
Service Time of Self-Stabilizing Token
Circulation Protocol on Anonymous
Unidirectional Rings - Extended Abstract -

Colette Johnen†

Colette Johnen

LRI/UMR 8623 CNRS, Université Paris-Sud
Batiment 490, F-91405 Orsay Cedex
colette@lri.fr, www.lri.fr/�colette/

We present a self-stabilizing token circulation protocol on unidirectional anonymous rings. The ring size is known by
the processors. This protocol does not require processor identifiers, nor distinguished processor (i.e. all processors
perform the same code).

Our protocol is a randomized self-stabilizing, meaning that starting from an arbitrary configuration (in response to an
arbitrary perturbation modifying the memory state), it reaches (with probability 1) a legitimate configuration (i.e. a
configuration with only one token in the network). Once the system is stabilized the circulation of the sole token is
1-fair (i.e. in every round, every processor obtains the token once).

N token circulations are done in at mostO(N3) computation steps whereN is the ring size. The memory space required
by our protocol on each processor isO(lg(MN)), MN being the smallest non divisor of ring size. Thus, we present
the first protocol having the two major advantages: the duration of a token circulation is bounded and the protocol is
optimal in memory space.

Keywords: Distributed protocol, self-stabilization, mutual exclusion, token circulation, anonymous ring, unfair sched-
uler, service time

1 Introduction and Model
Robustness is one of the most important requirements of modern distributed systems. Various types of faults
are likely to occur at various parts of the system. These systems go through the transient faults because they
are exposed to constant change of their environment. The concept of self-stabilization is the most general
technique to design a system to tolerate arbitrary transient faults. A self-stabilizing system, regardless of
the initial states of the processors and initial messages in the links, is guaranteed to converge to the intended
behavior in finite time.

Mutual exclusion is a fundamental task for the management of distributed system. A solution to the
problem of mutual exclusion is to implement a token circulation, the processor having the token is granted
access to the critical resource.

In this paper we address the task: token circulation on anonymous rings of any size under any scheduler.
We have in mind to obtain solutions both self-stabilizing and providing a good service time.Service timeis
the maximal time in term of computation steps required by the protocol to perform a token circulation.

†This work is partial supported byDynamo Action Sṕecifique du Ŕeseau Th́ematique Pluridisciplinaire CNRS/STIC Réseaux de
Communication

Colette Johnen

State Model.Each processorp executes an algorithm. The algorithm consists of a set of variables and a
finite set of guarded rules (i.e.guard ! action). The guard of a rule onp is a boolean expression involving
the state ofp and the state of its left neighbor. The action of a rule updates the state of the processor that
performs the rule. We assume that the rules are executed atomically. A processor, that has a true guard in
a configurationc, is said enabled atc. During acomputation step, one or more enabled processors execute
one rule. Acomputationis a sequence of consecutive computation steps. Under acentralizedscheduler,
during a computation step, only one processor performs a rule. Along ak-boundedcomputation, until a
processorp is enabled, another processor can perform at mostk rules. Ak-boundedscheduler “produces”
only k-bounded computations. There is not restriction on the computations produced by anunfair scheduler.

Because, on anonymous networks, without the ability to break symmetry, deterministic self-stabilizing
token circulation are impossible, our protocol and previous protocols are randomized. The formal frame-
work we used to prove the converge of our randomized protocols is presented in [Joh02b].

Related works. The randomized token circulation protocols on unidirectional rings of [Her90, BCD95,
KY97, BGJ99b, DGT00] are all based on the same technique: “to randomly retard the token circulation”.
A processor having a token randomly decides to pass or not the token.

The drawback of this technique is the service time. Once the ring is stabilized (i.e. there is only one
token in the ring), the only token also delays its moves. If the delay is unbounded [Her90, BCD95, KY97,
BGJ99b], then the upper bounded of the service time is infinite: a processor may never get the token because
the token stays forever on the same processor.

