
Memory e�cient� self�stabilizing algorithm to construct BFS spanning trees �

Colette Johnen

L�R�I��C�N�R�S� URA ���� Universit�e Paris XI� Bat� �	�� F
	���� Orsay Cedex� France�
colette�lri�fr� http
��www�lri�fr��colette�

The spanning tree construction is a fundamental task
in communication networks� Improving the e�ciency of
the underlying spanning tree algorithm usually also corre�
sponds to the improvement of the e�ciency of the entire
system� One of the important performance issues of self�
stabilizing algorithms is the memory requirement per pro�
cessor� The self�stabilizing spanning�tree algorithms to�date
need a distance variable� which keeps track of the current
level of the processor in the BFS tree� Thus� these BFS
spanning tree construction algorithms have the space com�
plexity of at least O�logN� bits per processor� where N is
the number of processors� Some authors have proposed spe�
ci�c data structures to store the distance variable in a dis�
tributed manner� thus reducing the memory requirement�

We present a self�stabilizing BFS spanning tree construc�
tion algorithm which requires only O�	� bits of memory per
link� The algorithm uses neither the distance variable nor
any special data structure to achieve the memory require�
ment� One of the desirable features of the protocols written
in large distributed systems is that the cost does not de�
pend on the global properties� such as network size� which
can change over time� Our algorithm has this feature
 when
the network size changes� the algorithm does not need to be
modi�ed� The code at a processor needs to be modi�ed only
when the degree of the processor changes �a locally check�
able property��
It is known that no deterministic algorithm can construct
a spanning tree in an anonymous �uniform� network� The
best that can be proposed is a semi�uniform deterministic
algorithm as ours� in which all processors except one execute
the same code� We call the distinguished processor the legal
root �also denoted r� which eventually becomes the root of
the BFS trees�

Each processor i maintains the following variables
 �i� TS
and P 
 Pointers to one of its neighbors �called i�s parent�
or to NULL� �ii� C
 Color of i � f
� 	g� �iii� S
 Status of
i � fIdle� Working� Power� Erroneousg� �iv� ph
 Phase of
i � fa� bg�

Our algorithm is a non�terminating algorithm� The legal
root alternately builds 
�colored and 	�colored BFS span�

�A large version is in the Proc� of the Third Workshop on Self�
Stabilizing Systems� Santa�Barbara� CA� Aug� �����

ning trees �the obtained trees may di�er from a construction
to another one�� We use r color to denote the color of the
current tree� The color is used to distinguish the processors
that are from those that are not part of the current tree

only the processors in the tree have r color�

A di�culty is to build BFS trees without using the distance
variable
 to ensure that the path of each processor to r in
the obtained tree is minimal� Our solution is to build the
trees in phases
 during a kth phase� all processors at a dis�
tance of k from r join the tree by choosing a neighbor having
the Power status as a parent� �they update their P and TS
variables�� Only the leaves �processors at a distance of k�	
from r� take the Power status� other processors in the tree
take theWorking status� The processors change to Idle sta�
tus when the current phase is over in their neighborhood

their neighbors have r color� The legal root detects the end
of the current phase and initializes a new one by chang�
ing its phase value� When the construction of the sub�tree
rooted to a processor is over the processor sets its P vari�
able to NULL� At the end of the tree construction� the tree
structure is stored in the TS variables� Our algorithm im�
plements a centralized algorithm �requiring the knowledge of
all processor states by r to decide the beginning of a new tree
construction or of a phase� in a distributed fashion where
processors have only a partial view of the system state�

We have designed two error�handling strategies
 one for de�
stroying illegal trees and the other for breaking the cycles�
Illegal roots detect their abnormal situation and take the
Erroneous status� The Erroneous status is propagated to
their leaves� The Erroneous leaves are detached from their
branch� The repetition of detaching and recovering pro�
cesses will correct all processors inside the illegal trees�

Our strategy for breaking cycles is di�erent from the previ�
ous solutions� algorithm will create an abnormal situation
in the neighborhood of cycles� The abnormal situation is
detected by a processor inside the cycle and this processor
initiates the cycle destruction process� A processor having
a parent assumes that it is in the legal tree and has r color�
Based on this assumption� it detects a con�ict when a neigh�
bor with Power status does not have its color �both cannot
be inside the legal tree�� Once a processor detects a con�
�ict� it eventually chooses the processor with Power status
as the parent and the cycle is broken� During a 
�colored �	�
colored� tree construction� the tree expands until it reaches
the �rst 	�colored �
�colored� cycle� if it exists� This cy�
cle will transform itself into a branch of the legal tree� As
the processors inside a cycle cannot change their color� the
cycles are eventually destroyed�


