Self-Stabilizing Depth-First Token Circulation In Arbitrary Rooted
Networks *

Ajoy K. Datta,* Colette Johnen,? Franck Petit,?
Vincent Villain?
! Department of Computer Science, University of Nevada, Las Vegas
2 L.R.I./JC.N.R.S., Université de Paris-Sud, France
3 LaRIA, Université de Picardie Jules Verne, France

Abstract: We present a deterministic distributed depth-first token passing protocol on a rooted
network. This protocol uses neither the processor identifiers nor the size of the network, but assumes the
existence of a distinguished processor, called the root of the network. The protocol is self-stabilizing, meaning
that starting from an arbitrary state (in response to an arbitrary perturbation modifying the memory state),
it is guaranteed to reach a state with no more than one token in the network. Our protocol implements a
1-fair token circulation scheme, i.e., in every round, every processor obtains the token once. The proposed
protocol has extremely small state requirement—only 3(A + 1) states per processor, i.e., O(logA) bits per
processor, where A is the degree of the network.

The protocol can be used to implement a fair distributed mutual exclusion in any rooted network. This
protocol can also be used to construct a DFS spanning tree.

Keywords: Distributed mutual exclusion, self-stabilization, spanning tree, token passing.

Correspondance:

Franck PETIT

Email. petit@laria.u-picardie.fr

LaRIA, Université de Picardie Jules Verne

5, rue du Moulin Neuf F - 80039 AMIENS Cedex 1 FRANCE
Tel. +33-322-827-874

Fax. +33-322-827-654

*A preliminary version of this work was presented at SIROCCO ’98 [6].

1. Introduction

Robustness is one of the most important requirements of modern distributed systems. Various
types of faults are likely to occur at various parts of the system. These systems go through the
transient states because they are exposed to constant change of their environment. The concept of
self-stabilization [7] is the most general technique to design a system to tolerate arbitrary transient
faults. A self-stabilizing system, regardless of the initial states of the processors and initial messages
in the links, is guaranteed to converge to the intended behavior in finite time.

The depth-first token circulation problem is to implement a token circulating from one processor
to the next in the depth-first order such that every processor gets the token at least once in every
round (defined more formally later). In this paper, the token is initiated by the root of the network.

Related Work. Dijkstra introduced the property of self-stabilization in distributed systems by
applying it to algorithms for mutual exclusion on a ring [7]. Several deterministic self-stabilizing
token passing algorithms for different topologies have been proposed in the literature: [1,4, 7, 11, 9]
for a ring; [2, 10, 21] for a linear array of processors, and [16, 17] for a tree network. Huang and Chen
[13] presented a token circulation protocol for a connected network in non-deterministic depth-first-
search order, and Dolev, Israeli, and Moran [8] gave a mutual exclusion protocol on a tree network
under the model whose actions only allow read/write atomicity.

One of the important performance issues of self-stabilizing algorithms is the memory requirement
per processor. The memory requirement of a processor depends on the total number of states of
the processor. The solution in [13] requires O(nA) states per processor, where n is the number
of processors. The algorithm in [8] constructs a spanning tree and implements a token circulation
scheme on the constructed spanning tree. The spanning tree protocol uses a distance variable
(which needs n states) and the token circulation algorithm maintains a descendant pointer (which
needs A states). So, the algorithm [8] requires at least nA states or log(nA) bits.

A state-efficient token passing protocol on general network is presented in [15]. In this protocol,
a processor p; needs to maintain 3(A; + 1) states ([log(3(A; + 1))]), where A; is the degree of p;.
Subsequently, this result was improved by Petit and Villain [18] to 2(A; + 1) states for a processor
pi. Both protocols do not use the distance variable. But, in these algorithms, a processor needs the
knowledge of the state of the neighbors of its neighbors. Since the algorithms assume the atomic
execution of the actions, this requirement makes the atomic step bigger—in one atomic step, a
processor reads the state of its neighbors, the state of the neighbors of its neighbors, and finally
changes its own state. This drawback has been removed in [14]. In this protocol, a processor only
reads the state of its neighbors in an atomic step. Thus, this algorithm has a smaller atomicity
than that in [15, 18]. The state requirement of this protocol is 12(A; + 1) states for a processor
pi. Petit and Villain [20] and [19] adapted the result of [15] and [18], respectively, in the message
passing model.

Contributions. In this paper, we present a self-stabilizing depth-first token circulation scheme
on a general network with a distinguished root, called Algorithm 7C. Algorithm 7C has all the
desirable features of the algorithm in [14]. In addition, we reduced the state requirement for a
processor p to 3(A, + 1) states (only 2(A, + 1) states for the root). Also, our algorithm is simpler

(less number of actions) than that in [14]. Algorithm 7C implements a I-fair circulation of token,
i.e., while each processor p is waiting for the token, every processor g (¢ # p) gets the token at most
A, times. Hence, Algorithm 7C can also be used to implement a fair distributed mutual exclusion
among the processors.

Outline of the Paper. We present a self-stabilizing depth-first token circulation scheme on
a general network with a distinguished root. The token passing problem is formally defined in
Section 2.2. The rest of the paper is organized as follows: In Section 2, we describe the distributed
systems and the model in which our token circulation scheme is written, and give a formal statement
of the token passing problem solved in this paper. In Section 3, we present the token passing
protocol, and in the following section (Section 4), we give the proof of correctness of the protocol.
The state complexity of the protocol is given in Section 5. Finally, we make concluding remarks in
Section 6.

2. Preliminaries

In this section, we define the distributed systems and programs considered in this paper, and state
what it means for a protocol to be self-stabilizing. We then present the statement of the token
passing problem and its properties.

2.1. Self-Stabilizing System

System. A distributed system is an undirected connected graph, S = (V, E), where V is a set of
processors (|V| =n) and E is the set of bidirectional communication link. We consider networks
which are asynchronous and rooted, i.e., all processors, except the root are anonymous. We denote
the root processor by r. The numbers, 1..n, are used to identify the processors to present our ideas
here, but no processor, except the root (identified by), has any identity. A communication link
(p,q) exists iff p and ¢ are neighbors. Each processor p maintains its set of neighbors, denoted as
N,. We assume that N, is a constant and is maintained by an underlying protocol.

Programs. KEach processor executes the same program except the root . The program consists

of a set of shared variables (henceforth referred to as variables) and a finite set of actions. A

processor can only write to its own variables and can only read its own variables and variables

owned by the neighboring processors. So, the variables of p can be accessed by p and its neighbors.
Each action is uniquely identified by a label and is of the following form:

< label >:: < guard > — < statement >

The guard of an action in the program of p is a boolean expression involving the variables of p
and its neighbors. The statement of an action of p updates zero or more variables of p. An action
can be executed only if its guard evaluates to true. We assume that the actions are atomically
executed: the evaluation of a guard and the execution of the corresponding statement of an action,
if executed, are done in one atomic step. The atomic execution of an action of p is called a step of

p.

The state of a processor is defined by the values of its variables. The state of a system is a
product of the states of all processors (€ V). In the sequel, we refer to the state of a processor and
system as a (local) state and configuration, respectively. Let a distributed protocol P be a collection
of binary transition relations denoted by +—, on C, the set of all possible configurations of the system.
A computation of a protocol P is a mazimal sequence of configurations e = (Yo, Y1, -, Vi» Yis1s)
such that for ¢ > 0,v;, — v, (a single computation step) if v;,, exists, or -y, is a terminal
configuration. Mazimality means that the sequence is either infinite, or it is finite and no action
of P is enabled in the final configuration. All computations considered in this paper are assumed
to be maximal. During a computation step, one or more processors execute a step and a processor
may take at most one step. This execution model is known as the distributed daemon [3]. We
use the notation Enable (A, p,~y) to indicate that the guard of the action A is true at processor p
in the configuration . A processor p is said to be enabled at y (v € C) if there exists an action
A such that Enable (A,p,7vy). We assume a weakly fair daemon, meaning that if a processor p is
continuously enabled, then p will be eventually chosen by the daemon to execute an action.

The set of computations of a protocol P in system S starting with a particular configuration
a € C is denoted by &,. The set of all possible computations of P in system S is denoted as
E. A configuration g is reachable from «, denoted as o ~ (3, if there exists a computation

e = (Y0, Y15+ Yir Yir1s-) € Eala =) such that B =;(i > 0).

Predicates. Let X be a set. z + P means that an element x € X satisfies the predicate P
defined on the set X. A predicate is non-empty if there exists at least one element that satisfies
the predicate. We define a special predicate true as follows: for any x € X, x F true.

Self-Stabilization. We use the following term, attractor in the definition of self-stabilization.

Definition 2.1 (Attractor). Let X and Y be two predicates of a protocol P defined on C of
system S. Y is an attractor for X if and only if the following condition is true:
Vak X : Vee€&y: e=(vy,71,-) 2 F >0,Vj >4,7; =Y. We denote this relation as X > Y.

Definition 2.2 (Self-stabilization). The protocol P is self-stabilizing for the specification SPp
on & if and only if there exists a predicate Lp (called the legitimacy predicate) defined on C such
that the following conditions hold:

1. Vat Lp: Yee &y e SPp (correctness).

2. true >Lp (closure and convergence).

2.2. Specification of the Depth-First Token Passing Protocol

Definition 2.3 (Token Circulation Round). We define a computation in the protocol TC star-
ting from a configuration 0.y to another configuration é.; as a token circulation round (in the sequel
referred to as cround) if the following conditions are true:

(i) Exactly one processor holds a token in any configuration.

(ii) r holds a token in both 6.y and §.1.

(iii) The token is passed among the processors in the depth-first search order.
(iv) There is at least one configuration in between 6.9 and 6. !.

We are now ready to define the specification, SPy¢ of the protocol TC. We consider a compu-
tation e of TC to satisfy SPy¢ if the following conditions are true:

(SP1) In every configuration in e, at most one processor has a token.

(SP2) The token is passed among the processors in the depth-first search order.

(SP3) Starting from .9 or d.1, the token circulation rounds are repeated.

We also require the protocol TC to be self-stabilizing.

Condition (SP1) specifies the Single Token property, whereas Conditions (SP2) and (SP3)
specify the Fuirness property.

3. Depth-First Token Passing Algorithm

In this section, we propose the self-stabilizing depth-first token circulation algorithm. We first
present the data structure used by the processors. Then we present the formal algorithm. Next, we
define some terms to be used later in the paper. We then explain the process of token circulation,
followed by the method of error correction. In particular, we do not use the distance variable used
in [13] to destroy the cycles. We use a method similar to the one introduced in [15] to remove the
cycles in the network.

3.1. Data Structures and Algorithm 7C

To distinguish each token round, each processor p uses a variable C), called the round color, which
contains a value € {0,1} when the system is stabilized. A third color E, called the Error color,
is used by processors, except the root, during the stabilization. The descendant relationship is
indicated by the variable D, (D, € N, U{L}). To choose its descendant, each processor p locally
distinguishes each neighbor by some ordering, denoted as .

The self-stabilizing depth-first token circulation is shown in Algorithm 3.1. To make the al-
gorithm readable, we present it in three parts: the macros, predicates, and actions. The macros
are not variables and they are dynamically evaluated. Anc, denotes the set of ancestors of p, i.e.,
Ancy, = {q € Ny | D, = p}. UV, is the set of neighbors not visited by the token. Search, chooses
the next neighbor from UV,,. In the following, fAnc, denotes the current number of ancestors of p.
If §Anc, = 1, then the only ancestor of p is denoted as a,. The predicates are used to describe the
guards of the actions in Algorithm 3.1. Actions T'C'l and T'C2 implement the token circulation, i.e.,
the correct behavior of the system. The token circulates in the network according to Definition 2.3.
Actions EC1, EC2, and EC3 implement the error correction of the system, i.e., they are used to
bring the system from an illegitimate configuration to a legitimate one. All these predicates will
be explained in detail in Section 3.2.

When the system stabilizes, the system must contain only one token which circulates in the
DFS order. In such a configuration, a processor can make a move only if it holds the token. Holding
the token means either Forward(p) or Backtrack(p) is true. Formally:

!"We assume that the network has at least one processor other than 7.

Algorithm 3.1 (7C) Self-Stabilizing Depth-First Token Circulation in Rooted Network.
Macro

Anc, = {q€ N,:Dy=p}
_ | (g>p Dp) AN(Cq # Cp) A(Dyg #p) Ng #1)
Ot R W (N)}
[win, (UV,) 8 UV, £0)
Searchy = { 1 otherwise
Predicates
Forward(p) = (Dp=L)A((p=r)V ((§4nc, =1) A (Cp # E) A (Cq, = (Cp + 1) mod 2)))
Backtrack (p) = (Dp# L)N(Dy#7)A(Dp, =1)A(Cp, = C v) A (Cp # E)
A ((p=r7)V (fAnc, = 1))

Break(p) = (p#
(Dp=r
A (v ((Cy = B) A (D, = 1)V ((#4ncy > 1) A (Cp, =)
V ((Dp, = 1) A (#4nc, = 0) A (Cp, # (Cp + 1) mod 2))
EDetect(p) = (p#r)N(Cy#E)
A ((Dp # L) A (Cp, = E) A (§4Anc, = 1))
v ((Dp # r) A (fAnc, > 1))
EEnd(p) = (p#r)A(Cp=E)N(Dy=1)A((Anc, =0)V (Anc, = {r}))
Actions
TCl = Forward(p) — Cp:=(Cp+1)mod2; D, := Searchy;
TC2 : Backtrack(p) — D, := Searchy;
EC1 = Break (p) — D, := 1;
EC2 : EDetect(p) — Cp:=FE;
EC3 = EEnd(p) — if (§4nc, =0) then C, :=0; else C, := C,;

Token(p) = Forward(p) V Backtrack(p)

3.2. Informal Explanation of Algorithm 7C

The proposed algorithm has two major tasks: (i) to circulate the token in the network in a deter-
ministic depth-first order and (ii) to handle the abnormal situations (illegal configurations) due to
the unpredictable initial configurations and transient errors. The tasks (i) and (ii) are explained
with examples in Paragraphs Token Circulation and Error Correction, respectively.