Datta and al. [DGT00] have adapted this technique to guarantee an upper bounded and an average
bounded of the service time (the both areO(N3)): the protocol ensures a boundary to the slowness of a
token move. Kakugawa and al. in [KY97] have presented the first protocol where the token circulation
is not delayed. But this protocol can work only under a weak scheduler (a centralized one). By delaying
the token circulation, Kakugawa and al. in [KY02] have adapted their protocol presented in [KY97] to run
under the unfair distributed scheduler. The service time is 2N. In [Joh02b], we have presented a protocol
ensuring an optimal service time: afterN computation steps, each processor has obtained one time the
token. These protocols [DGT00, KY97, KY02, Joh02b] require on each processorO(lg(N)) bits.

In the figure 1, we compare the existing self-stabilizing token circulation protocols for anonymous uni-
directional rings. All these protocols are randomized. In all existing protocols, the processors need to know
the ring size. The model of computation is always the state model.

Fig. 1: Comparison of self-stabilizing token circulation protocols

Token circulation Memory Upper bound on number scheduler
Protocol Space of computation steps required

for N token circulations
first protocol in [KY97] O(lg(N)) optimal : N2 centralized

second protocol in [KY97] O(lg(N)) unbounded unfair distributed
[DGT00] O(lg(N)) N4 unfair distributed
[KY02] O(lg(N)) 2N2 unfair distributed
[Joh02b] O(lg(N)) optimal : N2 unfair distributed
[Her90] O(lgMN)) unbounded synchronous

[BCD95] O(lgMN)) unbounded k-bounded
ProtocolSSTC Weak O(lgMN)) O(k �N2) k-bounded

[BGJ99b], [Ros00] O(lgMN)) unbounded unfair distributed
[Ros00] O(lgMN)) unbounded unfair distributed

ProtocolSSTC O(lgMN)) N synchronous
ProtocolSSTC O(lgMN)) 3N3 unfair distributed

SS Token Circulation

Our contribution. Our protocols (calledSSTC weakand SSTC) require onlyO(lg(MN)) memory
space on each processor,MN being the smallest non divisor of ring sizeN. For instance, on a ring of odd
sizeMN = 2. The value ofMN is less than 11 for every ring whose the size is not a multiple of 2520=
8�9�5�7. MN is constant on the average. In [BGJ99a], it was been proven that the minimal memory
space required by a self-stabilizing token circulation under the unfair distributed scheduler isO(lg(MN)).
Thus, our protocols are optimal in memory space.

Notice that the previous protocols and our protocol require that each processor have some knowledge
about the ring size: the value ofMN for the protocols of [Her90, BCD95, BGJ99b, Ros00, DGT00,
BGJDL02] and our protocol; the ring size for the protocols of [KY97, KY02]; and an upper bound on
the ring size for the protocol of [Joh02b].

The stabilization time of the ProtocolSSTC is similar to the one of protocols [DGT00, KY02, Joh02b]:
O(N3) computation steps (the proof is out the scope of this paper).

The protocolSSTC weakworks properly only under thek-bounded scheduler. The protocolSSTC can
deal with any kind of schedules even unfair ones. Once stabilized, the service time depends only of the
scheduler. Under any scheduler,N token circulations inSSTC (resp.SSTC weak) require at mostO(N3)
(resp. k �N) computation steps. Thus, we present the first space optimal self-stabilizing token circulation
protocols that has an upper bound on the service time. The service time is not optimal. A question is still
opened: “there is or not a self-stabilizing protocol such that it has an optimal service time and it is optimal
in memory space”. We conjecture that such a protocol does not exist.

2 Token circulation protocol under the k-bounded scheduler

Protocol 2.1SSTC Weak: Bound Service Time & Space optimal token circulation protocol

Variables :
mrp (the Mark value) is an integer bounded byMN

cp (the color value) takes value inf0;1;2g

Macros (lp is p’s left neighbor):
PassMarkp = mrp := (mrlp +1) modMN

Predicates:
Markp �mrp 6= (mrlp +1) modMN

Tokenp � (Markp^cp = clp)_ (:Markp^cp 6= clp)

Rules:
R1 :: Markp^:Tokenp !

If (random(0;1) = 0) thenfPassMarkp;cp := clpg
R2 :: Markp^Tokenp !

If (random(0;1) = 0) thenPassMarkp elsecp := (cp+1+ random(0;1)) mod 3
R3 :: :Markp^Tokenp ! cp := clp

We presentSSTC Weak, a self-stabilizing token circulation protocol for anonymous unidirectional rings
of any size under thek-bounded scheduler.

A processor holds aMark if and only if it verifies the predicateMark : its value is not the value of its left
neighbor plus one (moduloMN). A processor having aMark randomly decides to keep itsMark or to pass
it to its right neighbor (ruleR1 andR2). A processor passes itsMark by changing its value (it takes the
value of its left neighbor plus one).

Colette Johnen

Definition 2.1 The L1 predicate on configurations is “one and only one processor has a Mark”. A config-
uration verifying L1 is said semi-legitimate.

Observation 2.1 For any configuration, there is at least one processor that verifies the Mark predicate
because MN does not divide the ring size N.

Any processor p having a Mark is enabled. There is not deadlock configuration.
The number of Marks cannot increase.
In the Protocol SSTC Weak under any scheduler, the predicate L1 is closed.

Informal theorem: Under ak-bounded schedule, from every configuration the probability to reach a semi-
legitimate configuration is 1.

Informal proof: Let c be a semi-legitimate configuration where there are severalMarks. Let p1; p2; : : : pm

be the processors having aMark in c. We nameM1 (resp.M2) theMark in p1 (resp. p2). Let d1 be the
distance betweenM1 andM2.

Let sc1 be the following scenario: (i) theM1 Mark moves fromp1 to p2; (ii) M2 does not move during
sc1.

Under ak-bounded schedule, we prove thatcs1 can achieve in less thand1(k(m�1)+1) computation

steps with a probability greater than1
2

d1(k+1)
.

By repeatingm�1 times the scenariosc1 the system reaches a semi-legitimate configuration. 2

Thus, a processor will be eventually distinguished in the ring: the processor verifying theMark predicate.
The distinguished processor changes from time to time when theMark moves. The first layer of our protocol
is a self-stabilizing “pseudo leader election”.

The second layer is a self-stabilizing token circulation on semi-uniform rings. The distinguished proces-
sor does not execute the same algorithm as the other processors. A standard processor (a processor that
does not verify theMark predicate) has aTokenwhen it does not have the same color has its left neighbor.
A standard processor passes itsTokenby taking the color of its left neighbor (ruleR3). Unlike the others,
the distinguished processor (processor that verifying theMark predicate) has aTokenwhen it does have
the same color has its left neighbor; it passes theTokenby changing its color (ruleR2). Its new color is
randomly computed. Notice that a processor holds aTokenif and only if it verifies the predicateToken.

Definition 2.2 The legitimate predicate L2 on configuration is “one and only one processor has a Mark
and one and only one processor has a Token”.

Observation 2.2 Let c be a semi-legitimate configuration. In c, there is at least one processor that has a
Token.

Along any computation from any semi-legitimate configuration, the number of Tokens cannot increase.
In the Protocol SSTC Weak under any scheduler, the predicate L2 is closed.

Informal theorem: Under ak-bounded schedule, from every semi-legitimate configuration, the probability
to reach a legitimate configuration is 1.

Informal proof: Let c be a semi-legitimate configuration where there are severalTokens. Let p1; p2; : : : pm

be the processors having aTokenin c. We namep0 the processor having theMark. Let p1 (resp. p2) be
the first processor at thep0 left (resp.p1 left) having aTokenin c. We nameT1 (resp.T2) theTokenin p1

(resp.p2).

