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Abstract. The paper presents an algebraic framework for optimization
problems expressible as Valued Constraint Satisfaction Problems. Our
results generalize the algebraic framework for the decision version (CSPs)
provided by Bulatov et al. [SICOMP 2005].
We introduce the notions of weighted algebras and varieties and use the
Galois connection due to Cohen et al. [SICOMP 2013] to link VCSP
languages to weighted algebras. We show that the difficulty of VCSP de-
pends only on the weighted variety generated by the associated weighted
algebra.
Paralleling the results for CSPs we exhibit a reduction to cores and rigid
cores which allows us to focus on idempotent weighted varieties. Further,
we propose an analogue of the Algebraic CSP Dichotomy Conjecture;
prove the hardness direction and verify that it agrees with known re-
sults for VCSPs on two-element sets [Cohen et al. 2006], finite-valued
VCSPs [Thapper and Živný 2013] and conservative VCSPs [Kolmogorov
and Živný 2013].

1 Introduction

An instance of the Constraint Satisfaction Problem (CSP) consists of vari-
ables (to be evaluated in a domain) and constraints restricting the evaluations.
The aim is to find an evaluation satisfying all the constraints or satisfying the
maximal possible number of constraints or approximating the maximal possible
number of satisfied constraints etc. depending on the version of the problem.
Further one can divide constraint satisfaction problems with respect to the size
of the domain, the allowed constraints or the shape of the instances.

A particularly interesting version of CSP was proposed in a seminal paper
of Feder and Vardi [12]. In this version a CSP is defined by a language which
consists of a finite number of relations over a finite set. An instance of such a
CSP is allowed if all the constraint relations are from this set. The goal is to
determine whether an instance has a solution satisfying all the constraints.

Each language clearly defines a problem in NP; the whole family of prob-
lems is interesting for another reason: it is robust enough to include some well
studied computational problems, e.g. 2-colorability, 3-SAT, solving systems of
linear equations over Zp, and still is conjectured [12] not to contain problems of
intermediate complexity. This conjecture is known as the Constraint Satisfaction
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Dichotomy Conjecture of Feder and Vardi. Confirming this conjecture would es-
tablish CSPs as one of the largest natural subclasses of NP without problems of
intermediate complexity.

The conjecture always attracted a lot of attention, but the first results, even
very interesting ones, were usually very specialized (e.g. [14]). A major break-
through appeared with a series of papers establishing the algebraic approach to
CSP [3,7,16]. This deep connection with an independently developed branch of
mathematics introduced a new viewpoint and provided tools necessary to tackle
wide classes of CSP languages at once. At the heart of this approach lies a
Galois connection between languages and clones of operations called polymor-
phisms (which completely determine the complexity of the language).

Results obtained using this new methods include a full complexity classifica-
tions for CSPs on three-element sets [5] and containing all unary relations [4,6].
Moreover, the algebraic approach to CSP allowed to propose a boundary be-
tween the tractable and NP-complete problems: this conjecture is known as the
Algebraic Dichotomy Conjecture. Unfortunately, despite many efforts (e.g. [5]),
both conjectures remain open.

The Valued Constraint Satisfaction Problem (VCSP) further extends the
approach proposed by Feder and Vardi. The role of constraints is played by cost
functions describing the price of choosing particular values for variables as a
part of the solution. This generalization allows to construct languages modeling
standard optimization problems, for example MAX-CUT. Moreover, by allowing
∞ as a cost of a tuple, a VCSP language can additionally model every problem
that CSP can model, as well as hybrid problems like MIN-VERTEX-COVER.
This makes the extended framework even more general (compare the survey [17]).

A number of classes of VCSPs have been thoroughly investigated. The under-
lying structure suggested capturing the properties of languages of cost functions
using an amalgamation of algebraic and numerical techniques [10, 25]. The first
approach which provides a Galois correspondence (mirroring the Galois corre-
spondence for CSPs) was proposed by Cohen et al. [9]. A weighted clone defined
in this paper fully captures the complexity of a VCSP language.

The present paper builds on that correspondence imitating the line of re-
search for CSPs [7]. It is organized in the following way: Section 2 contains
preliminaries and basic definitions. In Section 3 we present a reduction to cores
and rigid cores. Section 4 introduces a concept of a weighted algebra and a
weighted variety, and shows that those notions are well behaved in the context
of the Galois connection for VCSP. Reductions developed in Section 3 together
with definitions from Section 4 allow us to focus on idempotent varieties. Sec-
tion 5 states a conjecture postulating (for idempotent varieties) the division
between the tractable and NP-hard cases of VCSP. The conjecture is clearly
a strengthening of the Algebraic Dichotomy Conjecture [7]. Section 5 contains
additionally the proof of the hardness direction of the conjecture as well as the
reasoning showing that the conjecture agrees with complexity classifications for
VCSPs on two-element sets [10], with finite-valued cost functions [25], and with
conservative cost functions [19].



2 Preliminaries

2.1 The Valued Constraint Satisfaction Problem

Throughout the paper, let Q = Q ∪ {∞} denote the set of rational numbers
with (positive) infinity. We assume that x +∞ = ∞ and y · ∞ = ∞ for y ≥ 0.
An r-ary relation on a set D is a subset of Dr, a cost function on D of arity
r is a function from Dr to Q. We denote by ΦD the set of all cost functions
on D. A cost function which takes only finite values is called finite-valued. A
{0,∞}-valued cost function is called crisp and can be viewed as a relation.

Definition 1. An instance of the valued constraint satisfaction problem (VCSP)
is a triple I = (V,D, C) with V a finite set of variables, D a finite domain and
C a finite multi-set of constraints. Each constraint is a pair C = (σ, %) with σ a
tuple of variables of length r and % a cost function on D of arity r.

An assignment for I is a mapping s : V → D. The cost of an assignment
s is given by CostI(s) =

∑
(σ,%)∈C %(s(σ)) (where s is applied component-wise).

To solve I is to find an assignment with a minimal cost, called an optimal
assignment.

Example 2. In the Max-Cut problem, one needs to find a partition of the ver-
tices of a given graph into two sets, such that the number of edges with ends in
different sets is maximal. This problem is NP-hard.

The Max-Cut problem can be expressed as an instance of VCSP. The do-
main has two elements 0 and 1. Variables in the instance are vertices of the
graph and for each edge e there is a constraint of a form (e, %XOR), where %XOR
is a binary cost function defined by

%XOR(x, y) =

{
1 if x = y,

0 otherwise.

Any assignment of the values 0 and 1 to the variables corresponds to a partition
of the graph. The cost of an assignment is equal to the number of edges of the
graph minus the number of cut edges.

Any set Γ ⊆ ΦD is called a valued constraint language over D, or simply
a language. If all cost functions from Γ are {0,∞}-valued or finite-valued, we
call it a crisp or finite-valued language, respectively. If Γ is a language, but not
necessarily finite-valued or crisp, we sometimes stress this fact by saying that Γ
is a general-valued language.

By VCSP(Γ ) we denote the class of all VSCP instances in which all cost func-
tions in all constraints belong to Γ . VCSP(Γcrisp), where Γcrisp is the language
consisting of all crisp cost functions on some fixed set D, is equivalent to the
classical CSP. For an instance I ∈ VCSP(Γ ) we denote by OptΓ (I) the cost of
an optimal assignment. We say that a language Γ is tractable if, for every finite
subset Γ ′ ⊆ Γ , there exists an algorithm solving any instance I ∈ VCSP(Γ ′)



in polynomial time, and we say that Γ is NP-hard if VCSP(Γ ′) is NP-hard for
some finite Γ ′ ⊆ Γ . Example 2 shows that the language {%XOR} is NP-hard.

Weighted Relational Clones. We follow the exposition from [9] and define a
closure operator on valued constraint languages that preserves tractability.

Definition 3. A cost function % is expressible over a valued constraint language
Γ ⊆ ΦD if there exists an instance I% ∈ VCSP(Γ ) and a list (v1, . . . , vr) of
variables of I%, such that

%(x1, . . . , xr) = min
{s : V→D | s(vi)=xi}

CostI%(s).

Note that the list of variables (v1, . . . , vr) in the definition above might con-
tain repeated entries. Hence, it is possible that there are no assignments s such
that s(vi) = xi for all i. We define the minimum over the empty set to be ∞.

Definition 4. A set Γ ⊆ ΦD is a weighted relational clone if it is closed under,
expressibility, scaling by non-negative rational constants, and addition of rational
constants. We define wRelClo(Γ ) to be the smallest weighted relational clone
containing Γ .

If %(x1, . . . , xr) = %1(y1, . . . , ys) + %2(z1, . . . , zt) for some fixed choice of ar-
guments y1, . . . , ys, z1, . . . , zt from amongst x1, . . . , xr then the cost function %
is said to be obtained by addition from the cost functions %1 and %2. It is easy to
see that a weighted relational clone is closed under addition, and minimisation
over arbitrary arguments.

The following result shows that we can restrict our attention to languages
which are weighted relational clones.

Theorem 5 (Cohen et al. [9]). A valued constraint language Γ is tractable if
and only if wRelClo(Γ ) is tractable, and it is NP-hard if and only if wRelClo(Γ )
is NP-hard.

Weighted polymorphisms. A k-ary operation on D is a function f : Dk →
D. We denote by OD the set of all finitary operations on D and by O(k)

D

the set of all k-ary operations on D. The k-ary projections, defined for all

i ∈ {1, . . . , k}, are the operations π
(k)
i such that π

(k)
i (x1, . . . , xk) = xi. Let

f ∈ O(k)
D and g1, . . . , gk ∈ O(l)

D . The l-ary operation f [g1, . . . , gk] defined by
f [g1, . . . , gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl)) is called the su-
perposition of f and g1, . . . , gk.

A set C ⊆ OD is a clone of operations (or simply a clone) if it contains all
projections on D and is closed under superposition. The set of k-ary operations
in a clone C is denoted C(k). The smallest possible clone of operations over a
fixed set D is the set of all projections on D, which we denote ΠD.

Following [9] we define a k-ary weighting of a clone C to be a function
ω : C(k) → Q such that

∑
f∈C(k) ω(f) = 0, and if ω(f) < 0 then f is a pro-

jection. The set of operations to which a weighting ω assigns positive weights is
called the support of ω and denoted supp(ω).



A new weighting of the same clone can be obtained by scaling a weighting
by a non-negative rational, adding two weightings of the same arity and by the
following operation called superposition.

Definition 6. Let ω be a k-ary weighting of a clone C and let g1, . . . , gk ∈ C(l).
A superposition of ω and g1, . . . , gk is a function ω[g1, . . . , gk] : C(l) → Q defined
by

ω[g1, . . . , gk](f ′) =
∑

{f∈C(k) | f [g1,...,gk]=f ′}

ω(f).

The sum of weights that any superposition ω[g1, . . . , gk] assigns to the op-
erations in C(l) is equal to the sum of weights in ω, which is 0. However, it
may happen that a superposition assigns a negative value to an operation that
is not a projection. A superposition is said to be proper if the result is a valid
weighting.

A non-empty set of weightings over a fixed clone C is called a weighted clone
if it is closed under non-negative scaling, addition of weightings of equal arity
and proper superposition with operations from C. For any clone of operations
C, the set of all weightings over C and the set of all zero-valued weightings of C
are weighted clones.

We say that an r-ary relation R on D is compatible with an operation
f : Dk → D if, for any list of r-tuples x1, . . . ,xk ∈ R we have f(x1, . . . ,xk) ∈ R
(where f is applied coordinate-wise). Let % : Dr → Q be a cost function. We
define Feas(%) = {x ∈ Dr | %(x) is finite} to be the feasibility relation of %.
We call an operation f : Dk → D a polymorphism of % if the relation Feas(%)
is compatible with it. For a valued constraint language Γ we denote by Pol(Γ )
the set of operations which are polymorphisms of all cost functions % ∈ Γ . It is
easy to verify that Pol(Γ ) is a clone. The set of m-ary operations in Pol(Γ ) is
denoted Polm(Γ ).

For crisp cost functions (relations) this notion of polymorphism corresponds
precisely to the standard notion of polymorphism which has played a crucial role
in the complexity analysis for the CSP [3,16].

Definition 7. Take % to be a cost function of arity r on D, and let C ⊆ Pol({%})
be a clone of operations. A weighting ω : C(k) → Q is called a weighted poly-
morphism of % if, for any list of r-tuples x1, . . . ,xk ∈ Feas(%), we have∑

f∈C(k)

ω(f) · %(f(x1, . . . ,xk)) ≤ 0.

For a valued constraint language Γ we denote by wPol(Γ ) the set of those
weightings of the clone Pol(Γ ) that are weighted polymorphisms of all cost func-
tions % ∈ Γ . The set of weightings wPol(Γ ) is a weighted clone [9].

Example 8. For any lattice-ordered set D, a function % : Dr → Q is called sub-
modular if for all x1,x2 ∈ Dr

%(min(x1,x2)) + %(max(x1,x2))− %(x1)− %(x2) ≤ 0.



The above condition can be equivalently expressed by saying that the set of
submodular functions on D is the set of cost functions with a binary weighted
polymorphism ω, defined as follows:

ω(f) =


−1 if f is a projection,

1 if f is one of the operations min or max,

0 otherwise.

An operation f is idempotent if f(x, ..., x) = x. A weighted polymorphism is
called idempotent if all operations in its support are idempotent.

An operation f ∈ O(k)
D is cyclic if for every x1, . . . , xk ∈ D we have that

f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1). A weighted polymorphism is called cyclic
if its support is non-empty and contains cyclic operations only.

A cost function % is said to be improved by a weighting ω if ω is a weighted
polymorphism of %. For any set W of weightings over a fixed clone C ⊆ OD
we denote by Imp(W ) the set of cost functions on D which are improved by
all weightings ω ∈ W . The following result, together with Theorem 5, implies
that tractable valued constraint languages can be characterised by weighted
polymorphisms.

Theorem 9 (Cohen et al. [9]). For any finite valued constraint language Γ ,
we have Imp(wPol(Γ )) = wRelClo(Γ ).

For more information on the valued constraint satisfaction problem see the
recent survey [17].

2.2 Algebras and varieties

In this subsection we introduce the basic concepts of universal algebra that serve
us as tools later on in this paper. An algebraic signature is a set of function
symbols together with (finite) arities. An algebra A over a fixed signature Σ
consists of a set A, called the universe of A, and a set of basic operations that
correspond to the symbols in the signature, i.e., if the signature contains a k-
ary symbol f then the algebra has a basic operation fA, which is a function
fA : Ak → A.

A subset B of the universe of an algebra A is a subuniverse of A if it is closed
under all operations of A. An algebra B is a subalgebra of A if B is a subuniverse
of A and the operations of B are restrictions of all the operations of A to B. Let
(Ai)i∈I be a family of algebras (over the same signature). Their product Πi∈IAi

is an algebra with the universe equal to the cartesian product of the Ai’s and
operations computed coordinate-wise. For two algebras A and B (over the same
signature), a homomorphism from A to B is a function h : A→ B that preserves
all operations. It is easy to see, that an image of a homomorphism h : A→ B is
a subalgebra of B.

Let K be a class of algebras over a fixed signature Σ. We denote by S(K)
the class of all subalgebras of algebras in K, by P(K) the class of all products of



algebras in K, by Pfin(K) the class of all finite products, and by H(K) the class
of all homomorphic images of algebras in K. If K = {A} we write S(A), P(A),
and H(A) instead of S({A}), P({A}), and H({A}), respectively.

Similarly V(K) is the smallest class of algebras closed under all three op-
erations. For an algebra A the variety V({A}) (denoted V(A)) is the variety
generated by A, and Vfin(A) is the class of finite algebras in V(A). The variety
V(A) can be characterised as follows:

Proposition 10 (Tarski [23]). For any finite algebra A, we have

V(A) = HSP(A) and Vfin(A) = HSPfin(A).

We say that an equivalence relation ∼ on A is a congruence of A if the
following condition is satisfied for all operations f of A: if for all i ∈ {1, . . . , k},
we have ai ∼ bi, then f(a1, . . . , ak) ∼ f(b1, . . . , bk), where k is the arity of f .
Every congruence ∼ of A determines a quotient algebra A/∼. Its universe is
the set of the equivalence classes A/∼ and operations are defined using their
arbitrarily chosen representatives.

A term t in a signature Σ is a formal expression built from variables and
symbols in Σ that syntactically describes the composition of basic operations.
For an algebra A over Σ a term operation tA is an operation obtained by com-
posing the basic operations of A according to t. Let s and t be a pair of terms
in a signature Σ. We say that A satisfies the identity s ≈ t if the term opera-
tions sA and tA are equal. We say that a class of algebras V over Σ satisfies the
identity s ≈ t if every algebra in V does.

Theorem 11 (Birkhoff [2]). A class of algebras V is a variety if and only if
there exists a set of identities such that V contains precisely those algebras that
satisfy all the identities from this set.

It follows from Birkhoff’s theorem that the variety V(A) is the class of alge-
bras that satisfy all the identities satisfied by A. Moreover, if A is finite then
V(A) is locally finite, i.e., every finitely generated algebra in V(A) is finite.

3 Core Valued Constraint Languages

For each valued constraint language Γ there is an associated algebra. It has uni-
verse D and the set of operations Pol(Γ ). If all polymorphisms of Γ are idempo-
tent it means that the algebra (D,Pol(Γ )) satisfies the identity f(x, . . . , x) ≈ x
for every operation f . Such algebras are called idempotent. In this section we
prove that every finite valued constraint language has a computationally equiv-
alent valued constraint language whose associated algebra is idempotent.

3.1 Positive Clone.

Those polymorphisms of a given language Γ which are assigned a positive weight
by some weighted polymorphisms ω ∈ wPol(Γ ) are of special interest in the rest
of the paper. We begin this section by proving that they form a clone.



Let C be a weighted clone over a set D. The following proposition shows that
the set

⋃
ω∈C supp(ω), together with the set of projections ΠD, is a clone. We

call it the positive clone of C and denote by C+ (if C is wPol(Γ ) then C+ is
denoted by Pol+(Γ )).

Proposition 12. If C is a weighted clone then C+ is a clone.

We will use the following technical lemma (Lemma 6.5 from [9]). It implies that
any weighting that can be expressed as a weighted sum of arbitrary superpo-
sitions can also be expressed as a superposition of a weighted sum of proper
superpositions.

Lemma 13. Let C be a weighted clone, and let ω1 and ω2 be weightings in C, of
arity k and l respectively. For any m-ary operations f1, . . . , fk, g1, . . . , gl of C:

c1ω1[f1, . . . , fk] + c2ω2[g1, . . . , gl] = ω[f1, . . . , fk, g1, . . . , gl],

where
ω = c1ω1[π

(k+l)
1 , . . . , π

(k+l)
k ] + c2ω2[π

(k+l)
k+1 , . . . , π

(k+l)
k+l ].

Proof. We need to show that the set C+ is closed under superposition. Take a
k-ary operation f and a list of l-ary operations g1, . . . , gk that all belong to C+.

If f is a projection there is nothing to prove. Otherwise there is a weighting
ω ∈ C such that ω(f) > 0. Similarly for each gi which is not a projection we
find ωi such that ωi(gi) > 0 (if gi is a projection we put ωi to be the zero-valued
l-ary weighting).

Now, there exist non-negative rational numbers ij such that the sum

ω[g1, . . . , gk] + i1ω1[πl1, . . . , π
l
l ] + · · ·+ ikωk[πl1, . . . , π

l
l ]

is a valid weighting. By Lemma 13 this weighting can be obtained as a superpo-
sition of a sum of proper superpositions and therefore belongs to C which finishes
the proof.

