Space-efficient, distributed and self-stabilizing depth-first
token circulation

Colette Johnen, Joffroy Beauquier
L.R.I./C.N.R.S.
Université de Paris-Sud
Bat. 490, Campus d’Orsay
F-91405 Orsay Cedex, France

tel : (+33) 1 69 41 66 29
fax : (+33) 1 69 41 65 86
colette@Iri.fr, jb@Iri.fr

Abstract

The notion of self-stabilization was introduced by Dijkstra. He defined a system as self-
stabilizing when "regardless of its initial state, it is guaranteed to arrive at a legitimate state in
a finite number of steps”. Such a property is very desirable for any distributed system, because
after any unexpected perturbation modifying the memory state, the system eventually recovers
and returns to a legitimate state, without any outside intervention.

In this paper, we are interested in a distributed self-stabilizing depth-first token circulation
protocol on an uniform rooted network (no identifiers, but a distinguished root).

As already noted, a search algorithm together with a deterministic enumeration of the
node’s neighbors yields an algorithm determining a spanning tree.

Our contribution is improving the best up to now known space complexity for this problem,
from O(log(N)) to O(log(D)) where N is number of nodes and D is the network’s degree.
Moreover, we give a full proof of the algorithm correctness assuming the existence of a dis-
tributed demon.

Keywords : fault-tolerant distributed algorithms, self-stabilization, spanning tree, mutual-
exclusion, distributed demon.

1 Introduction

The notion of self-stabilization was introduced by Dijkstra [5]. He defined a system as self-stabilizing
when "regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite
number of steps”. Such a property is very desirable for any distributed system, because after any
unexpected perturbation modifying the memory state, the system eventually recovers and returns
to a legitimate state, without any outside intervention. Self-stabilizing has been since studied by
various researchers and Dijkstra’s original notion, which had a very narrow scope of application, has

proved to encompass a formal and unified approach to fault-tolerance, under a model of transient
failures for distributed systems.

In this paper, we are interested in the construction of a distributed Self-stabilizing for depth-first
token circulation in an uniform rooted network (no identifier, but a distinguished root). As a token
circulation algorithm, our algorithm provides a fair mutual-exclusion protocol (the node having the
token is the one authorized to enter into critical section).

Several authors [5], [6], and [3] have presented token circulation algorithm on ring networks ; Brown,
Gouda, and Wu [2]| have presented one on linear chains; Kruijer [11] have presented one on tree
networks. Huang and Chen have presented an algorithm [10] on general networks with a distributed
demon.

As noted in [10], a token circulation algorithm together with a deterministic enumeration of the
node’s neighbors yields an algorithm determining a spanning tree. The task of spanning tree
construction is a basic primitive in communication networks. Many crucial network tasks, such as
network reset (and thus any input/output task), leader election, broadcast, topology update, and
distributed database maintenance, can be efficiently carried out in the presence of a tree defined on
the network nodes spanning the entire network. Improving the efficiency of the underlying spanning
tree algorithm usually also correspondingly improves the efficiency of the particular task at hand.

Note that other constructions of spanning trees in a self-stabilizing way are known. Some authors
(as in [1] and [4]) have presented algorithms with a central demon. Huang and Chen [9] construct
a minimal spanning tree with a distributed demon. Sur and Srimani [12] have presented a similar
algorithm but the correctness proof is substantially simpler, based on graph theoretical reasoning.
Dolev, Israeli, and Moran [7] have reported a minimal spanning tree construction with read-write
atomicity (then the system is fully asynchronous). Finally, Tsai, and Huang [13] have presented an
algorithm that constructs a minimal spanning tree with a fully distributed demon.

There are two principal measures of efficiency for self-stabilizing algorithms : stabilization time,
which is the maximum time taken for the algorithm to converge to a legitimate state, starting from
an arbitrary state and the space required at each node (e.g. size of local memory needed). We are
interested here in reducing the value of the second parameter. The goal of producing systems with
a small number of states per processor/node is of particular interest because such processors may
have direct implementations in hardware.

The existing solutions for token circulation or spanning tree construction on general network topol-
ogy have a space complexity in O(log(N)), N being the number of nodes. Our contribution is a new
algorithm that achieves the goal in O(log(D)) states per node, D being the upper bound of node’s
degree.

On the other hand, Burns and Pachl [3] showed that does not exist uniform self-stabilizing token
circulation on a composite ring. The best that can be proposed is a semi-uniform algorithm, as our
algorithm.

Moreover, our protocol does not need to know the number of nodes in the network. Therefore,
it works for any connected network and even for dynamic networks, in which the topology of the
network may change during the execution (nevertheless, the upper bound of the node’s degree
should not increase to keep constant the required memory space at each node).

We give the extensive proof of our algorithm within the distributed model where several nodes can
simultaneously perform a move.

The remainder of the paper has been organized as follows; an informal description of the proposed
protocol is provided in section 2. The formal model is described in section 3; protocol formal

description is given in section 4 ; its correctness is proven in section 5.

2 Informal description of the protocol

As a model of computation, we choose the following model, that is an extension of Dijkstra’s original
model for rings to arbitrary graphs. Consider a connected graph G(V, E), in which V is a set of
nodes and E is a set of edges. Such a graph is used to model a distributed system with N nodes, N
= |V|, in which each node represents a processor. In the graph, directly connected nodes are called
each other’s neighbors. Our goal is to design a self-stabilizing algorithm that performs a depth-first
search on the graph.

The proposed self-stabilizing algorithm is encoded as a set of rules. Each processor has several
rules. Each rule has two parts : the privilege (condition) part, and the move part. The privilege
part is defined as a boolean function of the processor’s own state and of the states of its neighbors.
When the privilege of a rule on a processor is true, we say that the processor has the privilege. A
processor having the privilege may then make the corresponding move which changes the processor
state into a new one that is a function of its old state and of the states of its neighbors.

