ A × [n]
and (b, b′) ∈ B2 with b 6= b′. Since the sets F (b, i) and F (b′, i) are disjoint, the substituted
equation follows on all evaluations of its variables in {0, 1} from the set of equations of type
2 for a in G.

Now, let P = 0 be the equation X((a1, 1), b1) · . . . ·X((ar, n), bnr) = 0 for some R̂ ∈ L′′
of arity nr, (a1, . . . , ar) ∈ R(A), and (b1, . . . , bnr) ∈ Bnr \ R̂(B′′). If for some j ∈ [r] and
some i ∈ [n] the set F (bnj−n+i, i) is empty, then the variable X((aj, i), bnj−n+i) is substituted
by 0 and the substituted equation is always satisfied. Otherwise, there are two cases: either
the tuple ((b1, . . . , bn), . . . , (bnr−n+1, . . . , bnr)) belongs to (B′)r or not. In the second case
without loss of generality let us assume that (b1, . . . , bn) 6∈ B′. In particular this means that⋂
i∈[n] F (bi, i) = ∅. Hence, the set of equations of type 2 for a1 in G imply∑

(b′1,...,b
′
n)∈F (b1,1)

X(a1, (b
′
1, . . . , b

′
n)) · . . . ·

∑
(b′1,...,b

′
n)∈F (bn,n)

X(a1, (b
′
1, . . . , b

′
n)) = 0.

Otherwise, if the tuple ((b1, . . . , bn), . . . , (bnr−n+1, . . . , bnr)) belongs to (B′)r, then the sub-
stituted equation follows on all evaluations of its variables in {0, 1} from the equations
of type 2 for a1, . . . , ar, the equation of type 3 for R ∈ L′, (a1, . . . , ar) ∈ R(A), and
((b1, . . . , bn), . . . , (bnr−n+1, . . . , bnr)) ∈ (B′)r \R(B′).

For the axiom inequalities and equations the proof is the same as in Lemma 15.

4.7 Homomorphic equivalence

Now let B′ be a finite L-structure homomorphically equivalent to B. Any L-structure A
maps homomorphically to B′ if and only if it maps homomorphically to B. We fix some
homomorphism from B′ to B and denote it by h.

Lemma 18. For any positive integers k, t and s, and every finite L-structure A, if there is
a Frege refutation of CNF(A,B) of depth t, bottom fan-in k and size s, then there is a Frege
refutation of CNF(A,B′) of depth t, bottom fan-in polynomial in k and size polynomial in 2k

and s.

Proof. Let F denote CNF(A,B) and let G denote CNF(A,B′). Consider the substitution σ
defined as follows for every variable in F :

X(a, b) :=
∨

b′∈h−1(b)

X(a, b′),

for every a ∈ A and b ∈ B. By Lemma 6 it suffices to check that, for each clause C of F ,
the substituted formula σ(C) is a logical consequence of a bounded number of clauses of G.

To argue this, let C be any of the clauses in F , say
∨
b∈BX(a, b) for a in the domain

of A. Observe that σ(C) is
∨
b∈B′ X(a, b), which is a clause that belongs to G.

39



Suppose now that C is the clause X(a, b)∨X(a, b′) for a ∈ A and (b, b′) ∈ B2 with b 6= b′.
The substituted clause says that a is either not mapped to any of the elements in h−1(b) or
it is not mapped to any of the elements in h−1(b′). If any of those sets is empty, then σ(C)
is true. Otherwise, since the sets h−1(b) and h−1(b′) are disjoint, σ(C) is a consequence of
the clauses of type 2 for a, which imply that a can be mapped to at most one element in B′.

Now, let C be the clause X(a1, b1) ∨ · · · ∨ X(ar, br) for some natural number r, R ∈ L
of arity r, (a1, . . . , ar) ∈ R(A), and (b1, . . . , br) ∈ Br \ R(B). Since h is a homomorphism,
all the tuples in h−1(b1)× . . .× h−1(br) belong to (B′)r \R(B′). Therefore, σ(C) is a logical
consequence of the clauses of type 3 in G for the relation symbol R, (a1, . . . , ar) ∈ R(A) and
all tuples (b′1, . . . , b

′
r) ∈ h−1(b1)× . . .× h−1(br).

Lemma 19. Let P be Polynomial Calculus, Sherali-Adams, Positive Semidefinite Sherali-
Adams, Sums-of-Squares, Lovász-Schrijver or Positive Semidefinite Lovász-Schrijver. For
any positive integers k and s, and every finite L-structure A, if there is a P refutation of
EQ(A,B) of degree k and size s, then there is a P refutation of EQ(A,B′) of degree linear
in k and size polynomial in 2k and s.

Proof. Let F denote EQ(A,B) and let G denote EQ(A,B′). Consider the substitution σ
defined as follows for every variable in F :

X(a, b) :=
∑

b′∈h−1(b)

X(a, b′),

X̄(a, b) :=
∑

b′∈B′\h−1(b)

X(a, b′),

for every a ∈ A and b ∈ B. By Lemmas 7 and 8 it suffices to check that for each equation
in F and for each axiom inequality and equation, its substitution follows on all evaluations
of its variables in {0, 1} from a bounded number of equations in Eq(G).

Let P = 0 be the equation
∏

b∈B X̄(a, b) = 0 for a in the domain of A. Since the union
of the sets h−1(b) for b ∈ B is B′, the substituted equality follows on all valuations of its
variables in {0, 1} from the set of equations of type 2 for a in G.

Suppose now that P = 0 is the equation X(a, b)X(a, b′) = 0 for a ∈ A and (b, b′) ∈ B2

with b 6= b′. Since the sets h−1(b) and h−1(b′) are disjoint, the substituted equation follows
on all valuations of its variables in {0, 1} from the set of equations of type 2 for a.

Now, let P = 0 be the equation X(a1, b1) · . . . · X(ar, br) = 0 for some natural num-
ber r, R ∈ L of arity r, (a1, . . . , ar) ∈ R(A), and (b1, . . . , br) ∈ Br \ R(B). Since h is a
homomorphism, all the tuples in h−1(b1)× . . .× h−1(br) belong to (B′)r \R(B′). Therefore,
the substituted equation follows on all valuations of its variables in {0, 1} from the set of
equations of type 2 for a1, . . . , ar and of type 3 for the relation symbol R, (a1, . . . , ar) ∈ R(A)
and all tuples (b′1, . . . , b

′
r) ∈ h−1(b1)× . . .× h−1(br).

The argument for the axiom equation and inequalities is the same as in the proof of
Lemma 15.
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4.8 Adding constants

Finally we consider the extension by unary one-element relations under the assumption of
B being a core. For each b ∈ B, let Rb be a unary relation symbol, not in L, and let
L′ = L ∪ {Rb : b ∈ B}. We assume that B is a core and B′ is the L′-structure with domain
B, each relation symbol from L interpreted as in B, and Rb(B′) = {b}, for every b ∈ B.

For every finite L′-structure A the corresponding L-structure A′ has domain A′ = A∪B
(we assume that the sets A and B are disjoint), and every relation symbol R ∈ L interpreted
as
⋃
{R(B)b:=a : b ∈ B, a ∈ Rb(B)} ∪R(A)∪R(B), where R(B)b:=a is the relation R(B) with

every occurrence of b in a tuple substituted by a. It follows from the proof of Lemma 23
in [6] that A maps homomorphically to B′ if and only if A′ maps homomorphically to B.

Lemma 20. For every two positive integers k and s and every finite L′-structure A, if there
is a Frege refutation of CNF(A′,B) of depth t, bottom fan-in k and size s, then there is a
Frege refutation of CNF(A,B′) of depth t, bottom fan-in k and size at most s.

Proof. Let F denote CNF(A′,B) and let G denote CNF(A,B′). Consider the substitution σ
defined by the identity on all variables of G and defined as follows for every variable in F
that is not in G:

X(b, b′) :=

{
0, if b 6= b′,

1, otherwise,

for every (b, b′) ∈ B2. By Lemma 6 it suffices to check that, for each clause C of F , the
substituted formula σ(C) is a logical consequence of a bounded number of clauses of G.

To argue this, let C be any of the clauses in F , say
∨
b∈BX(a, b) for a in the domain of

A′. If a ∈ A, then the clause is left untouched by the substitution. Since the same clause is
also in G, there is nothing to prove. Suppose now that a = b′ ∈ B. One of the variables in
C is then X(b′, b′). This variable is substituted by the true formula so σ(C) is true, which
finishes the proof in this case.

Suppose now that C is the clause X(a, b)∨X(a, b′) for a in the domain of A′ and (b, b′) ∈
B2 with b 6= b′. As in the previous case, if a ∈ A, then the clause is left untouched by the
substitution and there is nothing to prove. Suppose now that a = b′′ ∈ B. Then either b 6= b′′

or b′ 6= b′′. Therefore, either the variable X(b′′, b) or the variable X(b′′, b′) gets substituted
by the empty formula and σ(C) is true.

Now, let C be the clause X(a1, b1)∨ · · · ∨X(ar, br) for some natural number r, R ∈ L of
arity r, (a1, . . . , ar) ∈ R(A′), and (b1, . . . , br) ∈ Br \R(B). If (a1, . . . , ar) ∈ Ar then the same
argument as above shows that there is nothing to be proved. If (a1, . . . , ar) ∈ Br then C is
of the form X(b′1, b1)∨ . . .∨X(b′r, br), where (b′1, . . . , b

′
r) ∈ R(B) and (b1, . . . , br) ∈ Br \R(B).

Then there exists i ∈ [r] such that b′i 6= bi and the variable X(b′i, bi) is substituted by the
empty formula, so once again σ(C) is true. The only remaining case is when (a1, . . . , ar) ∈
R(B)b:=a, where a ∈ Rb(B′) and aj = a for some (possibly more than one) j ∈ [r]. If there
exists i ∈ [r] such that ai = b′i ∈ B and b′i 6= bi then the variable X(b′i, bi) is substituted
by the empty formula, so once again σ(C) is true. Otherwise, there exists j ∈ [r] such that
aj = a and bj 6= b. Then the substituted formula is (possibly a weakening of) the formula
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X(a, bj) where bj 6= b. This formula belongs to G: it is the clause of type 3 for a ∈ Rb(A′)
and bj ∈ B \Rb(B′).
Lemma 21. Let P be Polynomial Calculus, Sherali-Adams, Positive Semidefinite Sherali-
Adams, Sums-of-Squares, Lovász-Schrijver or Positive Semidefinite Lovász-Schrijver. For
every two positive integers k and s, and every finite L′-structure A, if there is a P refutation
of EQ(A′,B) of degree k and size s, then there is a P refutation of EQ(A,B′) of degree k
and size at most s.