3.2 Cores.

Let Γ be a valued constraint language with a domain D. For S ⊆ D we denote
by Γ [S] the valued constraint language defined on a domain S and containing
the restriction of every cost function % ∈ Γ to S. We show that Γ has a compu-
tationally equivalent valued constraint language Γ ′ such that Pol+1 (Γ ′) contains
only bijective operations. Such a language is called a core. Moreover, Γ ′ can be
chosen to be equal Γ [S] for some S ⊆ D.

Proposition 14. For every valued constraint language Γ there exists a core
language Γ ′, such that the valued constraint language Γ is tractable if and only
if Γ ′ is tractable, and it is NP-hard if and only if Γ ′ is NP-hard.

We prove the above result by generalizing the arguments for finite-valued
languages given in [15,25]. We need an auxiliary lemma.



Lemma 15. For a valued constraint language Γ , let f ∈ Pol+1 (Γ ) and let I ∈
VCSP(Γ ). If s is an optimal assignment for I, then f(s) is also optimal.

Proof. Let f , I and s be like in the statement of the lemma. Observe that
CostI (see Definition 1) can be seen as a cost function whose arity is equal to
the number of variables in I. Moreover, CostI belongs to wRelClo(Γ ) as it is
clearly expressible over Γ . If CostI(s) = ∞ then there is no assignment with a
finite cost and we are done.

Assume that CostI(s) < ∞, which means that s ∈ Feas(CostI). If f 6= id,
then there exists a weighted polymorphism ω with ω(f) > 0. By definition the
following inequality is satisfied:∑

g∈Pol1(Γ )

ω(g) · CostI(g(s)) ≤ 0.

Without loss of generality we can assume that ω(id) = −1. Then we have that∑
g∈supp(ω) ω(g) = 1 and the inequality above can be rewritten as∑

g∈supp(ω)

ω(g) · CostI(g(s)) ≤ CostI(s).

On the other hand,∑
g∈supp(ω)

ω(g) · CostI(g(s)) ≥
∑

g∈supp(ω)

ω(g) · CostI(s) = CostI(s).

Therefore CostI(g(s)) = CostI(s) for each operation g ∈ supp(ω). Since f ∈
supp(ω) and s is optimal, f(s) is also optimal.

Proof. (of Proposition 14) Let Γ be a valued constraint language over a do-
main D. Suppose that there is a unary polymorphism f ∈ Pol+(Γ ) that is not
bijective. Let Γ ′ = Γ [f(D)], where f(D)  D denotes the range of f . There
is a natural correspondence between instances of VCSP(Γ ′) and instances of
VCSP(Γ ), induced by the correspondence between functions in Γ and their re-
strictions in Γ ′. For any instance I ′ of VCSP(Γ ′) the corresponding instance I
of VCSP(Γ ) has the same variables. The cost function %′ in each constraint is
replaced by any cost function % from Γ , which is equal to %′ when restricted to
f(D). We show that OptΓ (I) = OptΓ ′(I ′).

Any assignment for I ′ is also an assignment for I, and hence OptΓ (I) ≤
OptΓ ′(I ′). Furthermore, by Lemma 15 for each s that is an optimal assignment
for I, we have

CostI(s) = CostI(f(s)) = CostI′(f(s)).

Therefore, OptΓ (I) ≥ OptΓ ′(I ′).
It follows that VCSP(Γ ) is tractable if and only if VCSP(Γ ′) is tractable,

and it is NP-hard if and only if VCSP(Γ ′) is NP-hard. Moreover, the valued
constraint language Γ ′ is defined over a smaller domain. We replace Γ with Γ ′

and repeat this procedure, until we obtain a language Γ ′ that is a core.



For core languages we characterize the set of unary weighted polymorphisms.

Proposition 16. Let Γ be a core valued constraint language. A unary weighting
ω is a weighted polymorphism of Γ if and only if it assigns positive weights only
to such bijective operations f ∈ Pol1(Γ ) that, for all cost functions % ∈ Γ , satisfy
% ◦ f = %.

Proof. If a valid unary weighting ω assigns positive weights only to such opera-
tions f ∈ Pol1(Γ ) that, for all cost functions % ∈ Γ , satisfy % ◦ f = %, then for
each % ∈ Γ and a tuple x ∈ Feas(%)∑

f∈Pol1(Γ )

ω(f) · %(f(x)) =
∑

f∈Pol1(Γ )

ω(f) · %(x) = 0,

and ω is clearly a weighted polymorphism of Γ .
For the other direction, let ω be a unary weighted polymorphism of Γ , such

that supp(ω) 6= ∅. Without loss of generality assume that ω(id) = −1. Since Γ
is a core language, the operations g ∈ supp(ω) are bijective. For % ∈ Γ and a
tuple x ∈ Feas(%) for which % takes the minimal value, we have∑

g∈supp(ω)

ω(g) · %(g(x)) + ω(id) · %(x) ≤ 0, hence

%(x) ≥
∑

g∈supp(ω)

ω(g) · %(g(x)) ≥
∑

g∈supp(ω)

ω(g) · %(x) = %(x).

Therefore %(g(x)) = %(x) for each g ∈ supp(ω), which means that the operations
in the support preserve the minimal weight.

Note that, since each g ∈ supp(ω) is bijective, it determines a bijection of the
set Feas(%). We have shown that this bijection preserves the set of tuples with
minimal weight. It can be similarly shown by induction that it preserves the set
of tuples with any other fixed weight. Hence, we have proved that % ◦ g = % for
all g ∈ supp(ω).

This implies that, for any core language Γ , a unary polymorphism belongs
to Pol+(Γ ) if and only if it is bijective and preserves all cost functions in Γ .

Let Γ be a finite core valued constraint language over a domain D. For each
arity m we fix an enumeration of all the elements of Dm. This allows us to treat

every m-ary operation f ∈ O(m)
D as a |Dm|-tuple. We define a |Dm|-ary cost

function in wRelClo(Γ ) that precisely distinguishes the m-ary operations in the
positive clone from all the other m-ary polymorphisms. To do this we need the
following technical lemma, which is a variant of the well known Farkas’ Lemma
used in linear programming:

Lemma 17 (Farkas [11]). Let S and T be finite sets of indices, where T is a
disjoint union of two subsets, T≥ and T=. For all i ∈ S, and all j ∈ T , let ai,j
and bj be rational numbers. Exactly one of the following holds:



– Either there exists a set of non-negative rational numbers {zi | i ∈ S} and a
rational number C such that

for each j ∈ R≥,
∑
i∈S

ai,jzi ≥ bj + C,

for each j ∈ R=,
∑
i∈S

ai,jzi = bj + C.

– Or else there exists a set of rational numbers {yj | j ∈ T} such that
∑
j∈T yj =

0 and
for each j ∈ T≥, yj ≥ 0,

for each i ∈ S,
∑
j∈T

yjai,j ≤ 0,

and
∑
j∈T

yjbj > 0.

The set {yj | j ∈ T} defined in the lemma is called a certificate of unsolv-
ability.

Proposition 18. Let Γ be a finite core valued constraint language over a do-

main D. For every m there exists a cost function % : O(m)
D → Q in wRelClo(Γ ),

and a rational number P , such that for every f ∈ O(m)
D the following conditions

are satisfied:

1. %(f) ≥ P ,
2. %(f) <∞ if and only if f ∈ Pol(Γ ),
3. %(f) = P if and only if f ∈ Pol+(Γ ).

Proof. The cost function % is given by a sum of all cost functions in Γ with
positive coefficients that we define later on.

Like in the classical CSP, a cost function whose feasibility relation contains
exactly those |Dm|-tuples which are m-ary polymorphisms of Γ is defined by:∑

%∈Γ
(a1,...,am)∈(Feas(%))m

%(xb1 , . . . , xbr),

where bi(j) = aj(i), and r is the arity of %. For each summand we introduce a
variable z%,a1,...,am and, for each f ∈ Pol+m(Γ ) we write:∑

%∈Γ
(a1,...,am)∈(Feas(%))m

z%,a1,...,am%(f(b1), . . . , f(br)) = 0 + C,

while for each f ∈ Polm(Γ ) \ Pol+m(Γ ):∑
%∈Γ

(a1,...,am)∈(Feas(%))m

z%,a1,...,am%(f(b1), . . . , f(br)) ≥ 1 + C,



where bi(j) = aj(i), and r is the arity of %.
By putting the above equalities and inequalities together we obtain a system

of linear inequalities and equations. By Lemma 17 there are two mutually exclu-
sive possibilities. First, there may exist a set of non-negative rational numbers
z%,a1,...,am and a rational number C, such that this system is satisfied. Then the
proposition is proved: items 1. and 3. follow trivially from construction. Item 2.
follows by definition of the cost function.

Otherwise, there exists a set {yf | f ∈ Polm(Γ )} which forms the certificate
of unsolvability. Then let us consider a weighting defined by ω(f) = yf . If ω is
a valid weighting, then it is an m-ary weighted polymorphism of Γ . Moreover,
ω assigns to all operations in Polm(Γ ) \Pol+m(Γ ) non-negative weights that sum
up to a positive number. Hence, for some h ∈ Polm(Γ ) \ Pol+m(Γ ), we have
ω(h) > 0, which contradicts h /∈ Pol+m(Γ ). If it happens that yg < 0 for some
operation g ∈ Pol+m(Γ ) that is not a projection, then there exists an m-ary
weighted polymorphism of Γ which assigns a positive weight to g. By scaling
it and adding to ω (as in the proof of Proposition 12), we obtain the weighted
polymorphism needed for the contradiction.

3.3 Rigid cores.

We further reduce the class of languages that we need to consider. Let Γ be
a core valued constraint language over an n-element domain D = {d1, . . . , dn}.
For each i ∈ {1, . . . , n}, let

Ni(x) =

{
0 if x = di,

∞ otherwise.

and let Γc denote the valued constraint language obtained from Γ by adding
all cost functions Ni. Observe that Pol(Γc) = IdPol(Γ ), where by IdPol(Γ ) we
denote the set of idempotent polymorphisms of the language Γ . Hence, the only
unary polymorphism of Γc is the identity, which also means that there is only
one unary weighted polymorphism of Γc – the zero-valued polymorphism.

