Algebraic Properties of Valued Constraint Satisfaction Problem

Marcin Kozik, Joanna Ochremiak

ICALP'15, Kyoto 6th July 2015

MAX-CUT

$$G = (V, E)$$

- a set of variables: V
- a set of their possible values: $\{0, 1\}$
- minimise: $\Sigma_{(x,y)\in E} \varrho_{XOR}(x,y)$

$$\varrho_{XOR}(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

MAX-CUT

$$G = (V, E)$$

- a set of variables: V
- a set of their possible values: $\{0, 1\}$
- minimise: $\Sigma_{(x,y)\in E} \varrho_{XOR}(x,y)$

$$\varrho_{XOR}(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

weighted relation

MAX-CUT

$$G = (V, E)$$

objective function

- a set of variables: V
- a set of their possible values: $\{0, 1\}$
- minimise: $\Sigma_{(x,y)\in E} \varrho_{XOR}(x,y)$

$$\varrho_{XOR}(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

weighted relation

2-coloring

$$G = (V, E)$$

- a set of variables: V
- a set of their possible values: $\{0, 1\}$
- minimise: $\Sigma_{(x,y)\in E} \varrho_{\neq}(x,y)$

$$\varrho_{\neq}(x,y) = \begin{cases} 0 & \text{if } x \neq y \\ \infty & \text{otherwise} \end{cases}$$

2-coloring

$$G = (V, E)$$

objective function

- a set of variables: V
- a set of their possible values: $\{0, 1\}$
- minimise: $\Sigma_{(x,y)\in E} \varrho_{\neq}(x,y)$

$$\varrho_{\neq}(x,y) = \begin{cases} 0 & \text{if } x \neq y \\ \infty & \text{otherwise} \end{cases}$$

weighted relation

VCSP Instance

An instance of the VCSP:

- a finite set of variables: $V = \{x_1, \dots, x_n\}$
- a finite set of their possible values: D
- an objective function:

$$\varrho_1(x_{1,1},\ldots,x_{1,m_1})+\ldots+\varrho_k(x_{k,1},\ldots,x_{k,m_k}).$$

Goal: find an assignment that minimises the function

Complexity

 Γ - a fixed set of weighted relations

 $VCSP(\Gamma)$ - the objective function is a sum of functions from Γ

- VCSP($\{\varrho_{XOR}\}$)
- VCSP($\{\varrho_{\neq}\}$)

Complexity

 Γ - a fixed set of weighted relations

 $VCSP(\Gamma)$ - the objective function is a sum of functions from Γ

- VCSP($\{\varrho_{XOR}\}$) NP-hard (MAX-CUT)
- VCSP($\{\varrho_{\neq}\}$) PTime (2-coloring)

Main goal: classify the complexity of problems $VCSP(\Gamma)$

every weighted relation: $\varrho \colon D^n \to \{0, \infty\}$

3-coloring 2-SAT

every weighted relation: $\varrho \colon D^n \to \{0, \infty\}$ objective function takes values 0 or ∞

3-coloring 2-SAT

every weighted relation: $\varrho \colon D^n \to \{0, \infty\}$ objective function takes values 0 or ∞ Goal: Is there an assignment with cost 0?

3-coloring 2-SAT

$$R \subseteq D^n \qquad \qquad f \colon D^k \to D$$

$$R \subseteq D^n$$
 $f \colon D^k \to D$

$$\mathbf{x_1} = \begin{pmatrix} & x_1^1, & \dots & , x_1^n & \end{pmatrix} \in R$$

$$\vdots & \vdots & \vdots$$

$$\mathbf{x_k} = \begin{pmatrix} & x_k^1, & \dots & , x_k^n & \end{pmatrix} \in R$$

$$(f(x_1^1,\ldots,x_k^1),\ldots,f(x_1^n,\ldots,x_k^n))$$

$$R \subseteq D^n \qquad \qquad f \colon D^k \to D$$

$$\mathbf{x_1} = \begin{pmatrix} & x_1^1, & \dots & , x_1^n & \end{pmatrix} \in R$$

$$\vdots & \vdots & \vdots$$

$$\mathbf{x_k} = \begin{pmatrix} & x_k^1, & \dots & , x_k^n & \end{pmatrix} \in R$$

$$(f(x_1^1,\ldots,x_k^1),\ldots,f(x_1^n,\ldots,x_k^n)) \in R$$

compatible with
$$f$$
 polymorphism of R
$$\downarrow R \subseteq D^n \qquad \qquad f \colon D^k \to D$$

$$(f(x_1^1,\ldots,x_k^1),\ldots,f(x_1^n,\ldots,x_k^n)) \in R$$

$$\varrho(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,1) \\ \infty & \text{if } (x,y) = (1,0) \\ 1 & \text{otherwise} \end{cases} D = \{0,1\}$$