Proof. Let F denote EQ(A′,B) and let G denote EQ(A,B′). Consider the substitution σ
defined by the identity on all variables of G and defined as follows for every variable in F
that is not in G:

X(b, b′) :=

{
0, if b 6= b′,

1, otherwise,
X̄(b, b′) :=

{
1, if b 6= b′,

0, otherwise,

for every (b, b′) ∈ B2. By Lemmas 7 and 8 it suffices to check that for each equation in F
and for each axiom inequality and equation, its substitution follows on all evaluations of its
variables in {0, 1} from a bounded number of equations in Eq(G). We show this analoguosly
as in the proof of Lemma 20.

Let P = 0 be any of the equations in F , say
∏

b∈B X̄(a, b) = 0 for a in the domain of A′.
If a ∈ A, then the equation is left untouched by the substitution. Since the same equation is
also in G, there is nothing to prove. Suppose now that a = b′ ∈ B. One of the variables in∏

b∈B X̄(a, b) is then X̄(b′, b′). This variable is substituted by 0 so the substituted equation
holds for all valuations of its variables in {0, 1}.

Suppose now that P = 0 is the equation X(a, b)X(a, b′) = 0 for a in the domain of A′ and
(b, b′) ∈ B2 with b 6= b′. As in the previous case, if a ∈ A, then the equation is left untouched
by the substitution and there is nothing to prove. Suppose now that a = b′′ ∈ B. Then
either b 6= b′′ or b′ 6= b′′. Therefore, either the variable X(b′′, b) or the variable X(b′′, b′) gets
substituted by 0 so the substituted equation holds for all valuations of its variables in {0, 1}.

Now, let P = 0 be the equation X(a1, b1) · . . . ·X(ar, br) = 0 for some natural number r,
R ∈ L of arity r, (a1, . . . , ar) ∈ R(A′), and (b1, . . . , br) ∈ Br \ R(B). If (a1, . . . , ar) ∈ Ar

then the same argument as above shows that there is nothing to be proved. Otherwise, if
(a1, . . . , ar) ∈ Br then P = 0 is of the form X(b′1, b1) · . . . ·X(b′r, br) = 0, where (b′1, . . . , b

′
r) ∈

R(B) and (b1, . . . , br) ∈ Br \ R(B). Hence, there exists i ∈ [r] such that b′i 6= bi and the
variable X(b′i, bi) is substituted by 0, so once again the substituted equation holds for all
valuations of its variables in {0, 1}. The only remaining case is when (a1, . . . , ar) ∈ R(B)b:=a,
where a ∈ Rb(B′) and aj = a for some (possibly more than one) j ∈ [r]. If there exists i ∈ [r]
such that ai = b′i ∈ B and b′i 6= bi then the variable X(b′i, bi) is substituted by 0, so once
again the substituted equation holds for all valuations of its variables in {0, 1}. Otherwise,
there exists j ∈ [r] such that aj = a and bj 6= b. Then the substituted equation follows on
all valuations of its variables in {0, 1} from the equation X(a, bj) = 0 where bj 6= b. This
equation belongs to G: it is the equation of type 3 for a ∈ Rb(A′) and bj ∈ B \Rb(B′).

All the axiom equations and inequalities from Ineq(F ) after applying the substitution σ
either become true or are axiom equations and inequalities for the variables of G.
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5 Upper bound

In this section we show that templates of bounded width (cf. Section 2.5) admit efficient
refutations in resolution. It immediately follows that the bounded width property ensures
efficient refutations in bounded depth Frege, as well as in Polynomial Calculus over the reals,
Sherali-Adams and Sums-of-Squares proof systems (cf. Lemma 9). Together with matching
lower bounds obtained in the next section, this will complete the proof of Theorem 1.

Let k(n) be a function. Let B be a finite relational structure over a finite vocabulary
and let E be a propositional encoding scheme for CSP(B). We say that a finite relational
structure B has resolution refutations of width k(n) with respect to the encoding scheme E
if, for every finite structure A over the same vocabulary as B with n elements, if there is no
homomorphism from A to B, then E(A) has a resolution refutation of width k(n). We say
that B has resolution refutations of constant width if there exist a local encoding E and a
function k(n) = O(1) such that B has resolution refutations of width k(n) with respect to E.
Lemma 4 implies that a structure B has resolution refutations of constant width if and only
if it has resolution refutations of constant width with respect to any local encoding scheme.
In this section we use the CNF encoding scheme. The goal is to prove the following:

Theorem 8. Let B be a finite relational structure. The following are equivalent:

1. B has bounded width,

2. B has resolution refutations of constant width.

In preparation for the proof we revisit the characterization of resolution width in terms of
existential pebble games from [7].

Let L = {R0, . . . , Rq} be a finite relational vocabulary consisting of q + 1 symbols of
arity q. Let Sq be an L-structure with two-element domain {0, 1}, where each relation
Ri(Sq) encodes the set of valuations that satisfy a q-clause with i negated variables. More
precisely, for 0 ≤ i ≤ q, let Ri(Sq) = {0, 1}q \ {(x1, . . . , xq)} where (x1, . . . , xq) ∈ {0, 1}q is
the vector defined by xj = 0 for j > i and xj = 1, otherwise. Now for every q-CNF F , we
define an L-structure AF . Its domain is the set of variables in F , and the relation Ri(AF )
is the set of all tuples (X1, . . . , Xq) such that the clause X1 ∨ . . . ∨ Xi ∨ Xi+1 ∨ . . . ∨ Xq

belongs to F . We allow the variables in the clauses to repeat, so the definition covers clauses
with less than q literals. Observe that partial homomorphisms from AF to Sq correspond to
partial truth assignments to the variables of F that do not falsify any clause from F . Hence,
for every q-CNF F , it holds that F is satisfiable if and only if there is a homomorphism
from AF to Sq.
Theorem 9 ([7]). Let k and q be positive integers such that k ≥ q and let F be q-CNF.
Then F has a resolution refutation of width k if and only if Spoiler wins the existential
(k + 1)-pebble game on AF and Sq.

In this section we use the above theorem to establish a similar correspondence between
existential pebble games on arbitrary structures A and B and bounded width resolution
refutations of CNF(A,B). In the following, let the notation A ≤k B mean that Duplicator
wins the existential k-pebble game on A and B.
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Lemma 22. Let A and B be relational structures over the same vocabulary of maximum
arity r, and let k be an integer such that k ≥ |B| and k ≥ r. Then:

1. if A 6≤k+2 B, then CNF(A,B) has a resolution refutation of width k + |B|,
2. if A ≤k+2 B, then CNF(A,B) does not have a resolution refutation of width k + 1.

Proof. Let F denote CNF(A,B). Let q be the maximum of the number of elements in B
and the arity of relation symbols in the vocabulary of A and B. Observe that F is a q-CNF.
Lemma 22 follows from Theorem 9 together with the following facts.

Claim 4. If AF ≤k+|B| Sq, then A ≤k+1 B.

Claim 5. If A ≤k B, then AF ≤k Sq.

Indeed, if Spoiler wins the existential (k + 2)-pebble game on A and B then, by Claim 4,
Spoiler wins the existential (k + |B| + 1)-pebble game on AF and Sq and, by Theorem 9,
F has a resolution refutation of width k + |B|. On the other hand, if Duplicator wins the
existential (k+2)-pebble game on A and B then, by Claim 5, Duplicator wins the existential
(k+2)-pebble game on AF and Sq and, by Theorem 9, F does not have a resolution refutation
of width k + 1. It remains to prove Claims 4 and 5.

Proof of Claim 4. We prove the contrapositive. Suppose that Spoiler wins the existential
(k + 1)-pebble game on A and B. We give a winning strategy for Spoiler in the existential
(k + |B|)-pebble game on AF and Sq. We simulate each move of Spoiler in the game on A
and B by |B| moves in the game on AF and Sq. Suppose that Spoiler puts the i-th pebble
on an element a of A. We simulate this by pebbling elements X(a, b) of AF , for each b ∈ B.
There are two possibilities. If the answer of Duplicator falsifies any of the clauses of types
1 or 2 in F then Spoiler wins immediately. Otherwise, the answer of Duplicator is 1 for
exactly one element X(a, b′). We simulate this by putting a pebble on the element b′ of B in
the game on A and B. Now, in the game on AF and Sq the pebble which lies on the element
X(a, b′) stays there until Spoiler picks up the i-th pebble form the element a in A. The other
|B| − 1 pebbles which lie on elements X(a, b) for b 6= b′ can be used to simulate subsequent
moves. Therefore, to simulate the existential (k + 1)-pebble game on A and B we need only
|B| − 1 extra pebbles.

If during the course of the game Spoiler does not win by falsifying any of the clauses of
types 1 or 2 then the simulation of the game on A and B continues. Since in the simulated
game Spoiler has a winning strategy, after a finite number of rounds the partial assignment
f : A → B defined by f(ai) = bi is not a partial homomorphism. This means that there
exist a natural number r, a relation symbol R ∈ L of arity r, a tuple (a′1, . . . , a

′
r) ∈ R(A)

and a tuple (b′1, . . . , b
′
r) ∈ Br \R(B), such that for every i ∈ [r] the pairs of elements (a′i, b

′
i)

are pebbled by pairs of corresponding pebbles. It follows from the construction that in
the simulation game on AF and Sq the pairs of elements (X(a′i, b

′
i), 1) are pebbled by pairs

of corresponding pebbles. This means that the partial assignment defined by the current
configuration of the game falsifies one of the clauses of type 3 in F and Spoiler wins.
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Proof of Claim 5. We prove the contrapositive. Suppose that Spoiler wins the existential
k-pebble game on AF and Sq. We give a winning strategy for Spoiler in the existential k-
pebble game on A and B. We simulate each move of Spoiler in the game on AF and Sq by
a single move in the game on A and B. Suppose that Spoiler puts a pebble on an element
X(a, b) of AF . We simulate this by pebbling the element a of A. If Duplicator responds by
putting the corresponding pebble on the element b of B, then we simulate this by pebbling 1
in Sq, otherwise we pebble 0 in Sq.

It is not difficult to see that this is indeed a winning strategy for Spoiler in the existential
k-pebble game on A and B. Since in the simulated game Spoiler has a winning strategy,
after a finite number of rounds the partial assignment f : AF → {0, 1} corresponding to the
current configuration of the game on AF and Sq is not a partial homomorphism. Observe
that it is not possible to falsify any of the clauses of type 1 in F . If for some a ∈ A and some
(b, b′) ∈ B2 such that b 6= b′, the partial assignment f falsifies X(a, b) ∨ X(a, b′), it means
that pairs of corresponding pebbles lie on pairs of elements (X(a, b), 1) and (X(a, b′), 1).
Hence, in the simulation game on A and B pairs of corresponding pebbles lie on pairs of
elements (a, b) and (a, b′) and the partial assignment is not well defined. Finally, if for some
natural number r, a relation symbol R ∈ L of arity r, a tuple (a′1, . . . , a

′
r) ∈ R(A) and a tuple

(b′1, . . . , b
′
r) ∈ Br\R(B), the partial assignment f falsifies the clause X(a′1, b

′
1)∨· · ·∨X(a′r, b

′
r),

it means that in the game on A and B for every i ∈ [r], the pairs of elements (a′i, b
′
i) are

pebbled by pairs of corresponding pebbles, and the partial assignment given by the current
configuration of the game is also not a partial homomorphism, which ends the proof.

