Service Time of Self-Stabilizing Token
Circulation Protocol on Anonymous
Unidirectional Rings - Extended Abstract -

Colette Johneh

Colette Johnen

LRI/UMR 8623 CNRS, UniversitParis-Sud
Batiment 490, F-91405 Orsay Cedex
colette@Iri.fr, www.lri.fr~A-colette/

We present a self-stabilizing token circulation protocol on unidirectional anonymous rings. The ring size is known by
the processors. This protocol does not require processor identifiers, nor distinguished processor (i.e. all processors
perform the same code).

Our protocol is a randomized self-stabilizing, meaning that starting from an arbitrary configuration (in response to an
arbitrary perturbation modifying the memory state), it reaches (with probability 1) a legitimate configuration (i.e. a

configuration with only one token in the network). Once the system is stabilized the circulation of the sole token is
1-fair (i.e. in every round, every processor obtains the token once).

N token circulations are done in at m@N3) computation steps wheleis the ring size. The memory space required

by our protocol on each processor@glg(Mn)), My being the smallest non divisor of ring size. Thus, we present
the first protocol having the two major advantages: the duration of a token circulation is bounded and the protocol is
optimal in memory space.

Keywords: Distributed protocol, self-stabilization, mutual exclusion, token circulation, anonymous ring, unfair sched-
uler, service time

1 Introduction and Model

Robustness is one of the most important requirements of modern distributed systems. Various types of faults
are likely to occur at various parts of the system. These systems go through the transient faults because they
are exposed to constant change of their environment. The concept of self-stabilization is the most general
technique to design a system to tolerate arbitrary transient faults. A self-stabilizing system, regardless of
the initial states of the processors and initial messages in the links, is guaranteed to converge to the intended
behavior in finite time.

Mutual exclusion is a fundamental task for the management of distributed system. A solution to the
problem of mutual exclusion is to implement a token circulation, the processor having the token is granted
access to the critical resource.

In this paper we address the task: token circulation on anonymous rings of any size under any scheduler.
We have in mind to obtain solutions both self-stabilizing and providing a good serviceSinéce timés
the maximal time in term of computation steps required by the protocol to perform a token circulation.

TThis work is partial supported bpynamo Action Specifique du Rseau TBmatique Pluridisciplinaire CNRS/STICeReaux de
Communication

Colette Johnen

State Model. Each processqp executes an algorithm. The algorithm consists of a set of variables and a
finite set of guarded rules (i.guard — action). The guard of a rule opis a boolean expression involving
the state ofp and the state of its left neighbor. The action of a rule updates the state of the processor that
performs the rule. We assume that the rules are executed atomically. A processor, that has a true guard in
a configuratiorz, is said enabled at During acomputation stepone or more enabled processors execute
one rule. Acomputations a sequence of consecutive computation steps. Undentzalizedscheduler,
during a computation step, only one processor performs a rule. Aldagaundedcomputation, until a
processolp is enabled, another processor can perform at oses. Ak-boundedscheduler “produces”
only k-bounded computations. There is not restriction on the computations producedifaauischeduler.

Because, on anonymous networks, without the ability to break symmetry, deterministic self-stabilizing
token circulation are impossible, our protocol and previous protocols are randomized. The formal frame-
work we used to prove the converge of our randomized protocols is presented in [Joh02b].

Related works. The randomized token circulation protocols on unidirectional rings of [Her90, BCD95,
KY97, BGJ99b, DGTOO0] are all based on the same technique: “to randomly retard the token circulation”.
A processor having a token randomly decides to pass or not the token.

The drawback of this technique is the service time. Once the ring is stabilized (i.e. there is only one
token in the ring), the only token also delays its moves. If the delay is unbounded [Her90, BCD95, KY97,
BGJ99Db], then the upper bounded of the service time is infinite: a processor may never get the token because
the token stays forever on the same processor.

Datta and al. [DGTO0Q] have adapted this technique to guarantee an upper bounded and an average
bounded of the service time (the both &E&N3)): the protocol ensures a boundary to the slowness of a
token move. Kakugawa and al. in [KY97] have presented the first protocol where the token circulation
is not delayed. But this protocol can work only under a weak scheduler (a centralized one). By delaying
the token circulation, Kakugawa and al. in [KY02] have adapted their protocol presented in [KY97] to run
under the unfair distributed scheduler. The service timeNis & [Joh02b], we have presented a protocol
ensuring an optimal service time: aftdrcomputation steps, each processor has obtained one time the
token. These protocols [DGT00, KY97, KY02, Joh02b] require on each proc@gkiiN)) bits.