Feas(
$$\varrho$$
) = {(0,1), (0,0), (1,1)} \subseteq {0,1}² - binary relation

polymorphism of Γ - polymorphism of every $\varrho\in\Gamma$

 $\operatorname{Pol}(\Gamma)$ - algebraic object called a clone

$$\Gamma$$
 - CSP language (values 0 or ∞) $\varrho \colon D^n \to \{0, \infty\}$ - weighted relation

Theorem [Bulatov, Krokhin, Jeavons]

 $\operatorname{Feas}(\varrho)$ compatible with $\operatorname{Pol}(\Gamma)$

 \downarrow

 $CSP(\Gamma \cup \{\varrho\})$ polynomial-time reducible to $CSP(\Gamma)$

Polymorphisms characterize the complexity of CSP.

Weighted polymorphisms

- ϱ weighted relation
- ω probability distribution on the set of m-ary operations

 $\operatorname{supp}(\omega)$ - operations of positive probability

For any *n*-tuples $\mathbf{x_1}, \dots, \mathbf{x_m} \in \text{Feas}(\varrho)$, we have

$$\sum_{g \in \text{supp}(\omega)} \omega(g) \varrho(g(\mathbf{x_1}, \dots, \mathbf{x_m})) \le \frac{1}{m} (\varrho(\mathbf{x_1}) + \dots + \varrho(\mathbf{x_m})).$$

Weighted polymorphisms

improved by ω

ρ - weighted relation

 ω - probability distribution on the set of m-ary operations

weighted polymorphism of ϱ

 $\operatorname{supp}(\omega)$ - operations of positive probability

For any *n*-tuples $\mathbf{x_1}, \dots, \mathbf{x_m} \in \text{Feas}(\varrho)$, we have

$$\sum_{g \in \text{supp}(\omega)} \omega(g) \varrho(g(\mathbf{x_1}, \dots, \mathbf{x_m})) \le \frac{1}{m} (\varrho(\mathbf{x_1}) + \dots + \varrho(\mathbf{x_m})).$$

Weighted polymorphisms

 Γ - VCSP language $\varrho \colon D^n \to \overline{\mathbb{Q}}$ - weighted relation

Theorem [Cohen, Cooper, Creed, Jeavons, Živný] $\varrho \text{ improved by } wPol(\Gamma)$ ψ

Weighted polymorphisms characterize the complexity of VCSP.

 $VCSP(\Gamma \cup \{\varrho\})$ polynomial-time reducible to $VCSP(\Gamma)$

Support clone

$$\operatorname{supp}(\Gamma) = \{g \mid g \in \operatorname{supp}(\omega), \ \omega \in \operatorname{wPol}(\Gamma)\}$$

$$\downarrow$$

$$\operatorname{support\ clone\ of\ }\Gamma$$

$$\operatorname{supp}(\Gamma)\subseteq\operatorname{Pol}(\Gamma)$$

Cyclic operations

cyclic operation - for every
$$x_1, \ldots, x_k \in D$$

$$f(x_1, x_2, \dots, x_k) = f(x_2, \dots, x_k, x_1)$$

Theorem

no cyclic operation in $\operatorname{supp}(\Gamma)$

 $VCSP(\Gamma)$ is NP-hard

$$S = \{(x_1, x_2, x_3) \in \widehat{D}^3 : \text{ exactly one of } x_1, x_2, x_3 \text{ belongs to } D_1\}$$

Lemma 1 [Taylor and Barto, Kozik]

no cyclic operation in $\operatorname{supp}(\Gamma)\Rightarrow S$ compatible with $\operatorname{supp}(\Gamma)$

$$R \subseteq D^n \longrightarrow \varrho_R(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in R \\ \infty & \text{otherwise} \end{cases}$$

Lemma 2 [Kozik, O. and Fulla, Živný]

R compatible with $\operatorname{supp}(\Gamma) \Rightarrow \varrho_R$ improved by $\operatorname{wPol}(\Gamma)$

no cyclic operation in
$$\operatorname{supp}(\Gamma)$$

$$\Downarrow \\ S \text{ compatible with } \operatorname{supp}(\Gamma) \qquad D_0 \ D_1 \\ \Downarrow \\ \varrho_S \text{ improved by } \operatorname{wPol}(\Gamma) \qquad \varrho_S(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in S \\ \infty & \text{otherwise} \end{cases}$$

$$\Downarrow \\ \operatorname{VCSP}(\{\varrho_S\}) \text{ polynomial-time reducible to } \operatorname{VCSP}(\Gamma)$$

Dichotomy Conjecture

Dichotomy Conjecture

Dichotomy Conjecture

[Kolmogorov, Krokhin, Rolinek] solving VCSP = solving corresponding CSP + applying BLP