We callsc1 the following scenario in 3 steps whereco is the color of theT2 Token: (preamble step) the
T1 Tokenreachesp0; (first step)p0 does not take theco color during itsR2 action; and (second step) the
T2 Tokenreachesp0. Duringsc1 theMark does not move.

The scenariosc1 is illustrated in the figure 2. At the end ofsc1, T2 has vanished. TheT2 should be
on p0 the marked processor but the color ofp0 is not the color of its left neighborpl : p0 has not aToken.
Therefore at the end ofsc1, the number ofTokenshas decreased.

SS Token Circulation

���� T2 colorT1 color

�
�
��

�
�
�
�

�
�
�
�

� �� �
	 		 	

� �� �

��

����

���� ����

� �� �
��

� �� �
��

� �� �
��

� �� �
� �
� �

� �
� �
� �
� �

� �
� �

�
�

 !!

" "" "
##

$ $$ $
% %% %

& && &
' '' '

((
((
))
))

*
*
+
+

,
,
-
-

. .. .
/ /
/ /

Mark

p0

p1T1

p2

Mark

p0

p1

p2

T4

After second step

T3

T4

Mark

p0

T1

p1

T2

p2

Mark

p0

p1

T2

p2

T1

T4

T3

After Preamble step

T2

T1

T3

T3
T4

After first step now T1 color is

Fig. 2: Token discarding in ProtocolSSTC Weak

Under ak-bounded schedule, we prove thatcs1 can achieve in less than(2N+1)k+2Nmcomputation

steps with a probability greater than1
2
(2N+1)k

.

By repeatingm�1 times the scenariosc1 the system reaches a legitimate configuration. 2

The formal convergence proof of our protocol can be found in [Joh02a].

3 Token circulation protocol under the unfair distributed scheduler

In [BGJ99a] is informally presented a protocol-compiler that transforms a self-stabilizing protocol under
a k-bounded schedule into an self-stabilizing protocol under the unfair distributed scheduler. A formal
presentation may be found in [BGJ01]. After transformation of the protocolSSTC Weak, we get the
protocolSSTC (protocol 3.1).

The compiler modifies the rule ofSSTC Weak, in such a way that a processor enabled inSSTC holds
a Privilege. During any action, a processor passes its Privilege to its right neighbor. A chosen processor by
the scheduler, will perform the associatedSSTC Weakrule action if it verifies aSSTC Weakguard. Also,
we prevent the scheduler from having unfair behaviors: the scheduler cannot avoid choosing a processor.
A processor satisfying a guard ofSSTC Weakhas to wait at mostN � (N�1)=2 computation steps before
performing the action rule: another processor can perform at mostN rules during the waiting.

Colette Johnen

Protocol 3.1SSTC : Bound Service Time & Space optimal token circulation protocol

Variables :
prp (the Privilege value) is an integer bounded byMN

mrp (the Mark value) is an integer bounded byMN

cp (the color value) takes value inf0;1;2g

Macros (lp is p’s left neighbor):
PassPrivilegep = prp := (prlp +1) modMN

PassMarkp = mrp := (mrlp +1) modMN

Predicates:
Markp �mrp 6= (mrlp +1) modMN

Privilegep � prp 6= (prlp +1) modMN

Tokenp � (Markp^cp = clp)_ (:Markp^cp 6= clp)

Rules:
M1 :: Privilegep^Markp^:Tokenp ! PassPrivilegep;

If (random(0;1) = 0) thenfPassMarkp;cp := clpg
M2 :: Privilegep^Markp^Tokenp ! PassPrivilegep;

If (random(0;1) = 0) thenPassMarkp elsecp := (cp+1+ random(0;1) mod 3)
M3 :: Privilegep^:Markp^Tokenp ! PassPrivilegep; cp := clp
M4 :: Privilegep^:Markp^:Tokenp ! PassPrivilegep

The properties of this transformation have been largely studied [BGJ99b, Ros00, FJ01, BGJ01]. One of
the most interesting properties are:

� any computation has a suffix where the number of Privileges does not change;

� there is at least one Privilege in the ring;

� the number of Privileges cannot increase;

� The upper bound on the time needed by a Privilege to performX rounds is(X+1)N2 computation
steps.