Some Definitions. A path p, is a sequence (p1,p2,...,p;) such that (i) p = p1, (i) [> 2,
(iti) Vi € [1,I[, Dp, = pi+1 and (iv) Dy, = L or Dy, € {p1,p2,...,m—1}. Vi € [1,1],p; is said to
belong to the path p, and is denoted as p; € pu,.

If Anc, = 0, then pyp is called a rooted path (the path is rooted at p). A path py Tooted at p # 7
is called an illegal rooted path and p is called an illegal root. A path p, rooted at r is called a legal
(rooted) path.

The processor p; € p,, is termed as a leaf if Dy = L. The leaf of a legal (respectively, illegal)
rooted path is called legal (respectively, illegal) leaf. A leaf p' is termed as a live (respectively,
dead) leaf, if Cpy # E (respectively, Cy = E).

The path p, is called a cycle if Dy, € {p1,p2,...,pi—1}. A cycle p, is called a strict cycle if
Vi € [2,1], pi—1 is the only ancestor of p; (a, = p;—1) and p; is the only ancestor of p; (a1 = a;).
If there exists at least one rooted path p, such that all processors in a cycle u,, belong to p,, i.e.,
Jpi € p, such that i € [2,1] and §Anc,, > 1, then the rooted path p, is called a rooted cycle.

A rooted path with a live leaf is termed as a [live rooted path. All other rooted paths are called
dead rooted paths.

Every processor p such that Anc, =) and D, = L is called path-free, meaning p does not
belong to any path.

Figure 3.1: A Possible Configuration.

These definitions are illustrated in Figure 3.1. Processors ¢, f, g, and j are illegal roots. d, e, 7, h
form a strict cycle. f and c are roots of a rooted cycle. k is a dead leaf. [and m are path-free.

Token Circulation. The root r initiates the token circulation round. The token then traverses
all processors during a token circulation round (Definition 2.3).

We use 0.9 € C to denote a configuration where every processor in the system is path-free and
has the color 0. Similarly, d.; denotes the configuration in which every processor is path-free and
has the color 1. That is,

deo=VpeEV 2 Ancy =0AND,=1LAC, =0

b1 =VpeV uAncy, =0ANDp=1LANC, =1

Both §.9 and d.; are among the possible configurations from where the algorithm behaves cor-
rectly, i.e., starting from d.g (respectively, from d.1), Algorithm 7C circulates the token (represented
by the predicate T'oken()) in the depth-first search order to reach d.; (respectively, d.9). This is
called one token circulation round (cround). From §. (respectively, d.9), the system reaches §.9
(respectively, d.1) again in the same manner; the cround is said 0 colored (1 colored). The token
circulation consists of successive crounds, alternately colored with 0 and 1. After stabilization, the
system repeats the crounds forever. The cround is implemented by Actions T'C'l and T'C2. Every
suffix of the computation starting from J.o or .1 is a legitimate configuration.

Consider the example in Figure 3.2. Step (i) corresponds to the configuration d.9. In this
configuration, Forward(r) is true and the only process enabled is r and the only action enabled at
ris TC1. The root changes its color (C, := (C, 4 1) mod 2) and builds y, by choosing a descendant

of . o ¢ o ¢ ‘o
*® @@ ¢‘®@ ©© ‘@0

(vi) (vii) (viii) (ix))

Figure 3.2: Depth-First Search Token Circulation.

(Search predicate). The root chooses the processor b as the descendant. This is shown in Step
(ii). Similarly, b changes its color and chooses a descendant (Step (iii)). This process of extending
the path continues until ¢ executes Action T'C'l. ¢ does not have any neighbor to choose from.
So, ¢ executes D, := L (Search). This indicates to its ancestor d that the token has traversed all
processors reachable from ¢ in the DFS tree (Step (v)). Now, Backtrack(d) becomes true and d
can execute T'C2. Since d has no more unvisited neighbors, D; becomes equal to L (Step (vi)).
Actions T'C'1 and T'C?2 are repeated until all processors are visited by the token (Steps (vii) to (x)).
Step (x) corresponds to d.;. Now, r changes its color to 0 and starts a new round with this color.

Error Correction. We now consider the transient failures. An illegitimate configuration is shown
in Figure 3.1.

Actions EC1, EC2 and ECS3 are used to bring the system into a legitimate configuration. Illegal
configurations are locally detected by the predicates Break, EDetect, and EEnd. We split the
predicates Break and E Detect into simpler predicates in Figure 3.3 to help explain them better.

BrkA(p) = (Dp=r)
BrkB(p) = (C,=E)A(§4nc, >1)A (Cp, = E)
BrkC(p) = (Cp,=E)A(Dp,=1)
BrkD (p) = (Dp,=1)A (fAnc, =0) A (Cp, # (Cp + 1) mod?2)
Break(p) = (@#r)N(Dy,# L)N(BrkA(p)V BrkB (p) vV BrkC (p) vV BrkD (p))
EDetectA(p) = (Dp# L1)A(Cp, =E) A (§4nc, = 1)
EDetectB (p) = (Dy, #r)A(fAnc, > 1)
EDetect (p) = (p#1r)AN(Cp# E) N (EDetectA (p) V EDetectB (p))

Figure 3.3: Predicates Break and EDetect.

First consider the illegal configuration in which r has ancestors. For every ancestor p of r, p

satisfies BrkA (D, = r) and hence, Break(p). Upon executing Action EC1, p eventually destroys
the descendant pointer to r and since, r cannot be chosen as a descendant in the algorithm (see
macro UV,), r eventually will not be on any illegal paths.

'@ EC2

ARG

&.

Figure 3.4: Cycles Destruction.

We illustrate the strategy to destroy strict cycle with the Figure 3.4. The basic idea is to
detect the cycle by a processor which does not belong to the cycle (that idea was presented for
the first time in [15]). The coloring scheme is designed such that during a cround 1 colored. (resp
0 colored), only processors that have the 1 should have a child (resp. color 0). Therefore, if in
cround of color 1 (resp. color 0), a processor having a child and not having the 1 color is faulty
and can be detected as faulty by the legal leaf: the leaf will choose it as child. In the configuration
in Step (i), p belongs to a cycle. The grey processors in the figure can have any color. Assume
that all processors of the cycle are 0 colored. During a 1-colored cround, a processor of the cycle
(p) is eventually chosen as a descendant by the legal leaf (as it is explained above). Let ¢ be the
legal leaf. (this is shown in Step (ii)). After being chosen as a child, p detects that it has more
than one ancestor (EDetectB(p) is true) and executes EC2 to become a E-colored processor (Step
(iii)). The key point of our strategy is that the color E is propagated from a descendant to its
ancestors. In our example, for each ancestor q of p, EDetectA(q) is true. The ancestors of the E
colored processors execute FC2 to propagate the color E along all the paths ¢ belongs to (Steps
(iii) and (iv)).

Since p belongs to a cycle, its descendant (¢’ in the figure) is eventually E-colored (Step (v)). p
then satisfies BrkB, executes EC1, and detaches ¢’ to break the cycle (Step (vi)). Now, the cycle

is replaced by two rooted paths that end at a dead leaf. Next, for every ancestor g # r of p, either
BrkD(q) or BrkC(q) becomes true depending on if ¢ is an illegal root or not a root, respectively.
Processors in a dead rooted path will eventually be E-colored by executing EC2. The ancestor
of the dead leaf satisfies either BrkD or BrkC, and eventually executes Action EC1 (Step (vii)).
Finally, the E-colored, path-free processors are made 0-colored by Action EC3 (Step (viii)).

It is easy to observe that the rooted cycles can be destroyed using the same mechanism as above
(Step (ii) and the following steps).

Finally, the protocol must destroy all illegal rooted paths. If a rooted path p, is a rooted cycle,
it is destroyed using the cycle destruction mechanism described above. Otherwise, it has a dead (E-
colored) or a live (not E-colored) leaf. In the first case, u,, is self-destroyed as above (Step (vi) and
the following steps). In the second case, p,, is self-destroyed by just allowing the token to circulate.
The macro Searchy, uses the local ordering among the neighbors of a processor to avoid repeating
a path during a token circulation round. Thus, a token circulation round cannot loop, and hence,
eventually terminates. Once the current token circulation round completes, the processors which
were in the illegal path become path-free. Moreover, the illegal root cannot initiate a new token
circulation, i.e., cannot create a new path because only the root can initiate a token circulation
round.

4. Correctness of the Token Passing Protocol 7C

We define the legitimacy predicate, Ly¢ as follows: A configuration v satisfies Ly¢ if it is reachable
from 4, i.e.,

Lyc =deo ~ -

Note that we could also define Ly¢ in terms of .1 since d.9 ~ .1 by Actions TC1 and TC2.

We apply the convergence stair method [12] to prove the closure and convergence of our protocol.
We exhibit a finite sequence of state predicates Ao, A1, ..., Apm, of Protocol TC such that the
following conditions hold:

(i) Ap = true (meaning any arbitrary state)
(ii) (.Am = »CTC) \Y (.Am F »CTC)
(iii) Vj: 0<j<m:= AjpAj

The proof outline is as follows:

In Section 4.1, we show that eventually no processor has the root as a descendant. Then, we
prove that a locked processor (which never executes any action) cannot be the root, and either it
does not have any descendant, or it belongs to a strict cycle (Section 4.2). This last result trivial
leads to the proof of liveness of the algorithm and is also used to prove that all illegal live rooted
paths are eventually destroyed (Section 4.3). Once no illegal live rooted path exists, the system
contains only one token. In Section 4.4, we show that since the root changes its color infinitely
often, the legal path will be eventually colored with the color of the root. Then in Section 4.5, we
prove that all cycles are eventually detected and destroyed. Finally, in Section 4.6, we prove that
the system reaches a configuration which satisfies L7¢, and Protocol TC is self-stabilizing.

10

4.1. Root Without An Ancestor

In this section, we show that the system trivially reaches a configuration in which r does not have
any ancestor.

We define Ay = (Vpe V \{r}:D, #r).
Theorem 4.1. Ayb> A;.

Proof: A, is closed: The root 7 can not be chosen as a descendant by a process p # r (see in
macro UV}). Hence, §Anc, cannot increase.

Every computation leads to A;: (Vp € V,Ya € C:: D, =r) = Enable (EC1,p,). p executes
EC1 in the configuration a or Enable (EC1,p, 3) where a — (3. By fairness, 33 : @ ~ (such that
p executes EC1. Hence, fAnc, decreases. Since fAnc, cannot increase, 3y € C : aw ~ v :: Anc, = .
O

4.2. Properties of Locked Processors

We need the following term throughout this section:
A processor p is said to be Locked in a configuration «, if in all configurations reachable from
a, Cp and D), remain constant. Formally:

Locked(p,a) = (VB : a~ B (Cp, = Cpy) A (Dp, = Dyy), where V, denotes the
value of V, in the configuration vy)

Since the daemon is weakly fair, Locked (p, @) implies that p is not continuously enabled in all
configurations reachable from « and that p never executes an action.

We first prove that if a processor ¢ is the descendant of a Locked processor p, then g is eventually
Locked (Lemma 4.2). Then we establish that if p is not the root r, then ¢ has a descendant and
will maintain the descendant forever (Lemma 4.3).

Lemma 4.2. Vp,q eV, VaF A, : (Locked (p,a) N (Dp =¢q)) = (3B : a~ B2 Locked(q,[3)).

Proof: We will prove this by contradiction. We assume the contrary, i.e.,
Ip,q €V, Ja F Ay : (Locked (p,a) N (Dp =q)) AN (VB : o~ [:: —Locked(q,3)). Thus, in all
computations starting from «, ¢ executes an action infinity often.

As p is locked, VB : o~ B:: p € Ancy.

1. Assume that 38 : o~ B :: Cy = E. Since C; = E, only the guards of Actions EC1 and
EC3 can be true. Thus, ¢ can execute only EC1 or EC3 at 3 or 3/, where 8~ (3.

a. Assume that D, = L at $. Then, ¢ can execute only EC3 in 3. Anc, does not
increase while ¢ does not execute EC3 because no neighbor of ¢ can select ¢ (see macro
UV,). Since ¢ is not locked, 38" : B ~ ' = Enable(EC3,q,3'). Since p € Ancy,
Enable(EC3,q, ') implies [p = r and Anc, = {r}] in §'. Execution of EC3 makes
[Cp := Cy and Enable(TC2,r,(")] (Backtrack(r) is true). In all " such that 5"~ §",
Enable(TC2,p,3") since p does not execute an action. By fairness, p eventually runs
T'C2 which contradicts the assumption, Locked(p, «).

11

b. Assume that D, # L in 8. Then, ¢ can execute EC1 only in 8. Since ¢ is not locked,
33 : B~ ' such that ¢ eventually executes EC1 in §'. After the execution of EC1 by
g, Dy = L. Thus, we arrive at the assumed state of Case la.

2. Assume that VB : a~ B Cy # E. So, V3 : a~ (8, Enable(EC3,q,[3) is not satisfied.
Similarly, Enable(EC1,q,[3) is not satisfied (Cy # E and §Anc, > 0 because p € Anc,).
Furthermore, g cannot execute EC2 because otherwise, 33 : « ~ 3 such that C; = E, which
contradicts the assumption. Therefore, V3 : « ~ 3, ¢ cannot execute EC1, EC2, and EC3.

a. Assume that ¢ executes T'C'2 infinitely often. Since D, strictly increases with respect
to >4 (see macro Searchy), 38 : a ~ = Dy = L. In this case, V3' : § ~ 3,
Enable(TC2,p, ('), Enable(EC1,p, ('), or Enable(EC2,p, ") depending on §Anc, and
Cp. By fairness, p eventually executes TC2, EC1, or EC2, which contradicts the as-
sumption, Locked(p,).

b. Assume that g executes T'C2 a finite number of times only. So, 33 : a ~ 3 after which
q executes only T'C'l. But, after the execution of TC1, C; = C). If D, = L then,
Enable(TC2,p, "), Enable(EC1,p,3'), or Enable(EC2,p,3'); by fairness, p eventually
executes an action which contradicts the assumption, Locked(p, o). If D, # L, then ¢
can only execute T'C2, which contradicts the hypotheses.

Lemma 4.3. Vp,q €V, VaF A; :
(Locked (p,a) N(Dp=q) AN(p#71))= (3B : a~pL: VF : B~ = Dy # 1)

Proof: By Lemma 4.2, 38 : a~> (:: Locked(q,3). So, V3" : B~ ', D, remains unchanged.
Assume D, = 1| in 3. We will consider the following cases to arrive at the contradiction.

1. Assume that Cj, = E. Then, irrespective of the color of ¢, V3’ : §~ ' :: Enable(EC1,p, (')
(Cp = E and Dp, = 1). By fairness, p eventually executes EC1. But, that is not possible
since p is locked.

2. Assume that C}, # E.

1. Assume that C;, = E. Then V3 : 8 ~ [/, Enable(EC1,p, ') or Enable(EC2,p, ')
(depending on the value of §Anc,). By fairness, p eventually executes either EC1 or
EC?2, which is not possible since p is locked.

2. Assume that C; = C), # E. Then, V3" : B~ ', Enable(T'C2,p, '), Enable(EC1,p, 3'),
or Enable(EC2,p, ') (if $Anc, = 1,0, or > 1, respectively). By fairness, p eventually
executes 17'C'2, EC1, or EC2, which is not possible since p is locked.

3. Assume that C; = (C, + 1) mod2. Then either (33" : B~ (' i1 $Anc, > 1], or V3" : 8~
B Ancy = {p}]. If {Anc, = 1, then Enable(T'C1,q,'). If $Anc, > 1, Enable(EC2,q, ().
By fairness, ¢ eventually executes either T'C'1 or EC'2, both of which are not possible since ¢
is locked.

12

a

Now, we will prove the main results of this section. We first establish that a locked processor
cannot be in a rooted cycle (Lemma 4.4). We prove this by contradiction. If p belongs to a rooted
cycle, then a processor ¢ in that cycle has at least two ancestors. The processor g will eventually get
the color £ and the color £ will be propagated along the cycle in the direction from the descendants
towards the ancestors. So, ¢’s descendant will also be E-colored. Then, ¢ will break the cycle. By
induction, every processor in the rooted cycle will eventually detach its descendant. Thus, p is not
Locked.

Then we show that a locked processor (# r) has no descendant or it belongs to a strict cycle
(Theorem 4.5). Finally, we show that the root cannot be locked (Theorem 4.6), which implies the
liveness of the algorithm.

Lemma 4.4. Vp eV, VaF A, : Locked (p,a) = p does not belong to a rooted cycle.

Proof: Let p, = (p1,p2,---,pi—1,p1) be a rooted cycle where p € u, and Dy, = p;, i € [2,]]
(#Ancy, > 1). We will prove this lemma by contradiction by assuming the contrary, i.e., there is a
processor p such that Locked(p, @) is true and p belongs to the rooted cycle y,,.

1. Assume that p = p; and C,, # E. Then EDetect(p;) is true. Thus, Enable(EC2, p;, o) and
V3 : a~ [, Enable(EC2,p;,[3) remains true because no action allows the ancestor of p; to
detach it because D, # L. By fairness, p; eventually executes EC2 which contradicts the
assumption (p is Locked).

2. Assume that p = p; and C, = E. Since p is Locked (according to our assumption), by
Lemma 4.2, all processors p;,j € [i,1], also are Locked.

a. Assume that 35 €]i,l] = Cp, # FE, Cp, ., = E. Then EDetect(p;) is true. Thus,
Enable(EC2,pj,a), and V3 : a ~ 3, Enable(EC2,pj,) remains true while p; does not
execute £C2, which contradicts the assumption, p; is Locked.

b. Assume that Vj € [4,1] :: C), = E. Then Break(p;) is true. Thus, Enable(EC1, p;, a) is
true and remains true while p; does not execute £C'1, which contradicts our assumption,
p; is Locked.

3. From Cases 1, 2a, and 2b, p # p;, i.e., p; cannot be Locked. Assume that p = p;,j €]i,1].
Then by Lemma 4.2, all processors pg, k € [i,1], are also Locked, which contradicts the fact
that p; is not Locked. Thus, all processors pj, j € [i,1], are not Locked.

4. Assume that p = p;j,j € [1,7 — 1]. Then by Lemma 4.2, all processors py,k € [j + 1,(], are
also Locked, which is not possible according to Case 3.

Theorem 4.5. Vp e V, Va+ A, :
(Locked (p,a) A (p # 1)) = ((Dp = L) V (p belongs to a strict cycle)).

13

Proof: Assume that D, = ¢. By Lemmas 4.2 and 4.3, 36 : &« ~ (8 = Locked (q,[) and
D, # L. By induction, the descendant of ¢ will also be eventually locked, and so on. Since the
graph §' is finite, p belongs to a cycle. By Lemma 4.4, p cannot belong to a rooted cycle. Thus, p
belongs to a strict cycle. O

Theorem 4.6. Vp € V, Va - Ay : Locked (p,a) = (p # 1)
Proof: We will prove by contradiction. Assume that o+ Ay : Locked(p,a) Ap =r.

1. Assume that r has no descendant. Then, V3 : a~ :: Enable(TC1,r,«). Thus, by fairness,
r is not Locked.

2. Assume that r has a descendant, ¢. Then by Lemma 4.2, ¢ is also Locked. So, by Theorem 4.5,
q is either inside a strict cycle or Dy = L.

a. Dy = 1.

(i) Assume that fAnc, =1 (Ancy ={r}). f C; = E, then VB : o~ B :: Enable(EC3,
¢,8). So, by fairness, ¢ is not Locked. If Cy # E, then V3 : a ~ B = Enable(TC1,
q, 8) V Enable(T'C2,r,3). Thus, by fairness, either ¢ or r is not Locked.

(ii) Assume that fAnc, > 1, and 38 : a ~ B = §Anc, = 1. Thus, Anc, = {r} and
by Case 2a(i), this is not possible. So, VG : a ~ 1 §Anc, > 1. If C; # E, then
V@ :a~ B Enable(EC2,q,) and ¢ is not Locked. If Cy = E, then the ancestors
of ¢ (# r) can only execute Actions EC'1 or EC2 until ¢ remains their descendent.
These ancestors of ¢ can execute EC2 at most once (to get the color). After the
execution of FC2, the ancestors can only execute FC1. Because C; = E and D, =
1, it cannot get a new ancestor. Thus, after repeated execution of EC'1, eventually,
g will have no ancestors except r. This contradicts the assumption,fAnc, > 1.

b. ¢ has a descendant and is inside a strict cycle. Since Va + Aj, r has no ancestor, g must
belong to a rooted cycle (Theorem 4.1), which contradicts the assumption.

Corollary 4.7 (Liveness). In any configuration - Aj, at least one processor is enabled.

4.3. Destruction of Live Illegal Rooted Paths
In this section, we show that all live illegal rooted paths are destroyed.
Lemma 4.8. A processor cannot stays forever in an illegal and live rooted path.

Proof: Assume the contrary, i.e., a processor p stays forever in an illegal rooted path. By
Theorem 4.5, p is not Locked. Till p is in an illegal, live rooted path, p can perform one time the
action TC1, d, times the action TC2 and one time the action TE2. If p stays in an illegal live
rooted path p is enventually Locked. O

Let us denote the number of live illegal leaves by LIL. In the next Lemma (Lemma 4.9), we
prove that Algorithm 7C cannot create a new live illegal leaf.

14

Lemma 4.9. Va F Ay, V(3 such that o — (3, the value of LIL in (8 is less than or equal to the
value of LIL at «.

Proof: Assume the contrary, i.e., LIL in (3 is greater than LIL in . Then one of the following
is true: (1) A dead illegal leaf becomes a live illegal leaf, (2) A path is broken creating a live illegal
leaf, and (3) A processor, other than the root, becomes the root of an illegal rooted path.

1. For any p such that C, = E, only EC3 changes C,. If p executes EC3, then one of the
following two conditions must be true: (i) Anc, = () and p is not a leaf, and (ii) Anc, = {r}
and p is not a leaf of an illegal path. Both (i) and (ii) contradict our assumption.

2. In order to break a path p, = (p1,p2, ..., p1) so that a live leaf is created, dp; € tp, such that
p; executes an action in o and p; becomes a live leaf in 3. Since, D), # L, p; can execute
only TC2, EC1, and EC?2 in a.

If p; executes EC2, then C), becomes equal to E. So, p; is not a live leaf.

If Enable(EC1,p;,), then Cp, = E in a because §Anc,, > 0. Since the execution of EC1
does not change the color, p; cannot become a live leaf.

If Enable(TC2,p;,c), then Dy, .,
live leaf, but p;y; is no more a leaf.

= | in «a. Thus, after the execution of T'C'2, p; becomes a,

3. A processor, p # r, without an ancestor, cannot select a new descendant because both
Forward(p) and Backward(p) are disabled at p.

We proved the contradiction in all three cases. O

We define Ay = A; A (LIL =0).
Theorem 4.10. A; > A,.

Proof: Assume that the value of LIL eventually stays constant to a value [> 0. LIL cannot
increase (lemma 4.9). An illegal live leaf belongs to at least one illegal live rooted path. According
to the lemma 4.8, no processor stay forever in an illegal live path. Thus these paths infinitely often
lose processors by the action TC2 or TE1 and get processors by the action TC1 or TC2. To ensure
that LIL never decreases, when one of the illegal live paths (by the action TC1 or TC2) get a new
processor either (1) this processor belongs to legal live path or (2) this processor has no child, no
parent, and does not have the E color.

After the legal path is reduced to r, all processors in the legal live path have only one parent
and does not have the F color until (1) the leaf of the legal live path ¢ joins an illegal live rooted
path by the action T'C'1 or TC2, or (2) an illegal leaf chooses a processor t of the legal live path.
Notice that in the second case, all processors between t and the legal leaf does not have the E color.
In both cases, the legal live leaf is also an illegal live leaf. Therefore, no illegal live leaf chooses as
child a processor of the legal live path (otherwise LIL would decrease). Thus, when the legal path
is live, there is at most one processor t of the legal path that has two parents.

An infinitely of processors that have joined an illegal live path by TC1 or TC2 action will
quit this path by the TE1l action. Otherwise, the processor in the illegal live rooted path would

15

eventually perform only the TC1, TC2 and TE2 actions, and the root of this path will becomes
locked (see proof of the lemma 4.8); but that is impossible (lemma 4.8).

Let p be a processor that joins the illegal live rooted path by the TC1 or TC2 actions and then
quits the illegal live rooted path by the TE1 action (after that the legal path has been reduced to
r). p and its descendants will not have the E color and will have one parent until (1) the live leaf
(t) of the legal path chooses one of them (p') as its descendants or until (2) the illegal live leaf of
p’s path chooses a processor ¢’ of the legal live path as child. In both cases, all processors of the
illegal rooted path between p and the leaf has one parent except p' (resp. ¢') and all processors of
the illegal rooted path between p’ (resp. ¢') and the illegal leaf do not have the E color. Then p
and p’ (resp. ¢') stays in the illegal live rooted path until p’ (resp. ¢') becomes is dead leaf. p will
not quit the illegal live rooted path by the TE1 action. O

Corollary 4.11. In any configuration - As, if there exists a live leaf, then it must be the legal
leaf.

4.4. Color Consistency

In this section, we show that eventually, either the system contains no live leaf, or every processor
in the legal path (except the leaf) has the same color as r has. In such a configuration, the legal
path cannot create a new cycle. We first show (by using Theorem 4.6) that r changes its color
infinitely often. So, r starts a new cround with a new color infinitely often. If the legal path, u,
does not meet any illegal path, then it remains color consistent (all processors, except the leaf, have
the same color). Otherwise, when u, meets an illegal path, its leaf becomes dead and it remains
color consistent.

Lemma 4.12. The root r changes its color infinitely often.

Proof: By Theorem 4.6, r executes an action infinitely often. r can execute only T'C'l and
TC2. If r executes T'C1 infinitely often, then r changes its color infinitely often and hence, the
lemma is proven. Assume that r does not execute T'C'1 infinitely often. This implies that r executes
T'C?2 infinitely often (by Theorem 4.6). Then, by the definition of Search,, eventually D, = L
must be true. This will enable r to execute T'C'1, which contradicts our assumption. O

We define a predicate ColorConsistent in a configuration v such that it is true if any of the
following conditions is true: (CC1) D, = L. (CC2) The leaf of the legal path is a live leaf and all
processors on the legal path, except the leaf, are r-colored (with the same color as r). (CC3) The
legal path does not have a leaf, i.e., the path is a rooted cycle, or has a dead leaf.

We define A3 = Ay A ColorConsistent.

Theorem 4.13. Ay > As.

Proof: Aj is closed:

16

1. Assume that D, = 1. By Lemma 4.12, r changes its color infinitely often. r chooses a
descendant by executing T'C1l. If r chooses a descendant which belongs to a cycle or to an
illegal rooted path with a dead leaf, then ColorConsistent remains true (CC3). If r selects
a path-free descendant p, then p becomes the new live leaf of the legal path, p,, and thus,
ColorConsistent is preserved (CC2).

2. Assume that D, # 1. The only processor which can choose a descendant by executing T'C'1, is
the live leaf of the legal path. Assume that p is the live leaf. If p chooses a path-free processor
as the descendant (executing Action T'C'1 or T'C2), then all processors except the leaf, are
r-colored. Thus, ColorConsistent remains true (CC2). If p selects a processor ¢ that is in
a path, as the descendant, then the legal path ends in a cycle or a dead leaf (Theorem 4.10
and Corollary 4.11). Thus, ColorConsistent is preserved (CC3).

Every computation starting from a configuration satisfying A, leads to a configuration in Asj:
The proof follows from Lemma, 4.12. O

4.5. Cycle Destruction

In this section, we prove that all cycles are eventually destroyed. The process of destruction is as
follows: All strict cycles are merged with the legal path and thus, become rooted cycles. Then by
the repeated application of EC1 and EC2, the rooted cycles will be destroyed.

We borrow the following term from [5] to simplify our presentation: The first DFS tree of the
graph G is defined as the DFS spanning tree rooted at r, created by traversing the graph in the
DFS manner, and visiting the adjacent edges of every processor in the order induced by >,. We
defined the macro Search, such that Algorithm 7C circulates the token in the first DFS tree.

Lemma 4.14. Starting from any configuration - As, all processors which do not belong either to
the legal path or to any strict cycles, will be eventually path-free.

Proof:

An illegal path that is not a strict cycle or a live rooted path is a dead rooted path or a rooted
cycle. The only actions that a processor in illegal rooted path can perform is one time the action
TE2 and one time the action TE1l. As this processor is not Locked, it will eventually not be
anymore in an illegal rooted path. O

Lemma 4.15. Starting from any configuration - Ag, every processor which is path-free and E-
colored, will be eventually path-free and 0-colored.

Proof: By fairness, all E-colored and path-free processors eventually execute EC3 because
none of its neighbors can choose it as a descendant (in the macro UV}, q cannot be chosen if C; = E
and Dy = 1). O

Lemma 4.16. Starting from any configuration - As, every strict cycle will be eventually trans-
formed into a rooted cycle.

17

Proof: By definition, in any configuration of - Ag, there exists no illegal rooted path ending
by a live leaf.

So, our responsibility is to show that eventually a node on every strict cycle in the system will
be selected as a descendant by the leaf of the legal path. Assume the contrary, i.e., there exists one
strict cycle which will never be reached by the legal path.

So, there exists a - A3 such that all processors between r and the strict cycle on the first DFS-
tree are path-free (by Lemma 4.14), or they belong to the legal path (r-colored in 43). By Lemma
4.15, 3’ : a~ o' such that every processor between r and the strict cycle is 0— or 1-colored. Also,
by successive crounds, 3o’ : o/ ~ o such that every processor between r and the strict cycle has
the same color k£ (0 or 1).

Let g be the first processor in the strict cycle that is on the first DFS tree. Let p € N, be
the ancestor of ¢ in the first DFS tree. Since no strict cycle is reachable by the legal path (by
assumption), Cy = k. Otherwise, p will eventually select ¢ as a descendant, which will contradict
our assumption. But, in the next cround, p will choose ¢ as a descendant because C), will be equal
to (k + 1) mod 2. Thus, we arrive at the contradiction. O

Lemma 4.17. Starting from any configuration - As, every cycle is destroyed.

Proof: By Lemma 4.16, every strict cycle is eventually transformed into a rooted cycle. All
rooted cycles are eventually destroyed by the repeated application of EC1 and EC?2. O
Let NC denote the number of cycles in the system.
We define 44, = A3 A (NC =0).
Theorem 4.18. A;> Ay.

Proof: A4 is closed: By the definition of Search, Forward, and Action T'C1, the leaf of the
legal path chooses a descendant of a different color. So, no new cycle can be created in A3. Hence,
NC cannot increase.

Every computation starting from a configuration in A3z leads to a state in A4: Follows from
Lemma 4.17. O

4.6. Legitimacy Predicate

In this section, we prove that the legitimacy predicate L7¢ eventually holds. Then we show that
Protocol TC is self-stabilizing.

Lemma 4.19 (Single Token Property). Va t Ay : 3lp 2 Token(p).

Proof: Follows from Corollary 4.11. O

We define the following for a configuration y - Ay:
As = Ay A ﬁfrc.

Theorem 4.20. A, > As.

18

Proof: Aj is closed: Follows from the definition of é.9 and Actions TC1 and TC2.

Every computation leads to As: By Lemma 4.14, 3o/ : a ~ o’ such that all processors in the
system are path-free or belong to the legal path. By Lemma 4.15, 30" : o/ ~ o such that every
path-free processor is 0— or 1-colored. Then by successive crounds, 33 : o’ ~ [such that every
processor is path-free and has the same color k£ (0 or 1). If £ = 0 in 3, then the lemma is proven
(B =10¢,). If k=1, then, in the next round, k& becomes equal to 0. O

Lemma 4.21 (Legitimacy Predicate). A; - L.

Proof: Follows from the definition of A5 and L. O

Lemma 4.22 (Closure and Convergence). true> L.

Proof: Follows from Theorems 4.1, 4.10, 4.13, 4.18, and 4.20 and Lemma, 4.21. O

Lemma 4.23 (Correctness). Yo Lr¢c:Vee€ &, = et SPre.

Proof: In Lj¢, only Actions TC1 and TC2 are executed. Thus, the token is passed among
the processors in the depth-first search order during a cround, and any computation is a repetition
of crounds. In any configuration of L7¢, only one processor may execute an action. So, only one
processor has a token in any configuration - L. O

Theorem 4.24 (Self-Stabilizing). Protocol TC is self-stabilizing.

Proof: Follows from Lemmas 4.22 and 4.23. |

5. State Complexity

A processor p in Algorithm 7C uses two variables, D, and C,. The variable C),, for a processor
p # r, can have 3 different values (0, 1, and E), whereas C, can have only 2 values (0 or 1). The
variable D, can have A, (|Np|) plus one (L) values. So, a processor, p # r, needs to maintain
3x (Ap + 1) states and r needs 2 x (A, + 1). Thus, the total number of configurations of the whole
network is
20 +1)x J[3(A,+1)
peV, p#r

It is worth mentioning here that all the previous papers computed the space complexity in terms
of the number of bits only, not in terms of the states. We feel that the measurement in terms of
the number of states is more accurate.

19

6. Concluding Remarks

We presented a self-stabilizing depth-first token circulation scheme on a general network with a
distinguished root. Our algorithm can also be used to construct a DFS spanning tree simply by
maintaining the ancestor pointers.

A solution to the problem of mutual exclusion in a network is to implement a token circulating
from one processor to the next following some pattern. The token moves around the network. A
processor having the token is granted access to the shared resource and can execute the code in the
critical section.

Our solution to the depth-first token circulation problem can be used to solve the mutual
exclusion problem. After stabilization, in Algorithm 7C, in each token circulation round, a processor
p holds the token as many times as its degree A,—once while satisfying Forward(p) and A,—1 times
while Backtrack(p) is true. Since the degre of the processors in the network is bounded, Algorithm
TC implements a strictly fair token circulation (and mutual exclusion). By strict fairness, we mean
that, while a processor p is waiting for the token, any other processor ¢ (¢ # p) can get the token
at most a bounded number of times: here A, times, where A, is the degree of q.

It is also easy to implement the 7-fair mutual excusion, i.e., in each token round, all processors
will enjoy the critical section access exactly once. In this case, a processor p can enter the critical
section if and only if Forward(p) is true.

The space requirement for a processor p is 3(A, + 1) states (only 2(A, + 1) states for the root).
The question of the optimal state requirement for this problem is still open.

alpha

References

[1] J Beauquier and O Debas. An optimal self-stabilizing algorithm for mutual exclusion on
bidirectional non uniform rings. In Proceedings of the Second Workshop on Self-Stabilizing
Systems, pages 17.1-17.13, 1995.

[2] GM Brown, MG Gouda, and CL. Wu. Token systems that self-stabilize. IEEE Transactions
on Computers, 38:845-852, 1989.

[3] JE Burns, MG Gouda, and RE Miller. On relaxing interleaving assumptions. In Proceedings
of the MCC Workshop on Self-Stabilizing Systems, MCC Technical Report No. STP-379-89,
1989.

[4] JE Burns and J Pachl. Uniform self-stabilizing rings. ACM Transactions on Programming
Languages and Systems, 11:330-344, 1989.

[5] Z Collin and S Dolev. Self-stabilizing depth-first search. Information Processing Letters,
49:297-301, 1994.

[6] A.K. Datta, C. Johnen, F. Petit, and V. Villain. Self-stabilizing depth-first token circula-
tion in arbitrary rooted networks. In Structure, Information and Communication Complexity

(SIROCCO098), 1998.

20

7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

EW Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the
Association of the Computing Machinery, 17:643-644, 1974.

S Dolev, A Israeli, and S Moran. Self-stabilization of dynamic systems assuming only
read /write atomicity. Distributed Computing, 7:3-16, 1993.

M Flatebo, AK Datta, and AA Schoone. Self-stabilizing multi-token rings. Distributed Com-
puting, 8:133-142, 1994.

S Ghosh. An alternative solution to a problem on self-stabilization. ACM Transactions on
Programming Languages and Systems, 15:735-742, 1993.

MG Gouda and FF Haddix. The stabilizing token ring in three bits. Journal of Parallel and
Distributed Computing, 35:43-48, 1996.

MG Gouda and N Multari. Stabilizing communication protocols. IEEE Transactions on
Computers, 40:448-458, 1991.

ST Huang and NS Chen. Self-stabilizing depth-first token circulation on networks. Distributed
Computing, 7:61-66, 1993.

C Johnen, G Alari, J Beauquier, and AK Datta. Self-stabilizing depth-first token passing on
rooted networks. In WDAGY7 Distributed Algorithms 11th International Workshop Proceed-
ings, Springer-Verlag LNCS:1320, pages 260-274, 1997.

C Johnen and J Beauquier. Space-efficient distributed self-stabilizing depth-first token cir-
culation. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 4.1-4.15,
1995.

HSM Kruijer. Self-stabilization (in spite of distributed control) in tree-structured systems.
Information Processing Letters, 8:91-95, 1979.

F. Petit. Highly space-efficient self-stabilizing depth-first token circulation for trees. In
OPODIS97 Proceedings of the first international conference On Principles Of DIStributed Sys-
tems, pages 221-235. Hermes, 1997.

F Petit and V Villain. Color optimal self-stabilizing depth-first token circulation. In I-SPAN’97,
Third International Symposium on Parallel Architectures, Algorithms and Networks Proceed-
ings, IEEE Computer Society Press. IEEE Computer Society Press, 1997. To appear.

F Petit and V Villain. Color optimal self-stabilizing depth-first token circulation protocol for
asynchronous message-passing. In PDCS-97 10th International Conference on Parallel and
Distributed Computing Systems Proceedings, pages 227-233. International Society for Com-
puters and Their Applications, 1997.

F Petit and V Villain. A space-efficient and self-stabilizing depth-first token circulation protocol
for asynchronous message-passing systems. In Furo-par’97 Parallel Processing, Proceedings
LNCS:15300, pages 476-479. Springer-Verlag, 1997.

21

[21] V. Villain. A new lower bound for self-stabilizing mutual exclusion algorithms. Technical
Report RR97-17, Universite’ de Picardie, Jules Vernes, LaRIA, 1997.

22