We assume the existence of a distributed demon and we assume that the computation proceeds in
steps. The distributed demon [5] chooses several privileged nodes and one enabled rule on each
chosen node at a time. Hence, in each computation step, several processors make a move. The
privileges for the next move depend on the states resulting from the previous moves. The rules are
atomic : the processors cannot evaluate their privilege at a time and then make the move later with
in between other moves.

To ensure the correctness of the protocol, the demon is regarded as an adversary and the protocol
is required to be correct in all possible executions. Nevertheless, the demon is fair, a node does not
hold forever a privilege on a rule without being chosen by the demon.

The proposed algorithm has two parts. One circulates the token among the nodes in an indeter-
ministic depth-first order. This part is identical to the one in the Huang-Chen algorithm [10]. The
other part handles abnormal situation due to unpredictable initial states or transient failures.

We name r the distinguished node that initiates the depth-first circulation rounds, and chooses the
round color (0 or 1). Each node has a color among three values : 0, 1, and E (for error). The node
having the token, takes the round color and searches among its neighbors one which has not been
visited during this round (an isolated node having the color different of the round color and of E
color). If it finds a suitable node then it passes to this node the token; else it backtracks the token
to its parent. When the token has backtrack to r; the round is over. r initiates a new round with
the other color.

There are two error-handling strategies : one for destroying the illegal branches that are not cycles
and the other for the cycles. The treatment of illegal branches (branches which are not cycles and
which are not rooted to the legal root) is similar to the one used by Huang and Chen. The illegal
roots detect their abnormal situation and color themselves to E. The E color is propagated to their
leaf; then, the E-colored leaves are dropped; and the detached E-colored nodes are recovered by
changing color. The repetition of dropping and recovering processes will correct all nodes inside
illegal branches (there is a finite number of creations of new illegal branches). The cycle destruction
strategy is completely different from the one used in [10]. Our solution does not use a variable
level. The key point is the detection of cycles by outside nodes that will provoke the correction.
The root initializes successive depth-first searches alternatively colored 0 and 1. Note that, due to
a bad initialization, such a depth-first search can only be partial.

root node

ﬁ root node

The token detected the cycle :
Network before detection of the cycle anode inside the cycle has now two parents.

4 root node root node L/.\J”Ode

The node with 2 parents took The E-color has been propagated The cycleis broken : the parent/descendant
itself the E-color. to al nodesinside the cycle. of the node having 2 parents dropped its son.

has the token

Figure 1: Destruction of a cycle

During a 0-colored round, all nodes inside the branch are 0-colored. If during a 0-colored round,
the leaf has an 1-colored neighbor which is inside a cycle, there must be an error somewhere. Then
the leaf chooses the faulty node as son (figure 1). The faulty node detects that it has two parents,
and then colors itself E. The E color propagates to the descendant-parent of the faulty node. At
this point, this node can drop its child (the faulty node) and break the cycle.

Obviously, the same holds if a node inside a cycle during an 1-colored round is 0-colored.

The nodes inside a cycle can change their color only to become E-colored (by a R6 move). This
move can be performed at most once on a node inside a cycle. Thus, such nodes stop changing
color. We can also prove that the cycles are eventually destroyed.

3 Formal model

Let S be a system defined by a set of states and a set of transitions where each transition is an
ordered pair of states.

A computation is a sequence of system states (si, Sa, ... , Sp, ...) where each couple (s;, s;11) is a
system transition.

A system state is defined by the local variable values of each node. If the simultaneous moves of
several rules modify the system state from s; to s, then (s, s7) is a system transition in the case
where (i) at most one move by a node is performed; (ii) and in s; the rule privileges are satisfied
on the nodes which perform the corresponding rule moves.

A region of a system is a subset of system states. A region REG is closed if for every transition (s,
S3) where s; in REG then s, is in REG.

A computation C'leads to a region REG, if C has a state in REG.

A region REG is an attractor of a computation (s, Sa, ...) if there is an integer n such that for all
i > n, s; belongs to REG.

A region REG is an attractor if it is closed and all computations lead to REG.

A predicate P over system states defines the region REG(P) as the set of states where P is satisfied.
Shorten, we said that P is closed (resp. attractor) if and only if REG(P) is closed (resp. an
attractor).

A predicate P, over node states is a trap if for any node 4, the predicate “P,(i) = true” over system
states is closed.

A legitimate states set verifies several properties [5] @ (i) it is closed, (ii) in each legitimate state,
one and only one node holds one privilege, (iii) each legitimate state is reachable from any other
legitimate state, and (iv) each node has a legitimate state where it holds a privilege.

We call a system self-stabilizing if and only if regardless of the initial state and regardless of the
computation, the system is guaranteed to reach the legitimate states set after a finite number of
moves.

4 Protocol formal specification

Notation X.z7 is read X of 7; notation X.Y.7 : X of Y of 4.
Each node 7 maintains the following variables :

e D.i: a pointer pointing to one of its neighbors (called i’s child) or pointing to NULL.
e C.i: the color of node i taking value in the set {0, 1, E}.

The required space at each node can be evaluated. Under the hypothesis that the graph under
consideration has a fixed upper bounded degree D, independent from the number N of nodes, the
size of child variable is log(D); the color variable has also a fixed size (2 bits). Then, the space
complexity of the algorithm at each node is O(log(D)).

Other used notations are :

e P.i: the set of ¢’s parents.
e NB.i: the set of ¢'s neighbors with r excluded.

e NP.i: the number of 7’s parents.

4.1 Token circulation rules

We define some predicates used in the definition of the token circulation rules :

Token.s holds if 7 is a live leaf and #’s color is not the same as 7’s parent color. A live leaf is a leaf
whose color is not E.

BToken.i holds if 7’s child is a live leaf whose color is the same as #’s color.

Anomalous(i,k) holds if k has a parent and does not have the expected color for an inside node with
respect to i (the expected color is either C.7 if BToken.i or C.i4+-1 mod2 if Token.7).

Detached.i holds if 7 is a node without child and without parent.