Every processor having a Privilege is enabled. Even once the protocolSSTC is stabilized, several pro-
cessor may have a Privilege. Therefore, the token circulation speed depends on the processor schedule.
Assume that the ring hasm Privileges :Pri1, Pri2, :::, Prim. Let us study the following strictly centralized
fair schedule:Pri1, Pri2, :::, Prim, Pri1, Pri2, :::, Prim, ::: . Under this schedule, a token circulation requires
N2 computation steps. LetT be theTokenthat will stay forever in the ring. In [Joh02a], we prove thatN
token circulations ofT require at most 3N3 computation steps under all schedules. Under the synchronous
scheduler, a token circulation takesN computation steps.

References
[BCD95] J. Beauquier, S. Cordier, and S. Delaët. Optimum probabilistic self-stabilization on uniform

rings. InProceedings of the Second Workshop on Self-Stabilizing Systems, pages 15.1–15.15,
1995.

[BGJ99a] J. Beauquier, M. Gradinariu, and C. Johnen. Memory space requirements for self-stabilizing
leader election protocols. InPODC99 Proceedings of the Eighteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 199–208, 1999.

SS Token Circulation

[BGJ99b] J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing and space optimal
leader election under arbitrary scheduler on rings. Technical Report 1225, L.R.I, December
1999.

[BGJ01] J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over composition - enforcement of fairness
under unfair adversary. InWSS01 Proceedings of the Fifth International Workshop on Self-
Stabilizing Systems, Springer LNCS:2194, pages 19–34, 2001.

[BGJDL02] J. Beauquier, M. Gradinariu, C. Johnen, and J. Durand-Lose. Token-based self-stabilization
uniform algorithms.Journal of Parallel and Distributed Computing, 62(5):899–921, 2002.

[DGT00] A. K. Datta, M. Gradinariu, and S. Tixeuil. Self-stabilizing mutual exclusion using unfair
distributed scheduler. InIPDPS’2000 Proceedings of the 14th International Parallel and Dis-
tributed Processing Symposium, pages 465–470, 2000.

[FJ01] FE Fich and C Johnen. A space optimal, deterministic, self-stabilizing, leader election algo-
rithm for unidirectional rings. InDISC01 Distributed Computing 15th International Sympo-
sium, Springer LNCS:2180, pages 224–239, 2001.

[Her90] T. Herman. Probabilistic self-stabilization.Information Processing Letters, 35(2):63–67,
1990.

[Joh02a] C. Johnen. Optimization of service time and memory space in a self-stabilizing token circu-
lation protocol on anonymous unidirectional rings. Technical Report 1330, L.R.I, September
2002.

[Joh02b] C. Johnen. Service time optimal self-stabilizing token circulation protocol on anonymous
unidrectional. InSRDS 2002 21st Symposium on Reliable Distributed Systems, IEEE Com-
puter Society Press, pages 80–89, 2002.

[KY97] H. Kakugawa and M. Yamashita. Uniform and self-stabilizing token rings allowing unfair
daemon.IEEE Transactions on Parallel and Distributed Systems, 8(2):154–162, 1997.

[KY02] H. Kakugawa and M. Yamashita. Uniform and self-stabilizing fair mutual exclusion on unidi-
rectional rings under unfair distributed daemon.Journal of Parallel and Distributed Comput-
ing, 62(5):885–898, 2002.

[Ros00] L. Rosaz. Self-stabilizing token circulation on asynchronous uniform unidirectional rings. In
PODC00 Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 249–258, 2000.