We are ready to wrap-up:

Proof of Theorem 8. For the implication 1 to 2, assume that B has bounded width, say
width l, and let k = max{|B|, r, l}, where r is the maximum arity of the vocabulary of B. Let
A be a structure over the same vocabulary as B and assume that there is no homomorphism
from A to B. Then Spoiler wins the existential l-pebble game on A and B, and hence also the
existential (k + 2)-pebble game on A and B, since k + 2 ≥ l. The hypotheses of Lemma 22
hold, so by part 1. in that lemma, CNF(A,B) has a resolution refutation of width k + |B|.
This shows that B has resolution refutations of width k+|B|, and hence resolution refutations
of constant width.

For the implication 2 to 1, assume that B has resolution refutations of width l. Again
let k = max{|B|, r, l} where r is the maximum arity of the relations in the vocabulary
of B. Let A be a structure over the same vocabulary as B and assume that there is no
homomorphism from A to B. Then CNF(A,B) has a resolution refutation of width l, and
hence of width k + 1 since k + 1 ≥ l. The hypotheses of Lemma 22 hold, so by part 2. in
that lemma, Spoiler wins the existential (k + 2)-pebble game on A and B. This shows that
B has width k + 2, and hence bounded width.
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6 Lower bounds

Let d(n), k(n) and s(n) be functions. Let B be a finite relational structure over a finite
vocabulary and let E be a propositional encoding scheme for CSP(B). We say that the
structure B has Frege refutations of depth d(n), bottom fan-in k(n), and size s(n) with
respect to the encoding scheme E if, for every finite structure A over the same vocabulary
as B with n elements, if there is no homomorphism from A to B, then E(A) has a Frege
refutation of depth d(n), bottom fan-in k(n), and size s(n). We say that B has bounded-
depth Frege refutations of subexponential size if there exist a local encoding scheme E and
functions d(n) = O(1), k(n) = O(1) and s(n) = 2n

o(1)
such that the structure B has Frege

refutations of depth d(n), bottom fan-in k(n), and size s(n) with respect to E. Due to
Lemma 4 the structure B has bounded-depth Frege refutations of subexponential size if and
only if it has bounded-depth Frege refutations of subexponential size with respect to any
local propositional encoding scheme.

Similarly, for any field F , if E is an algebraic encoding scheme over F , we say that the
structure B has PC refutations over F of degree d(n) with respect to the encoding scheme E
if, for every finite structure A over the same vocabulary as B with n elements, if there is no
homomorphism from A to B, then E(A) has a PC refutation over F of degree d(n). We say
that B has PC refutations over F of sublinear degree if there exist a local encoding scheme
E over F and a function d(n) = o(n) such that the structure B has PC refutations over F of
degree d(n) with respect to E. Due to Lemma 4 the structure B has PC refutations over F of
sublinear degree if and only if it has PC refutations over F of sublinear degree with respect
to any local algebraic encoding scheme.

Finally, if E is a semi-algebraic encoding scheme, we say that the structure B has SOS
refutations of degree d(n) with respect to the encoding scheme E if, for every finite structure A
over the same vocabulary as B with n elements, if there is no homomorphism from A to B,
then E(A) has a SOS refutation of degree d(n). We say that B has SOS refutations of
sublinear degree if there exist a local encoding scheme E and a function d(n) = o(n) such
that the structure B has SOS refutations of degree d(n) with respect to E. Due to Lemma 4
the structure B has SOS refutations of sublinear degree if and only if it has SOS refutations
of sublinear degree with respect to any local semi-algebraic encoding scheme.

The goal of this section is to prove the following:

Theorem 10. Let B be a finite relational structure. The following are equivalent:

1. B has bounded width,

2. B has bounded-depth Frege refutations of subexponential size,

3. B has PC refutations over the reals of sublinear degree,

4. B has SOS refutations of sublinear degree.

The equivalence of 1 and 4 is known [47]. Here we provide an alternative proof. The
implication 1 to 2 follows from Theorem 8: every resolution refutation is a Frege refutation
of depth one, and if the refutation has bounded width, then it has polynomial size and
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hence subexponential size. The implications 1 to 3 and 1 to 4 follow from Theorem 8
via the fact that bounded-degree Polynomial Calculus and bounded-degree Sherali-Adams
simulate bounded-width resolution (cf. Lemma 9); note that the simulation by bounded-
degree Sherali-Adams implies also the simulation by bounded-degree Sums-of-Squares and,
for both Polynomial Calculus and Sums-of-Squares, bounded-degree implies constant, and
hence sublinear, degree. For implications 2 to 1, 3 to 1 and 4 to 1 we use an algebraic
characterization of unbounded width. We begin with some definitions.

6.1 Algebraic characterization of unbounded width

Let G = (G,+, 0) be a finite Abelian group. For every positive integer n, each g ∈ G and
every (z1, . . . , zn) ∈ Zn, we define a relation R(g,z1,...,zn) = {(g1, . . . , gn) ∈ Gn : z1g1 + . . . +
zngn = g}, where zigi is a shortcut for the sum of |zi| copies of sign(zi)gi. Let ∼ be the
equivalence relation on the set

⋃
n>0G×Zn that identifies tuples defining the same relation,

i.e., (g, z1, . . . , zn) ∼ (g′, z′1, . . . , z
′
n′) if and only if n = n′ and R(g,z1,...,zn) = R(g′,z′1,...,z

′
n′ )

. Let

L(G) be the infinite relational vocabulary that for every equivalence class [(g, z1, . . . , zn)]
has one n-ary relation symbol E[(g,z1,...,zn)], and let B(G) be the L(G)-structure that has
domain G and where each relation symbol E[(g,z1,...,zn)] is interpreted as R(g,z1,...,zn). The CSP
of B(G) is called LIN(G). One should think about instances of LIN(G) as systems of linear
equations over the group G. For simplicity, for any instance A of LIN(G) we denote the fact
that a tuple (a1, . . . , an) ∈ An belongs to the relation E[(g,z1,...,zn)](A) by z1a1+ . . .+znan = g.

Observe that, since there are only finitely many relations of a fixed arity k on the finite
set G, the equivalence relation ∼ restricted to G×Zk has finitely many equivalence classes.
For every positive integer k, by L(G, k) we denote the finite relational vocabulary which is
the subset of L(G) containing all symbols of arity k, and by B(G, k) we denote the L(G, k)-
structure obtained from B(G) by removing all relations of arity different than k. The CSP
problem over B(G, k) is called kLIN(G). Instances of kLIN(G) correspond to systems of
linear equations over the group G with k variables per equation.

Theorem 11 ([12, 19]). Let B be a finite relational structure. The following are equivalent:

1. B does not have bounded width,

2. there exists a non-trivial finite Abelian group G such that B(G, 3) is pp-interpretable
in B+, where B+ is the expansion of the core of B with all constants.

Thus, in view of Theorems 5 and 7, in order to prove that 2. implies 1., 3. implies 1., and 4.
implies 1. in Theorem 10, it suffices to prove lower bounds for 3LIN(G), for every non-trivial
finite Abelian group G.

6.2 Lower bound for bounded-depth Frege

In [17], an exponential lower bound on the size of bounded-depth Frege proofs of the so-
called Tseitin formulas was obtained by reduction from the pigeonhole principle formulas;
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the latter are known to be hard for bounded-depth Frege by the so-called Jewel Theorem
of Proof Complexity [1, 16, 37]. The Tseitin formulas encode certain systems of linear
equations over Z2 that are derived from expander graphs. Here we adapt the formulas to
encode systems of linear equations over arbitrary finite Abelian groups, and then show that
the reduction in [17] can be generalised to our formulas. We use the CNF encoding scheme.

Theorem 12. For every integer d and every non-trivial finite Abelian group G there exists
a positive constant δ and a family of unsatisfiable instances (An)n≥1 of 3LIN(G), where An

has Θ(n) variables and Θ(n) equations, such that for every sufficiently large integer n every
Frege refutation of CNF(An,B(G, 3)) of depth d has size at least 2n

δ
.

The rest of this section is devoted to the proof of Theorem 12. We provide a proof for
the special case when G is the cyclic group Zq of integers under addition modulo q, for
some q ≥ 2. Lemma 25 at the end of this section shows that, thanks to the Fundamental
Theorem of Finite Abelian Groups, the special case of G = Zq implies Theorem 12 in full
generality. The proof of the general case would actually be the same, however we believe
that by focusing on simpler groups we make the arguments easier to follow.

Linear equations over Abelian groups. For the rest of this section, let us fix G to
be the cyclic group Zq of integers under addition modulo q, for some q ≥ 2. Whenever
we talk about an element z of the group G, where z is some integer, we mean the unique
element corresponding to z modulo q. The instances of 3LIN(G) that we show to be hard for
bounded-depth Frege are special cases of so-called Tseitin graph tautologies for Zq as defined
in [22]. Before defining them we need to introduce some terminology.

For a graph H = (V (H), E(H)) (directed or undirected) and a set of vertices W ⊆ V (H)
by ∂(W ) we denote the boundary of W which is the set of all edges incident with a vertex
in W and with a vertex in V (H) \W . If the graph H is directed, then by ∂−(W ) we denote
the set of edges with the head in W and the tail in V (H) \W , and by ∂+(W ) we denote the
set of edges with the head in V (H) \W and the tail in W . For single vertices v we write
∂(v) instead of ∂({v}). The same convention explains the notation ∂+(v) and ∂−(v).

Consider a directed graph H = (V (H), E(H)) and a labelling σ : V (H) → G of the
vertices of the graph H by elements of G. The Tseitin graph tautology A(H, σ) is the
following system of linear equations over the group G:

• the set of variables is the set E(H) of the edges of the graph;

• for every vertex v ∈ V (H) there is an equation∑
e∈∂+(v)

e−
∑

e∈∂−(v)

e = σ(v).

The system A(H, σ) can be seen as an instance of LIN(G). The formula CNF(A(H, σ),B(G))
is called a Tseitin formula. If the graph H is obtained from directing the edges of a k-regular
undirected graph, i.e., a graph in which each vertex has degree k, then A(H, σ) is an instance
of kLIN(G).
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It is easy to see that if
∑

v∈V (H) σ(v) 6= 0, then the instance A(H, σ) is unsatisfiable.
Indeed, since every variable e appears positively on the left-hand side of exactly one equation
and negatively on the left-hand side of exactly one equation, by summing up all the equations
we get 0 on the left-hand side and

∑
v∈V (H) σ(v) on the right-hand side. If

∑
v∈V (H) σ(v) 6= 0

we obtain a contradiction. It is not difficult to show that for a connected graph H, the
converse statement holds as well.

Lemma 23. If H = (V (H), E(H)) is a connected directed graph and σ : V (H) → G is a
labelling, then the system A(H, σ) is satisfiable and if and only if

∑
v∈V (H) σ(v) = 0.

Proof. The left-to-right direction is clear. For the opposite direction we define a solution to
A(H, σ) by assigning values to edges of the graph H one by one while keeping two invariants:
none of the equations gets falsified and the graph induced by unassigned edges is connected.
Below we formalize this intuition.

Since H is connected, we can enumerate its edges e1, . . . , em in such a way that for every
i ∈ [m] the graph Hi+1 obtained from H by removing the edges e1, . . . , ei and then deleting
all isolated vertices, is connected. Let us denote the system A(H, σ) by A1. We assign values
to the edges of H in the order specified above. Additionally, for each i ∈ [m − 1], after
assigning a value to ei we substitute the variable ei in the system Ai with this value, and
next move all constants to the right-hand side of the equations. We denote the obtained
system by Ai+1. The variables of Ai+1 are ej, for j > i. Observe, that for every i ∈ [k], the
sum of group elements that appear on the right-hand side of all the equations in Ai is 0.

Assume that we have already assigned values to the edges ej for j < i without falsifying
any of the equations in A(H, σ) (this is true for i = 1). The variable ei appears in exactly
two equations in Ai. There are two possibilities:

• if i 6= m then at least one of the two equations has at least one more variable whose
value has not yet been assigned. This is because the graph Hi is connected. Then we
can assign a value to ei in such a way that none of the equations in Ai gets falsified:
the value is either forced by the other equation, or can be assigned arbitrarily.

• if i = m then the two equations which mention the variable ek are of the form em = g
and −em = h, for some elements g and h of the group. All the other equations in
the system Am are of the form 0 = 0. Since the sum of the group elements on the
right-hand side of the equations in Am is 0, we have that g = −h and we can assign
the value g to em, satisfying the last two equations.

This finishes the construction of a solution to A(H, σ).

Sometimes we want to consider subsystems of A(H, σ) induced by some subset of vertices.
Let W ⊆ V (H). By A(W,σ) we denote the system of linear equations obtained from
A(H, σ) by removing all equations corresponding to vertices in V (H) \W . In particular,
A(V (H), σ) = A(H, σ). Moreover, by A(∂(W ), σ) we denote the system of linear equations
consisting of the single equation

∑
e∈∂+(W ) e −

∑
e∈∂−(W ) e =

∑
v∈W σ(v) which is the sum

of all the equations in A(W,σ). It turns out that whenever the subgraph induced by W is
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connected, A(∂(W ), σ) carries the essential information about the satisfiablity of A(W,σ).
The following is an easy generalization of well-known properties of Tseitin tautologies over Z2.

Lemma 24. Let H = (V (H), E(H)) be a directed graph, let W ⊆ V (H) be a subset of its
vertices such that the subgraph induced by W is connected, and let σ : W → G be a labelling
of the vertices in W . An assignment f : ∂(W )→ G extends to a solution to A(W,σ) if and
only if it satisfies A(∂(W ), σ).

Proof. Since A(∂(W ), σ) is the sum of the equations in A(W,σ), the left-to-right direction
is obvious. For the opposite direction, let f : ∂(W ) → G be an assignment satisfying
A(∂(W ), σ). Let us denote by H ′ the graph induced by W . Observe that by assigning values
to the variables in ∂(W ) according to f and moving all the constants in the system A(W,σ)
to the right we obtain a system A(H ′, σ′) for some labelling σ′ : W → G of the vertices in
H ′ which satisfies

∑
v∈W σ′(v) = 0. By Lemma 23 there exists a solution g to the system

A(H ′, σ′). By extending f with g we obtain a solution to A(W,σ).

Hard Tseitin graph tautologies are usually based on graphs that are expanders. For an
undirected graph H = (V (H), E(H)) the expansion constant is:

e(H) = min

{
|∂(W )|
|W |

: W ⊆ V (H), |W | ≤ |V (H)|
2

}
.

We call a family H of undirected graphs a family of expander graphs if it is infinite and
there exists a positive constant e such that e(H) ≥ e for every graph H in H. For more
information on expanders see e.g. the survey [31]. Here we only need the well known fact
that expander families exist.

Fact 1. For every integer l ≥ 3 there exists a family of connected l-regular undirected ex-
pander graphs (Hn)n≥1, where the graph Hn has Θ(n) vertices.

Our proof strategy is now the following. We take a family (H̄n)n≥1 of connected 3-
regular undirected expander graphs and show that for every sufficiently large integer n, one
can specify edge directions in H̄n obtaining a directed graph Hn, and choose an appropriate
labelling σn of the vertices of Hn with elements of G, such that every Frege refutation of
CNF(A(Hn, σn),B(G, 3)) of depth d has size at least 2n

δ
. To this end, following the lines

of [17], we reduce the onto-pigeonhole principle, which states that there is no bijection
between sets of size m and m + 1, to a Tseitin formula over a complete bipartite graph
and further reduce the latter to the Tseitin formula over Hn. Let us begin with the second
reduction.

Reducing Tseitin formulas over a complete bipartite graph. We now define the
graphs Hn together with labellings σn and show a reduction of a Tseitin formula over a
complete bipartite graph to the Tseitin formula over Hn.

The following is a special case of Theorem 4.2 in [17].
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Theorem 13 ([17]). If H is a family of connected 3-regular expander graphs, then there
exists a positive constant c such that for every graph H in H, the set of its vertices V (H)
can be partitioned into V1, . . . , Vh where h ≥ c|V (H)|1/3 and:

• For every i ∈ [h] the subgraph induced by Vi is connected.

• For any 1 ≤ i < j ≤ h, there is at least one edge incident to some vertex in Vi and to
some vertex in Vj.

Let us fix a family (H̄n)n≥1 of connected 3-regular undirected expander graphs, where
the graph H̄n has Θ(n) vertices. Let c be the constant whose existence follows from the
theorem above. Consider the graph H̄n, for some n ≥ (5/c)3, and take a partition of the
set of vertices V (H̄n) into at least h ≥ cn1/3 ≥ 5 subsets satisfying the conditions given in
Theorem 13. Let us call them bubbles. Without loss of generality we can assume that the
number of bubbles is odd, i.e., h = 2m + 1, otherwise we remove the bubbles Vh−1 and Vh
and substitute them by a single bubble Vh−1 ∪ Vh. The set of bubbles is denoted W .

Based on the undirected expander graph H̄n, together with the partition of the set of its
vertices into 2m + 1 bubbles we define a directed graph Hn and a labelling σn. The idea is
to simulate the complete bipartite graph Km,m+1. To this end, let us fix a partition of the
set of bubbles into two disjoint sets: {V1, . . . , Vm} and {W1, . . . ,Wm+1}. For each i ∈ [m]
and each j ∈ [m+ 1] let us fix an edge ei,j incident to some vertex in Vi and to some vertex
in Wj. For future reference, let us say that we paint those edges red. We fix the direction
of each of those edges from Wj to Vi. The directions of the rest of the edges in the graph
Hn are set arbitrarily. Now, for each i ∈ [m] we fix one vertex vi in the bubble Vi, paint it
blue and label it with −1; similarly for each j ∈ [m + 1] we fix one vertex vj in the bubble
Wi, paint it green and label it with 1. The rest of the vertices of the graph Hn are labelled
with 0. This finishes the definition of the directed graph Hn and the labelling σn.

Observe that the Tseitin tautology A(Hn, σn) is unsatisfiable. Indeed, the sum of all
labels of the vertices of Hn is (m+ 1) · 1−m · 1 = 1 6= 0.

We now show that by assigning truth values to some variables in CNF(A(Hn, σn),B(G, 3))
we obtain an encoding of CNF(A(Km,m+1, σ),B(G)), where Km,m+1 is a complete bipartite
graph, and σ is some labelling of its vertices with elements of the group G. Let us first make
some general comments about partial assignments for instances of LIN(G) and variable
substitutions for corresponding CNFs.

Let A be any system of linear equations over the group G. For a partial assignment ρ
which maps some of the variables of A to elements of the group, there is a natural corre-
sponding substitution of the variables in CNF(A,B(G)): if the partial assignment ρ maps a
variable a to g, then the variable X(a, g) is substituted by 1 and the variables X(a, g′), for
g′ 6= g, are substituted by 0; if the partial assignment ρ leaves the value of some variable a
unassigned, then for all the variables X(a, g), the substitution is defined by the identity.
It is not difficult to see that the result of applying this substitution to CNF(A,B(G)) is
CNF(A|ρ,B(G)), where A|ρ is the system of linear equations obtained by applying ρ to
the variables of A. For simplicity, we denote the above defined substitution by ρ. Hence,
CNF(A,B(G))|ρ = CNF(A|ρ,B(G)).
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Coming back to the graph Hn, let us consider a partial assignment ρ which, for each of
the bubbles V ∈ W , maps the non-red edges in ∂(V ) to the group element 0, and leaves
the value of the rest of the edges in Hn unassigned. Observe that ρ does not falsify any
of the equations in A(Hn, σn). Indeed, since every subgraph induced by a single bubble is
connected, for every vertex v, the value of at least one variable that appears in the equation∑

e∈∂+(v) e −
∑

e∈∂−(v) e = σn(v) is left unassigned. Moreover, for every bubble V ∈ W the

equation A(∂(V ), σn)|ρ says that the sum of the red edges in ∂(V ) is 1. This is clear for the
bubbles in {W1, . . . ,Wm+1}, and for the bubbles in {V1, . . . , Vm} one only needs to multiply
the corresponding equations by −1.

Consider a complete bipartite graph Km,m+1 with m blue vertices, m + 1 green vertices
and a directed red edge from every green vertex to every blue vertex. Let the labelling σ
assign −1 to the blue vertices and 1 to the green ones. The Tseitin tautology A(Km,m+1, σ)
is up to renaming of variables the same as the set of equations in:⋃

i∈[m]

A(∂(Vi), σn)|ρ ∪
⋃

j∈[m+1]

A(∂(Wj), σn)|ρ =
⋃
V ∈W

A(∂(V ), σn)|ρ.

Therefore, from now on we denote the above system of linear equations by A(Km,m+1, σ).
Note that, for each of the vertices v of the graph Km,m+1, the corresponding equation says
that the sum of the variables in ∂(v) is 1.

Let r = max(3, |G|). For m ≤ l, an r-CNF F over variables X1, . . . , Xl is called an
implicit encoding [17] of a propositional formula ψ over variables X1, . . . , Xm if the following
holds: a truth assignment to the variables of ψ satisfies ψ if and only if it can be extended
to a truth assignment to the variables of F which satisfies F . The variables Xm+1, . . . , Xl

are called auxiliary variables.
It follows from Lemma 24 that, for each bubble V ∈ W , the formula CNF(A(V, σn),B(G))

is an implicit encoding of the formula CNF(A(∂(V ), σn),B(G)), with the set of auxiliary
variables being the set of edges of the subgraph induced by V . Since on this set of edges the
substitution ρ is defined as the identity, it is not difficult to see that, for each bubble V ∈ W ,
the substituted formula CNF(A(V, σn),B(G))|ρ is an implicit encoding of the substituted
formula CNF(A(∂(V ), σn),B(G))|ρ. Moreover, the sets of auxiliary variables in those implicit
encodings are pairwise disjoint, hence the formula⋃

V ∈W

CNF(A(V, σn),B(G, 3))|ρ = CNF(A(Hn, σn),B(G, 3))|ρ

is an implicit encoding of the formula⋃
V ∈W

CNF(A(∂(V ), σn),B(G))|ρ = CNF(A(Km,m+1, σ),B(G)).

This way we have reduced an implicit encoding of a Tseitin formula over a complete
bipartite graph Km,m+1 to the Tseitin formula over the expander graph Hn, where m >
Cn1/3, and C is a constant which does not depend on n.
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Reducing the pigeonhole principle. We now use the technique for removing auxil-
iary variables without significantly increasing the proof size introduced in [17] to reduce
the onto-pigeonhole principle formula OPHP(m,m + 1), as defined below, to the formula
CNF(A(Hn, σn),B(G, 3))|ρ.

For a positive integer l and a set of variables X1, . . . , Xl, we denote by U(X1, . . . , Xl)
the CNF which has a clause

∨
i∈[l]Xi, and for every 1 ≤ i < i′ ≤ l, a clause Xi ∨ Xi′ . For

a complete bipartite graph Kl,l+1, the onto-pigeonhole principle OPHP(l, l + 1) is the CNF
which is the union of U(∂(v)) over the set of all vertices v of the graph.

Let us consider the following substitution of the variables in CNF(A(Km,m+1, σ),B(G))
and its implicit encoding CNF(A(Hn, σn),B(G, 3))|ρ: for every red edge e the variable X(e, 1)
is substituted by e, the variable X(e, 0) is substituted by e, and for every g ∈ G such that
g 6∈ {0, 1}, the variable X(e, g) is substituted by 0. On the auxiliary variables of the implicit
encoding the substitution is defined by the identity. For simplicity, let us consider this
substitution as an extension of the substitution ρ, and let us denote it by ρ′. Intuitively, the
substituted formula CNF(A(Km,m+1, σ),B(G))|ρ′ encodes those assignments to the variables
of A(Km,m+1, σ) that map each variable either to the group element 0 or to the group
element 1. Setting the truth value of the variable e to 1 corresponds to mapping e to 1, and
setting it to 0 corresponds to mapping e to 0.

Observe that for every vertex v ∈ Km,m+1, we have U(∂(v)) |= CNF(A(v, σ),B(G))|ρ′ .
Indeed, U(∂(v)) is satisfied if and only if exactly one of the variables in ∂(v) is assigned a
truth value 1. This truth assignment corresponds to mapping exactly one of the red edges
incident to v to the group element 1 and mapping the rest of the red edges incident to v
to the identity element 0. It is not difficult to see that such an assignment satisfies the
equation A(v, σ).

For a CNF F with variables X1, . . . , Xl, by DNF(F ) we denote the l-DNF formula which,
for every truth assignment satisfying F , has an l-term representing this assignment, i.e., the
unique l-term which is satisfied by this assignment and no other.

We now have all the ingredients necessary to remove the auxiliary variables using the
technique from [17]. We remark that the Frege system studied therein differs from the system
considered in the present paper. The formulas are formed from variables using negation and
disjunction only, and there is no introduction of conjunction rule. However, it follows from
the theorem of [44] that those two Frege systems polynomially simulate each other up to a
constant factor loss in depth. Therefore, since the lower bound we aim at is exponential and
for all constant depths, we can apply the technique from [17].

We have the following:

• CNF(A(Hn, σn),B(G, 3))|ρ′ is an implicit encoding of CNF(A(Km,m+1, σ),B(G))|ρ′ ;
• for every vertex v ∈ Km,m+1, we have that U(∂(v)) |= CNF(A(v, σ),B(G))|ρ′ ;
• it follows from Lemma 5.7 in [17] that, for every vertex v ∈ Km,m+1, the size of a depth 4

Frege derivation of the formula U(∂(v)) ∨DNF(U(∂(v))) is bounded by O(m2).

Hence, by Theorem 5.5 of [17] if CNF(A(Hn, σn),B(G))|ρ′ has a Frege refutation of depth d
and size s, then there exists a Frege refutation of OPHP(m,m+ 1) =

⋃
v∈V (Km,m+1)

U(∂(v))
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of depth d + 10 and size at most polynomial in m4s, that is of size at most polynomial
in n4/3s.

To complete the proof in the case of G = Zq it suffices to refer to the following theorem
proved independently in [16] and [37] as an exponential improvement over [1].

Theorem 14 (The Jewel Theorem of Proof Complexity [16, 37, 1]). For every integer d there
exists a constant δ such that for every sufficiently large integer m every Frege refutation of
OPHP(m,m+ 1) of depth d has size at least 2m

δ
.

It remains to show that thanks to the Fundamental Theorem of Finite Abelian Groups,
the special case of G = Zq implies Theorem 12 in full generality.

Lemma 25. Let G =
⊕

q∈Q Zq be a finite Abelian group, and let n, d and s be positive
integers. If for some q ∈ Q there is an unsatisfiable instance A of 3LIN(Zq) with n variables
such that every Frege refutation of CNF(A,B(Zq, 3)) of depth d has size at least s, then there
is an unsatisfiable instance A′ of 3LIN(G) with n variables such that every Frege refutation
of CNF(A′,B(G, 3)) of depth d has size at least s.

Proof. Let A be an unsatisfiable instance of 3LIN(Zq) with n variables, and assume that
every Frege refutation of CNF(A,B(Zq, 3)) of depth d has size at least s. The instance A is
a system of linear equations over the group Zq. Since Zq is a subgroup of G, we can think of
the same system of linear equations as a system of linear equations over the group G. Let
A′ be the corresponding instance of 3LIN(G). It is not difficult to see that it is unsatisfiable.
Moreover, every Frege refutation of CNF(A′,B(G, 3)) of depth d has size at least s. Indeed,
by applying a substitution ρ which for every a ∈ A′ and every g ∈ G \ Zq substitutes the
variable X(a, g) with 0 and on all other variables is defined by identity, we transform a
Frege refutation of CNF(A′,B(G, 3)) of depth d to a Frege refutation of CNF(A,B(Zq, 3)) of
depth d.

6.3 Lower bound for Polynomial Calculus

The original motivation in [22] for defining the Tseitin graph tautologies for Abelian groups
beyond Z2 was to compare the strength of Polynomial Calculus over different fields. Here we
use their results with the different purpose of getting lower bounds for Polynomial Calculus
over the real-field for all CSPs of unbounded width. Along the lines of the previous section
for bounded-depth Frege, this will be a consequence of Theorem 6, Theorem 11, and the
following lower bound (for which we use the EQ encoding scheme).

Theorem 15. For every non-trivial finite Abelian group G there exists a positive constant δ
and a family of unsatisfiable instances (An)n≥1 of 3LIN(G), where An has Θ(n) variables and
Θ(n) equations, such that for every sufficiently large n every PC refutation over the reals of
EQ(An,B(G, 3)) has degree at least δn.

By the same argument as in the previous section, Theorem 15 will follow from the special
case for Abelian groups of the form Zm proved in [22]. Let us note that the statement in
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[22] is made only for fields of prime characteristic and for prime m, but the same proof goes
through for arbitrary fields whose characteristic does not divide m.

Strictly speaking, the form of the Tseitin system of equations that we defined in the
previous section is slightly more general than the original one from [22]. In [22], the definition
starts with an undirected graph H and, given a labelling σ : V (H) → Zm, the system of
equations Â(H, σ) over Zm is defined as follows:

• there is a pair of variables (u, v) and (v, u) for each edge {u, v} in E(H),

• for every edge {u, v} of E(H) there is an equation (u, v) + (v, u) = 0,

• for every vertex u of V (H) there is an equation∑
v∈V (H):
{u,v}∈E(H)

(u, v) = σ(u).

Let us see that Â(H, σ) is isomorphic to the system A(Ĥ, σ̂) for an appropriately defined
directed graph Ĥ and an appropriately defined labelling σ̂. The set of vertices V (Ĥ) of Ĥ is
V (H) ∪E(H). The set of edges E(Ĥ) of Ĥ has two directed edges (u, e) and (v, e) for each
undirected edge e = {u, v} of H. The labelling σ̂ is the extension of σ to V (Ĥ) ⊇ V (H)
defined by σ̂(e) = 0 for each e ∈ E(H). It is not hard to see that the mapping (u, e) 7→ (u, v),
for e = {u, v}, is an isomorphism from A(Ĥ, σ̂) to Â(H, σ). This justifies the claim that the
definition of the Tseitin system from the previous section is a generalization of the definition
in [22]. Another sense in which the definition of the Tseitin system from the previous section
is more general is that the original definition requires m in Zm to be a prime number;
however, going through their proof it is readily seen that this is not essential. Finally, the
original definition also requires the condition that the sum of the labels σ(u) is 1 (mod m),
but again this is not essential in their proof as long as the sum is non-zero.

Let B′(Zm, 3) be the template B(Zm, 3) extended with the binary relation {(g, g′) ∈ Z2
m :

g + g′ = 0}, and let EQ′ denote the modification of the encoding scheme EQ in which each
twin variable X̄(a, b) is replaced by 1−X(a, b). It turns out that the system of polynomial
equations EQ′(Â(Hn, σn),B′(Zm, 3)) for a fixed family of 3-regular expander graphs (Hn)n≥1
and a labelling σn : V (Hn)→ Zm of total sum 1 mod m is literally the same as the system
of polynomial equations that [22] calls BTSn,m. Note that BTSn,m has Θ(n) variables. We
have the following:

Theorem 16 (see Corollary 21 in [22]). For every integer m ≥ 2 and every field F of a
characteristic that does not divide m there exists a positive δ such that for every sufficiently
large n every PC refutation over F of BTSn,m has degree at least δn.

This gives us a family of instances of B′(Zm, 3) that are hard for Polynomial Calculus over
the real-field. Since the template B′(Zm, 3) is pp-definable in B(Zm, 3), Theorem 6 implies
an existence of such a family for 3LIN(Zm).

In order to complete the proof of Theorem 15 from Theorem 16 it suffices to invoke
a version of Lemma 25 for Polynomial Calculus, whose statement and proof are virtually
identical to those of Lemma 25, and are thus omitted.