PotentialFirstSon(i,k) holds if Token.i holds, there is no anomalous node with respect to 4, and k is
a potential first i's child (£ is a detached node with the right color : #’s color).

DeadEnd.i holds if Token.: holds, there is no anomalous node with respect to ¢, and it does not
exist a potential first s son.

PotentialNewSon(i,k) holds if BToken.i holds, there is no anomalous node with respect to 4, and k
is a potential new ¢’s son. (k is a live detached node with the right color : different from ¢’s color).
Backtrack.q holds if BToken.: holds, there is no anomalous node with respect to 4, and it does not
exist a potential new #’s son.

We formally define the predicates :
e Token.i = [((i=1) A (C.i# E) A (D.i = NULL)) vV ((i # r) A (D.i = NULL) A

(NP.i=1) A (C.i # E) A (C.P.i# E) A (C.P.i # C.i))]
e BToken.i = [(D.i # NULL) A (D.D.i = NULL) A (C.D.i = C.i) A (C.i # E)]
e Anomalous(i, k) = | (k€ NB.i) A (NP.k > 1) A

((Token.i A (C.k # C.i+1 mod2)) v (BToken.i A (C.k # C.i)))]
e Detached.i = [(D.i = NULL) A (NP.7 = 0)]

e PotentialFirstSon(i, k) = [Token.i A (V j € NB.i | =Anomalous(i, j)) A
(k € NB.i) A Detached.k A (C.k = C.i)]

e DeadEnd.i = [Token.i A (V j € NB.i | =Anomalous(i, j) A —~PotentialFirstSon(, 5))]

e PotentialNewSon (i, k) = [BToken.i A (¥ j € NB.i | ~Anomalous(s, j)) A
(k € NB.i) A Detached.k A (C.k = C.i+1 mod2)]

e Backtrack.i = [BToken.i A (¥ j € NB.i | =Anomalous(i, j) A —PotentialNewSon(i, j))]

On a node 4, the token circulation rules are :
RO : PotentialFirstSon(i, k) A (i = 1) — C.r = C.r+1 mod2; D.r =k
R1 : PotentialFirstSon(i, k) A (i # r) — C.i=C.P.i; D.ii=k
R2 : DeadEnd.i A (i # r) — C.i = C.P.i
R3 : PotentialNewSon(i, k) — D.i =k
R4 : Backtrack.s — D.i = NULL

root node root node root node root node

RO privilegel,._ 1) 'K.l R3 privilege'QO\OO 0 0

(% """" &) R2 privilege (% """" &) (% """" ‘ R1 privilege

Network before a 0-round Network state after RO move Network state after R2 move Network state after R3 move
root node root node root node root node
00.. 0 0. 0 00 0 0',.-_ 0
Y 0 et 9 g 9 gy ©
R2 privilege R4 privilege
Network state after R1 move Network state after R2 move Network state after R4 move Network state after a 0-round

and before a 1-round

Figure 2: Token circulation

The rule RO initiates a regular circulation round : the node r changes the round color and chooses
a child that gains the token. By a R1 move, the token passes from the previous leaf to its new child
(that is now the leaf). So, the branch lengthens. If the leaf cannot find a suitable son (a neighbor
that had not been visited during the current round) the leaf drops its token, by a R2 move. A
R3 move, substitutes a new leaf (a node that had not been visited during the current round) for
the current one (that does not have the token); this new leaf gains the token. If the current leaf
does have the token and a new suitable leaf cannot be found, the branch is shrunk by a R4 move.
When the branch is completely destroyed (e.g. the round is over), the node r has the token, and
can perform a R0 move.

Evaluation of any privilege necessitates two communications round : each node has to get the two
local variable values from its neighbors. Then, each node can compute its number of parents and
transmit this value to all its neighbors.

4.2 Error handling rules

A self-stabilizing system has an unpredictable initial state. In such a state, the D pointers point to
any neighbors or NULL. Thus, illegal branches or cycles can exist in the initial state. The following
rules delete illegal branches and transform cycles into branches. Thus, the system eventually reaches
a legitimate state.

4.2.1 [Illegal branch destruction

We define some predicates used in the definition of the illegal branch destruction rules :

e FBToken.i = [(D.i # NULL) A (D.D.i = NULL) A (C.D.i = E)]
e TllegalRoot.i = [(i # r) A (D.i # NULL) A (NP.i = 0)]

FBToken.i holds if i’s child is a dead leaf (an E-colored leaf).
IllegalRoot.v holds if ¢ is a branch root without being the node r.

On a node i, the rules that destruct the illegal branches are :

R5 : FBToken.: — C.i = E; D.i = NULL
R6: 3k NB.i| Dk=iANCEk=EAC.i#E—-C.i=E
R7 : Detached.i AC.i=E — C.i =0
R8 : IllegalRoot.te A C.i #E — C.i = E
The illegal branch destructions are processed as follows : R8 colors illegal roots E. R6 propagates

the E color toward the leaf (the E color is propagated only from parent to son). R5 drops the
E-colored leaf (the new leaf will have also the color E). R7 recovers the detached erroneous nodes.

R8 privilege R5 privilege R7 privilege
[E E EO 00
root node root node root node root node root node
0 0 0 0 0
[1 E EO 00
R6 privilege R7 privilege
Illegal live branch Illegal dead branch Without illegal branch

Figure 3: Destruction of an illegal branch

4.2.2 Cycle destruction

R9 : Anomalous(i, k) - D.i=Fk
R10: NP.i>2ACi£E - Ci=E
R11: NPD.i>2ANCi=EACD.i=E — D.; = NULL

The cycle destructions are done as follows : R9 detects an anomalous node, and becomes its new
parent (an anomalous node has a parent and does not have the expected color for a node having a
parent). Now, R10 can color E the anomalous node (R10 colors E a node having several parents).
The E color is propagated to the descendants of the anomalous node by R6 moves. Either the
anomalous node is inside a branch (see above), or the anomalous node is inside a cycle. Then a
R11 move on the parent/descendant of the anomalous node breaks the cycle (R11 disconnects an

E-colored node with its child if its child has several parents and is also E-colored). After that, we
have a branch whose leaf is E-colored.

1

1 1
1 Q\Q root node 1 root node

1 R9 privilege
Network state before R9 move

E

/ R11 privilege

0

=

1
\O root node

0 0
1 1 1
R10 privilege R6 privilege
Network state after R9 move Network state after R10 move
E "nR5 privilege EO
E E root node E Q\OE rootnode O OF root node
0 0 O E
E E E E
E E EO
= ¥ O O
Network state after R11 move Network state after R5 moves

Network state after R6 moves

Figure 4: Cycle destruction rules

4.2.3 Miscellaneous error handling

R12 : DeadEnd.i A (i=r) — C.r = C.r+1 mod2;
R13: D.i=r — D.i = NULL

The rule R12 initiates a quick round (the only move is the r’s color changing). R13 breaks the links
parent /child with the node r (r should not have parent).

root node
R1 1
il
1 1
Before R13 move

0 _R12
root node root node "
1 1
1 10 O
1 10
RA 1 O1
After R13 move Before R12 move

Figure 5: Miscellaneous error handling rules

5 Correctness of the protocol

root node bRO
1

10 O

After R12 move

We name LS the set of states where (i) only one node holds a privilege (ii) the satisfied privilege is
RO, R1, R2, R3 or R4 (iii) there is no cycle and no illegal branch.

We will prove that LS is a valid legitimate states set, and that, in LS, the token circulates in

depth-first order.

To prove the correctness of our algorithm, we use the convergent stair [8] method. We show that
there is a sequence of predicates on the system states such that all computations lead to the regions
defined by these predicates step by step (w.r.t. each region is an attractor, and each region is a
subset of the previous one).

First, we prove that all computations are infinite. Then, we establish that there is a finite number
of creations of illegal and live branches (e.g. branch whose root is not r and whose leaf is not
E-colored), in any computation. The fairness scheduling of the rules R8 and R6 provokes the dead
of the illegal branches (e.g. their leaves get the E color). At this point, we show that no more node
will join an illegal branch ; and the illegal branches will eventually destroy themselves (by fairness
scheduling of the rule R5). We prove that the legal branch will unavoidably become and stay sound
(see the following predicate definition). We demonstrate that after the legal branch is sound, no
more cycle is created ; and that the cycles are eventually destroyed.

We conclude in showing that in LS the protocol provides a token circulation in depth-first order.

5.1 Predicate definitions

We define some predicates used in the correctness proofs :

Cycle.i holds if ¢ belongs to a cycle : one of 7’s descendant is a 7’s parent.

StrictCycle.i holds if ¢ belongs to a cycle and all nodes in this cycle have only one parent.
IllegalNode.i holds if 7 belongs to a branch whose root is not 7.

IllegalLiveRoot.i holds if i is an illegal root whose branch ends in a live leaf (not E-colored).
lllegalDeadRoot.7 holds if ¢ is an illegal root whose branch ends in a dead leaf or in a cycle.
DeadLeaf.i holds if ¢ is an erroneous leaf.

Unsound.i holds if i is an inside node (no leaf) of the legal branch that does have the same color
as its parent and the legal branch ends in a live leaf. If a such node 7 exists, we said that the legal
branch is unsound.

e Cycle.i = [there is a series of nodes py, ... , p, such that py = i = p, A
(V jsuch that 0 <j <n | D.p; = pjt1)]
e StrictCycle.i = [there is a series of nodes py, ... , p, such that py = ¢ = p, A
(V j such that 0 <j <n | D.p; = pj;1 A NP.p; = 1)]
e IllegalNode.i = [there is a series of nodes py, ... , p, such that IllegalRoot.pg A p, = i A

(V j such that 0 <j < n | D.p; = pj11)]
e [llegalLiveRoot.i = [IllegalRoot.z’ A there is a series of nodes py, ..., p, such that
(Vjsuch that 0 < j < n | D.p; =pji1) A (po =149 A (i # 1)
A (D.p, = NULL) A (C.p, # E)]
e [llegalDeadRoot.i = [IllegalRoot.i A there is a series of nodes py, ..., p, such that
(Vjsuch that 0 <j <n|D.pj =pj1) A (po = i) A (i £ 7)
A (((D.p, = NULL A C.p, = E) V Cyclep,)]
e DeadLeaf.i = [(D.i= NULL) A (C.i=E) A ((i=1) V (N.P.i > 1))]
e Unsound.i = [there is a series of nodes py, ... , p, such that py = r A D.p, = NULL A C.p,, # E
A (Vjsuchthat 0 <j<n|Dp;j=pj)AFj|0<j<nAi=p;)AC.i#C.P.j

Remarks : A branch whose the leaf is E-colored or ends in a cycle cannot gain new node; it can
only lost all its nodes by R5 moves. That why, we said a such branch is dead. By extension, a dead
root is the root of a dead branch.

5.1.1 Algorithm Liveness

Theorem 1 In any system state, at least one node holds a privilege.

Proof
We consider the two possible global configurations :

1 There is a leaf ¢ (D.i = NULL A (NPi#0Vi= r)) Either, the leaf holds the RO, R1,
R2, R12, R9, R6, R7, or R10 privilege. Or, the parent of the leaf holds the R3, R4, R9, R5
or R13 privilege.
2 There is no leaf.

o NP.r # 0 - all s parents hold the R13 privilege.

o NP.r = 0 - Let the series py, ... p, such that py = r A (V j such that 0 < j < n there is :
D.p; = pj+1). There is no leaf, thus the series is infinite. But, there is a finite number
of nodes; thus some nodes are several times in the series. Let be pg, ... pr the smaller
prefix of the series with a node appearing twice. It exists 0 < i < k such that p; = py.
pr has two parents (py_1 and p;_1).

* C.pr # E - pr holds R10 privilege.