In the figure 1, we compare the existing self-stabilizing token circulation protocols for anonymous uni-
directional rings. All these protocols are randomized. In all existing protocols, the processors need to know
the ring size. The model of computation is always the state model.

Fig. 1: Comparison of self-stabilizing token circulation protocols

Token circulation Memory | Upper bound on number scheduler
Protocol Space of computation steps required
for N token circulations

first protocol in [KY97] O(lg(N)) optimal : N? centralized
second protocol in [KY97] O(Ig(N)) unbounded unfair distributed
[DGTO0] O(Ig(N)) N4 unfair distributed
[KY02] O(Ig(N)) 2N? unfair distributed
[Joh02b] O(lg(N)) optimal : N? unfair distributed

[Her90] unbounded synchronous
[BCD95] unbounded k-bounded
ProtocolSSTC Weak O(k-N?) k-bounded

o)
o)
o)
[BGJ99b], [Ros00] O(lgMy)) unbounded unfair distributed
O)
o)
o()

[Ros00] unbounded unfair distributed
ProtocolSSTC N synchronous
ProtocolSSTC 3N° unfair distributed

SS Token Circulation

Our contribution. Our protocols (called8STC weakand SSTC) require onlyO(lg(My)) memory
space on each processbty being the smallest non divisor of ring sike For instance, on a ring of odd
sizeMy = 2. The value oMy is less than 11 for every ring whose the size is not a multiple of 2520
8x9x5x 7. My is constant on the average. In [BGJ99a], it was been proven that the minimal memory
space required by a self-stabilizing token circulation under the unfair distributed schedD{gg(sly)).

Thus, our protocols are optimal in memory space.

Notice that the previous protocols and our protocol require that each processor have some knowledge
about the ring size: the value &fly for the protocols of [Her90, BCD95, BGJ99b, Ros00, DGTOO,
BGJDLO02] and our protocol; the ring size for the protocols of [KY97, KY02]; and an upper bound on
the ring size for the protocol of [Joh02b].

The stabilization time of the ProtocBIST C is similar to the one of protocols [DGT00, KY02, Joh02b]:
O(N?®) computation steps (the proof is out the scope of this paper).

The protocolSST C_weakworks properly only under thiebounded scheduler. The proto&@&TC can
deal with any kind of schedules even unfair ones. Once stabilized, the service time depends only of the
scheduler. Under any schedullirfoken circulations irSSTC (resp.SSTC_weak require at mosO(N?)
(resp. k- N) computation steps. Thus, we present the first space optimal self-stabilizing token circulation
protocols that has an upper bound on the service time. The service time is not optimal. A question is still
opened: “there is or not a self-stabilizing protocol such that it has an optimal service time and it is optimal
in memory space”. We conjecture that such a protocol does not exist.

2 Token circulation protocol under the k-bounded scheduler

Protocol 2.1SSTC Weak: Bound Service Time & Space optimal token circulation protocol

Variables :
mry, (the Mark value) is an integer bounded My
Cp (the color value) takes value §0,1, 2}

Macros (Ip is p's left neighbor):
PassMarkp = mrp 1= (mnp +1) mod My

Predicates:
Markp = mrp # (mn, + 1) mod My
Token = (Markp Acp = ¢j,) V (-Markp Acp # ¢,

Rules:
Ry ;- Markp A =Tokenp —
If (randon(0,1) = 0) then{PassMarkp;c, := ¢ }
Ry :: Markp A Tokery —
If (randon{0, 1) = 0) thenPassMark, elsecy, := (cp+ 1+ randont(0,1)) mod 3
Rs :: =Marky A Token, — Cp i= ¢,

We presenSST C Weak a self-stabilizing token circulation protocol for anonymous unidirectional rings
of any size under thk-bounded scheduler.

A processor holds Mark if and only if it verifies the predicatMark : its value is not the value of its left
neighbor plus one (moduldy). A processor having Blark randomly decides to keep ikdark or to pass
it to its right neighbor (ruleR; andRy). A processor passes ikdark by changing its value (it takes the
value of its left neighbor plus one).

Colette Johnen

Definition 2.1 The L1 predicate on configurations is “one and only one processor has a Mark”. A config-
uration verifying L1 is said semi-legitimate.

Observation 2.1 For any configuration, there is at least one processor that verifies the Mark predicate
because | does not divide the ring size N.

Any processor p having a Mark is enabled. There is not deadlock configuration.

The number of Marks cannot increase.

In the Protocol SSTC Weak under any scheduler, the predicaieid closed.

Informal theorem: Under ak-bounded schedule, from every configuration the probability to reach a semi-
legitimate configuration is 1.

Informal proof: Letc be a semi-legitimate configuration where there are selaaks Let p1, p2,--- Pm
be the processors havinguark in c. We nameM1 (resp.M2) theMark in p; (resp. pz). Letd; be the
distance betweek 1 andM2.

Let sg be the following scenario: (i) thkl1 Mark moves fromp; to py; (i) M2 does not move during
SGr.

Under ak-bounded schedule, we prove tltat can achieve in less thah (k(m— 1) + 1) computation

steps with a probability greater théﬂl(kﬂ).

By repeatingn— 1 times the scenarigg the system reaches a semi-legitimate configuration. O

Thus, a processor will be eventually distinguished in the ring: the processor verifyihtattkeoredicate.
The distinguished processor changes from time to time wheld gk moves. The first layer of our protocol
is a self-stabilizing “pseudo leader election”.

The second layer is a self-stabilizing token circulation on semi-uniform rings. The distinguished proces-

sor does not execute the same algorithm as the other processors. A standard processor (a processor that
does not verify theMark predicate) has &okenwhen it does not have the same color has its left neighbor.
A standard processor passeslittkenby taking the color of its left neighbor (rulRs). Unlike the others,
the distinguished processor (processor that verifyingMiagk predicate) has aokenwhen it does have
the same color has its left neighbor; it passesThkenby changing its color (ruldy). Its new color is
randomly computed. Notice that a processor hold@®kenif and only if it verifies the predicat&oken

Definition 2.2 The legitimate predicate2.on configuration is “one and only one processor has a Mark
and one and only one processor has a Token”.

Observation 2.2 Let ¢ be a semi-legitimate configuration. In c, there is at least one processor that has a
Token.
Along any computation from any semi-legitimate configuration, the number of Tokens cannot increase.
In the Protocol SSTC_Weak under any scheduler, the predicagid closed.

Informal theorem: Under ak-bounded schedule, from every semi-legitimate configuration, the probability
to reach a legitimate configuration is 1.

Informal proof: Letc be a semi-legitimate configuration where there are seValatns Let py, po,... Pm
be the processors havinglakenin c. We namepg the processor having thdark. Let p; (resp. p2) be
the first processor at thg left (resp.p; left) having aTokenin ¢c. We nameT 1 (resp.T2) theTokenin p;
(resp.p).

We callsg the following scenario in 3 steps whete s the color of theT 2 Token (preamble step) the
T1 Tokenreachey; (first step)pp does not take theo color during itsR, action; and (second step) the
T2 Tokenreachegyg. Duringsg the Mark does not move.

The scenariesq is illustrated in the figure 2. At the end sy, T2 has vanished. Th&2 should be
on pp the marked processor but the colorpfis not the color of its left neighbap: pg has not aroken
Therefore at the end afc;, the number off okenshas decreased.

SS Token Circulation

After first step now T1 color (9 After second step

Fig. 2: Token discarding in Protocol SSTC Weak

Under ak-bounded schedule, we prove tltat can achieve in less thgd2N + 1)k + 2Nm computation
steps with a probability greater thér(uZNH)k.

By repeatingn— 1 times the scenarigg the system reaches a legitimate configuration. a

The formal convergence proof of our protocol can be found in [Joh02a].

3 Token circulation protocol under the unfair distributed scheduler

In [BGJ993a] is informally presented a protocol-compiler that transforms a self-stabilizing protocol under
a k-bounded schedule into an self-stabilizing protocol under the unfair distributed scheduler. A formal
presentation may be found in [BGJO1]. After transformation of the prot8&I C Weak we get the
protocolSSTC (protocol 3.1).

The compiler modifies the rule &STC Weak in such a way that a processor enable&&iT C holds
a Privilege. During any action, a processor passes its Privilege to its right neighbor. A chosen processor by
the scheduler, will perform the associa®8T C_ Weakrule action if it verifies &8ST C Weakguard. Also,
we prevent the scheduler from having unfair behaviors: the scheduler cannot avoid choosing a processor.
A processor satisfying a guard 85T C_Weakhas to wait at modN - (N — 1) /2 computation steps before
performing the action rule: another processor can perform at lhagies during the waiting.