55



6.4 Lower bound for Sums-of-Squares

In the case of Sums-of-Squares, similarly as for Polynomial Calculus, we do not need to adapt
an existing lower bound proof from the literature for Z2 to all finite Abelian groups because
this was already done. The lower bound that we need to complete the proof of Theorem 10
is the following:

Theorem 17 ([23]). For every non-trivial finite Abelian group G there exists a positive
δ and a family of unsatisfiable instances (An)n≥1 of 3LIN(G), where An has Θ(n) vari-
ables and Θ(n) equations, such that for every sufficiently large n every SOS refutation of
EQ(An,B(G, 3)) has degree at least δn.

The exact statement that we are referring to is Theorem G.8 from Appendix G in [23].
In order to be able to state the theorem and compare it to the statement of Theorem 17 we
need to introduce some definitions.

Let G be a finite Abelian group and let C be a subgroup of Gk, where k ≥ 3. The problem
Additive-CSP(C), as defined in [23], is the constraint satisfaction problem that has constraint
relations of the form {(c1, . . . , ck) : (c1− b1, . . . , ck − bk) ∈ C}, for all (b1, . . . , bk) ∈ Gk. Note
that if the set of variables is V , then the set of all possible constraints can be identified with
the set V k×Gk. The instances are presented as distributions π over V k×Gk. This amounts
to assigning weights to the constraints. The value of an instance is the maximum over all
assignments of values to variables of the probability that a random constraint chosen from π
is satisfied by the assignment. We say that C ⊆ Gk is balanced pairwise independent if for
every pair i, j ∈ [k] with i 6= j, and every two elements a, b ∈ G, the number of k-tuples
(c1, . . . , ck) from C such that ci = a and cj = b is |C|/|G|2. For example, any C of the form
{(c1, . . . , ck) : c1 + · · ·+ck = 0} is balanced pairwise independent, and it is a subgroup of Gk.
Chan’s Theorem G.8 in [23] states that if C is any balanced pairwise independent subgroup
of Gk and ε is an arbitrary positive constant, then for every sufficiently large n, there is an
instance M of Additive-CSP(C) with n variables, whose value is bounded by |C|/|G|k + ε,
and that has a Lasserre solution of value 1 for cn rounds, where c = cG,k,ε is a constant
that depends only on the group G, the arity k, and the tolerance parameter ε. Moreover, it
follows from the proof in [23] (see Theorem G.7) that the instance M can be chosen to have
eG,k,εn constraints, where eG,k,ε is a constant that depends only on the group G, the arity
k, and the parameter ε. We discuss what a Lasserre solution is and how it relates to SOS
proofs.

Before we do that we fix some of the parameters. We want to build an unsatisfiable
instance A, and we do so by choosing the parameters to make the value of M in Chan’s
Theorem strictly smaller than 1. Fix k = 3 and C = {(c1, c2, c3) : c1 + c2 + c3 = 0}, and
take ε = 1/4. Then the value of the instance M is bounded by |C|/|G|3 + ε = 1/|G|+ 1/4 ≤
1/2 + 1/4 < 1. This means that the collection of constraints of M that have non-zero
probability in π is unsatisfiable; i.e., not all constraints can be satisfied at the same time by
a single assignment. Thus, our unsatisfiable instance A will just be the set of all constraints
with non-zero probability in π. Now we are ready to define what a Lasserre solution of
value 1 is.
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According to Definition G.3 from Appendix G in [23], a Lasserre solution of value 1 for t
rounds is a collection u = {uf : f ∈ GS, S ⊆ V, |S| ≤ t} of vectors in Euclidean space Rd, of
some finite dimension d, such that for every S ⊆ V with |S| ≤ 2t there exists a probability
distribution µS over GS with the following properties: for every R, S, T ⊆ V with |S|, |T | ≤ t
and R = S ∪ T , and every f ∈ GS and g ∈ GT , it holds that

Pr
h∈µR

[ h|S = f and h|T = g ] = 〈uf , ug〉, (29)

and for every constraint with variables S in the support of π and every f ∈ GS that does
not satisfy this constraint we have

Pr
h∈µS

[ h = f ] = 0. (30)

At this point we have all the necessary material to argue that A, or more precisely,
EQ(A,B(G, 3)), does not have SOS refutations of degree δn, where δ = 2cG,k,ε. Let EQ′ be
the result of replacing each twin variable X̄(a, b) in EQ(A,B(G, 3)) by 1 −X(a, b). By the
remarks at the end of Section 2.3, it suffices to show that EQ′ does not have SOS refutations
of degree δn for the definition of Sums-of-Squares without twin variables. Assume, for the
sake of contradiction, that EQ′ does have such an SOS refutation of degree at most 2t,
where t := cG,k,εn is the number of rounds for which there exists a Lasserre solution of
value 1 for the instance M . The refutation has the form

r∑
i=1

Pi · Si = −1 (31)

where P1, . . . , Pr are polynomials that either come from EQ′, or they are axiom polynomials
from the lists (2) and (4) without twin variables, or they are squares, S1, . . . , Sr are arbitrary
or square polynomials without twin variables as appropriate (i.e., arbitrary if the Pi they
multiply come from an equation, and squares if the Pi they multiply come from an inequality),
and the total degree of each product Pi · Si is at most 2t. Multiplications by X and 1−X
can be simulated by multiplications by their squares, thanks to the axioms X2 − X = 0
from (2), so we can assume that the refutation has the form

m∑
i=1

Pi · Si +
∑̀
i=1

Q2
i = −1, (32)

where P1, . . . , Pm are polynomials that either come from EQ′, or they are one of the axiom
polynomials of the form X2 −X from (2), and S1, . . . , Sm, Q1, . . . , Q` are arbitrary polyno-
mials.

Recall that the variables of EQ′ have the form X(a, b) where (a, b) ∈ V × G. We say
that the element a is mentioned in X(a, b), and that it is mentioned in any monomial that
contains this variable. Now we define a linear functional E : P2t → R, where P2t denotes
the vector space of polynomials of degree at most 2t on the X(a, b)-variables, as follows.
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For each monomial M of degree at most 2t on the X(a, b)-variables, with all mentioned
elements in S ⊆ V , define

E(M) = Eh∈µS [ h(M) ], (33)

where the notation h(M) stands for the evaluation of the monomial M by the partial assign-
ment given by h; i.e., all variables X(a, h(a)) with a ∈ S are set to 1, all variables X(a, b)
with a ∈ S and b 6= h(a) are set to 0, and all other variables are left unset. Note that (29)
ensures that (33) is a well-defined quantity that does not depend on the choice of S, as long
as S contains all the elements that are mentioned in M . Once E is defined for all monomials
of degree at most 2t, we extend it to P2t by linearity.

The final step in the argument is to show that E evaluates the left-hand side in (32)
to some non-negative quantity; this will imply that the identity in (32) does not hold, and
finish the proof. In order to prove this, the following matrix (AM,N)M,N will be instrumental.
The indices are monomials M of degree at most t on the X(a, b)-variables. The entry AM,N

of A is defined to be E(MN). For later use, observe that if S denotes the set of elements
that are mentioned in M and there exists f ∈ GS such that f(M) = 1, then this partial
assignment f with domain S is uniquely determined by M . We let fM ∈ GS ∪ {⊥} denote
this unique partial assignment f that makes f(M) = 1, when it exists, or the default value
⊥ when it does not exist. We argue that Equation (29) ensures that A is a positive semi-
definite matrix. First, extend the collection of vectors u to a new collection of vectors
u∗ = {u∗f : f ∈ GS ∪ {⊥}, S ⊆ V, |S| ≤ t} by defining u∗f = uf for f ∈ GS, and u∗f = 0
for f = ⊥. Fix indices M and N , let S and T be sets of elements mentioned in M and
N , respectively. Let R = S ∪ T . Then E(MN), according to its definition (33), is the
probability of the event that h ∈ µR makes h(MN) = 1, or equivalently, that h ∈ µR makes
h|S(M) = 1 and h|T (N) = 1, or equivalently, that h ∈ µR makes h|S = fM and h|T = gN .
Thus, equation (29) and the definition of the extended collection of vectors u∗ ensures that
AM,N = 〈u∗fM , u

∗
gN
〉 and hence A is a Gram matrix. Thus A is positive semi-definite.

Now we use the positive semi-definiteness of A to show that, for squares Q2
i in (32), we

have E(Q2
i ) ≥ 0. Indeed, if Qi =

∑
M aMM where the sum extends over all monomials of

degree at most t and a = (aM)M is the corresponding vector of coefficients, then

E(Q2
i ) = E

(∑
M

∑
N

aMaNMN
)

=
∑
M

∑
N

aMaNAM,N = aTAa, (34)

which is non-negative because A is a positive semi-definite matrix.
For terms in (32) that are liftings of equations from EQ′, the evaluation through E is 0.

This is clear for equations of type 2, since every monomial which contains a pair of variables
X(a, b) and X(a, b′), for b 6= b′ evaluates to 0 by (33). For the same reason if we take any
equation of type 1 in EQ′, i.e,

∏
b∈G(1 − X(a, b)) = 0, for some a ∈ V , and an arbitrary

monomial M on the X(a, b)-variables such that P ·M has a total degree at most 2t, it holds
that

E
(∏
b∈G

(1−X(a, b)) ·M
)

= E(M)−
∑
b∈G

E(X(a, b) ·M). (35)

By (33) again, we have E(M) =
∑

b∈GE(X(a, b) ·M) and the right-hand side vanishes too.
Finally, liftings of equations of type 3 from EQ′ evaluate to 0 thanks to equation (30).
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For terms in (32) that are liftings of axioms in (2), the evaluation through E is also 0
since the partial assignments on the X(a, b)-variables take Boolean values. All in all, the
evaluation of the left-hand side of (32) through E is non-negative, and the proof is complete.

7 Upper bounds in Lovász-Schrijver

In this section we show that all unsatisfiable instances of 3LIN(Z2) have LS refutations
of degree 6 and size polynomial in the number of variables. Indeed, the argument to get
polynomial-size upper bound in constant degree works equally well for 3LIN(Zp), when p is
prime, with some inessential complications [5]. We focus on Z2 for simplicity.

Initial remarks on the encoding. We identify the elements of the two-element field
Z2 with {0, 1}. Let E be an instance of kLIN(Z2) with n variables. In the encoding
INEQ(E,B(Z2, k)) of E as a system of linear inequalities, there are four variables X(a, 0),
X(a, 1) ,X̄(a, 0), X̄(a, 1) for each variable a in E. Note, however, that they are restricted to
satisfy X(a, 0) = X̄(a, 1) and X̄(a, 0) = X(a, 1) by the inequality X(a, 0) +X(a, 1)− 1 ≥ 0
from INEQ and the axiom equations in (2), which in this case read X(a, 0)2 − X(a, 0) =
X(a, 1)2−X(a, 1) = 0 and X(a, 0) + X̄(a, 0)− 1 = X(a, 1) + X̄(a, 1)− 1 = 0. Consequently,
in the following we will ignore the variables of the type X(a, 0) and their twins and keep
only the variables X(a, 1) and X̄(a, 1). In order to simplify the notation even further, we
will assume that the variables of E are called X1, . . . , Xn, and that those of INEQ are called
X1, . . . , Xn and X̄1, . . . , X̄n.