% djsuch thati <j <k A C.p; 1 =EAC.p; #E - p; holds R6 privilege.

%V jsuch that i < j <k there is C.p; = E - p; 1 and p;_; holds R11 privilege. O

5.2 Destruction of illegal branches
5.2.1 Destruction of illegal and live branches

We present how all illegal and live branches are eventually destroyed, whatever computation is
performed.

The difficulty is that new illegal branches may be created, but we will prove that only finite number
of illegal live branches may be created (number that depends on the initial system state). Then, it
is easy to prove that illegal live branches are transformed into dead ones.

Lemma 1 REG! = { NP.r = 0 } is an attractor.

Proof: REG1is closed : The rules R6, R7, R8, and R10 have no effect on parent/child relationships.
The move of the rules R2, R4, R5, R11, R12 and R13 on ¢ put D.7 value to NULL. The move of
RO, R1, R3 and R9 on i changes the s child value; the new child belongs to NB.i (NB.i is the set
of 7’s neighbors with r excluded).

Every computation leads to REGI : A R13 move decreases the number of 7’s parents; and as long
as REG1 is not reached, a node satisfies the R13 privilege. By fairness scheduling, REG1 will be
reached. O

Let us define CorrectLegalBranch as a boolean function of the system state. This function is true
if there is a series of nodes py, ..., p,, such that
po=71rA (Visuch that 0 <i<n |D.p; =piy1) A (DeadLeaf.pn Vv Cycle.p, V

[(NP.p, > 1V D.p, = NULL) A (Visuch that 0 <i<n | Cp; # E)])

CorrectLegalBranch is true when the branch whose root is r ends in a dead leaf, or in a cycle, or
when all nodes of this branch between the root and a suitable node are not E-colored (a node is
suitable if it is a leaf or if it has several parents).

Let us define the number X as following (if CorrectLegalBranch is false then IncorrectLegalBranch = 1

otherwise IncorrectLegalBranch = 0) :
X = number of illegal and live roots + IncorrectLegalBranch

First, we will prove that X value decreases at each creation of an illegal live root; then we will
establish that X value never increases. We will conclude that there is a finite number of illegal live
root creations, in any computation. At this point, we will be able to prove that each computation
is attracted by system states where there is no live and illegal branch.

Lemma 2 In REGI1, at each creation of an illegal and live root, X decreases.

E EO<=—-0O E EO<=—-20
E E E E
i OE i OF i i O=—o0
E LE E LE

Before R11 moves After R11 moves Before R11 moves After R11 moves
i wasinsidea cycle i wasinside a dead branch
E EO=—0 E EO<—0
I neqr [neqr
E E
; ; O= O E E E E
: : i i O<=—o0
hneqr hnegr
& 8
Before R11 moves After R11 moves Before R11 moves After R11 moves
i wasinside a branch ending in acircle i wasinside several illegal and live
(i was also inside a dead branch) branches and not inside the legal branch
EO=—O
| neqr
E i
O
r
Before R11 moves After R11 moves

i wasinside oneillegal and live
branches (and inside the legal branch)

Figure 6: All cases where a node i lost all its parents

Proof : A node (except the legal root) that does not have parent, cannot gain a child and become
an illegal root.

There is creation of an illegal root, only when all parents of one node perform a R11 move. This
node becomes a new illegal root by losing all its parents. Let us name ¢ this node.

1 was inside a cycle. A parent of ¢ was also a 7’s descendant. After the R11 moves, this
descendant is a dead leaf and it is still a 7’s descendant. i is an illegal and dead root.

e ; was inside a dead branch (branch that ends in a cycle or dead leaf). After the R11
moves, the 7’s branch still ends in dead leaf or in a cycle. 7 is an illegal and dead root.

e 7’s was inside several illegal and live branches. After the R11 moves, all these branches
end in a dead leaf (one of ¢’s parents). Several illegal and live branches are replaced by one
illegal and live branch whose root is 7. X decreases.

e s was inside one illegal and live branch and was not inside a cycle or a dead
branch. i was also inside the legal branch (because i had several parents). We had Incor-
rectLegalBranch = 1 (the legal branch ended in a live leaf, all nodes between r and 7 had only
one parent, and at least one of them was E-colored). After the R11 moves, the number of
illegal and live branches did not change (we substituted 7 for one root). But nevertheless, X
decreased because now IncorrectLegalBranch = 0 .

e 7’s was inside the legal branch, and ¢ was not inside a cycle, or a dead or live
illegal branch. In this case, ¢ did not have several parents; the i’s parent could not perform
a R11 movwe.

An illegal dead root cannot become an illegal live root : once a branch always ends in a dead leaf
or a cycle, it will never have a live leaf. O

Lemma 3 In REG1, X never increases.

Proof : There are only two cases where X increases : Either the number of illegal and live roots
increases ; thus a new illegal and live root has been created. The lemma 2 establishes that X does
not increase in this case. Or, the legal branch reaches an incorrect state from a correct one. Let us
study this case :

e The legal branch ends in a cycle. The only move that changes that is the R11 move on a node
of this cycle. The legal branch get a dead leaf.

e The legal branch ends in a dead leaf. The only move that changes that is the R7 move on r.
After this move the legal branch is reduced to r.

e (i) The legal branch ends in a live leaf; (ii) all inside nodes have only one parent and are not
E-colored. Only a R9 move changes that (and gives several parents to a node that we call).

e All nodes between r and 7 are not E-colored and have only one parent. ¢ has several parents.
Several cases are possible :
o The legal branch ends in a cycle (as above).

o The legal branch ends in a dead leaf (as above).

o The legal branch still ends in a live leaf - Thus, i is inside, at least, one illegal and live
branch. Either, after a R9 move the legal branch will end in a cycle or a dead leaf. Or,
a series of R6 moves will give a dead leaf to the legal branch. Or all ¢’s parents except
the parent inside the legal branch will perform a R11 move. The legal branch will be in
an incorrect state. But all illegal branches that contained i (at least one) will end in a
dead leaf. The number of illegal and live root will decrease ; thus X will not increase. O

Theorem 2 REG2 = REG1 N { V i —IllegalLiveRoot.i } is an attractor.