Definition 19. A valued constraint language Γ is a rigid core if there is exactly
one unary polymorphism of Γ , which is the identity.

The notion of rigid core corresponds to the classical notion of rigid core
considered in CSP [7]. A valued constraint language Γ is a rigid core if the set
of feasibility relations of all cost functions from Γ is a rigid core in the standard
sense, which is also equivalent to all polymorphisms of Γ being idempotent.

We now prove a result which, together with Proposition 14, implies that for
each finite language Γ , there is a computationally equivalent language that is a
rigid core.

Proposition 20. Let Γ be a valued constraint language which is finite and a
core. The valued constraint language Γc is a rigid core. Moreover, Γ is tractable
if and only if Γc is tractable, and Γ is NP-hard if and only if Γc is NP-hard.



Proof. Let Γ be a finite core valued constraint language over a domain D =
{d1, . . . , dn}. It follows from Proposition 18 that there exist an n-ary cost func-
tion N ∈ wRelClo(Γ ), and positive rational numbers P < Q, such that the
following conditions are satisfied:

– N(x1, . . . , xn) = P if and only if the unary operation g defined by di 7→ xi
belongs to Pol+(Γ ),

– N(x1, . . . , xn) > Q if and only if the unary operation g defined by di 7→ xi
belongs to Pol(Γ ) \ Pol+(Γ ),

– otherwise N(x1, . . . , xn) =∞.

Assume without loss of generality that N ∈ Γ . We show a polynomial-time
Turing reduction from VCSP(Γc) to VCSP(Γ ).

Let Ic = (Vc, D, Cc) be an instance of VCSP(Γc). The set of variables V in
the new instance I is a disjoint union of Vc and {v1, . . . , vn}. For every constraint
of the form ((v), Ni) in Cc we:

– add a constraint ((v, vi), %=), where

%=(x, y) =

{
0 if x = y,

∞ otherwise

(this cost function is expressible over every valued constraint language, so
without loss of generality we can assume that %= ∈ Γ ),

– remove the constraint ((v), Ni) from Cc.

We obtain a new set of constraints C1, where all cost functions are already
from Γ .

Let C be the sum of weights that all cost functions in all constraints in C1
assign to all tuples in their feasibility relations. The final set of constraints C
additionally contains m constraints of the form ((v1, . . . , vn), N), where m is big
enough to ensure that m · (Q− P ) > C.

There are three possibilities:

– If OptΓ (I) =∞ then no assignment for Ic has a finite cost. Suppose other-
wise and let sc be an assignment for Ic with a finite cost. Then sc gives rise
to an assignment s for I with a finite cost. It coincides with sc on Vc and
for each i ∈ {1, . . . , n}, we set s(vi) = di.

– The optimal assignment s for I satisfies N(s(v1, . . . , vn)) = P . Then the
tuple s(v1, . . . , vn) determines a unary operation g, defined by di 7→ s(vi).
The operation g, by the definition of the cost function N , belongs to the
positive clone Pol+(Γ ). Hence, g−1 also belongs to the positive clone. Since
Γ is a core, the assignment g−1(s) is optimal for I. Its restriction onto Vc is
an optimal assignment for Ic.

– The optimal assignment s for I satisfies N(s(v1, . . . , vn)) > Q. While there
are m constraints of the form ((v1, . . . , vn), N), we have

CostI(s) ≥ m ·Q > m · P + C.



If there was any assignment sc for Ic with a finite cost, the corresponding
assignment s for I would satisfy CostI(s) < m · P + C, which gives a
contradiction, and implies that OptΓc

(Ic) =∞.

If Γ is a core language then the positive clone of Γc contains precisely the
idempotent operations from the positive clone of Γ . To show this, we first prove
the following lemma:

Lemma 21. Let Γ be a core valued constraint language. For every weighted
polymorphism ω ∈ wPol(Γ ) there exists an idempotent weighted polymorphism
ω′ ∈ wPol(Γ ) such that supp(ω)∩ IdPol(Γ ) ⊆ supp(ω′). Moreover, if ω is cyclic
then ω′ can be chosen to be cyclic.

Proof. Consider a weighted polymorphism ω ∈ wPol(Γ ). Take a non-idempotent
operation g ∈ supp(ω) and let h be a unary operation defined by h(x) =
g(x, . . . , x). Since Pol+(Γ ) is a clone of operations, h ∈ Pol+(Γ ). Then by Propo-
sition 16 the operation h is bijective and preserves all cost functions in Γ . We
modify the weighted polymorphism ω by adding ω(g) to the weight of the idem-
potent operation h−1 ◦ g and then assigning weight 0 to the operation g. It is
straightforward to check that the new weighting is a weighted polymorphism of
Γ . If g is cyclic then so is h−1 ◦ g. Hence if ω is cyclic then so is the new weight-
ing. We repeat this construction for every non-idempotent operation in supp(ω).
Finally, we obtain an idempotent weighted polymorphism ω′ which satisfies the
conditions of the lemma.

Proposition 22. Let Γ be a valued constraint language which is a core. Then
IdPol+(Γ ) = Pol+(Γc).

Proof. Clearly both sets contain all the projections. Let us take f ∈ Pol+(Γc)
that is not a projection and let ω be a weighted polymorphism of Γc such that
f ∈ supp(ω). There is a corresponding weighted polymorphism ω′ of Γ , which is
equal to ω on the idempotent operations and equal 0 otherwise. Then we have
f ∈ supp(ω′). Since f is idempotent it follows that f ∈ IdPol+(Γ ).

To prove the reverse inclusion consider f ∈ IdPol+(Γ ) that is not a pro-
jection. Let ω be a weighted polymorphism of Γ such that f ∈ supp(ω). By
Lemma 21 there exists an idempotent weighted polymorphism ω′ of Γ such that
supp(ω)∩IdPol(Γ ) ⊆ supp(ω′). The weighting ω′′, defined as a restriction of ω′ to
the idempotent operations, is a weighted polymorphism of Γc with f ∈ supp(ω′′).
Hence f ∈ Pol+(Γc).

4 Weighted varieties

One of the fundamental results of the algebraic approach to CSP [3, 7, 20] says
that the complexity of a crisp language Γ depends only on the variety generated
by the algebra (D,Pol(Γ )). We generalize this fact to VCSP.

A k-ary weighting ω of an algebra A is a function that assigns rational
weights to all k-ary term operations of A in such a way, that the sum of all



weights is 0, and if ω(f) < 0 then f is a projection. A (proper) superposition
ω[g1, . . . , gk] of a weighting ω with a list of l-ary term operations g1, . . . , gk
from A is defined the same way as for clones (see Definition 6). An algebra A
together with a set of weightings closed under non-negative scaling, addition of
weightings of equal arity and proper superposition with operations from A is
called a weighted algebra.

For a variety V over a signature Σ and a term t we denote by [t]V the
equivalence class of t under the relation ≈V such that t ≈V s if and only if the
variety V satisfies the identity t ≈ s (we skip the subscript, writing [t] instead
[t]V , whenever the variety is clear from the context). Observe that if the variety
is locally finite then there are finitely many equivalence classes of terms of a
fixed arity [8].

Definition 23. Let V be a locally finite variety over a signature Σ. A k-ary
weighting ω of V is a function that assigns rational weights to all equivalence
classes of k-ary terms over Σ in such a way, that the sum of all weights is
0, and if ω([t]) < 0 then V satisfies the identity t(x1, . . . , xk) ≈ xi for some
i ∈ {1, . . . , k}. The variety V together with a nonempty set of weightings is
called a weighted variety.

Take any finite algebra B ∈ V. A k-ary weighting ω of V induces a weighting
ωB of B in a natural way:

ωB(f) =
∑

{[t] | tB=f}

ω([t]).

If ω([t]) < 0 then the term operation tB is a projection, and hence the weighting
ωB is proper. For a weighted variety V, by B ∈ V we mean the algebra B
together with the set of weightings induced by V.

For every weighting ω of a finite weighted algebra A there is a corresponding
weighting ω of the variety V(A) defined by ω([t]) = ω(tA). It follows from
Birkhoff’s theorem (see Theorem 11) that it is well defined. A weighted variety
V(A) generated by a weighted algebra A is the variety V(A) together with the
set of weightings corresponding to the weightings of A. The correspondence is
one-to-one so for simplicity we often identify the weightings of V(A) with the
weightings of A.

We prove that every finite algebra B ∈ V(A) together with the set of weight-
ings induced by V(A) is a weighted algebra. It is straightforward to check its
closure under non-negative scaling and addition of weightings of equal arity. We
only need to show that B is closed under proper superpositions.

Proposition 24. For a finite weighted algebra A over a fixed signature Σ and a
finite algebra B ∈ V(A) let ωB be a k-ary weighting of B induced by the weighted
variety V(A). If for some list fB1 , . . . , f

B
k of l-ary term operations from B the

weighting ωB[fB1 , . . . , f
B
k ] is proper then it is induced by some weighting of V(A).

In the proof we use Gordan’s Theorem (which is a straightforward conse-
quence of Lemma 17).



Theorem 25 (Gordan [13]). Let S and T be finite sets of indices. For all
i ∈ S, and all j ∈ T , let ai,j be rational numbers. Exactly one of the following
holds:

– Either there exists a set of non-negative rational numbers {zi | i ∈ S} such
that

for some i ∈ S, zi > 0,

for each j ∈ T,
∑
i∈S

ai,jzi = 0.

– Or else there exists a set of rational numbers {yj | j ∈ T} such that

for each i ∈ S,
∑
j∈T

yjai,j > 0.

Proof. (of Proposition 24) Let ωB and fB1 , . . . , f
B
k be as in the statement of the

proposition. Assume that the weighting ωB[fB1 , . . . , f
B
k ] is proper.

Notice that the following conditions are equivalent:

– the operation fBi is the projection πj on the j-th coordinate,
– there exists a term t such that tB = fBi and tA is the projection πj on the
j-th coordinate.