We interpret the variables X1, . . . , Xn as ranging over Z2 or Q depending on the context.
Let E be an equation of E, say E : a1X1 + · · ·+anXn = b, where a1, . . . , an ∈ Z2 and b ∈ Z2.
Without loss of generality we can assume that there are exactly k many ai’s that are 1. In
INEQ, the encoding of the constraint represented by this equation is given by the following
inequalities:∑

i∈T

X̄i +
∑
i∈I\T

Xi − 1 ≥ 0 for all T ⊆ I such that |T | ≡ 1− b mod 2,

where I = {i ∈ [n] : ai 6= 0}. Note that |I| = k. We write S(E) to denote this set of
inequalities; it has exactly 2k−1 many inequalities, and all of them are satisfied in Q by a
{0, 1}-assignment if and only if the equation E is satisfied in Z2 by the same assignment. Let
S(E) be the union of all S(E) as E ranges over the equations in E. Observe that, except for
the small detail that only half of the variables are used, INEQ is basically the same as S(E).

Some technical lemmas. For every linear form L(X1, . . . , Xn) =
∑n

i=1 aiXi with rational
coefficients a1, . . . , an and every integer c, let Dc(L) be the quadratic polynomial (L−c)(L−
c + 1). In words, the inequality Dc(L) ≥ 0 states that L does not fall in the open interval
(c− 1, c). Such statements have short proofs of low degree:
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Lemma 26 ([30]). For every integer c and for every linear form L(X1, . . . , Xn) =
∑n

i=1 aiXi

with integer coefficients a1, . . . , an, there is an LS proof of the inequality Dc(L) ≥ 0 (from
nothing) of degree at most 3 and size polynomial in max{|ai| : i = 1, . . . , n}, |c| and n.

In the following, for I ⊆ [n] and T ⊆ I, let M I
T (X1, . . . , Xn) :=

∏
i∈T Xi

∏
i∈I\T X̄. As

usual, M I
∅ (X1, . . . , Xn) = 1. Such polynomials are called extended monomials.

Lemma 27. For every I ⊆ [n], there is an LS proof of
∑

T⊆IM
I
T − 1 = 0 (from nothing) of

degree |I| and size polynomial in 2|I|.

Proof. For simplicity, let q = |I| and assume I = {1, . . . , q}. We build the proof inductively
on q. For q = 0, what we need is trivial since the left-hand side is 0. Assume now q ∈
{1, . . . , n} and that we have

∑
T⊆[q−1]M

I
T −1 = 0. Multiply this once by Xq and once by X̄q.

Adding the results we get
∑

T⊆[q]M
I
T −Xq − X̄q = 0, from which

∑
T⊆[q]M

I
T − 1 = 0 follows

from adding the axiom Xq + X̄q − 1 = 0 to it. The size is exponential in |I| because the
inductive step is used twice.

The next lemma is as technical as useful.

Lemma 28. Let T ⊆ I ⊆ [n]. Then there is an LS proof of
(∑

i∈I Xi − |T |
)
M I

T = 0 (from
nothing) of degree at most |I|+ 1 and size linear in |I|.

Proof. Write M for M I
T . For every i ∈ I \ T , using XiX̄i = 0 we get XiM = 0. For every

i ∈ T , using X2
i −Xi = 0 we get XiM = M . Adding up we get

∑
i∈I XiM = |T |M .

Simulating Gaussian elimination. We use these lemmas to prove the main result of
this section.

Theorem 18. Let E be an instance of 3LIN(Z2) with n variables and m equations. If E is
unsatisfiable, then S(E) has an LS refutation of degree 6 and size polynomial in n and m.

Proof. Write E in matrix form Ax = b, where x is a column vector of n variables, A is a
matrix in Zm×n2 , and b is a vector in Zm2 . Let aj,1, . . . , aj,n be the j-th row of A, so the j-th
equation of E is Ej : aj,1X1 + · · · + aj,nXn = bj. Assume E is unsatisfiable over Z2. Then b
cannot be expressed as a Z2-linear combination of the columns of A, so the Z2-rank of the
matrix [ A | b ] exceeds the Z2-rank of A. Since the rank of A is at most n, this means
that there exists a subset of at most n rows J such that, with arithmetic in Z2, we have∑

j∈J aj,i = 0 for every i ∈ [n], and at the same time
∑

j∈J bj = 1. In order to simplify the
notation, we assume without loss of generality that J = {1, . . . , |J |}.

For every k ∈ {0, . . . , |J |}, define the linear form

Lk(X1, . . . , Xn) :=
1

2

 k∑
j=1

n∑
i=1

aj,iXi +

|J |∑
j=k+1

bj

 .
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In this definition of Lk, the coefficients aj,i and bj are interpreted as rationals. We provide
proofs of Dc(Lk) ≥ 0 for every c ∈ Rk := {0, . . . , (k + 1)n} by reverse induction on k ∈
{0, . . . , |J |}.

The base case k = |J | is a special case of Lemma 26. To see why note that the condition∑
j∈J aj,i = 0 over Z2 means that, if arithmetic were done in Q, then

∑
j∈J aj,i is an even

natural number. But then all the coefficients of

L|J |(X1, . . . , Xn) =
1

2

|J |∑
j=1

n∑
i=1

aj,iXi =
n∑
i=1

1

2

|J |∑
j=1

aj,i

Xi

are integers. Hence Lemma 26 applies.
Suppose now that 0 ≤ k ≤ |J | − 1 and that we have a proof of Dd(Lk+1) ≥ 0 available

for every d ∈ Rk+1. Fix c ∈ Rk; our immediate goal is to give a proof of Dc(Lk) ≥ 0. As k is
fixed, write L in place of Lk+1, and let the (k+1)-st equation Ek+1 be written as

∑
i∈I Xi = b,

where I = {i ∈ [n] : ak+1,i = 1}. Note that L = Lk + `/2 where ` := −b +
∑

i∈I Xi. Fix
T ⊆ I such that |T | ≡ b mod 2, and let d = c+ (t− b)/2 where t = |T |. Note that d ∈ Rk+1

as c ∈ Rk and 0 ≤ t ≤ n and 0 ≤ b ≤ 1 are such that t− b is even. Multiplying Dd(L) ≥ 0
by the extended monomial M I

T we get (L − d)(L − d + 1)M I
T ≥ 0. Replacing L = Lk + `/2

in the factor (L− d) and recalling d = c+ (t− b)/2, this inequality can be written as

(Lk − c)(L− d+ 1)M I
T + (L− d+ 1)1

2
A ≥ 0 (36)

where A := (` + b− t)M I
T . By Lemma 28 we have a proof of A = 0, and hence of (L− d +

1)A/2 = 0. Composing with (36) we get a proof of (Lk − c)(L − d + 1)M I
T ≥ 0. The same

argument applied to the factor (L−d+1) of this inequality gives (Lk−c)(Lk−c+1)M I
T ≥ 0.

This is precisely Dc(Lk)M
I
T ≥ 0. Adding up over all T ⊆ I with |T | ≡ b mod 2 we get

Dc(Lk)
∑
T⊆I
|T |≡b

M I
T ≥ 0. (37)

Now note that for each T ⊆ I such that |T | ≡ 1−b mod 2, the inequality −M I
T ≥ 0 is the

multiplicative encoding of one of the clauses in S(E). Thus, by Lemma 4, we get constant-
size proofs of −M I

T ≥ 0, and hence of M I
T = 0, for every T ⊆ I such that |T | ≡ 1− b mod 2.

But then also of Dc(Lk)M
I
T = 0 for every such T . Adding up and composing with (37) we

get

Dc(Lk)
∑
T⊆I

M I
T ≥ 0. (38)

From Lemma 27 we get 1−
∑

T⊆IM
I
T = 0, and hence Dc(Lk)−Dc(Lk)

∑
T⊆IM

I
T ≥ 0, from

which Dc(Lk) ≥ 0 follows from addition with (38).

We proved Dc(L0) ≥ 0 for every c ∈ R0 = {0, . . . , n}. Recall now that
∑|J |

j=1 bj is odd,
say 2q + 1, and at most n. In particular q + 1 belongs to R0 and L0 = q + 1/2. Thus we
have a proof of Dq+1(L0) ≥ 0 where Dq+1(L0) = −(1/2)(1/2) = −1/4. Multiplying by 4 we
get the contradiction −1 ≥ 0.
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8 Applications to k-coloring

We illustrate the power of the general method of reductions for CSPs by applying it to the
graph k-coloring problem for k ≥ 3. This will allow us to rederive one of the results in [40],
as well as answer one of their open problems.

8.1 Blackbox application to k-coloring

An undirected graph G is k-colorable if and only if it has a homomorphism into the k-clique
graph Kk = ([k], [k]2 \ {(b, b) : b ∈ [k]}). Thus the k-coloring problem is a special case of the
CSP of the template Kk, which we abbreviate by k-COLOR. We say that it is a special case
and not exactly the same problem because the inputs to k-COLOR need not be undirected
graphs; in full generality they are directed graphs that allow loops. Note, however, that a
directed graph that has loops would never have a homomorphism into the template, and
that a loopless directed graph has a homomorphism into the template if and only if the
underlying undirected graph that ignores the directions of the edges is k-colorable. Thus, for
all practical purposes, the two problems are the same, and proof complexity lower bounds for
one version of the problem will give proof complexity lower bounds for the other. We discuss
this in due time; for now we focus on the proof complexity of the CSP with template Kk.

It is well-known that Kk is a template of unbounded width for each k ≥ 3 (see e.g. [26]).
As a consequence of our main result we get the following:

Corollary 5. For every integer k ≥ 3, there exist families (Gn)n≥1 of unsatisfiable instances
of k-COLOR, where Gn has Θ(n) vertices and Θ(n) edges, such that for every positive integer
d there exists a positive ε such that, for any local encoding scheme E of the appropriate type,
and any sufficiently large n, the following hold:

1. every resolution refutation of E(Gn) has width at least εn and size at least 2εn,

2. every Frege refutation of E(Gn) of depth d has size at least 2n
ε
,

3. every PC refutation over the reals of E(Gn) has degree at least εn and size at least 2εn,

4. every SOS refutation of E(Gn) has degree at least εn.

Let us note that the size lower bound claim for Polynomial Calculus follows from its degree
lower bound claim in conjunction with the size-degree tradeoff [33]. Also, the claim for reso-
lution follows from the claim for Polynomial Calculus and the fact that the latter efficiently
simulates resolution (c.f., Lemma 9 in Section 3); it does not follow directly from our main
dichotomy theorem.

Next we consider the specific encoding scheme used in [40] and the issue of directed vs.
undirected graphs. Let G be a directed graph, with vertex-set V and edge-set E ⊆ V 2, let k
be a positive integer, and consider the following system of polynomial equations:

1.
∑

b∈[k]X(u, b)− 1 = 0 for each u ∈ V ,

2. X(u, b)X(u, c) = 0 for each u ∈ V and b, c ∈ [k] with b 6= c,
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3. X(u, b)X(v, b) = 0 for each u, v ∈ V with (u, v) ∈ E and b ∈ [k].

It is easy to see that this is a local encoding scheme for k-COLOR in the sense of Section 2.6.
Thus, Corollary 5 applies to it and we get a family of instances (Gn)n≥1 that are hard for
Polynomial Calculus in the indicated encoding scheme. Note that, since the instances are
hard, they must be loopless graphs. Indeed, if (u, u) is a loop in Gn, then X(u, b)X(u, b) = 0
is an equation in the encoding of the instance Gn for all b ∈ [k]. These equations, together
with the axioms X(u, b)2 −X(u, b) = 0 and the equation

∑
b∈[k]X(u, b)− 1 = 0, would give

a PC derivation of 1 = 0 in degree 2 and constant size. Thus the instances in the family
are loopless graphs. We may also assume that they are undirected graphs for the simple
reason that the equations X(u, b)X(v, b) = 0 and X(v, b)X(u, b) = 0 are identical (recall
that all our variables commute by assumption). It follows that Corollary 5 has the real-field
case of Theorem 1.1 from [40] as a special case, except for the fact that, unlike Theorem 1.1
from [40], Corollary 5 does not state that the family of graphs is explicit. In the next section
we show that we can also get an explicit family of graphs with the same properties.

8.2 Opening the box

In the rest of this section we open the box of the method that underlies Corollary 5. This
will allow us to re-derive Theorem 1.1 from [40] for all fields, and not just for the real-field
as is stated in Corollary 5. Moreover, it will suggest a way to apply the method to any other
problem that is NP-complete via gadget reductions.

Since Kk for k ≥ 3 is a template of unbounded width, Theorem 11 applies to it. It is not
difficult to see that Kk is a core, hence by Theorem 11 there exists a non-trivial finite Abelian
group G such that B(G, 3) is pp-interpretable in K+

k , where K+
k is the expansion of Kk with

all constants; i.e., the expansion with the relations R1 = {1}, . . . , Rk = {k}. Indeed, this is
the case even for the group G = Z2. Concrete such pp-interpretations are well-known and
also easy to construct. For the sake of completeness and by way of example, we propose one
such pp-interpretation in two steps. First we pp-interpret B(Z2, 3) in the template of 3-SAT,
and then we pp-interpret the template of 3-SAT in K+

k . Since pp-interpretations compose,
we get what we want.

Recall that B(Z2, 3) has domain {0, 1} and two relations E0 = {(b1, b2, b3) ∈ {0, 1}3 :
b1 + b2 + b3 = 0 mod 2} and E1 = {(b1, b2, b3) ∈ {0, 1}3 : b1 + b2 + b3 = 1 mod 2}. The
template of 3-SAT also has domain {0, 1} and the eight arity-3 relations R000, R001, R010,
R100, R011, R101, R110, and R111 defined by the eight possible signings of a 3-clause. A
pp-interpretation of B(Z2, 3) is given by the following formulas:

1. δ(x1) := x1 = x1, i.e., true so the domain in still {0, 1},
2. ε(x1, x2) := x1 = x2,

3. E0(x1, x2, x3) := R001(x1, x2, x3) ∧R010(x1, x2, x3) ∧R100(x1, x2, x3) ∧R111(x1, x2, x3),

4. E1(x1, x2, x3) := R000(x1, x2, x3) ∧R011(x1, x2, x3) ∧R101(x1, x2, x3) ∧R110(x1, x2, x3).

Next we give the standard pp-interpretation of the template of 3-SAT in K+
k when k ≥ 3.

We use the first two colors 1 and 2 to represent 0 and 1, respectively:
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1. δ(x1) := ∃y3 · · · ∃yk
(∧k

b=3Rb(yb) ∧ E(x1, yb)
)
, i.e., the domain is {1, 2},

2. ε(x1, x2) := x1 = x2,

3. Rabc(x1, x2, x3) := ∃x′1∃x′2∃x′3(
∧3
i=1(δ(xi)∧δ(x′i)∧E(xi, x

′
i))∧∃y1 · · · ∃y6(

∧6
i=1 ∃z4 · · · ∃zk(∧k

b=4Rb(zb) ∧ E(yi, zb)
)
∧ E(y1, y3) ∧ E(y2, y3) ∧ E(y1, y2) ∧ E(y3, y4) ∧ E(y4, y6) ∧

E(y5, y6) ∧ E(y4, y5) ∧R2(y6) ∧ E(y1, x
(a)
1 ) ∧ E(y2, x

(b)
2 ) ∧ E(y5, x

(c)
3 ))),

where x
(d)
i is shorthand notation for xi if d = 0, and x′i if d = 1. Checking that these

interpretations are correct is a straightforward exercise. Note that, as written, the formulas
for Rabc are not quite pp-formulas, but they are easily converted into pp-formulas by standard
rewriting into prenex normal form. At this point we can apply Corollary 3 of Theorem 5
in conjunction with Theorem 12 to obtain the statement 2 in Corollary 5; Theorem 6 in
conjunction with Theorem 15 to obtain the statement 3 ; and Theorem 7 in conjunction with
Theorem 17 to obtain the statement 4 in Corollary 5.

Our next goal is to extend the PC lower bound for k-COLOR to all fields. Before we do
so, let us note that exactly the same strategy as in the previous paragraph is not enough.
The reason is that 3LIN(Z2) is easy for Polynomial Calculus over fields of characteristic two.
Surely we could start with an instance of 3LIN(Z3), which is going to be hard for fields of
characteristic two, but the result is again not going to be hard for all fields simultaneously as
it will fail to be hard for fields of characteristic three. The solution is to start with a problem
that has instances that are hard for Polynomial Calculus for all fields simultaneously. Luckily,
3-SAT is such a case:

Theorem 19 (see Theorem 3.13 in [3]). There exists a positive real δ and an explicit family
(Gn)n≥1 of unsatisfiable instances of 3-SAT, where Gn has Θ(n) variables and Θ(n) clauses,
such that, for every field F and every sufficiently large n, every PC refutation over F of Gn

with respect to the EQ encoding scheme has degree at least δn.

Let us note that in order to get Theorem 19 from the exact statement of Theorem 3.13
in [3] one needs explicit families of 3-regular unique-neighbor expanders. Such families were
described in [4].

With the lower bound of Theorem 19 in place we can get the version of the PC lower
bound of Corollary 5 for all fields: the corresponding explicit instances of k-COLOR are
obtained by applying the conjunction of Theorem 19 and Theorem 6 on the already noted
fact that the template of 3-SAT pp-interprets in K+

k . This gives a new proof of Theorem 1.1
from [40].

Let us point out the main differences and similarities between the original proof from [40]
and our new proof. At a high level, those proofs are very similar: both are gadget reductions
that convert hard CNF formulas into hard instances of k-COLOR. In our proof, the gadgets
are based on the way the template of 3-SAT is constructed from the template of k-COLOR
by the addition of constants followed by the pp-interpretation (as presented in Section 4).
Hence, the starting hard formulas can be any family of 3-CNF formulas that are hard for
Polynomial Calculus. The proof from [40] is also a gadget reduction, but in their case the
reduction is specifically tailored to a concrete family of CNF formulas that encode a sparse
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version of the functional pigeonhole principle. Besides the construction of the special-purpose
gadgets, the bulk of their proof is to check that the conversion preserves the hardness for PC.
In our proof both these parts are handled automatically by our general results.

We close by noting that, for CSPs, this method is completely general. Take any tem-
plate B that is not known to be solvable in polynomial time, i.e., any template that is known
to be NP-complete. By the Algebraic Dichotomy Theorem for CSP, any finite structure C
pp-interprets in the core of B with added constants (see [11, 20, 50]). In particular, by tak-
ing C to be the template of 3-SAT and applying Theorems 19 and 6 we get explicit families of
instances of CSP(B) that are hard for Polynomial Calculus over all fields. The same applies
to all proof systems for which we can prove closure under reductions: explicit lower bounds
for any CSP imply explicit lower bounds for all NP-complete CSPs. Since explicit lower
bounds for kLIN(Z2) are known for Sums-of-Squares [28, 45], this answers the question in
Open Problem 5.3 in [40] that asks for explicit hard 3-coloring instances for SOS.

9 Concluding remarks

Theorems 5, 6 and 7 imply that for the proof systems under consideration the class of con-
straint languages admitting efficient refutations can be characterised algebraically. For most
of those proof systems such a characterisation follows from the fact that efficient proofs of un-
satisfiability exist exactly for languages of bounded width. However, by Theorem 18 the class
of constraint languages admitting efficient refutations in Lovász-Schrijver, and consequently
also the class of constraint languages admitting efficient Frege refutations, exceeds bounded
width. At the same time both of those classes are shown to admit algebraic characterisa-
tions. Providing such characterisations is a natural open problem that arises from our work.
In particular, with the Algebraic CSP Dichotomy Conjecture recently confirmed [20, 50], it
would be interesting to verify or refute the tempting conjecture that the class of languages
admitting polynomial size Frege (or Extended Frege) refutations coincides with the class of
all polynomial time solvable constraint languages.

Other proof systems which are shown to be closed under reducibilities and can surpass
bounded width are Polynomial Calculus proof systems over fields of prime characteristics.
Finding algebraic characterisations for the classes of constraint languages admitting efficient
unsatisfiability proofs in each of those proof systems is another question suggested by our
work. Importantly, since Polynomial Calculus over a field of non-zero characteristic p has
efficient refutations for systems of linear equations over Zp and does not have efficient refuta-
tions for systems of linear equations over Zm if p does not devide m (c.f. Theorem 16), for two
fields of distinct prime characteristics, such characterisations will necessarily be different.

Both questions raised so far could lead to the discovery of some interesting new families
of algebras as has happened before in the development of the algebraic approach to CSPs
(c.f., the class of algebras with few subpowers [32]).

A related direction suggested by our work is whether the proof complexity of approximat-
ing MAX CSPs is also preserved by reductions. On the one hand, it is known that most of
the classical CSP constructions preserve almost satisfiability ; e.g., if B′ is pp-definable with-
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out equality in B, then if A is an instance of MAX CSP(B′) that is almost satisfiable, then its
standard transformation into an instance A′ of MAX CSP(B) is also almost satisfiable. The
question we raise is the following: For which proof systems is it also the case that if there are
efficient proofs of the fact that A′ is far from satisfiable then there also are efficient proofs
of the fact that A is far from satisfiable? Depending on how the terms “almost satisfiable”
and “far from satisfiable” are quantified, a positive answer for such questions could lead to
an algebraic approach to the proof complexity of approximating MAX CSPs and the UGC.
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