Proof : X decreases at each creation of illegal and live root (lemma 2) and X never increases. At
some point, there will be no more creation of illegal and live root. Then, by fairness scheduling of
the R6 and R8 moves, REG2 will be reached. O

In REG2 there is at most one live leaf (the leaf of the legal branch). There are some illegal branches
but all of them are dead.

5.2.2 Destruction of illegal and dead branches

We present how all illegal and dead branches are eventually destroyed, whatever computation be
performed.

The difficulty is that new illegal dead branches may be created, but we will prove that when there
is not illegal live branch and when the legal branch is in fully correct state, no more new illegal
dead branch will be created.

Lemma 4 REG3 = REG2N { X = 0} is an attractor.

Proof : REGS is closed (lemma 3). In REG2 X < 1, X = 1 if the legal branch is in incorrect
state (the legal branch has a E-colored node and its leaf is not E-colored) ; a series of R6 moves can
change that by giving a dead leaf to the legal branch. By fairness scheduling, these R6 moves will
eventually be performed . O

Let us define FullyCorrectLegalBranch as a boolean function of the system state. This function is
true if there is a series of nodes py, ..., p, such that
po=71rA (Visuch that 0 <i<n |D.p; =pi1) A (DeadLeaf.p,, V

[(NP.p, > 1V D.p, = NULL) A (Visuch that 0 <i < n | C.p; # E)])

FullyCorrectLegalBranch is true when the branch whose root is r ends in a dead leaf, or when all
nodes of this branch between the root and a suitable node are not E-colored (a node is suitable
if it is a leaf or if it has several parents). It the legal branch verifies the FullyCorrectLegalBranch
predicate then it verifies the CorrectLegalBranch predicate. When the legal branch ends in a dead
leaf, it verifies the FullyCorrectLegalBranch predicate. When the legal branch ends in a live leaf,
if it verifies the CorrectLegalBranch predicate then it verifies FullyCorrectLegalBranch predicate.
When the legal branch ends in a cycle; it always verifies CorrectLegalBranch predicate, but it does
not always verifies the FullyCorrectLegalBranch predicate.

Lemma 5 REG/ = REG3 N { FullyCorrectLegalBranch } is an attractor.

Proof : REG/ is an attractor of REGS : In REGS it is only when the legal branch ends in a
cycle that its may not verify the FullyCorrectLegalBranch predicate. by fairness scheduling of the
rules R6, R10 and R11, the legal branch will eventually end in a dead leaf and then verifies the
FullyCorrectLegalBranch predicate.

REGY is closed :

e The legal branch ends in a dead leaf. The only move that changes that is the R7 move on r.
After this move the legal branch is reduced to r.

e All nodes between r and the live leaf are not E-colored and have only one parent. None move
may change the color of nodes inside the legal branch. Only a R6 move of ¢ will give several
parents to a node (that we call 7). Either i’s is inside a cycle or a dead illegal branch ; and all
nodes between r and ¢ are not E-colored and have only one parent.

e All nodes between r and 7 are not E-colored and have only one parent ; and i is inside a cycle.
None move may change the color of nodes between r and ¢ ; and none move may give another
parent to nodes between r and . Therefore the legal branch will stay in a fully correct state
until the cycle is broken by a R11 move, and then the legal branch ends in a dead branch.

e All nodes between r and ¢ are not E-colored and have only one parent ; and i is inside a dead

illegal branch (the legal branch ends in a dead leaf). O
Lemma 6 In REG/, the predicate —1IllegalNode is a trap.

r r

i i
E E E ﬂ E
Before R11 moves After R11 moves

Figure 7: A node inside the legal branch and inside a cycle

Proof : The illegal branches cannot be extended because they are dead. The only way that nodes
become illegal is the creation of a new illegal branch whose root was not already an illegal node.
The new root was inside the legal branch and was inside a cycle; and its both parents performed
a R11 moves (see figure 7). But in this case, the legal branch was not in a fully correct state, it
does not verify the FullyCorrectLegalBranch predicate : The legal branch does not end in a dead
leaf, and all nodes between r and ¢ have only one parent and at least one is E-colored. We have a
contradiction : the legal branch is always in a fully correct state in REGS. O

Theorem 3 REG5 = REG4 N { V i —IllegalNode.i } is an attractor.

Proof : By fairness scheduling of the R5 moves, the illegal branches will destroy themselves. O

5.3 Destruction of cycles

We present how all cycles are eventually destroyed, whatever computation be performed.

The difficulty is that new cycles may be created, but we will prove that there is no more cycle
creation when there is not illegal branch and the legal branch is sound.

5.3.1 Soundness of the legal branch

We show that whatever computation be performed, it leads to system states where the legal branch
is and stays sound (when the legal branch ends in a live leaf, all inside nodes of the legal branch
have the same color).

Lemma 7 In REGS, The predicate ~Unsound is a trap.
Proof : Let us study all the legal branch configurations :

o [f the legal branch ends in a cycle : a R11 move will be performed that will give an E-colored
leaf to the legal branch.

o If the legal branch ends in a dead leaf : only the R7 move on r gives to the legal branch a
live leaf (the legal branch is reduced to r).

e The legal branch ends in a live leaf (All inside nodes have the same color (# E) and all of
them have only one parent). The nodes of the legal branch cannot perform a R5, R6, R7, RS,
R10, R11 or R13 move. R1 colors the new inside node like its parent. R2, R3, and R4 do not
change the color of the inside nodes. After RO or R12, the legal branch is sound. R9(4, k) can
only be performed if 7 is the live leaf of the legal branch and if :

o kis inside a cycle. After the R9 move, the legal branch ends in a cycle.

o k is inside the legal branch. After the R9 move, the legal branch ends in a cycle.
(remark : before this move, the legal branch was unsound). O

Remark : REG6 = REG5N { Vi: =Unsound.i } is closed.