Colette Johnen

Protocol 3.1SSTC: Bound Service Time & Space optimal token circulation protocol

Variables :
prp (the Privilege value) is an integer boundedMy
mry, (the Mark value) is an integer bounded ldy
Cp (the color value) takes value §0,1, 2}

Macros (I, is p's left neighbor):
PassPrivilege, = prp := (pr, +1) mod My
PassMarkp = mrp := (mri, + 1) mod My

Predicates:
Markp = mrp # (mn, + 1) mod My
Privilegey = prp # (pri, +1) modMy
Token = (Markp Acp =¢j,) V (~Markp Acp # €,

Rules:
My :: Privilege, A Markp A —Token, — PassPrivilegey;
If (randon(0,1) = 0) then{PassMarkp;c, := ¢, }
M :: Privilege, A Markp A Token, — PassPrivilegey;
If (randon{0,1) = 0) thenPassMark,, elsec, := (cp + 1+ random(0,1) mod 3
Mg :: Privilegey, A =Markp A Token, — PassPrivilegep; ¢p == ¢,
My :: Privilege, A ~Mark, A —~Token, — PassPrivilege,

The properties of this transformation have been largely studied [BGJ99b, Ros00, FJO1, BGJ01]. One of
the most interesting properties are:

e any computation has a suffix where the number of Privileges does not change;
e there is at least one Privilege in the ring;
e the number of Privileges cannot increase;

e The upper bound on the time needed by a Privilege to perfomounds is(X + 1)N2 computation
steps.

Every processor having a Privilege is enabled. Even once the pr@&&XC is stabilized, several pro-
cessor may have a Privilege. Therefore, the token circulation speed depends on the processor schedule.
Assume that the ring ham Privileges :Pri1, Priy, ..., Prip. Let us study the following strictly centralized
fair schedulePriy, Priy, ..., Prim, Prig, Pris, ..., Prig, Under this schedule, a token circulation requires
N2 computation steps. L&t be theTokenthat will stay forever in the ring. In [Joh02a], we prove that
token circulations off require at most®® computation steps under all schedules. Under the synchronous
scheduler, a token circulation takidscomputation steps.

References

[BCDY95] J. Beauquier, S. Cordier, and S. D&tlaOptimum probabilistic self-stabilization on uniform
rings. InProceedings of the Second Workshop on Self-Stabilizing Systeges 15.1-15.15,
1995.

[BGJ99a] J. Beauquier, M. Gradinariu, and C. Johnen. Memory space requirements for self-stabilizing
leader election protocols. RODC99 Proceedings of the Eighteenth Annual ACM Symposium
on Principles of Distributed Computingages 199—-208, 1999.

SS Token Circulation

[BGJ99Db]

[BGJO1]

[BGJDLOZ]

[DGTO0]

[FJO1]

[Her90]

[Joh02a]

[Joh02b]

[KY97]

[KY02]

[Ros00]

J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing and space optimal
leader election under arbitrary scheduler on rings. Technical Report 1225, L.R.I, December
1999.

J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over composition - enforcement of fairness
under unfair adversary. IWSS01 Proceedings of the Fifth International Workshop on Self-
Stabilizing Systems, Springer LNCS:21pdges 19-34, 2001.

J. Beauquier, M. Gradinariu, C. Johnen, and J. Durand-Lose. Token-based self-stabilization
uniform algorithms.Journal of Parallel and Distributed Computing§2(5):899-921, 2002.

A. K. Datta, M. Gradinariu, and S. Tixeuil. Self-stabilizing mutual exclusion using unfair
distributed scheduler. IlPDPS’2000 Proceedings of the 14th International Parallel and Dis-
tributed Processing Symposiypages 465470, 2000.

FE Fich and C Johnen. A space optimal, deterministic, self-stabilizing, leader election algo-
rithm for unidirectional rings. IMDISCO1 Distributed Computing 15th International Sympo-
sium, Springer LNCS:218pages 224—239, 2001.

T. Herman. Probabilistic self-stabilizationinformation Processing Letters35(2):63—67,
1990.

C. Johnen. Optimization of service time and memory space in a self-stabilizing token circu-
lation protocol on anonymous unidirectional rings. Technical Report 1330, L.R.l, September
2002.

C. Johnen. Service time optimal self-stabilizing token circulation protocol on anonymous
unidrectional. INSRDS 2002 21st Symposium on Reliable Distributed Systems, IEEE Com-
puter Society Prespages 80-89, 2002.

H. Kakugawa and M. Yamashita. Uniform and self-stabilizing token rings allowing unfair
daemon.[EEE Transactions on Parallel and Distributed SysteB{8):154-162, 1997.

H. Kakugawa and M. Yamashita. Uniform and self-stabilizing fair mutual exclusion on unidi-
rectional rings under unfair distributed daemdournal of Parallel and Distributed Comput-
ing, 62(5):885—-898, 2002.

L. Rosaz. Self-stabilizing token circulation on asynchronous uniform unidirectional rings. In
PODCO00 Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing pages 249-258, 2000.

