Memory efficient, self-stabilizing algorithm to construct BFS spanning trees *

Colette Johnen

L.R.I./C.N.R.S. URA 410, Université Paris XI, Bat. 490, F-91405 Orsay Cedex, France.
colette@lri.fr, http://www.lri.fr/~colette/

The spanning tree construction is a fundamental task
in communication networks. Improving the efficiency of
the underlying spanning tree algorithm usually also corre-
sponds to the improvement of the efficiency of the entire
system. One of the important performance issues of self-
stabilizing algorithms is the memory requirement per pro-
cessor. The self-stabilizing spanning-tree algorithms to-date
need a distance variable, which keeps track of the current
level of the processor in the BFS tree. Thus, these BFS
spanning tree construction algorithms have the space com-
plexity of at least O(log N) bits per processor, where N is
the number of processors. Some authors have proposed spe-
cific data structures to store the distance variable in a dis-
tributed manner, thus reducing the memory requirement.

We present a self-stabilizing BFS spanning tree construc-
tion algorithm which requires only O(1) bits of memory per
link. The algorithm uses neither the distance variable nor
any special data structure to achieve the memory require-
ment. One of the desirable features of the protocols written
in large distributed systems is that the cost does not de-
pend on the global properties, such as network size, which
can change over time. Our algorithm has this feature: when
the network size changes, the algorithm does not need to be
modified. The code at a processor needs to be modified only
when the degree of the processor changes (a locally check-
able property).

It is known that no deterministic algorithm can construct
a spanning tree in an anonymous (uniform) network. The
best that can be proposed is a semi-uniform deterministic
algorithm as ours, in which all processors except one execute
the same code. We call the distinguished processor the legal
root (also denoted r) which eventually becomes the root of
the BFS trees.

Each processor ¢ maintains the following variables: (i) T'S
and P: Pointers to one of its neighbors (called i’s parent)
or to NULL; (ii) C: Color of i € {0, 1}; (iii) S: Status of
i € {Idle, Working, Power, Erroneous}; (iv) ph: Phase of
i € {a, b}.

Our algorithm is a non-terminating algorithm. The legal
root alternately builds 0-colored and 1-colored BFS span-

*A large version is in the Proc. of the Third Workshop on Self-
Stabilizing Systems, Santa-Barbara, CA, Aug. 1997.

ning trees (the obtained trees may differ from a construction
to another one). We use r_color to denote the color of the
current tree. The color is used to distinguish the processors
that are from those that are not part of the current tree:
only the processors in the tree have r_color.

A difficulty is to build BFS trees without using the distance
variable: to ensure that the path of each processor to r in
the obtained tree is minimal. Our solution is to build the
trees in phases: during a kth phase, all processors at a dis-
tance of k from r join the tree by choosing a neighbor having
the Power status as a parent. (they update their P and T'S
variables). Only the leaves (processors at a distance of k-1
from r) take the Power status, other processors in the tree
take the Working status. The processors change to Idle sta-
tus when the current phase is over in their neighborhood:
their neighbors have r_color. The legal root detects the end
of the current phase and initializes a new one by chang-
ing its phase value. When the construction of the sub-tree
rooted to a processor is over the processor sets its P vari-
able to NULL. At the end of the tree construction, the tree
structure is stored in the T'S variables. Our algorithm im-
plements a centralized algorithm (requiring the knowledge of
all processor states by r to decide the beginning of a new tree
construction or of a phase) in a distributed fashion where
processors have only a partial view of the system state.

We have designed two error-handling strategies: one for de-
stroying illegal trees and the other for breaking the cycles.
Illegal roots detect their abnormal situation and take the
Erroneous status. The Erroneous status is propagated to
their leaves. The Erroneous leaves are detached from their
branch. The repetition of detaching and recovering pro-
cesses will correct all processors inside the illegal trees.

Our strategy for breaking cycles is different from the previ-
ous solutions. algorithm will create an abnormal situation
in the neighborhood of cycles. The abnormal situation is
detected by a processor inside the cycle and this processor
initiates the cycle destruction process. A processor having
a parent assumes that it is in the legal tree and has r_color.
Based on this assumption, it detects a conflict when a neigh-
bor with Power status does not have its color (both cannot
be inside the legal tree). Once a processor detects a con-
flict, it eventually chooses the processor with Power status
as the parent and the cycle is broken. During a 0-colored (1-
colored) tree construction, the tree expands until it reaches
the first 1-colored (0-colored) cycle, if it exists. This cy-
cle will transform itself into a branch of the legal tree. As
the processors inside a cycle cannot change their color, the
cycles are eventually destroyed.