If there is at least an illegal live branch, or if the legal branch is unsound, a cycle can be created ;
and if there is at least an illegal dead branch, a cycle can become a strict cycle (as show on the
figure 8).

That why, it is only in REG6, that the number of strict cycles decreases, whatever computation
is performed. (clearly, its is only inside the region REG6, that we can prove that the cycles are
eventually destroyed).

1 0 1 0 1 1
r r
1 0 1 0 1 1
0 1 0 1 0 1 0 1

Before R9 moves Before R9 moves Before R9 move After R9 move
creation of a cycle by at least creation of a cycle on the unsouns
oneillegal live branch legal branch

E EO=—O

E E E):

0 1 0 1
Before R11 move After R11 move

transformation of a un-strict cycleinto a strict one
Figure 8: Case where a new cycle may be created

In order to prove that any execution leads to REG6; we will prove that all computations have to
lead to REGG.

Let C be a computation which does not reach REG6. Thus, there is a no-empty set of nodes which
are unsound all along C. Let is name N this set. These nodes are and stay in the legal branch
along C. We call REGS the subregion of REG5 where all nodes of N are unsound and others are
not.

In REGSH, RI privilege holds only on the live leaf of the legal branch. As described in the proof of
the lemma 7, after a R9 move on the legal leaf, the legal branch is sound. Therefore, C' does not
contain a R9 move.

Lemma 8 REGHa = REGSN {V i: NP.i < 1} is an attractor of C.

Proof : In REGH, there is only one leaf. At a time, only one node can pick up a new son. Thus,
any node cannot gain several parents, in one step. Only after a R9 move, a node having a parent
get a second one. A R9 move is never performed by C; thus REGS is closed. By fairness scheduling
of the rules R10, R6, or R11, REGHa will be reached by C. O

Lemma 9 REGHD = REGSa N { VYV i: Cycle.i v C.i # E } is an attractor of C.

Proof : By fairness scheduling of R5, R6, R7 and R12 rules, REG 50 will be reached in C. Any rule
moves that can be performed in REGSHb does not color E a node outside cycles. O

Remark : in REGHD, C does not contain R5, R7, R8, R9, R10, R11, and R13 moves. in REGHb,
the move R6 is performed a finite number of times (at most one time on each node inside a cycle).
After a RO, or R12 move the legal branch is sound. C contains only an infinity of R1, R2, R3, or
R4 moves in REG 5b.

Let I; be an integer function of system states defined as :
I, = 4 x number of detached nodes of color different from C.:

+ 3 x number of nodes in legal branch after ¢ that have a child
4+ 2 x number of leaf whose color differs from C.:
4+ 1 x number of leaf whose color is C.7

Lemma 10 Let i be the farthest node of N¢ on the legal branch. In REGSD, the C computation
contains a R4 move on i.

Proof : All nodes inside the legal branch after ; have the same color as i, except the leaf. Until
a R4 move on i, [; is strictly decreased by R1, R2, R3, and other R4 moves. Assume that C does
not contain a R4 move on i, the C' computation would be finite, in contradiction with the theorem
1. O

After this R4 move, the farthest node of N is the leaf and is sound. Thus, there is a contradiction
with the hypothesis the nodes N¢ are unsound all along C. We conclude that all computations
reach REG6. The following theorem is a consequence of the lemmas 7 and 10.

Theorem 4 REG6 is an attractor.

5.3.2 Destruction of strict cycles

We show that in all computations, the strict circles are eventually destroyed.
Lemma 11 In REG6, the predicates —Cycle and —StrictCycle are traps.

Proof : A R6, R7, R8, or R10 move does not modify the previously existing parent/child relations.
After a R2, R4, R12, R5, R11 or R13 move on 4, i is not within a cycle (D.i = NULL). After a RO,
R1, or R3(4, k) move on i, ¢ and k are not within a cycle (D.D.i = NULL) and (D.k = NULL).

The RI(4, k) privilege holds in REG6 if k is within a strict cycle and i is the leaf. After the R9
move, k is still within the cycle but not within a strict cycle, and 7 is not within a cycle. a

Remark : REG7 = REG6 N {Vi: =StrictCycle.i} is closed (lemma 11).

In order to prove that any execution lead to REG7, we prove that it does not exist a computation
not leading to REG?7.

Let C'be a computation which does not lead to REG7. Thus there is a no-empty set of nodes which
are and stay inside a strict cycle along C’; let us name N¢ this set. We call REG 6 the subregion of
REG6 where all nodes of N¢ are inside a cycle and others nodes are not inside a cycle. In REG6,
after a R9(i, k) move, k which was previously inside a strict cycle, is no more within a strict cycle.
Therefore, C' cannot contain R9 move in REG6.

The proof of the following lemma is similar to the proof of the lemmas 8 and 9.

Lemma 12 REG6D = REG6N {Vi: NP.i< 1} n{Vi: CycleiV Ci# E} is an attractor
of C.

Proof : similar to the proof of the lemma 8 and 9.
Remark : C contains only an infinity of RO, R1, R2, R3, R4 moves in REG6b.
Lemma 13 In REG6DL, the C computation contains an infinity of RO mowves.

Proof : Assume that C contains a finite number of RO moves on r. At some point, C does not
contain RO move on r. After that [, is strictly decreased by all possible moves. Thus the C
computation would be finite, in contradiction with the theorem 1. O
Let D; be the the minimal distance between r and ¢ defined as :
D; = Min { n € N | 3 a node series py, ... , p, such that
po=rAp, =14iA(Vjsuchthat 0 <j<n|pj € NBpj) }

Let D¢ be the minimal distance between r and a node of N¢. Formally, we define D¢ as :
De = Min { n € N | 3 a node series py, ... , p, such that py = r A StrictCycle.p,, A
(V j such that 0 < j < n | =StrictCycle.p; A p;+1 € NB.p;) }

Lemma 14 If Dy > 1, then in REG 6D, the C' computation contains an infinity of R1 or R2 moves
performed on each r’s neighbor.

Proof : After a RO move, the r move that precedes a new RO move, is R4 move (that can be
performed only when all 7’s neighbors has the r color). Then after a RO move, r cannot perform
a new RO move until all its neighbors have the same color as its own. (i) There are an infinity of
RO moves; (ii) the RO moves are the only moves to change the color of r; (iii) and the only moves
which change the r’s neighbors color are R1 and R2 moves. O

Similarly, we prove the following lemma.

Lemma 15 Let i be a node such that Do > D; and such that the C computation contains an infinity
of R1 or R2 mowes performed by i. C contains also an infinity of R1 or R2 moves performed by
each i’s neighbor.

Lemma 16 There does not exist a computation which does not lead to REGT.

Proof : By induction on the distance between the node 7 and r, the lemmas 14 and 15 establish
that C contains an infinity of 7’s R1 or R2 moves if Do > D;.

Let 7 be a node such that Do = D;+1 and such that ¢ has a neighbor £ verifying StrictCycle.k. In
REG6D, system states where Token.i is satisfied, are infinity often reached along C (because a R1
or R2 move on i is performed only from a system state where Token.i is satisfied). At some point,
k cannot change the color; the only move (R6 move) that could change ’s color had been already
performed. After that, when Token.: is satisfied, two cases are possible :

e C.k = C.i+1 mod2, R1 or R2 privilege is satisfied. After the R1 or R2 move on i, C.k #
C.i+1 mod2. Until Token.i is satisfied, £ and i do not change their color. (see second case).

e C.k # C.i+1 mod2, the R9 privilege on ¢ is satisfied. This R9 move is the only move which
can be performed at that time. C computation contains a R9 move in REGED, in contradiction
with the hypothesis. O

The following theorem is a consequence of the lemmas 11 and 16.

Theorem 5 REG7 is an attractor.

5.3.3 Destruction of un-strict cycles

The strict cycle have been deleted ; Thus, the is at most one (un-strict) cycle. Now, we establish
that the last circle is eventually destroyed.

Theorem 6 REG8 = REG7N {V i: =~Cycle.i} is an attractor.

Proof : The lemma 11 establishes that the region REGS is closed. Let i be a node belonging to
a cycle. ¢ does not belong to a strict cycle. Thus, a node of its cycle holds the R10, R6 or R11

privilege. At each system state of REG7, only one node holds a privilege. At each step, the only
enable move (R10, R6 or R11) is performed until the cycle is destroyed by the R11 move. O

5.4 Legitimate state set

The proof of the following theorem is similar to the proof of lemma 9.
Theorem 7 LS = REG8N { ¥V i: C.i # E} is an attractor.

In LS, (i) only one node has a privilege; (ii) only the R0, R1, R2, R3, or R4 moves are performed ;
and (iii) any node does not verify Cycle or IllegalNode predicates.

From any state of LS, we can reach the system state s, where all nodes are detached and have the
color 0. It is quite obvious that from sg, any state of LS can be reached.

The lemmas 13, 14, and 15 establish that each node ¢ has several legitimate states where Token.s is
true. In these states, ¢ holds the RO, R1, or R2 privilege.

The privilege of R2, the rule that stops the branch growing is held if and only if the branch cannot
lengthen. The privilege of R4, the rule that shrinks the branch, is held if and only if the branch
cannot lengthen and cannot change its way (e.g. to change leaf). Thus, as long as it is possible,
the current branch lengthens and the token goes further off r. In LS, the token circulation is done
in a depth-first order.

We have proved that (i) LS is a valid legitimate state set; (ii) LS is an attractor; and (iii) in LS,
our protocol provides a token circulating in the network in depth-first order.

References

[1] Yehuda Afek, Shay Kutten, and Moti Yung. Memory-efficient self-stabilization on general
networks. In Proc. 4th Int. Workshop on Distributed Algorithms, volume 486, pages 15-28.
Springer-Verlag, 1990.

2] Geoffrey M. Brown, Mohamed G. Gouda, and Chuan lin Wu. Token systems that self-stabilize.
IEEE Transactions on Computers, 38(6):845-852, 1989.

[3] James E. Burns and Jan Pachl. Uniform self-stabilizing rings. ACM Trans. on Programming
Languages and Systems, 11(2):330-344, 1989.

[4] Nian-Shing Chen, Hwey-Pyng Yu, and Shing-Tsaan Huang. A self-stabilizing algorithm for
constructing spanning trees. Information Processing Letters, 39:147-151, 1991.

[5] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-munications
of the A.C.M., 17(11):643-644, 1974.

6] Edsger W. Dijkstra. A belated proof of self-stabilization. Distributed Computing, 1:5-6, 1986.

[7] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of dynamic systems assuring
only read/write atomicy. Distributed Computing, 7:3-16, 1993.

[8] Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communication protocols. IEEE
Transactions on Computers, 40(4):448-458, 1991.

9] Shing-Tsan Huang and Nian-Shing Chen. A self-stabilizing algorithm for constructing breadth-
first trees. Information Processing Letters, 41:109-117, 1992.

[10] Shing-Tsan Huang and Nian-Shing Chen. Self-stabilizing depth-first token circulation on net-
works. Distributed Computing, 7:61-66, 1993.

[11] H.S.M. Kruijer. Self-stabilizing (in spite of distributed control) in tree-structured systems.
Information Processing Letters, 29:91-95, 1979.

[12] Sumit Sur and Pradip K. Srimani. A self-stabilizing distributed algorithm to construct bfs
spanning trees on a symetric graph. Parallel Processing Letters, 2(2/3):171-179, 1992.

[13] Ming-Shin Tsai and Shing-Tsaan Huang. A self-stabilizing algorithm for the shortest paths
problem with a fully distributed demon. Parallel Processing Letters, 4(1):65-72, 1994.