For each i ∈ {1, . . . , k} consider the set Fi of equivalence classes of terms over
Σ defined by

Fi =

{
{[t] | tA = πj} if fBi = πj ,

{[t] | tB = fBi } otherwise

(observe that if fBi is a projection then Fi contains a single equivalence class).
Take ω to be some k-ary weighting of A that induces ωB, and let

W = {ω[tA1 , . . . , t
A
k ] | [ti] ∈ Fi}.

Suppose that for some choice of equivalence classes [ti] ∈ Fi the superposition
ω[tA1 , . . . , t

A
k ] is proper. The weighting ω[tA1 , . . . , t

A
k ] of A induces a weighting of

B which is equal to ωB[fB1 , . . . , f
B
k ], thus in this case the proof is concluded.

This shows that a superposition of ωB with any list of projections is always
induced by some weighting of A.

Now let us deal with the case when none of the weightings in W is proper.
Without loss of generality we can assume that the operations fB1 , . . . , f

B
k are

pairwise distinct (otherwise we replace ωB by its superposition with a suitable
list of projections) and hence the sets Fi are disjoint. Let F =

⋃
Fi. We remove

from F the element of Fi if fBi is a projection. The removed elements cannot
cause a problem and therefore we assume that for every [t] ∈ F the operation
tA is not a projection. We apply Gordan’s Theorem to the following system of
linear equations: ∑

ν∈W
ν(tA) · zν − z[t] = 0, for each [t] ∈ F.



If this system has a non-zero solution in non-negative rational numbers then
zν > 0 for some ν ∈ W . Observe that the weighting υ =

∑
ν∈W ν · zν is proper.

Indeed, by the definition of a superposition the only non-projections that could
be assigned negative weights by υ are the operations tA where [t] ∈ F . But each
such operation tA is assigned a non-negative weight z[t]. Hence, by Lemma 13
the weighting υ is equal to a proper superposition of some weighting of A with a
list of l-ary term operations of A. Finally, let p =

∑
ν∈W zν > 0. The weighting

1
pυ of A induces a weighting of B which is equal to ωB[fB1 , . . . , f

B
k ].

Otherwise, there exists a set {y[t] | [t] ∈ F} of rational numbers, such that

for each ν ∈W,
∑
[t]∈F

y[t] · ν(tA) > 0,

and y[t] < 0 for each [t] ∈ F . For every i ∈ {1, . . . , k} let us choose [ti] ∈ Fi
satisfying y[ti] = max{y[t] | [t] ∈ Fi} (if fBi is a projection then we choose
[ti] ∈ Fi to be the only element of Fi and put y[ti] = 0) and consider the
weighting υ = ω[tA1 , . . . , t

A
k ]. Notice that υ may assign negative weights only to

operations tAi . Since∑
[t]∈F1

y[t] · υ(tA) + · · ·+
∑

[t]∈Fk

y[t] · υ(tA) > 0,

then
∑

[t]∈Fi
y[t] · υ(tA) > 0 for some i ∈ {1, . . . , k}. Hence

0 <
∑
[t]∈Fi

y[t] · υ(tA) ≤
∑
[t]∈Fi

y[ti] · υ(tA) = y[ti] ·
∑
[t]∈Fi

υ(tA).

It follows that
∑

[t]∈Fi
υ(tA) < 0, which is a contradiction, since

∑
[t]∈Fi

υ(tA)

is the weight that the proper weighting ωB[fB1 , . . . , f
B
k ] assigns to the operation

fBi (which is not a projection).

For a finite weighted algebra A let Imp(A) denote the set of those cost
functions on A that are improved by all weightings of A. We prove that for each
finite weighted algebra B ∈ V(A) the valued constraint language Imp(B) is not
harder then Imp(A). The proof consists of a sequence of lemmas.

Lemma 26. Let A be a finite weighted algebra. For any B ∈ Pfin(A), there is
a polynomial-time reduction of VCSP(Imp(B)) to VCSP(Imp(A)).

Proof. Let An be the universe of B and let Γ be a finite subset of Imp(B).
Take % ∈ Γ to be an r-ary cost function. There is a natural way of defining
a corresponding cost function of arity n · r on the set A. We denote this cost
function by %′.

Let ω be a k-ary weighting of the weighted algebra A. The corresponding
k-ary weighting ωB of B is a weighted polymorphism of %. Then it is not hard
to show that ω is a weighted polymorphism of %′, as the basic operations of B



are the operations of A computed coordinate-wise. Hence, each weighting of A
is a weighted polymorphism of %′, which means that %′ ∈ Imp(A).

For each % ∈ Γ we have defined a corresponding %′ ∈ Imp(A). Let Γ ′ ⊆
Imp(A) be the (finite) set of all those cost functions.

Now take an arbitrary instance I = (V,An, C) of VCSP(Γ ). Replace the
domain An by A, and each variable vi ∈ V by a set of n variables {v1i , . . . , vni },
obtaining a new set of variables V ′. In each constraint (σ, %) ∈ C, where % is an r-
ary cost function, replace the r-tuple σ of variables from V by the corresponding
nr-tuple of variables from V ′, and the cost function % by the corresponding
cost function %′ from Γ ′. The new instance I ′ = (V ′, A, C′) is an instance of
VCSP(Γ ′). It is easy to see that there is a one-to-one correspondence between
the optimal assignments for I and the optimal assignments for I ′.
Lemma 27. Let A be a finite weighted algebra. For any B ∈ S(A), there is a
polynomial-time reduction of VCSP(Imp(B)) to VCSP(Imp(A)).

Notice that Imp(B) ⊆ Imp(A), so there is nothing to be proved.

Lemma 28. Let A be a finite weighted algebra. For any B ∈ H(A), there is a
polynomial-time reduction of VCSP(Imp(B)) to VCSP(Imp(A)).

Proof. By the isomorphism theorem we can consider B to be a quotient algebra
A/∼ rather than a homomorphic image of A. Let A/∼ be the universe of B and
let Γ be a finite subset of Imp(B). Take % ∈ Γ to be a r-ary cost function. We
define a corresponding cost function %′ of arity r on the set A by %′(x1, . . . , xr) =
%([x1]∼, . . . [xr]∼).

Let ω be a k-ary weighting of the weighted algebra A. The corresponding
k-ary weighting ωB of B is a weighted polymorphism of %. It is not hard to
show that ω is a weighted polymorphism of %′. Hence, each weighting of A is a
weighted polymorphism of %′, which means that %′ ∈ Imp(A).

For each % ∈ Γ we have defined a corresponding %′ ∈ Imp(A). Let Γ ′ ⊆
Imp(A) be the (finite) set of all those cost functions.

Now take an arbitrary instance I = (V,A/∼, C) of VCSP(Γ ). Replace the
domain A/∼ by A. In each constraint (σ, %) ∈ C replace the cost function % by
a corresponding cost function %′ from Γ ′. The new instance I ′ = (V,A, C′) is an
instance of VCSP(Γ ′).

If s′ : V → A is an optimal assignment for I ′, then s : V → A/∼ defined by
s(v) = [s′(v)]∼ is an optimal assignment for I. On the other hand, if s : V → A/∼
is an optimal assignment for I, then any assignment s′ : V → A, such that for
each v ∈ V , we have s′(v) ∈ s(v), is optimal for I ′.

The above lemmas together with Proposition 10, imply the following:

Proposition 29. For any finite weighted algebra A, and any finite B ∈ V(A),
there is a polynomial-time reduction of VCSP(Imp(B)) to VCSP(Imp(A)).

For a valued constraint language Γ the weighted algebra (D,wPol(Γ )) is the
algebra (D,Pol(Γ )) together with the set of weightings wPol(Γ ). By Proposi-
tion 29 the complexity of Γ depends only on the weighted variety generated by
the weighted algebra (D,wPol(Γ )).



5 Dichotomy conjecture

An operation t of arity k is called a Taylor operation of an algebra (or a variety),
if t is idempotent and for every j ≤ k it satisfies an identity of the form

t(�1,�2, . . . ,�k) ≈ t(41,42, . . . ,4k),

where all �is and 4is are substituted with either x or y, but �j is x whenever
4j is y. In this section we work towards a proof of the following theorem:

Theorem 30. Let Γ be a finite core valued constraint language. If Pol+(Γ ) does
not have a Taylor operation, then Γ is NP-hard.

We conjecture3 that these are the only cases of finite core languages which
give rise to NP-hard VCSPs.

Conjecture. Let Γ be a finite core valued constraint language. If Pol+(Γ ) does
not have a Taylor operation, then Γ is NP-hard. Otherwise it is tractable.

For crisp languages Pol+(Γ ) = Pol(Γ ). Therefore Theorem 30 generalizes the
well-known result of Bulatov, Jeavons and Krokhin [3, 7] concerning crisp core
languages. Similarly the above conjecture is a generalization of The Algebraic
Dichotomy Conjecture for CSP. Later on we show that it is supported by all
known partial results on the complexity of VCSPs.

To prove Theorem 30 we use the following characterization of algebras pos-
sessing a Taylor operation:

Theorem 31 (Taylor [24]). Let A be a finite idempotent algebra, then the
following are equivalent:

– A has a Taylor operation,
– V(A) (equivalently HS(A)) does not contain a two-element algebra whose

every term operation is a projection.

First let us prove an auxiliary lemma.

Lemma 32. Let Γ be a finite core valued constraint language over a domain D,
and let R be an r-ary relation which is compatible with every polymorphism from
Pol+(Γ ). Then there exists a cost function %R in wRelClo(Γ ), and a rational
number P , such that for every r-tuple x the following conditions are satisfied:

– %R(x) ≥ P and
– %R(x) = P if and only if x ∈ R.

Proof. Let R = {x1, . . . ,xm} be a relation as in the statement of the lemma. By

Proposition 18 there exists a cost function %′ : O(m)
D → Q in wRelClo(Γ ), and a

rational number P , such that for every f ∈ O(m)
D :

3 The conjecture was suggested in a conversation by Libor Barto, however it might
have appeared independently earlier.



– %′(f) ≥ P ,
– %′(f) <∞ if and only if f ∈ Pol(Γ ),
– %′(f) = P if and only if f ∈ Pol+(Γ ).

Consider the coordinates b1, . . . ,br, such that bi(j) = xj(i). Minimising the cost
function %′ over all the other coordinates we obtain a cost function % satisfying
the given conditions.

Proof. (of Theorem 30) Let Γ be a finite core valued constraint language over a
domain D, and let Γc be a rigid core of Γ as defined in Subsection 3.3. Suppose
that Pol+(Γ ) does not have a Taylor operation. By Proposition 22 we have that
IdPol+(Γ ) = Pol+(Γc). Therefore, Pol+(Γc) does not have a Taylor operation.
Below we prove that VCSP(Γc) is NP-hard. This implies, by Proposition 20,
that VCSP(Γ ) is NP-hard which concludes the proof.

Let A denote the idempotent algebra Pol+(Γc) over the universe D. By
Taylor’s theorem HS(A) contains a two-element algebra B whose every term
operation is a projection. By the isomorphism theorem we can consider B to
be a quotient algebra rather than a homomorphic image of a subalgebra of A.
In other words, there exists a binary relation S compatible with A, which is an
equivalence relation on some subuniverse D′ of D and has two equivalence classes
[d0]S and [d1]S . Moreover, the term operations defined on the set of equivalence
classes of S using their arbitrarily chosen representatives are all projections.

Every relation is compatible with a two-element algebra whose every term
operation is a projection. Consider the relation R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
It corresponds to the One-in-Three Sat problem, which is NP-complete [21].
We define a ternary relation S1in3 on D′ by:

S1in3 = {(x1, x2, x3) : exactly one of x1, x2, x3 belongs to [d1]S}.

This relation is compatible with A. Hence there exists a cost function %S1in3
in

wRelClo(Γc) satisfying the conditions given by Lemma 32.
Now, for every instance of One-in-Three Sat it is easy to construct (in

polynomial time) an instance of VCSP(Γc) such that if the instance of One-in-
Three Sat has a solution then this solution gives rise to the minimal evaluation
of the constructed instance. This finishes the reduction.

As the Taylor operation is difficult to work with, in the following we use a
characterization of Taylor algebras as the algebras possessing a cyclic term.

Theorem 33 (Barto and Kozik [1]). A finite idempotent algebra A has a
Taylor operation if and only if it has a cyclic operation if and only if it has a
cyclic operation of arity p, for every prime p > |A|.

Since (D, IdPol+(Γ )) is a finite idempotent algebra it follows that:

Corollary 34. For any finite core valued constraint language Γ , Pol+(Γ ) has a
Taylor operation if and only if it has an idempotent cyclic operation.



5.1 Two-element domain

A complete complexity classification for valued constraint languages over a two-
element domain was established in [10]. All tractable languages have been de-
fined via multimorphisms, which are a more restricted form of weighted poly-
morphisms. A k-ary multimorphism of a language Γ , specified as a k-tuple
〈f1, . . . , fk〉 of k-ary operations on D, is a k-ary weighted polymorphism ω of Γ

such that ω = 1
k

(∑
i fi −

∑
i π

(k)
i

)
.

An operation f ∈ O(3)
D is called a majority operation if for every x, y ∈ D

we have that f(x, x, y) = f(x, y, x) = f(y, x, x) = x. Similarly, an operation f ∈
O(3)
D is called a minority operation if for every x, y ∈ D it satisfies f(x, x, y) =

f(x, y, x) = f(y, x, x) = y. Observe that on a two-element domain there is
precisely one majority operation, which we denote by Mjrty, and precisely one
minority operation, which we denote by Mnrty.

Theorem 35 (Cohen et al. [10]). Let Γ be a core valued constraint language
on D = {0, 1}. If Γ admits at least one of the following six multimorphisms,
then Γ is tractable. Otherwise it is NP-hard.

1. 〈min,min〉,
2. 〈max,max〉,
3. 〈min,max〉,
4. 〈Mjrty,Mjrty,Mjrty〉,
5. 〈Mnrty,Mnrty,Mnrty〉,
6. 〈Mjrty,Mjrty,Mnrty〉.

In [10] the complexity classification is given for languages that are not neces-
sarily cores. It is not difficult to prove, though, that the general case is equivalent
to the above theorem. This is because every language over a two-element domain
which is not a core is tractable.

We show that the dichotomy conjecture for VCSP agrees with the complexity
classification for valued constraint languages over a two-element domain.

Proposition 36. Let Γ be a finite core valued constraint language on D =
{0, 1}. Then Pol+(Γ ) has an idempotent cyclic operation if and only if Γ admits
at least one of the following six multimorphisms.

1. 〈min,min〉,
2. 〈max,max〉,
3. 〈min,max〉,
4. 〈Mjrty,Mjrty,Mjrty〉,
5. 〈Mnrty,Mnrty,Mnrty〉,
6. 〈Mjrty,Mjrty,Mnrty〉.

On D = {0, 1} there are precisely two constant operations, which we denote
by Const0 and Const1. By Inv we denote the inversion operation defined by
Inv(0) = 1 and Inv(1) = 0. To prove Proposition 36 we use the following theorem:



Theorem 37 (Cohen et al. [9]). Let W be a weighted clone on D = {0, 1}
that contains a weighting which assigns positive weight to at least one operation
that is not a projection. Then W contains one of the following nine weightings:

1. 〈Const0〉,
2. 〈Const1〉,
3. 〈Inv〉,
4. 〈min,min〉,
5. 〈max,max〉,
6. 〈min,max〉,
7. 〈Mjrty,Mjrty,Mjrty〉,
8. 〈Mnrty,Mnrty,Mnrty〉,
9. 〈Mjrty,Mjrty,Mnrty〉.

Proof. (of Proposition 36) Each of the operations min, max, Mjrty and Mnrty is
idempotent and cyclic. If Γ admits at least one of the six multimorphisms listed
in the statement of the proposition then obviously Pol+(Γ ) has an idempotent
cyclic operation.

For the other direction, let Γ be a finite core valued constraint language
on D = {0, 1} such that Pol+(Γ ) has an idempotent cyclic operation. Let Γc
be a rigid core of Γ as defined in Subsection 3.3. By Proposition 22 we have
that IdPol+(Γ ) = Pol+(Γc). Therefore, the weighted clone wPol(Γc) contains a
weighting which assigns positive weight to at least one operation that is not a
projection. Then wPol(Γc) contains one of the nine weightings listed in Theo-
rem 37. Since the first three of them are not idempotent, it follows that Γc, and
hence Γ , admits one of the six remaining multimorphisms, which finishes the
proof.

5.2 Finite-valued languages

Theorem 38 (Thapper and Živný [25]). Let Γ be a finite-valued constraint
language which is a core. If Γ admits an idempotent cyclic weighted polymor-
phism of some arity m > 1, then Γ is tractable. Otherwise it is NP-hard.

To show that our conjecture agrees with the above complexity classification
we prove the following result (which holds for general-valued languages):

Proposition 39. Let Γ be a core valued constraint language. Then Γ admits
an idempotent cyclic weighted polymorphism of some arity m > 1 if and only if
Pol+(Γ ) contains an idempotent cyclic operation of the same arity.

One implication is strightforward: if Γ admits an idempotent cyclic weighted
polymorphism of some arity m > 1 then Pol+(Γ ) contains an idempotent cyclic
operation. To show the other implication we use a technique of constructing
weighted polymorphism introduced in [18].

The construction of a new weighted polymorphism of arity m is based on

grouping operations in O(m)
D into so-called collections and working with weight-

ings that assign the same weight to every operation in a collection.



Let G be a fixed set of collections, i.e., subsets of O(m)
D , and let G∗ ⊆ G be

a set of collections satisfying some desired property. An expansion operator Exp
takes a collection g ∈ G and produces a probability distribution δ over G. We
say that Exp is valid for a language Γ if, for any % ∈ Γ and any g ∈ G, the
probability distribution δ = Exp(g) satisfies

∑
h∈G

∑
h∈h

δ(h)

|h|
%(h(x1, . . . ,xm)) ≤

∑
g∈g

1

|g|
%(g(x1, . . . ,xm)),

for any x1, . . . ,xm ∈ Feas(%). We say that the operator Exp is non-vanishing
(with respect to the pair (G,G∗)) if, for any g ∈ G, there exists a sequence of
collections g0,g1, . . . ,gr with g0 = g, such that for each i ∈ {0, . . . , r − 1} the
collection gi+1 is assigned a non-zero probability by Exp(gi), and gr ∈ G∗.

Lemma 40 (Expansion Lemma [18]). Let Exp be an expansion operator
which is valid for the language Γ and non-vanishing with respect to (G,G∗). If
Γ admits a weighted polymorphism ω with supp(ω) ⊆

⋃
G, then it also admits

a weighted polymorphism ω∗ with supp(ω∗) ⊆
⋃
G∗.

Proof. (of Proposition 39) In order to show the remaining implication assume
that Pol+(Γ ) contains an idempotent cyclic operation f of arity m > 1. There
exists a weighted polymorphism ω of Γ such that f ∈ supp(ω).

We define ∼ to be the smalles equivalence relation on O(m)
D such that g ∼ g′

if g(x1, x2, . . . , xk) = g′(x2, . . . , xk, x1). Observe that if g ∼ g′ and g ∈ Pol(Γ )
then also g′ ∈ Pol(Γ ). Let G consist of the equivalence classes of the relation ∼
restricted to Pol(Γ ), and let G∗ ⊆ G be the set of all one-element equivalence
classes, i.e., each g ∈ G∗ contains a single cyclic operation.

We now define the expansion operator Exp. Take an arbitrary g ∈ G\G∗ (for
g ∈ G∗ we produce the probability distribution choosing g with probability 1)
and choose a single operation g ∈ g. Notice that g = {g1, g2, . . . , gm}, where
g1 = g and gi(x1, . . . , xn) = g(xi, xi+1, . . . , xi−1) for i ∈ {2, . . . ,m}. Consider a
weighting

ν = c · (ω[g1, g2, . . . , gm] + ω[g2, . . . , gm, g1] + · · ·+ ω[gm, g1, . . . , gm−1]),

where c is a suitable positive rational, which we define later on4.
The weighting ν assigns a positive weight to a cyclic operation f [g1, g2, . . . , gm].

This proves that ν is not zero-valued, and hence in the above definition c can be
chosen so that the sum of positive weights in ν equals 1. We say that a weighting
ω is weight-symmetric if ω(g) = ω(g′) whenever g ∼ g′. It is easy to check that
ν is weight-symmertic. We define Exp(g) to be a probability distribution δ on
G such that

δ(h) =

{
|h| · ν(h) if h ⊆ supp(ν),

0 otherwise,

4 Note that the definition of ν does not depend on the choice of g from g.



where h is any of the operations in h. We have already pointed out that ν assigns
a positive weight to a cyclic operation f [g1, g2, . . . , gm]. It follows that Exp(g) as-
signs non-zero probability to the one-element equivalence class {f [g1, g2, . . . , gm]}.
Therefore, Exp is non-vanishing.

It remains to show that Exp is valid for Γ . Observe that ν assigns negative
weights only to the operations in g. Since it is weight-symmetric, ν(g) = − 1

|g|
for every g ∈ g. The weighting ν might not be valid but it is not difficult to see
that it satisfies the condition characterizing weighted polymorphisms, i.e., for
any cost function % ∈ Γ , and any list of tuples x1, . . . ,xm ∈ Feas(%), we have∑

f∈Polm(Γ )

ν(f) · %(f(x1, . . . ,xm)) ≤ 0, hence

∑
h∈supp(ν)

ν(h) · %(h(x1, . . . ,xm)) ≤
∑
g∈g

1

|g|
· %(g(x1, . . . ,xm)), but

∑
h∈supp(ν)

ν(h) · %(h(x1, . . . ,xm)) =
∑
h∈G

∑
h∈h

δ(h)

|h|
· %(h(x1, . . . ,xm)).

This proves that Exp is valid, so by Lemma 40 the language Γ admits a weighted
polymorphism ω∗ whose support contains only cyclic m-ary operations. More-
over, it follows from the proof of the Expansion Lemma in [18] that ω∗ can be
constructed so that f ∈ supp(ω∗). By Lemma 21 there exists an idempotent
weighted polymorphism ω′ of Γ such that supp(ω∗) ∩ IdPol(Γ ) ⊆ supp(ω′). Its
support is non-emply and contains cyclic operations only. This concludes the
proof.

5.3 Conservative languages

A valued constraint language Γ over a domain D is called conservative if it con-

tains all {0, 1}-valued unary cost functions on D. An operation f ∈ O(k)
D is con-

servative if for every x1, . . . , xk ∈ D we have that f(x1, . . . , xk) ∈ {x1, . . . , xk},
and a weighted polymorphism is conservative if its support contains conservative
operations only.

A Symmetric Tournament Pair (STP) is a conservative binary multimor-
phism 〈u,t〉, where both operations are commutative, i.e., u(x, y) = u(y, x)
and u(x, y) = u(y, x) for all x, y ∈ D, and moreover u(x, y) 6= t(x, y) for all
x 6= y. A MJN is a ternary conservative multimorphism 〈Mj1,Mj2,Mn3〉, such
that Mj1,Mj2 are majority operations, and Mn3 is a minority operation.

Theorem 41 (Kolmogorov and Živný [19]). Let Γ be a conservative con-
straint language over a domain D. If Γ admits a conservative binary multimor-
phism 〈u,t〉 and a conservative ternary multimorphism 〈Mj1,Mj2,Mn3〉, and
there is a family M of two-element subsets of D, such that:

– for every {x, y} ∈M , 〈u,t〉 restricted to {x, y} is an STP,
– for every {x, y} 6∈M , 〈Mj1,Mj2,Mn3〉 restricted to {x, y} is an MJN,



then Γ is tractable. Otherwise it is NP-hard.

Observe that every weighted polymorphism of a conservative language Γ is
conservative. Indeed, consider a k-ary weighted polymorphism ω ∈ wPol(Γ ) and
take any x1, . . . , xk ∈ D. Let % ∈ Γ be a unary cost function such that %(xi) = 0
for i ∈ {1, . . . , k} and %(x) = 1 otherwise. Then∑

g∈supp(ω)

ω(g) · %(g(x1, . . . , xk)) =
∑

g∈Pol1(Γ )

ω(g) · %(g(x1, . . . , xk)) ≤ 0,

hence for each g ∈ supp(ω) we have that %(g(x1, . . . , xk)) = 0, so g(x1, . . . , xk) ∈
{x1, . . . , xk}. This implies that the positive clone of a conservative language is
idempotent, and hence every conservative language is a core.

We show that our conjecture agrees with the above complexity classification:

Proposition 42. Let Γ be a conservative constraint language over a domain
D. Then Pol+(Γ ) has an idempotent cyclic operation if and only if Γ admits a
conservative binary multimorphism 〈u,t〉 and a conservative ternary multimor-
phism 〈Mj1,Mj2,Mn3〉, and there is a family M of two-element subsets of D,
such that:

– for every {x, y} ∈M , 〈u,t〉 restricted to {x, y} is an STP,
– for every {x, y} 6∈M , 〈Mj1,Mj2,Mn3〉 restricted to {x, y} is an MJN.

Proof. Let Γ ′ be the language Γ together with all {0,∞}-valued unary cost
functions on D. For every weighted polymorphism ω ∈ wPol(Γ ) there is a corre-
sponding weighted polymorphism of Γ ′, which is equal to ω on the conservative
operations. Therefore Pol+(Γ ′) = Pol+(Γ ), and Γ admits a conservative mul-
timorphism 〈f1, . . . , fk〉 if and only if Γ ′ does. Now let % : D → Q be any
general-valued unary cost function. Observe that % ∈ wRelClo(Γ ′). It follows
that without loss of generality we can assume that Γ contains all general-valued
unary cost functions. We do so in the rest of the proof. Observe that every
polymorphism of such language is conservative.

Assume that Γ admits the two conservative multimorphisms 〈u,t〉 and
〈Mj1,Mj2,Mn3〉 described in the statement of the proposition. There are only
four idempotent operations on a two-element domain {x, y}, namely: max, min,
π1 and π2 (we assume that {x, y} = {0, 1}). Each of the operations u, t restricted
to any two-element subset {x, y} of D must be equal to one of those four. There-
fore it is not difficult to prove, using {0, 1}-valued unary cost functions, that for
every two-element subset {x, y} of D:

– either 〈u,t〉 restricted to {x, y} is an STP,
– or u restricted to {x, y} is equal to π1 and t restricted to {x, y} is equal to
π2 (possibly the other way round).

Let M ′ be the set of those two-element subsets {x, y} of D, for which 〈u,t〉
restricted to {x, y} is an STP. Obviously M ⊆M ′.

Let t(x, y, z) = ((x u y) t (x u z)) t (z u y). For every {x, y} ∈ M ′ we have
that t restricted to {x, y} is the majority operation. For every other two-element



subset {x, y} of D the operation t restricted to {x, y} is equal to π2 or π3. Now
let us define m to be

m(x, y, z) = Mj1(t(x, y, z), t(y, z, x), t(z, x, y)).

Since the operation Mj1 is idempotent, for every {x, y} ∈ M ′ the operation m
restricted to {x, y} is the majority operation. Moreover, if {x, y} does not belong
to M ′ then m restricted to {x, y} is equal to Mj1 (with permuted arguments).
But Mj1 restricted to {x, y} is the majority operation. Therefore, m is a majority
operation on the whole domain D. If there is a majority operation in the idem-
potent clone Pol+(Γ ) then there is also an idempotent cyclic operation. This
finishes the proof of the right-to-left implication.

The proof of the other implication consists of a sequence of claims and heavily
relies on the results of [19].

Assume that Pol+(Γ ) has an idempotent cyclic operation. Let M be a set of
all two-element subsets {x, y} of D for which there exists no binary cost function
% ∈ wRelClo(Γ ) such that

(x, y), (y, x) ∈ Feas(%), and %(x, x) + %(y, y) > %(x, y) + %(y, x).

We prove that Γ admits a conservative binary multimorphism 〈u,t〉 and a
conservative ternary multimorphism 〈Mj1,Mj2,Mn3〉 such that:

– for every {x, y} ∈M , 〈u,t〉 restricted to {x, y} is an STP,
– for every {x, y} 6∈M , 〈Mj1,Mj2,Mn3〉 restricted to {x, y} is an MJN.

Consider the weighted algebra (D,wPol(Γ )). Observe that every two-element
subset {x, y} ⊆ D is a subuniverse ofD and let B be the subalgebra with universe
B = {x, y}.

Claim 1. Every two-element weighted subalgebra B of (D,wPol(Γ )) contains
the weighting 〈min,max〉 or 〈Mjrty,Mjrty,Mnrty〉 (we assume that B = {0, 1}).

Proof. The weighted algebra (D,wPol(Γ )) contains a weighting which assigns a
positive weight to an idempotent cyclic operation. Therefore its weighted sub-
algebra B contains a weighting which assigns a positive weight to at least one
operation that is not a projection, and hence it contains one of the nine weight-
ings listed in Theorem 37. The first three of them are not idempotent. More-
over, for each of the weightings: 〈min,min〉, 〈max,max〉, 〈Mjrty,Mjrty,Mjrty〉,
〈Mnrty,Mnrty,Mnrty〉 it is easy to find a {0, 1}-valued unary cost function that
is not improved by it. We conclude that B contains the weighting 〈min,max〉 or
〈Mjrty,Mjrty,Mnrty〉, which finishes the proof of Claim 1.

Claim 2. Let {x, y} be a two-element subset of D. There exists no binary cost
function % ∈ wRelClo(Γ ) such that

(x, y), (y, x) ∈ Feas(%), and %(x, x) + %(y, y) > %(x, y) + %(y, x),

and at least one of the pairs (x, x), (y, y) belong to Feas(%).



Proof. Consider the weighted subalgebra B of (D,wPol(Γ ) with the universe
B = {x, y}. Assume that {x, y} = {0, 1}. By Claim 1 the weighted subalgebra
B contains the weighting 〈min,max〉 or 〈Mjrty,Mjrty,Mnrty〉.

Suppose that B contains the weighting 〈Mjrty,Mjrty,Mnrty〉 and let ω be
the weighted polymorphims of Γ that induces 〈Mjrty,Mjrty,Mnrty〉. Let % be a
binary cost function like in the statement of the claim. Without loss of generality
assume that (x, x) ∈ Feas(%). Then∑
g∈Pol3(Γ )

ω(g) · %(g((x, y), (y, x), (x, x))) =
1

3

(
2%(Mjrty((x, y), (y, x), (x, x)))+

+ %(Mnrty((x, y), (y, x), (x, x)))− %(x, y)− %(y, x)− %(x, x)
)

=

=
1

3

(
2%(x, x) + %(y, y)− %(x, y)− %(y, x)− %(x, x)

)
=

=
1

3

(
%(x, x) + %(y, y)− %(x, y)− %(y, x)

)
> 0.

It follows that % is not improved by ω, so % 6∈ wRelClo(Γ ). Similarly we show
that if B contains the weighting 〈min,max〉 and ω is the weighted polymorphims
of Γ that induces 〈min,max〉, then % is not improved by ω.

Claim 2 together with Theorem 9 of [19] implies that Γ admits a conservative
binary multimorphism 〈u,t〉 such that:

– for every {x, y} ∈M , 〈u,t〉 restricted to {x, y} is an STP,
– if {x, y} 6∈ M then u restricted to {x, y} is equal to π1 and t restricted to
{x, y} is equal to π2.

Claim 3. There exists an operationm in Pol+(Γ ) which is a majority operation.

Proof. First we prove that there exists an operation Mj in Pol+(Γ ) such that for
every {x, y} 6∈M the operation Mj restricted to {x, y} is the majority operation.
To this end, take any {x, y} 6∈ M . By the definition of M there exists a binary
cost function % ∈ wRelClo(Γ ) such that

(x, y), (y, x) ∈ Feas(%), and %(x, x) + %(y, y) > %(x, y) + %(y, x).

Moreover, by Claim 2 none of the pairs (x, x), (y, y) belongs to Feas(%). There-
fore:

1. there is no operation in Pol+(Γ ) that restricted to {x, y} is the max or min
operation (such an operation would not even be a polymorphism of %), and

2. it follows from Claim 1 that there exists an operation f in Pol+(Γ ) such
that f restricted to {x, y} is the majority operation.

By Proposition 3.1 of [6] if follows from the conditions 1 and 2 above that there
exists an operation Mj in Pol+(Γ ) such that for every {x, y} 6∈M the operation
Mj restricted to {x, y} is the majority operation.



Let t(x, y, z) = ((x u y) t (x u z)) t (z u y). For every {x, y} ∈ M we have
that t restricted to {x, y} is the majority operation. For every other two-element
subset {x, y} of D the operation t restricted to {x, y} is equal to π3. Now let us
define m to be

m(x, y, z) = Mj(t(x, y, z), t(y, z, x), t(z, x, y)).

Since Mj is idempotent, for every {x, y} ∈M the operation m restricted to {x, y}
is the majority operation. Moreover, if {x, y} does not belong to M then m
restricted to {x, y} is equal to Mj (with permuted arguments). But Mj restricted
to {x, y} is the majority operation. Therefore, m is a majority operation on the
whole domain D.

By [19] if follows from Claims 2 and 3 that Γ admits a conservative ternary
multimorphism 〈Mj1,Mj2,Mn3〉 such that for every {x, y} 6∈M , 〈Mj1,Mj2,Mn3〉
restricted to {x, y} is an MJN, which finishes the proof of Proposition 42.

5.4 Infinite Constraint Languages.

We finish this section by showing that a variation of Theorem 30 holds for infinite
constraint languages. For that, we need to introduce fractional polymorphisms
which correspond to weighted polymorphisms that can take real values.

An m-ary fractional operation ω on D is a probability distribution on O(m)
D .

As for weightings, the set of operations to which a fractional operation ω assigns
a positive probability is called the support of ω and denoted supp(ω).

Definition 43. An m-ary fractional operation ω on D is a fractional polymor-
phism of a cost function % if, for any list of r-tuples x1, . . . ,xm ∈ Feas(%), we
have ∑

g∈supp(ω)

ω(g)%(g(x1, . . . ,xm)) ≤ 1

m
(%(x1) + · · ·+ %(xm)).

For a constraint language Γ we denote by fPol(Γ ) the set of those fractional
operations that are fractional polymorphisms of all cost functions % ∈ Γ . Let
fPol+(Γ ) = {g ∈ OD | g ∈ supp(ω), ω ∈ fPol(Γ )}. It is easy to see that fPol+(Γ )
is a clone (the proof is similar to that of Proposition 12).

Proposition 44. Let Γ be a finite constraint language. Then fPol+(Γ ) = Pol+(Γ ).

Proof. Obviously Pol+(Γ ) ⊆ fPol+(Γ ). Let f ∈ fPol+(Γ ). This can be equiva-
lently expressed by saying that some LP with rational coefficients has a solution.
It is well known that every LP with rational coefficients has an optimal solution
with rational coefficients (see e.g. [22]). It follows that f ∈ Pol+(Γ ).

Proposition 45. There exists an infinite valued constraint language Γ such that
Pol+(Γ )  fPol+(Γ ).



An example of such language is given in [25].
To deal with infinite languages we slightly modify the notion of a core. We

say that a valued constraint language Γ is a core if all operations in fPol+1 (Γ ) are
bijective. It follows from Proposition 44 that for finite languages this definition
coincides with the old one. Moreover, the following proposition states that all
positively weighted unary polymorphisms can be captured in a finite part of Γ .

Proposition 46. If a valued constraint language Γ is a core then there exists a
finite language Γ ′ ⊆ Γ such that fPol+1 (Γ ) = fPol+1 (Γ ′).

We will use the following lemma (Lemma 7 from [25]), which is an immediate
consequence of the fact that the space of m-ary fractional operations on a fixed
domain D is compact.

Lemma 47. Let Γ be a valued constraint language and let O ⊆ O(m)
D . If for

every finite Γ ′ ⊆ Γ there exists a fractional polymorphism with support in O,
then Γ has a fractional polymorphism with support in O.

Proof. (of Proposition 46) Let Γ be a core valued constraint language and let B
be the set of such bijective operations f on D that, for all cost functions % ∈ Γ ,
satisfy % ◦ f = %. A proof analogous to the one of Proposition 16 shows that
a unary fractional operation ω is a fractional polymorphism of Γ if and only if
supp(ω) ⊆ B.

Take a language Γ ′ such that fPol+1 (Γ ′) 6= fPol+1 (Γ ). This means that there
exists a fractional polymorphism ω of Γ ′ such that there is some operation g from
outside B in supp(ω). Then there exists a fractional polymorphism ω′ of Γ ′ such

that supp(ω′) ⊆ O(1)
D \ B. We construct it from the fractional polymorphism

ω by assigning probability 0 to all operations in B and scaling to get a proper
probability distribution. It is not difficult to check that the obtained fractional
operation ω′ is a fractional polymorphism of Γ ′.

Now suppose that none of the finite Γ ′ ⊆ Γ satisfies fPol+1 (Γ ) = fPol+1 (Γ ′).

Then every finite Γ ′ ⊆ Γ has a fractional polymorphism with support in O(1)
D \B.

It follows from Lemma 47 that Γ has a fractional polymorphism with support

in O(1)
D \B, which is a contradiction.

A proof analogous to the one of Proposition 14 shows that every constraint
language Γ has a computationally equivalent language Γ ′ which is a core (in the
new sense).

Proposition 48. For every valued constraint language Γ there exists a core
language Γ ′, such that the valued constraint language Γ is tractable if and only
if Γ ′ is tractable, and it is NP-hard if and only if Γ ′ is NP-hard.

Moreover, using Proposition 46, we can show that constants can be added to
a core language (the proposition implies that, for a core language Γ , the relation
characterizing fPol+1 (Γ ) belongs to wRelClo(Γ )). The proof follows along the
same lines as that of Proposition 20.



Proposition 49. Let Γ be a valued constraint language which is a core. The
valued constraint language Γc is a rigid core. Moreover, Γ is tractable if and
only if Γc is tractable, and Γ is NP-hard if and only if Γc is NP-hard.

Theorem 50. Let Γ be a core valued constraint language. If, for every finite
Γ ′ ⊆ Γ , the set fPol+(Γ ′) has a Taylor operation, then so does fPol+(Γ ).

Proof. Consider a finite Γ ′ ⊆ Γ . Since Γ is a core, by Proposition 46 there
exists a finite Γ̂ ⊆ Γ which is a core. By Γ ′ we denote the language Γ ′ ∪ Γ̂ .
It is a finite subset of Γ , and hence it has a Taylor operation. Fix some prime
number p > |D|. It follows from Theorem 30 and Theorem 33 that Pol+(Γ ′) has
an idempotent cyclic operation of arity p, and therefore by Proposition 39 Γ ′

admits an idempotent cyclic weighted polymorphism ω′ of arity p.
Let O denote the set of p-ary idempotent cyclic operations on D. From the

weighted polymorphism ω′ it is easy to construct a fractional polymorphism
ω′ such that supp(ω′) ⊆ O. Since Γ ′ ⊆ Γ ′, we have that ω′ is a fractional
polymorphism of Γ ′ with support in O. This holds for every finite Γ ′ ⊆ Γ . Hence,
by Lemma 47 there exists a fractional polymorphism ω of Γ with support in O.

It immediately follows that if Γ does not have a Taylor operation in fPol+(Γ )
then it is NP-hard.

Corollary 51. Let Γ be a core valued constraint language. If fPol+(Γ ) does not
have a Taylor operation, then Γ is NP-hard.
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